
Journal of King Saud University – Computer and Information Sciences 35 (2023) 101572
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
Optimizing the impact of data augmentation for low-resource
grammatical error correction
https://doi.org/10.1016/j.jksuci.2023.101572
1319-1578/� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail addresses: seaiman@mail.scut.edu.cn, wangzy@scut.edu.cn (A. Solyman).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Aiman Solyman a,⇑, Marco Zappatore b, Wang Zhenyu a, Zeinab Mahmoud c, Ali Alfatemi d,
Ashraf Osman Ibrahim e, Lubna Abdelkareim Gabralla f

a School of Software Engineering, South China University of Technology, Guangzhou, China
bDepartment of Engineering for Innovation, University of Salento, Lecce, Italy
c School of Computer Science, Wuhan University of Technology, Wuhan, China
dComputer Science, Graduate School of Arts and Sciences (GSAS), Fordham University, New York, United States
eCreative Advanced Machine Intelligence Research Centre, Faculty of Computing and Informatics, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
fDepartment of Computer Science and Information Technology, College of Applied, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia
a r t i c l e i n f o

Article history:
Received 3 February 2023
Revised 29 April 2023
Accepted 29 April 2023
Available online 9 May 2023

Keywords:
Grammatical error correction
Data augmentation
Synthetic data
Deep learning
a b s t r a c t

Grammatical Error Correction (GEC) refers to the automatic identification and amendment of grammat-
ical, spelling, punctuation, and word-positioning errors in monolingual texts. Neural Machine Translation
(NMT) is nowadays one of the most valuable techniques used for GEC but it may suffer from scarcity of
training data and domain shift, depending on the addressed language. However, current techniques (e.g.,
tuning pre-trained language models or developing spell-confusion methods without focusing on lan-
guage diversity) tackling the data sparsity problem associated with NMT create mismatched data distri-
butions. This paper proposes new aggressive transformation approaches to augment data during training
that extend the distribution of authentic data. In particular, it uses augmented data as auxiliary tasks to
provide new contexts when the target prefix is not helpful for the next word prediction. This enhances
the encoder and steadily increases its contribution by forcing the GEC model to pay more attention to
the text representations of the encoder during decoding. The impact of these approaches was investi-
gated using the Transformer-based for low-resource GEC task, and Arabic GEC was used as a case study.
GEC models trained with our data tend more to source information, are more domain shift robustness,
and have less hallucinations with tiny training datasets and domain shift. Experimental results showed
that the proposed approaches outperformed the baseline, the most common data augmentation methods,
and classical synthetic data approaches. In addition, a combination of the three best approaches
Misspelling, Swap, and Reverse achieved the best F1 score in two benchmarks and outperformed previous
Arabic GEC approaches.
� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In computational linguistics, the automatic task of spotting and
then correcting grammatical, spelling, punctuation, and word-
choice errors in a text so that a new, error-free, text is achieved
is known as Grammatical Error Correction (GEC). Therefore, GEC
is a monolingual text-rewriting task. Different approaches have
been introduced in the last two decades to enable GEC automation
and to improve its fluency. Rule-based systems (Moukrim et al.,
2021), n-gram languagemodels (Rozovskaya et al., 2014), and Neu-
ral Machine Translation (NMT) (Solyman et al., 2022) are the three
main categories of GEC. NMT-based systems such as convolutional
neural networks (CNN) and self-attention networks (SAN) have
proven to outperform other GEC approaches (Solyman et al.,
2021; Solyman et al., 2022). The main challenge of neural-based
GECs is that it requires large amount of parallel data, which is
not available for low-resource languages such as Czech, Latvian,
and Arabic. As automatic GEC becomes more important, English
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and Chinese received much research attention (Lai et al., 2022;
Liang and Li, 2023), which makes up 45.3% of the internet content
1, while few studies have been conducted on low resources lan-
guages due to the lack of training data. Arabic GEC (AGEC) introduces
additional challenges including orthographic ambiguity and the
complexity of grammar, richness of morphological features, and
dialectal variations (Habash et al., 2018). Nevertheless, AGEC is
becoming more and more important, because of the widespread
use of the Arabic language. Arabic is one of the official languages
of the United Nations and the official language of 22 Arab countries
with 420 million native speakers. In addition, a large community of
1.9 billion non-Arab Muslims uses Arabic in their daily worship,
which further increases the need for effective AGEC systems, as well
as the growing number of foreign language students studying and
practicing Arabic.

GEC approaches, especially those based on NMT for low-
resource languages, are hampered by data scarcity and data spar-
sity issues, resulting from an insufficient number of training data.
In order to address these challenges, numerous solutions have
been proposed such as transfer learning (Mosin et al., 2023), train-
ing multilingual systems (Pajak and Pajak, 2022), and data aug-
mentation (DA) (Pellicer et al., 2023). The need to solve the data
sparsity problem leads to the use of more data, even if it does
not belong to the same distribution of the original data, which
causes data distribution mismatch problem (Wang et al., 2018a).

Let consider X;Y as the original sentence pairs of a parallel GEC
data, and p̂ X;Yð Þ as the distribution of the training data that is dif-
ferent from the distribution of the true data p X; Yð Þ. The canonical
maximum likelihood estimation (MLE) in the seq2seq GEC frame-
works is to maximize the probability p x j yð Þ of the given training
data (Lai et al., 2022). The possible drawback of MLE is that it can-
not address the mismatch between p X;Yð Þ and p̂ X;Yð Þ, since
p̂ X;Yð Þ is usually defined on the training data and p X;Yð Þ has much
support from the valid data. Moreover, there has been recent
increase in the use of supervised learning techniques to construct
synthetic training data. However, these methods may have limita-
tions that result in the generation of training data with limited pat-
terns, which may only include spelling errors (Solyman et al., 2021;
Solyman et al., 2022).

The motivation behind this paper is proposes completely differ-
ent data augmentation approaches to address two main problems
associated with neural-based GEC systems: data sparsity and data
distribution mismatch. This is inspired by recent work in NMT
(Voita et al., 2021) which finds that the contribution of source
tokens on the output reduces as the decoding advances. The pro-
posed approaches expose the neural network to new scenarios
during training where the target context cannot achieve low loss.
Consequently, the system passes the burden to the encoder to
increase its contribution when generating the correction output.
However, these approaches are used to avoid the problem of out-
of-distribution data by constructing an additional training set
q X;Yð Þ with expanded support from p̂ X;Yð Þ.

The proposed framework is named Grammar Error Correction
Data Augmentation (GECDA). GECDA improves the performance
of GECs, which extends the distribution of the authentic data to
the augmented data, resulting in a standalone version that is up
to four times larger than the original data. Furthermore, it is a
straightforward framework that does not require data preprocess-
ing or additional data besides the original training corpora, or
training additional models. The experiment results discussed in
this paper on two benchmarks QALB-2014 and QALB-2015 show
that GECDA outperforms two powerful data augmentation meth-
1 https://www.statista.com/statistics/262946/most-common-languages-on-the-
internet/.

2

ods: RMAL (Norouzi et al., 2016) and SwitchOut (Wang et al.,
2018b), and two common synthetic data techniques: spell-
confusion (Grundkiewicz et al., 2019) and back-translation
(Kiyono et al., 2020), as same as previous AGEC systems. On the
other hand, to the best of our knowledge, this is the first work in
GEC that addresses the problem of data distribution mismatch.
The research contributions proposed in this paper can be summa-
rized as follows:

� We propose a GEC framework to correct grammar automatically
called GECDA, specifically designed for low-resource languages.
GECDA addresses the challenges of data sparsity and data distri-
bution mismatch that often limit the performance of existing
GEC systems in these languages.
� We propose seven data augmentation approaches that enhance
the contribution of source information in GEC systems, result-
ing in significant improvements in GEC performance without
requiring additional training data.
� We conduct a comprehensive performance analysis of GECDA in
the context of Arabic GEC. The experiments demonstrate that
GECDA outperforms state-of-the-art data augmentation meth-
ods, classical synthetic data approaches, and existing Arabic
GEC systems.

The remainder of this paper is structured as follows. Next sec-
tion overviews the state of the art about GEC approaches, Section 3
details the proposed GECDA framework. Section 4 describes the
experimental settings, whereas Section 5 presents the experimen-
tal results and discussion in Section 6. Finally, Section 7 gives the
conclusion. The code, trained models, and data files are available
on (https://github.com/aimanmutasem/GECDA).
2. Related work

Automatic grammar correction has received research attention
since the early 1970s. Rule-based systems were the most common
technique used to correct grammar (Moukrim et al., 2021). More-
over, these systems demand considerable customization efforts,
as language-specific rules are needed (i.e., different linguists are
needed to create rules coping with specific linguistic phenomena
of different languages). Later on, n-gram language models have
been used to measure the probability of each word from large text
to detect grammatical errors (Rozovskaya et al., 2014). More
recently, NMT has been used notably to translate incorrect input
sentences into the correct grammatical form, which required mas-
sive training data. Furthermore, the recent and state-of-the-art
GEC systems are based on NMT techniques. English has received
more research attention thanks to extensive resources compared
to other languages such as Slovene, Russian, and Arabic. These
resources include pre-trained language models, parallel training
data, and open-access GEC systems. For example, OpenAI intro-
duced GPT-3, a mega language model that has a capacity of 175 bil-
lion parameters that does not require fine-tuning to correct
grammar (Brown et al., 2020). Another example is Pathways, a
mega language model introduced by Google AI that has been
trained with 540 billion parameters and can produce human-like
text (Chowdhery et al., 2022). In this section, we focus on GEC
for low resource languages and for the English low resource
research track, since they are more challenging (Grundkiewicz
et al., 2019).
2.1. English GEC

In response to the lack of training data in GEC, numerous
approaches have been proposed in recent years. Ge et al. (2018)
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introduced the iterative routing process called ‘‘fluency boost
learning,” which employs CNN to achieve remarkable improve-
ments in the accuracy and fluency of GEC systems. Acheampong
and Tian (2021) proposed a notable cascading learning strategy-
based GEC system that reduces the need for massive training data
in neural GEC systems. Xie et al. (2018) used beam-search noising
techniques to construct parallel GEC training data from monolin-
gual data with comparable performance to the original data. Wan
et al. (2020) proposed data augmentation for GEC by editing the
latent representations of grammatical sentences, which increases
the diversity of training examples. Grundkiewicz et al. (2019)
employed a spell-checker to synthesize parallel training data from
an out-of-domain monolingual corpus for training a multi-head
attention network. For Indonesian GEC systems, Musyafa et al.
(2022) proposed a copy-augmented method applied to
Transformer-based to improve accuracy by copying correct or
unmodified words from the source to the target text. Sun et al.
(2022) proposed a generic and language-independent strategy for
multilingual GEC systems, utilizing available resources such as par-
allel translation data and pre-trained cross-lingual language mod-
els. Hagiwara and Mita (2020) introduced the GitHub Typo Corpus,
a large-scale multilingual GEC training dataset for 15 languages.
Náplava and Straka (2019) introduced synthetic multilingual GEC
training data for training Transformers, which achieved significant
improvements in Czech, German, and Russian. Qorib et al. (2022)
proposed a GEC system that is a combination of machine-
learning and binary classification approaches, which uses logistic
regression for binary classification. The method yields substantial
improvements over the state-of-the-art on both the CoNLL-20142

and BEA-20193 test sets. Lai et al. (2022) proposed an approach to
improving the performance of GEC models, called Type-Driven
Multi-Turn Corrections, which addresses the exposure bias problem
in existing models. The approach involves generating multiple train-
ing instances for each original instance, with each instance targeting
a specific type of error correction. This enables models to be explic-
itly aware of the process of gradual corrections and the interdepen-
dence between different types of corrections. Tarnavskyi et al.
(2022) proposed an approach for improving the GEC sequence tag-
ging architecture by assembling Transformer-based encoders in
large configurations, achieving a new state-of-the-art result without
pre-training on synthetic datasets. Their approach involves majority
voting on span-level edits, and they also used knowledge distillation
to generate synthetic training datasets.
2.2. Arabic GEC

Arabic GEC has started to receive more attention after success-
ful shared tasks in 2014 (Mohit et al., 2014) and 2015 (Rozovskaya
et al., 2015). Despite the early attention, Arabic GEC still suffers
from a lack of training data, since the only annotated Arabic train-
ing data consist of 20,430 examples only. Rozovskaya et al. (2014),
introduced a hybrid Arabic GEC system made of rule-based and
machine-leaning approaches. Nawar (2015) proposed another
solution that used word patterns and rule-based statistics to detect
and correct grammatical errors. Role-based systems may not be
able to handle all types of grammatical errors, especially those that
are more complex or involve semantic errors. Sina (2017)
employed seq2seq RNN and the attention mechanism in AGEC.
Abandah et al. (2022) adopted bidirectional long short-term mem-
ory (BidLSTM) to correct soft spelling errors in modern and classi-
cal Arabic texts based on character level. Madi and Al-Khalifa
(2020) employed LSTM, BiLSTM, and SimpleRNN baselines to
2 https://www.comp.nus.edu.sg/nlp/conll14st.html.
3 https://codalab.lisn.upsaclay.fr/competitions/4057.
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detect errors, which outperformed the commercial Arabic Gram-
mar Checker (Microsoft Word 2007), and also introduced their
own training data. Watson et al. (2018) discussed FasTest pre-
trained word embedding and seq2seq BidLSTM to obtain more lin-
guistic information in GEC. Solyman et al. (2019) proposed an
AGEC model based on CNN, which was extended in Solyman
et al. (2021), a GEC framework made of a classical confusion
method and CNN seq2seq model consisting of nine convolutional
layers and attention mechanism. GEC RNN-based systems are
widely recognized for their reliability in detecting errors, it is cru-
cial to acknowledge their fallibility and susceptibility to occasional
errors. Furthermore, it is worth noting that GEC systems based on
RNNs and CNNs may not be optimal for correcting more complex
sentence structures and longer-range dependencies. More recently,
an AGEC model based on the self-attention network equipped with
a combination of capsule networks and a bidirectional regulariza-
tion term strategy was proposed (Solyman et al., 2022). Pajak and
Pajak (2022) tuned a set of pre-trained multilingual models such as
mBART, mT5, or xProphetNet for GEC in seven different languages,
including Arabic and reported encouraging results.

To summarize, automatic grammar correction has evolved sig-
nificantly over the past few decades, starting from rule-based sys-
tems and n-gram models to more advanced techniques such as
NMT-based methods. The recent development of mega language
models like GPT-3 and Pathways has led to a surge in interest
and progress in this field. However, GEC for low-resource lan-
guages and English low-resource research tracks pose a significant
challenge due to the lack of training data. Different approaches
have been proposed to overcome this challenge, including fluency
boost learning, cascading learning strategy, noising techniques,
data augmentation, and synthetic GEC training data. Although
the majority of GEC systems for low-resource languages adopt
two strategies to overcome the data sparsity problem, there is a
need to investigate the impact of data augmentation to address
this issue more effectively. The aim of this paper is to propose data
augmentation approaches that are able to increase the contribu-
tion of the source during decoding. This aspect has not been previ-
ously investigated, and our proposed work aims to fill this research
gap.
3. Methodology

This section introduces the proposed approaches and describes
how they have been applied with a modified version of the base-
line Transformer-based architecture proposed in Vaswani et al.
(2017), as a neural translation task. GEC using NMT aims to build
a model that can automatically detect and correct grammatical
errors in text by leveraging the Transformer architecture. This
can be achieved by training the model to minimize the negative
log-likelihood of generating the correct output given the input.
This loss function is known as the Maximum Likelihood Estimation
(MLE) loss, which can be expressed as:

MLE ¼ Ex;y�p̂ X;Yð Þ log P yjxð Þ½ � ð1Þ
In this expression, p̂ X;Yð Þ denotes the empirical distribution of

the input–output pairs in the training data, where x and y denote
the input and output sequences, respectively. The central aim of
GEC using NMT is to optimize the likelihood of generating the cor-
rect output sequence y for a given input sequence x. This objective
is achieved by computing the expectation of the log probability of
the output sequence given the input sequence over all feasible
input–output pairs in the training data, as represented by p̂ X; Yð Þ.

In data augmentation, let bX and bY be the corresponding aug-
mented version. The training objective of the neural-based seq2seq
GEC systems is to maximize the likelihood estimation of P yjxð Þ as
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in Eq. (1), where p̂ X;Yð Þ is the empirical distribution of all training
pairs x; yð Þ usually defined for training data only, while p X;Yð Þ is
the distribution of the true data which receives large support from
the valid data. The difference in distribution between p X;Yð Þ and
p̂ X;Yð Þ leads to data distribution mismatch problem, that cannot
be covered by MLE. This problem will increase when p̂ X;Yð Þ is
not sufficient to cover the entire dataset. In order to overcome this
problem, seven data augmentation strategies (namely,Misspellings,
Swap, Token, Source, Reverse, Mono, and Replace) are proposed to

augment training pairs x̂; ŷð Þ with a new distribution of q bX ; bY� �
,

that provides more extensive support compared to p̂ X;Yð Þ. Accord-
ingly, the new objective of the MLE using data augmentation will
be as follows:

MLE ¼ E
x;y�q bX ;bY� � logP ŷjx̂ð Þ½ �: ð2Þ

In this work, instead of synthesizing source sentences, all these
strategies address the target sentences in almost all experiments.
Each augmented example is appended to the corresponding true
example in the whole data for the training task. As a result, the net-
work is exposed to new scenarios during training where the target
context cannot reduce the loss. This strengthens the encoder and
steadily increases its contribution, thus forcing the GEC model to
pay more attention to the encoder representations during
decoding.

In the following subsections, we briefly explain the proposed
strategies and the expected impact of each strategy on the training
dynamics of the system. As opposed to the classical noise-based
approaches, our Misspelling approach (Section 3.1) addresses the
target side and uses the augmented data as an auxiliary task (i.e.,
a task that must be accomplished to improve the performance of
the primary task) during training, while the other six proposed
approaches have never been investigated in GEC. Initially, two
hyper-parameters a and t were identified, where a refers to the
target words to be affected and t is the total number of input
words.
3.1. Misspelling

It is one of the most popular approaches of synthetic data in
GEC, which uses a simple confusion function to generate spelling
errors, good examples were presented in Solyman et al. (2021),
Grundkiewicz et al. (2019). The proposed approach is different
since it is used to address the target side and the synthesized data
is applied as an auxiliary task during training to strengthen the
encoder and increase its influence during decoding. Initially, the
PyArabic 4 library was utilized to tokenize the given sequence, and
the value of awas set to 0.1, which is multiplied by the total number
of input words t to get the actual number of words to change. Next,
one of these two sub-approaches is applied, either (1) deleting a
character ci within the word wi in the input sentence, or (2) inserting
a random character ci at position ciþ1 within the randomly selected
word wi. It is worth mentioning that the value of awas tuned during
training using 0.1, 0.15, and 0.2. The best performance was obtained
with 0.1, which is a delicate process that strives for balance to
choose the most appropriate value 5. Details are illustrated in
Fig. 1 and all the steps of theMisspelling data augmentation approach
are shown in Algorithm 1.
4 https://pypi.org/project/PyArabic/.
5 A low value may lead to less error patterns and a high value would lose the

context.

4

Algorithm1 Misspelling approach

Require: X;Yð Þ;a. . Original training pair, and a in [1, 2, 3, 4,
5]

Ensure: X; bY� �
. . An augmented example that synthesized

the target-side (bY )
function ADDCHARTi

Ti ¼ k1; k2; . . . ; kn½ �; ki 2 k1; k2; . . . ; kn½ �
k̂i 2 k1; k2; . . . ; kn½ � . Add k̂i into index iþ 1bT i ¼ k1; k2; ki; k̂i; . . . ; kn

h i
. Detokenize the array of

characters to bT i

Return bT i

end function
function DELETECHARTi

Ti ¼ k1; k2; . . . ; kn½ �; ki 2 k1; k2; . . . ; kn½ �
Delete kibT i ¼ k1; k2; . . . ; kn½ � . Detokenize the array of characters tobT i

Return T̂ i

end function
procedure MISSPELLINGa;XbX �X
N � a � len Xð Þð Þ
Chs = AddChar Tið Þ;DeleteChar Tið Þ½ �
for N do

Ti 2 bXbT = choice(Chs) . Apply either ‘‘Add character” or
‘‘Delete character” function

Update bX
end for

Return bX
end procedure
3.2. Swap

Recently, NMT performance has improved thanks to deep neu-
ral approaches and extensive parallel training data. Numerous
works have been introduced to extend this success to low-
resource languages. Motivated by previous work in NMT such as
Artetxe et al. (2018), this work seeks to leverage attention to
monolingual data to improve the quality of GECs. Especially, this
approach proposes to swap the words on the target sentence from
their original position until the number of words 1� að Þ � t
remains, as shown in the following equation:bY ¼ swap Y ; a� tð Þð Þ ð3Þ
where swap is the transformation function, Y is the input sentence,
and a� tð Þ is the actual number of words that should be swapped.
Swap follows the same setup as Misspelling data augmentation,
which works in the target sentences instead of the source sen-
tences. Given wi and wn as random words in the input sentence Y,
each is swapped at the other word position. This forces the encoder
to truly learn the compositionality of its own input words indepen-
dently and led the decoder to trust less the target prefix when pre-
dicting the next token.

3.3. Token

This approach proposes to replace a number of words with the
value of (a� t) in the input target sentence with the unknown

https://pypi.org/project/PyArabic/


Fig. 1. Schema of the proposed misspelling data augmentation process, green refers
to original data and red to synthesized data.
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token <UNK>. It aims to weaken the decoder during training by
replacing some or all of the conditioning information in the given
sequences with a special token <UNK>. As a result, it makes the
decoder prefixes less informative thus leading the system to uncer-
tainty in the decoding when predicting a new word. In this scenar-
io, the decoder predicts each word conditioned on the previous
word and pays more attention to the encoder’s representations.
This forces the model to generate good predictions by relying on
the latent variable. However, the default dropout was evaluated
with the decoder trying to learn the model how to use the latent
variable, but performance did not improve: therefore, we decided
not to apply default dropout and we adopted the token-based
approach. In addition, this approach is different from the word
dropout, which is applied to the decoder rather than the feature
extractor.
3.4. Source

The intuitive negative impact of copying training patterns to
augmented data in GEC has never been investigated which leads
the system to learn copying behavior when applies exceedingly
after training. In the context of weakening the decoder and
strengthening the encoder, a copy data augmentation strategy
was proposed with different settings. Our approach seeks to lever-
age such a noise feature to the augmented data as an auxiliary task
by transcribing the source sentence into the target and appending
the augmented example with the corresponding original example
to support the distribution of the synthetic data. Unlike what
might be expected, the impact of the copied corpus will lead to
improve accuracy of named entities and other correct words in
the sentence as well as to increase the encoder’s participation in
predicting the final output. Another important feature of the aux-
iliary task in this approach is that the copied data has the same
error rate and distributions as the authentic data, which is richer
in training patterns compared to previous approaches.
5

3.5. Reverse

Recently, a notable study by Voita et al. (2021) analyzed the
contribution of the encoder and the decoder in the final MT output.
It was found that more training data lead the model to have more
sharp tokens contributions and relying more on source informa-
tion. In addition, the training process has several stages of different
nature and it is not monotonic, and also the impact of the encoder
decreases as the decoding progresses. To increase the influence of
source-side in GEC, we propose to reverse the order of input words
on the target-side from right-to-left to left-to-right. For instance,
given y ¼ wi;wiþ1; . . . ;wl as the input target sentence, the reversed
version ŷ can be represented as wl; . . . ;wiþ1;wi. In our work, each
augmented example was appended with the corresponding true
example to support the distribution of the synthetic data. The
impact of reversing the target sentences helps the system to
increase the encoder’s contribution when generating the corrected
output sentences.

3.6. Mono

In NMT, stored compressed large bilingual parallel texts are
known as Bitext and used as an intermediate representation in
the compression process, which consist of sequence of Biwords
pairs with a high probability of co-occurrence. Inspired by the
Biwords approaches, this work proposes to leverage such linguistic
knowledge from Bitext in GEC that can be represented as a detailed
annotation of the source in the target. Accordingly, one-to-many
word alignment was utilized for the source and target, and the
value of a was set to 0.1. Next, the target-side words were reor-
dered until the number of words 1� að Þ � t remained in their orig-
inal positions. This causes monotonous alignment in target
sentences and makes them less fluent; hence, it leads the system
to increase the attention of the encoder’s representations when
generating a new word.

3.7. Replace

This approach proposes to use one-to-one word alignment for
source and target sentences and then replaces the number of target
words (a� t) with random entries from the vocabulary of the
training data. Let wi and wn be random words at random positions
in the input sentence y, both of which are replaced by random
words wj and wm from the training vocabulary placed in the same
position. However, such a data augmentation approach supports
the global objective of the current study which is to strengthen
the encoder and force the system to pay more attention to the
decoder and increase its contribution when predicting the correc-
tion output.

The implementation of each approach (described in Sections
3.1–3.7) follows the same guidelines and data flow listed in Algo-
rithm1. Each approach receives a pair (source and target) of paral-
lel sentences x; yð Þ and generates a new synthetic pair x; ŷð Þ, which
is then appended to the original example to build the augmented
data. Table 1 shows the output of each approach, while Fig. 2 illus-
trates the components of the GECDA. GECDA uses the Transformer
architecture, the encoder tokenizes and embeds the input text, fol-
lowed by encoder layers with self-attention mechanisms. The
decoder generates the output text and is trained to predict the cor-
rect word for each position in the output sequence. The predicted



Table 1
Sample sentences synthesized starting from a monolingual English sentence (‘‘Input Sentence”), according to each proposed approach. The red color identifies synthesized words.
The word order (with respect to the input sentence) is indicated by superscript numbers.
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output is post-processed to correct any errors before being
obtained by passing the final vector through a linear layer and soft-
max function.
4. Experiments

4.1. Data

The seed data was a very small parallel corpus named QALB-
2014 (Mohit et al., 2014). The source of QALB-2014 have been col-
lected from English articles translated into Arabic, and Arabic
Learners Written Corpus (CERCLL) (Alfaifi et al., 2014), as well as
users’ comments posted on the Aljazeera news channel. The col-
lected data was corrected and annotated by a team of ten native
speakers and linguistic experts. The whole data contains about
20,500 parallel examples subdivided into train and development
sets. The augmented data used for the training task is two to four
times larger than the original data. The synthetic data of back-
translation and spell-confusion that were used are from Solyman
et al. (2022) consists of 1,500,173 sentence pairs for training and
development sets. To analyze the hallucinations, a very small cor-
pus with high error rates has been used, partitioned into two sub-
sets: L2-train-2015 with 311 training examples (43 k words) and
6

L2-dev-2015, with 155 development examples (25 k words)
(Rozovskaya et al., 2015). Regarding data preprocessing and also
to address the problem of rare and unknown words, Byte Pair
Encoding (BPEmb) was applied to split unknown tokens into sub-
tokens (Sennrich et al., 2016).

4.2. Model setting

The complexity of the proposed model can be understood
through a number of modifications made to a baseline
Transformer-based architecture (Vaswani et al., 2017). First, the
batch size was reduced from 2048 tokens to 128, and the model
size was decreased from 512 to 256. Additionally, the number of
layers was reduced to 4, while 8 attention heads were maintained
per layer. To improve performance, the learned positional encoding
approach was used instead of the static encoding method in the
original paper by Vaswani et al. (2017). Similarly, label smoothing
was not applied, following the setting of BERT (Devlin et al., 2019).
A static Adam optimizer (Kingma and Ba, 2015) with a learning
rate of 0.001 was used instead of warm-up and cool-down steps.

During training, each model was trained for 23 epochs using
augmented data for each approach, followed by two epochs using
QALB-2014 for fine-tuning. To prevent exploding gradients, gradi-
ent clipping was applied with a value of 1.0. Dropout with proba-



Fig. 2. An illustration of the main components of GECDA framework. The green color refers to the original training example while the red refers to the synthetic example
which is used as an auxiliary task.
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bilities of 0.15 and 0.10 was also used to avoid overfitting. The
maximum number of input sequences during training and testing
was set to 150 words. Tokenization was performed using the
BPEmb algorithm with a vocabulary size of 1 k and 10 k and a
dimension of 300. During inference, beam search was applied with
a beam size of 5. The hyperparameters for the proposed model
were selected manually based on prior knowledge and empirical
evaluation. While an automatic parameter tuning process such as
grid search or Bayesian optimization can lead to improved perfor-
mance, we chose to select the hyperparameters manually in this
study due to our experience with similar models and depending
on the available computational resources. Nonetheless, we believe
that the selected hyperparameters represent a reasonable starting
point for future studies and can serve as a benchmark for evaluat-
ing the performance of automatic parameter tuning methods on
this task. To ensure accurate decoding, data was cleaned after
inference in case the decoder failed to correct repetitions of words
or characters larger than 5, such as ‘‘cdcdcdcdcdcd” to ‘‘cdcd”. All
experiments were conducted on two NVIDIA TITAN RTX GPUs with
25 GB RAM each, mounted in Scalable Link Interface configuration,
an Intel Core i7-9700KF @ 3.6 GHz 12 cores, and NVIDIA CUDA
Toolkit 10.2. The model was implemented in PyTorch using Python
3.6.

4.3. Evaluation

The proposed framework was evaluated on two benchmarks,
and following the same guidelines in the first and second auto-
matic grammar correction shared tasks (Mohit et al., 2014;
Rozovskaya et al., 2015). MaxMatch (Dahlmeier and Ng, 2012)
was applied to evaluate the performance using the same tool in
the shared task to measure the word-level edits of each output
compared to the golden target sentences, and reported precision,
recall, and F1 score using different scenarios during training. These
metrics evaluate different aspects of a GEC system’s performance
and provide useful insights into its strengths and weaknesses.

Precision is a measure of how accurate the GEC system is in cor-
recting errors. It is defined as the ratio of true positives to the sum
of true positives and false positives:
7

Precision ¼ True Positive
True Positiveþ False Positive ð4Þ

In the context of GEC, true positives are the errors that the sys-
tem correctly corrects, while false positives are the errors that the
system incorrectly corrects. A high precision score indicates that
the system is good at identifying and correcting errors without
introducing new errors. Recall is a measure of how well the GEC
system detects errors. It is defined as the ratio of true positives
to the sum of true positives and false negatives:

Recall ¼ True Positive
True Positiveþ False Negative ð5Þ

In the context of GEC, false negatives are the errors that the sys-
tem fails to detect. A high recall score indicates that the system is
good at identifying errors, even if it may not always be able to cor-
rect them. F1-score is the harmonic mean of precision and recall. It
provides a single score that balances the trade-off between preci-
sion and recall, as shown in Eq. (6). A high F1-score indicates that
the system is good at both identifying and correcting errors.

F1-score ¼ 2� Precision� Recall
Precisionþ Recall

ð6Þ

In addition, BLEU-4 score was applied to evaluate the quality of
the machine correction, and a case study is provided for human
evaluation. BLEU-4 score is a measure of the similarity between
the corrected output and the reference output. It is calculated
using the n-gram precision of the corrected output with respect
to the reference output, up to a maximum n-gram size of 4:

BLEU-4 ¼ BP� exp
X4
n¼1

wn logpn

 !
ð7Þ

where wn is the weight assigned to n-grams (typically set to 1
4), and

pn is the precision of n-grams. The BLEU-4 score takes into account
not only the accuracy of the corrections but also the fluency and
naturalness of the corrected output. To calculate the BLEU-4 score,
a brevity penalty is applied to penalize overly short corrected out-
puts. The brevity penalty is 1 if the length of the corrected output
is greater than the length of the reference output, and it is calcu-



Table 2
Comparisons of precision, recall, F1, and BLEU-4 score of the proposed approaches, and the baseline, RAML, SwitchcOut, spell-confusion, and back-translation using two
benchmarks.

Model QALB-2014 QALB-2015

Prec. Recall F1 BLEU-4 Prec. Recall F1 BLEU-4

Baseline 70.21 53.46 60.70 73.20 68.37 57.49 62.46 75.78
Misspelling 73.87 56.03 63.72 75.22 72.13 60.37 65.73 78.27
Swap 73.22 54.27 62.34 74.84 72.11 58.99 64.89 77.97
Token 71.53 54.28 61.72 73.90 70.60 58.81 64.17 77.20
Source 74.94 50.93 60.65 73.78 74.04 56.73 64.24 77.80
Reverse 73.85 53.77 62.23 74.78 73.28 59.72 65.81 78.73
Mono 71.57 53.81 61.43 73.94 70.08 58.41 63.72 77.06
Replace 72.36 54.30 62.04 74.29 71.33 59.11 64.65 77.73
RAML 71.66 54.16 61.69 73.62 71.02 57.86 63.76 77.31
SwitchOut 72.70 53.91 61.91 73.78 72.56 57.28 64.02 77.47
Spell-confusion 72.68 54.20 62.09 73.81 72.63 57.63 64.26 77.76
Back-translation 73.16 54.13 62.22 73.92 72.54 58.36 64.68 78.01
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lated using an exponential function of the ratio of the reference out-
put length to the corrected output length otherwise:

BP ¼ 1 if c > r

e 1�r=cð Þ otherwise

�
ð8Þ

where c is the length of the corrected sentence, and r is the length of
the reference sentence.
6 https://github.com/lena-voita/the-story-of-heads.
5. Experimental results

5.1. Impact of data augmentation

Table 2 shows the performance of the proposed approaches
measured in precision, recall, F1, and BLEU-4 score. Across all
results in Table 2, Misspelling (generating spelling errors), Swap
(swapping each pair of words randomly), Reverse (reversing the
order of target words from right-to-left to left-to-right), and
Replace (replaces the aligned source and target words), each
achieved the best performance, respectively. Furthermore, Mono
(reordered target words to create a monotonous alignment
between source and target), Token (replacing random words in tar-
get sentences with special tokens UNK), and Source (copying the
source sentence into the target sentence), have achieved lower per-
formance. The decrease in performance is due to a completely dif-
ferent vocabulary as shown in Token or unsystematic word order;
however, it still outperforms the baseline. Fig. 3 illustrates the per-
formance of all approaches. Furthermore, statistical results show
that Misspelling, Swap, and Reverse auxiliary tasks perform better
than the baseline (i.e. Transformer-based model has become the
standard baseline model in the NLP that achieved state-of-the-art
performance on various benchmark datasets) (Vaswani et al.,
2017; Solyman et al., 2022), two data augmentation methods
RMAL (Norouzi et al., 2016) and SwitchOut (Wang et al., 2018b),
the classic spell-confusion method (Grundkiewicz et al., 2019),
and back-translation (Kiyono et al., 2020) in the two benchmarks.

As a second step, taking into account the achievements of the
best approaches over the baseline system in Table 2, we then
investigated the performance of three sub-approaches as a combi-
nation of (Misspelling + Swap), (Misspelling + Swap + Reverse), and
(Misspelling + Swap + Reverse + Replace). The second approach
(spelling + swap + reverse) performed better compared to the other
two, as shown in Table 3. Accordingly, we named the combined
approach with the best performance as GECDA. On the other hand,
we analyzed the impact of the combination of the most common
data augmentation and synthetic data approaches including
spell-confusion, back-translation, SwitchOut, and RAML. The com-
bination of (spell-confusion + back-translation + SwitchOut) per-
8

form better as compared with (spell-confusion + back-
translation) and (spell-confusion + back-translation + SwitchOut +
RAML) in F1 and BLUE scores as shown in Table 3; however, GECDA
still outperforms these approaches.
5.2. Contributions of source and target

This subsection analyses the relative contributions of source
and target to GECDA output decision to predict the corrections of
grammatical errors. Similarly, we aim at confirming that the
improvement in output prediction quality and systematic robust-
ness is associated with the encoder being exposed to more scenar-
ios during training when a good source representation is required.
Voita et al. (2021) has contributed that more training data lead
NMT systems to tend more toward source representations; how-
ever, this motivated us to investigate such a feature using GECDA
in GEC. To analyze the relative contribution of each source and tar-
get words on GECDA output decision, a layer-wise relevance prop-
agation (LRP) has been applied with the transformer as in Voita
et al. (2021). LRP was used to calculate the relative contributions
Rt xið Þ of the source word xi and Rt yj

� �
of the target word yi to the

predictions that the network had made at the time t. The value
of relevance at time step t it can be represented as
Rt xð Þ þ Rt yð Þ ¼ 1, whereas for all time steps can be represented as
the following equation.X
i

Rt xið Þ þ
X
j

Rt yj
� � ¼ Rt xð Þ þ Rt yð Þ ¼ 1; ð9Þ

This paper uses the same technique as Voita et al. (2021) to
achieve reliable comparisons of the relative contributions for each
equal-length subset of the source and target using held-out data.
We teacher-force the reference predictions while computing LRP
in order to obtain predictions with the exact same length, which
allows us to evaluate various approaches to some extent. The
held-out data was a combination of the development sets from
QALB-2014 and QALB-2015, and the chosen subset are parallel
examples with the same lengths and at least 16 words on both
sides. To this end, we retrained the baseline, the best performing
auxiliary tasks Misspelling; Swap, a combination of (Misspelling +
Swap), and finally GECDA to compute the relative contributions
using the same toolkit of Voita 6. Fig. 4 illustrates the contribution
of source representations at each time step t for different baselines
using QALB-2014 and QALB-2015. The first time step has been
skipped when the target prefix is not available, and the contribution
of the source token EOS is also shown. As depicted in Fig. 4, the

https://github.com/lena-voita/the-story-of-heads


Fig. 3. Performance achieved by the baseline and the proposed data augmentation approaches.
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source influence decrease as decoding progresses, and the penulti-
mate token shows a clear peak. This is because the decoder is check-
ing whether the entire source sentence has been predicted before
issuing a full stop at the end of the sequence. These results demon-
9

strate the efficacy of GECDA since the auxiliary tasks increase the
source influence and the baseline reported the smallest source influ-
ence in the two benchmarks. The differences in contributions are big
when the decoding starts and remains throughout the sentence,



Table 3
Comparisons of a combination of three different sets of the proposed approaches as compared to a combination of existing data augmentation and synthetic data approaches in
precision, recall, F1, and BLEU-4 score.

Model QALB-2014 QALB-2015

Prec. Recall F1 BLEU-4 Prec. Recall F1 BLEU-4

Misspelling 75.15 57.10 64.89 76.15 74.24 62.03 67.58 79.36
+ Swap

Misspelling 75.99 58.29 65.98 77.03 74.83 63.31 68.59 80.26
+ Swap
+ Reverse

Misspelling 75.43 57.84 65.47 76.51 74.56 62.67 68.09 79.77
+ Swap
+ Reverse
+ Replace

Back-translation 75.06 56.19 64.26 75.92 73.92 61.80 67.31 78.87
+ Spell-confusion

Back-translation 75.68 57.10 65.09 76.31 74.20 62.13 67.63 79.27
+ Spell-confusion
+ SwitchOut

Back-translation 75.52 56.94 64.92 76.23 74.03 61.98 67.47 79.11
+ Spell-confusion
+ SwitchOut
+ RAML

Fig. 4. The source contribution of GEC prediction for the baseline, Misspelling; Swap
auxiliary tasks, a combination of (Misspelling + Swap), and GECDA.
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while there is no distinct difference in the source influence between
Misspelling, and Swap auxiliary tasks. The highest source influence is
reported by GECDA, which is a combination of multiple auxiliary
tasks, this confirms the complementarity of the proposed model.
10
5.3. Hallucinations

In this section, we investigate the impact of GECDA in the sys-
tem’s encoder to reduce hallucinations when using very small
training data. Raunak et al. (2021) define the hallucinations in
NMT as completely inadequate translations that appear because
the system depends too much on the target context. To the best
of our knowledge, hallucinations have never been investigated in
GEC, where they assume the form of repetitions or totally inconsis-
tent syntax. We hypothesize that systems trained with GECDA pro-
duce less hallucination. To substantiate this hypothesis, we
performed a hallucination analysis on the learners of Arabic as a
foreign language (L2), which are very small training data and have
high error rates. In this context, we applied the proposed method
by Raunak et al. (2021) to measure the hallucinations which were
used to detect training examples that indicate generating halluci-
nation when injecting spurious tokens with input sentences. This
method has been adapted in GEC to measure the number of system
outputs that appear to be hallucinations. Hence, a modified version
of BLEU score was applied as same as in Raunak et al. (2021), which
only considers the precision of unigrams and bigrams with weights
of 0.8 and 0.2, respectively. In our experiments, we classified
tokens emitted correction as a hallucination if the adjusted BLEU
score of the sentence level was less than 25 since the source and
target are in the same language. The impact of hallucination has
been evaluated on the baseline as compared to misspelling and
swap auxiliary tasks, a combination of (misspelling + swap), and
finally GECDA. The current method considers only the sentences
relevant to hallucination; hence, we count the sentences that
induce a hallucination in each system separately. The data that
have been used to evaluate hallucinations are reported in Sec-
tion 4.1. Fig. 5 shows the number of hallucinations in each system
of the two benchmarks QALB-2014 and QALB-2015, shorter bars
are better. As illustrated in Fig. 5(a) and 5(b), GECDA achieved
the lowest score, this demonstrates the utility of GECDA to reduce
hallucinations in the GEC systems.

5.4. Data preprocessing and decoding improvement

In this subsection, we investigate the impact of data preprocess-
ing and decoding techniques that include multi-pass decoding and
re-ranking L2R. In all the previous experiments, BPEmb was
applied with a vocabulary size of 10 k. Furthermore, we decided



Fig. 5. Impact of hallucination of the baseline, the auxiliary tasks Misspelling and
Swap, as same as GECDA, a combination of (back-translation (BT) + spell-confusion
(SC)), and (BT + SC + SwitchOut (SO)), in two benchmarks (short bars are the best).
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to investigate performance with different settings, which use
BPEmb with a vocabulary size of 1000 (Heinzerling and Strube,
2018). Numerous studies in English GEC such as Wan et al.
(2020) have used BPEmb with a vocabulary of 30 k. Table 4 shows
the performance of GECDA with different settings of BPEmb.
GECDA with 1 k vocabulary size performed better than 10 k and
large gap when 30 k is used, which reduced the F1 score by
06.07 and 08.08 for QALB-2014 and QALB-2015, respectively, less
than GECDA with 1 k BPEmb. It is worth mentioning that GECDA
11
with 1 k BPEmb requires more computational resources and more
time to fill the gap in the training data, which performed better to
correct spelling errors in Arabic GEC. Furthermore, BPEmb with
30 k is more powerful for capturing context representation com-
pared to 1 k vocabulary size when a large dataset is available.
These models were trained from left to right, to investigate perfor-
mance using different settings, a new version was introduced that
trained from right to left. Table 4 shows that the performance of
GECDA R2L is better than that of GECDA L2R. This is because
GECDA R2L captures the prefixes more efficiently due to the fact
that the Arabic writing system is from right to left.

As a result of human language complexity, it is inefficient to
correct multiple grammatical errors in a single round for low-
resource scenarios. Ge et al. (2018) introduced a fluency boost
learning to overcome this challenge and correct sentences in mul-
tiple rounds, which improves the performance of GEC systems. In
this work, we investigated the impact of Fluency Boost Learning
with GECDA using a simple modified version. In inference, the out-
put of GECDA L2Rwas fed as input to the GECDA R2Lmodel. Table 4
shows that F1 and BLEU scores were improved, where the precision
decreasing by 0.87 and 0.30 for QALB-2014 and QALB-2015,
respectively. The decline in precision is a result of the low-rate
unbalancing problem between L2R and R2L models (Liu et al.,
2016). In the context of improving the performance of GECDA,
we investigated the impact of re-ranking L2R. Initially, four differ-
ent versions of GECDA were trained on both sides R2L and L2R.
Then, an n-best list and the corresponding probabilities scores
were generated for each model on both sides. Next, the R2L candi-
date list was passed to GECDA L2R to compute the scores. Finally,
the scores on both sides were summed and used to re-rank the n-
best list. GECDA R2L with re-ranking achieved the best F1 and BLEU
scores and also solved the unbalancing problem as shown in
Table 4.

5.5. Statistical analysis of existing GEC models

Table 5 presents a comparison of the performance of the pro-
posed GECDA framework with existing Arabic GEC models, using
two benchmark datasets: QALB-2014 and QALB-2015. The table
includes the best-performing systems in each benchmark, along
with other neural-based models that used either synthetic data
or fine-tuned pre-trained models. Overall, the results demonstrate
that GECDA, with the use of BPEmb and re-ranking L2R, outper-
formed all existing GEC models that based on the pre-trained mod-
els and achieved the highest F1 score in both benchmarks. GECDA
achieved an F1 score of 71.03 on the QALB-2014 dataset, surpassing
the best-performing system’s score of 70.39. Similarly, on the
QALB-2015 dataset, GECDA achieved an F1 score of 73.52, outper-
forming the best-performing system, which achieved an F1 score of
73.19.

It is worth noting that GECDA leverages the synthetic data gen-
erated during training and strengthens the encoder during decod-
ing, enabling it to achieve superior performance even when
training data is limited. In contrast, some existing GEC models,
such as those that rely solely on synthetic data, have limitations
in terms of limited training patterns. In summary, the results in
Table 5 and Fig. 6 confirm the effectiveness of the proposed GECDA
framework in improving the performance of low-resource GEC
tasks.

5.6. Case study

In the final analysis, GECDA has been investigated using a real-
world example from the QALB-2015 test set. Table 6 shows the
source, target, translation, and output of Arabic GEC models,
including the baseline (Transformer) + GECDA + BPEmb 1 k vocab-



Table 4
Comparisons of precision, recall, F1, and BLEU-4 score of the proposed approaches, and the impact of different vocabulary size 1 k and 30 k, as well as the performance of GECDA
with multi-pass decoding and re-ranking L2R.

Model QALB-2014 QALB-2015

Prec. Recall F1 BLEU-4 Prec. Recall F1 BLEU-4

GECDA + BPEmb 30 k 64.58 55.87 59.91 62.03 61.47 58.88 60.51 62.59
GECDA + BPEmb 1 k 77.96 60.40 68.07 84.66 76.71 65.78 70.83 87.37
GECDA + BPEmb 1 k + R2L 76.93 62.64 69.05 89.35 75.22 67.44 71.12 91.01
GECDA + BPEmb 1 k + R2L + multi-pass decoding 76.06 65.62 70.46 90.46 74.92 71.05 72.93 92.14
GECDA + BPEmb 1 k + R2L + re-ranking L2R 78.66 65.04 71.03 90.79 77.68 69.78 73.52 92.98

Table 5
Comparisons of F1 of the proposed framework and existing AGEC models using two
benchmarks.

System 2014 2015

Rozovskaya et al. (2014) 67.91 N/A
Solyman et al. (2021) N/A 70.91
Nawar (2015) N/A 72.87
Sina (2017) 50.34 N/A
Watson et al. (2018) 70.39 73.19
Pajak and Pajak (2022) N/A 69.81
GECDA 71.03 73.52

Fig. 6. F1 score of the top systems in AGEC using QALB-2014 and QALB-2015
benchmarks.
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ulary, and finally GECDA R2L with L2R re-ranking model. The given
example contains 12 errors categorized as follows: Errors 1(s) and
2(s) are spelling errors, while errors 3(p), 5(p), 9(p), 11(p), and 12
(p) are punctuation errors. Furthermore, errors 4(m) and 8(m) are
missing space errors, where 7(g) and 10(g) are grammatical errors,
and error 6(g) is a grammatical error in the target sentence, which
demonstrates that the training data is not clean, all errors are in
red color. Initially, the baseline corrected most of the errors except
the punctuation errors in 3(p) and 9(p) and the grammatical errors
in 6(g), 7(g), and 10(g). Moreover, the second version,
Transformer + GECDA, corrected all the errors except the punctua-
tion errors in 3(p) and 9(p) and also caused a new error, which was
labeled as new. The same model with re-ranking L2R corrected all
errors except the punctuation error number 9(p) that should be
‘‘Shawla” an Arabic comma.

GECDA has been shown to be effective in correcting grammati-
cal errors automatically without additional data. In other words, a
summarizing sentence to say that the best-performing GECDA con-
12
figuration was the one with R2L, BPEmb 1 k, etc. It achieved state-
of-the-art results in F1 score that was calculated from the edited
words compared to its given golden words. However, it is still far
from being perfect as it could not correct some punctuation errors,
such as error number 9(p), since there are no punctuation rules in
Arabic. In addition, it shows some weaknesses in challenging
examples where standard Arabic has been mixed with dialectal
words. Accordingly, extra efforts are needed to improve perfor-
mance to correct complex errors such as punctuation and dialectal
words.
6. Discussion

The results presented in Section 5 demonstrate the effective-
ness of the proposed data augmentation approaches, which leads
to significantly improving the performance of the baseline GEC sys-
tem. This section aims to discuss the implications of these results
and potential future research directions. The experiments indicate
that GECDA outperforms two state-of-the-art data augmentation
approaches, SwitchOut and RAML, as well as two synthetic data
methods, back-translation and spell-confusion, in terms of F1 and
BLEU-4 scores on two benchmark. Furthermore, we investigated
the relative contributions of source and target to GECDA output
decision using LRP, revealing that source representations played
a crucial role in the improvement of GECDA. GECDA combines
three simple but effective data augmentation techniques, namely
Misspelling, Swap, and Reverse. The combination of these tech-
niques provides synthetic data that have almost the same distribu-
tion as the authentic corpus, and allows GECDA to better capture
the diversity of grammatical errors in the target language. We
found that source representations played a crucial role in the
improvement of GECDA, increased the system domain robustness,
and makes GECDA suffer less from hallucinations with very small
training data. This proves that source representations can improve
the model’s ability to handle various types of errors.

Despite the promising results, there are some limitations to our
work. First, we only evaluated the proposed approach on two
benchmark datasets, which may not fully represent the diversity
of grammatical errors in other languages. Therefore, further exper-
iments on other datasets and languages are needed to validate the
generalization of our model. Second, while our experiments show
that the proposed model outperforms several state-of-the-art data
augmentation and synthetic data methods, there may be other
methods that perform better. Thirdly, it is important to note that
the proposed model did not include automatic parameters tuning.
This may have limited the effectiveness of the model, as parameter
tuning can help optimize the model’s performance. Therefore,
incorporating an automatic parameter-tuning approach could
potentially improve the proposed GEC model.

As part of our future work on improving our GEC model, we
plan to investigate the use of two deep learning methods: Multi-
layer Extreme Learning Machines (M-ELM) (Zhang et al., 2020)
and Physics-informed deep learning (PIDL) (Zhang et al., 2022).



Table 6
Example of corrections in different versions of our GEC models. Error words are red-highlighted, numbered, and marked in terms of error type (i.e., s: spelling; g: grammar; p:
position; m: missing space).

Type Example

Source

Target

English translation Arabic language embodies the identity of Arabs and Muslims and is the language of religion and Sharia. Nevertheless, we find Arabs
do not care for it, they become common mistakes, that you find high officials committing serious grammatical errors while they are
native Arabs, which we regret. We hope that Arab officials will take their responsibility towards their language, thank you.

Baseline (Transformer)

GECDA R2L

GECDA R2L + BPEmb 1 K + Re-
ranking L2R
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These methods have shown promising outcomes in reducing the
training time of deep neural networks and improving accuracy.
We expect these methods will significantly reduce the time
required to train GEC models and improve their overall perfor-
mance. Furthermore, we plan to use a logic mining approach that
incorporates supervised learning through association analysis
(Kasihmuddin et al., 2022). This will enhance the effectiveness of
the GEC techniques. In addition, we are interested in integrating
the use of logic mining techniques such as Discrete Hopfield Neural
Network (DHNN) (Jamaludin et al., 2022) with neural-based GEC
models, and investigating alternative methods for feature selection
and logical rule formulation.
7. Conclusion

In this paper, a GEC framework (named GECDA) has been pre-
sented for data augmentation in low-resource languages to correct
Arabic grammar as a case study. In this context, seven aggressive
13
transformation approaches were designed (namely, Misspelling,
Swap, Reverse, Replace, Mono, Token, and Source). The proposed
solution deviates from classical approaches, which strengthen the
encoder and tend more to the source representations during
decoding. Moreover, GECDA aims to generate synthetic data that
have almost the same distribution as the authentic corpus. The
augmented data introduces new contexts when the target prefix
is not helpful for the next word prediction; hence, the system
passes the burden to the encoder. Experimental results on two
benchmarks showed that the proposed approach achieved remark-
able improvement over the baseline system as well as over two
data augmentation methods and the classical synthetic data
approaches. Similarly, it also outperformed the existing Arabic
GEC systems that used synthetic data and pre-trained models.
GECDA performed well to overcome the challenges of data scarcity
and mismatch data distribution, which increased the contribution
of the source tokens, system domain robustness, and suffered less
from hallucinations with very small training data. In summary,
using the encoder representation to minimize training losses and
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increasing its contribution to generate output corrections will
improve the performance of GEC systems without the need to
use additional data or train additional models.

However, experimental results on two benchmarks showed
remarkable improvement, and we also acknowledged some limita-
tions. The evaluation was limited to only two benchmark datasets,
and other methods may perform better. In addition, the proposed
GEC model lacks automatic parameter tuning which could have
limited its effectiveness. In the future, we aim to control synthetic
error types, data augmentation using error type tags. Furthermore,
we are interested in exploring neural-based approaches that can
reduce training time and increase accuracy. In addition, we aim
at investigating the impact of GECDA on other GEC tasks such as
text-to-speech or speech-to-speech.
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