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Abstract: The present work aims at investigating the hygrothermal effect on the natural frequencies of
functionally graded (FG) annular plates integrated with piezo-magneto-electro-elastic layers resting
on a Pasternak elastic foundation. The formulation is based on a layer-wise (LW) theory, where the
Hamiltonian principle is used to obtain the governing equation of the problem involving temperature-
and moisture-dependent material properties. The differential quadrature method (DQM) is applied
here as a numerical strategy to solve the governing equations for different boundary conditions. The
material properties of FG annular plates are varied along the thickness based on a power law function.
The accuracy of the proposed method is, first, validated for a limit-case example. A sensitivity
study of the free vibration response is, thus, performed for different input parameters, such as
temperature and moisture variations, elastic foundation, boundary conditions, electric and magnetic
potential of piezo-magneto-electro-elastic layers and geometrical ratios, with useful insights from a
design standpoint.

Keywords: annular sandwich plate; DQM; FGM; free vibration; hygrothermal environment;
piezo-magneto-electro-elastic

1. Introduction

Functionally graded materials (FGMs) are well-known to be designed and produced
for thermal protection of high-speed spacecrafts, ships and underwater vessels due to
their outstanding mechanical properties. Nowadays, FGMs have been adopted in modern
applications such as aircraft, civil engineering and other structures in thermal conditions
with high temperatures. Hence, the investigation of their mechanical behavior, such as
the vibration of FGM structures, is of great interest for structural designers even in a
nonlocal sense. Reddy et al. [1] presented a nonlinear finite element approach to FG
circular plates with a modified couple stress theory (MCST) and the first-order shear
deformation theory (FSDT) to study their deflection response. Sofiyev et al. [2] analyzed the
stability and vibration of three-layered conical shells with a FGM layer subjected to an axial
compressive load. A novel sinusoidal shear deformation theory for bending, buckling and
vibration of FG plates was developed by Thai and Vo [3], involving a sinusoidal distribution
of transverse shear stresses, with only four unknowns, differently from conventional
sinusoidal shear deformation theories. At the same time, Jooybar et al. [4] studied the
thermal effect on the free vibration response of FG truncated conical shell panels while
applying the Hamiltonian principle and FSDT to determine the governing equations
of motion. Shaban and Alipour [5] proposed a semianalytical solution for the natural
frequencies of thick FG plates resting on an elastic foundation. Jodaei et al. [6] studied the
free vibration response of functionally graded piezoelectric (FGP) annular plates based on
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a 3D elasticity, where a reduced sensitivity of thinner plates to the FGM volume fraction
index and boundary conditions was found. In another paper, Nateghi et al. [7] carried
out a size-dependent buckling analysis of FG microbeams by means of a modified couple
stress theory.

Sandwich constructions with thin facesheets and lightweight cores are largely applied
in aircraft, aviation, satellites and naval applications because of their specific lightweight,
stiffness and fatigue resistance. Recently, annular sandwich plates were used as struc-
tural elements in primary structures of an aircraft/helicopter, such as floor panels, wings,
ailerons and rotor blades. To use them, a good knowledge of their constructional properties
and dynamic behavior is crucial. Kheirkhah et al. [8] developed a biaxial buckling analysis
of soft-core composite sandwich plates using an improved higher-order theory. In this
work, a third-order plate theory was applied to model facesheets, whereas quadratic and
cubic functions were considered for an accurate description of the transverse and in-plane
displacements of the core. The governing equations and boundary conditions were derived
by applying the principle of minimum potential energy. A refined zigzag theory was em-
ployed by Ghorbanpour Arani et al. [9] for the study of the vibration response of viscoelastic
functionally graded carbon nanotube-reinforced composite (FG-CNTRC) microplates with
piezoelectric layers. The Kelvin–Voigt model was used to present a realistic sandwich
microplate immersed within a magnetic and electric field together with an orthotropic
visco-Pasternak foundation. The governing equations of the problem were developed using
the Hamiltonian principle, and they were solved using a Navier-type solution. The results
showed a meaningful effect of the volume fraction on the natural frequency response of the
structure, controlled by the electric and magnetic parameters. Allahverdizadeh et al. [10]
discussed the structural modeling, vibration study and optimal viscoelastic layer character-
ization of adaptive sandwich beams with an electrorheological fluid (ERF) core, based on
Timoshenko beam theory. Wang et al. [11] analyzed the aeroelastic dynamic stability of ro-
tating annular sandwich plates with a viscoelastic core layer. The aerodynamic force acting
on the plate was described by a rotating damping model, and the governing equations were
solved based on the Galerkin method. Pandit et al. [12] applied an improved higher-order
zigzag theory to investigate the buckling response of laminated sandwich plates with a soft
core. The accuracy and range of applicability of the formulation proposed by the authors
were established by comparing their results with 3D elasticity solutions. Romanoff and
Reddy [13] presented an experimental validation of the modified couple stress Timoshenko
beam theory for web-core sandwich panels. Among different refined theories for plate
and shell structures, the layer-wise (LW) theory represents a valid strategy to account for
the thickness effects with a minimum computational cost. Differently from the equivalent
single layer formulations, the LW theory supposes a separate displacement field expansion
within each subdivision and provides a kinematically correct representation of the strain
field in discrete layers. In literature, Ranjbaran et al. [14] studied the buckling response of a
sandwich plate using the LW theory, whose equations of motion were solved by means
of the Rayleigh–Ritz approach. Malekzadeh et al. [15] developed a three-dimensional
LW finite element for the free vibration analysis of thick laminated annular plates on an
elastic foundation. In this work, the governing equations were obtained using the Hamil-
tonian principle. A zigzag-elasticity plate theory was applied, instead, by Alipour and
Shariyat [16] to study the stress state of annular FGM sandwich plates with non-uniform
normal and shear tractions, whose responses showed that the use of FGM facesheets or
FGM cores could prevent failure. Ferreira et al. [17] presented a static and vibration analysis
of composite sandwich plates by means of the LW theory and a novel numerical scheme,
where a collocation by radial basis functions was capable of producing highly accurate
results. Alipour and Shariyat [18] investigated an analytical LW free vibration response of
circular annular composite sandwich plates with an auxetic core. In another work [19], the
same authors applied the LW formulation to study the effect of elastic boundary constraints
on the stress state of annular FG sandwich plates under a distributed loading condition.
As stated before, FGMs were basically designed for thermal protection issues such that
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a large variety of works in literature has shown the effect of thermal environments on
the mechanical behavior of FGM systems [20–24]. Akbarzadeh and Chen [25] analyzed
the hygrothermal stresses in one-dimensional FG piezoelectric media under a constant
magnetic field. In that paper, the moisture concentration and temperature distributions
across the thickness of one-dimensional media were achieved by solving analytically the
steady-state Fickian moisture diffusion and Fourier heat conduction equations. Lee and
Kim [26] applied the FSDT to study the hygrothermal postbuckling behavior of FGM plates,
as provided by classical finite elements and the Newton–Raphson iterative scheme. Based
on the results, it was found that the frequency of the system decreases with an increasing
moisture. Sobhy [27] developed an accurate shear deformation theory for the vibration
and buckling of FGM sandwich plates in a hygrothermal environment. Mansouri and
Shariyat [28] discussed the biaxial thermo-mechanical buckling of orthotropic auxetic FGM
plates with moisture- and temperature-dependent material properties on an elastic foun-
dation. The higher-order shear deformation governing differential equations were solved
numerically accounting for the influence of moisture and temperature.

The main advantage of DQM-based numerical solutions over analytical predictions
lies in the large flexibility of the selection of different boundary conditions. In this context,
Ghorbanpour Arani et al. [29] analyzed the dynamic instability of visco-double-walled
carbon nanotubes according to a sinusoidal strain gradient theory using the DQM and
Bolotin method. Gurtin–Murdoch elasticity theory was also adopted in their research
to include the surface stress effects while modeling the visco-Pasternak foundation as
an elastic medium. Ke et al. [30] investigated the free vibration of nonlocal piezoelectric
nanoplates, whose balance equations were solved numerically based on the DQM for differ-
ent boundary conditions, temperatures, electric fields and mechanical loads. Accordingly,
Eshraghi et al. [31] discussed the bending and free vibration response of FG annular and
circular microplates under thermal loading. In another paper, Li et al. [32] analyzed the free
vibration and buckling response of magneto-electro-elastic nanoplates with nonlocal mod-
els, accounting for the variation in both electric and magnetic potentials along the thickness
direction of nanoplates while solving the equations of motion in an analytical sense. In
Ref. [33], Akbarzadeh and Chen assessed the magneto-electro-elastic response of rotating
cylinders resting on an elastic foundation under a hygrothermal loading. In their analyses,
the authors considered the moisture and temperature dependence of the elastic coefficients
for a uniform rise in moisture and temperature concentration. Wang and Zhang [34] also
studied the postbuckling and thermal buckling response of temperature-dependent porous
nanocomposite beams reinforced by graphene platelets as provided by a high-order shear
deformation theory.

Based on the above-mentioned literature overview, however, it seems that the natural
frequencies of thick annular FGM plate integrated with magneto-electro-elastic layers in
a hygro-thermal environment have not been investigated to date. Thus, starting with
limited information from the available literature, in the present work we focus on the free
vibration of FG annular plates integrated with piezo-magneto-electro-elastic external skins.
Meanwhile, the material properties of FG annular plates are supposed to vary in thickness
according to the power law function. The selected sandwich structures are supposed to
be immersed within an electric field and an elastic Pasternak foundation. The problem
is studied according to the LW theory, whereby the equilibrium equations are obtained
by means of the Hamiltonian principle. A numerical differential quadrature strategy is
used, herein, to compute the frequency response according to different boundary condi-
tions, along with different temperatures and moisture, foundation coefficients, external
electric and magnetic potentials, as well as outer-inner radius ratios, power indexes and
thickness ratios.

2. Theoretical Basics

In this section, we determine the equilibrium equations of the problem, including the
constitutive equations and a potential field for FG annular plates integrated with piezo-
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magneto-electric layers. The geometry of a FG annular sandwich plate polarized in the
thickness direction in cylindrical (r, θ, z) coordinates is depicted in Figure 1. The selected
structure has inner and outer radii, ri, ro, respectively; an internal core of thickness, hc; and
external sheets with thicknesses, ht and hb, at the top and bottom sides, respectively. This
sandwich structure is subjected to both moisture and thermal variation, ∆C, and ∆T, together
with an electric potential. It is worth mentioning that ∆T = T− T0 and ∆C = C− C0, in
which T and C describe the absolute temperature and moisture concentration, respectively,
and C0, T0 refer to the reference moisture concentration and temperature, respectively. The core
layer of the sandwich plate is made of a FGM with material properties graded in the thickness
direction, following the power law for the ceramic volume fraction Vc of the following type [3]:

Vc =

(
z
hc

+
1
2

)g
, g ≥ 0 (1)

Figure 1. Configuration and coordinate system of an annular sandwich plate.

Based on Voigt’s rule, an arbitrary property, P, of a FG annular plate can be defined as
a function of the constituent properties and volume fractions as follows:

P(z) = Pm + Pcm

(
z
hc

+
1
2

)g
, Pcm = Pc − Pm (2)

in which Pc and Pm refer to the properties of the ceramic and metal phase, respectively,
and g is a non-negative constant, such as a power law index. In this paper, the mod-
ulus of elasticity (E), density, moisture and thermal expansion coefficient, β and α, are
graded according to Equation (2), while Poisson’s ratio, υ, is assumed constant in the
thickness direction.

In line with the zigzag-sandwich plate theory, the radial displacement component can
be considered as result of a superposition of global and local effects. Thus, by using linear
global and local displacement fields and by enforcing the kinematic continuity conditions
at the interfaces among layers, the LW displacement fields of the sandwich plate can be
described as follows [16]:

Ut = u0 + ζtθt
r +

ht

2
θt

r +
hc

2
θc

r , −ht

2
≤ ζt ≤ ht

2
(3)

Uc = u0 + ζcθc
r −

hc

2
≤ ζc ≤ hc

2
(4)

Ub = u0 + ζbθb
r −

hb
2

θb
r −

hc

2
θc

r , −hb
2
≤ ζb ≤ hb

2
(5)

W = w0 (6)

where u0 and w0 stand for the radial and transverse displacement of the mid-plane per
each layer, respectively. Three transverse local coordinates are defined for the core (ζc), top
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facesheet (ζt) and bottom facesheet (ζb), whereas θi
r (superscript i = t, b and c) represents

the local rotation for the ith layer. Therefore, the strain components are defined as follows:

εi
r =

∂Ui

∂r
, εi

θ =
Ui

r
, εi

rz =
∂Ui

∂z
+

∂W
∂r

. (7)

In a piezoelectric/piezomagnetic material, the application of an electric and magnetic
field causes a strain field proportional to the mechanical strength, and vice versa. The con-
stitutive equations for stresses (σ), electric displacements (D) and magnetic displacement
(B) for the piezoelectric facesheets obtain the following form:

σr = Q11εr + Q12εθ − e31Ez − d31Hz − λ11∆T − ς11∆C, (8)

σθ = Q12εr + Q22εθ − e31Ez − d31Hz − λ22∆T − ς22∆C, (9)

τrz = Q55εrz + e15Er + d15Hr, (10)

Dr = e15εrz+ ∈11 Er + g11Hr + γ1∆T + χ1∆C, (11)

Dz = e31(εrz + εθ)+ ∈33 Ez + g33Hz + γ3∆T + χ3∆C, (12)

Br = d15εrz + g11Er + µ11Hr + τ1∆T + ν1∆C, (13)

Bz = d15(εrz + εθ) + g33Ez + µ33Hz + τ3∆T + ν3∆C, (14)

where Q11 and Q12 describe the elastic stiffness; Q55 is the shear moduli of the piezoelectric
layers; ∈11 and ∈33 are the dielectric constants; e15 and e31 are the piezoelectric coefficient;
d15 and d31 describe the piezomagnetic coefficients; g11 and g33 are the electromagnetic
coefficients; µ11 and µ33 are the magnetic permeability coefficients; τ1 and τ3 are the pyro-
magnetic coefficients; ν1 and ν3 are the hygromagnetic coefficients; ς11 and λ11 represent
the hygroscopic stress and thermal stress coefficients; and pq and χq (q = 1, 2) are the
pyroelectric and hygroelectric coefficients, respectively. It should be noted that the ther-
mal stress and hygroscopic stress coefficients are related to the elastic coefficient, thermal
expansion coefficient α and moisture expansion coefficient β as follows:

λqp = Qklαqp, (p = 1, 2), (k, l = 1, 2, 5) (15)

ςqp = Qkl βqp (16)

Meanwhile, the electric and magnetic fields Ej, Hj(j = r, z) in terms of electric
potential (Φ) and magnetic potential (Ψ) can be written as follows [6]:

Ej = −∇Φj (17)

Hj = −∇Ψj (18)

The electric and magnetic potential distributions Φ(r, θ, t), Ψ(r, θ, t) in the thickness
direction of the piezoelectric layer, at time, t, are defined as a combination of a half-cosine
and linear variation, which satisfies the Maxwell equation [31]:

Φt(r, θ, z, t) = − cos
(

πζt

ht

)
ϕt(r, θ, t) +

2ζtV0

ht
, (19)

Φb(r, θ, z, t) = − cos

(
πζb

hb

)
ϕb(r, θ, t), (20)

Ψt(r, θ, z, t) = − cos
(

πζt

ht

)
ψt(r, θ, t) +

2ζtλ0

ht
, (21)
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Ψb(r, θ, z, t) = − cos

(
πζb

hb

)
ψb(r, θ, t), (22)

where Φt and Φb represent the electric potential at the top and bottom layers of the
sandwich structure, respectively, whereas Ψt and Ψb refer to the magnetic potential at
the top and bottom layers, respectively. The same considerations can be repeated for the
magnetic potential. Additionally, V0 and λ0 represent the external electric and magnetic
potentials, respectively. The stress components in the core layer are assumed to be graded
as follows:

σc
r =

E(z)
1− υ2 (εr + υεθ)− β11∆T − ς11∆C, (23)

σc
θ =

E(z)
1− υ2 (εθ + υεr)− β22∆T − ς22∆C, (24)

τc
rz =

E(z)
2(1 + υ)

εrz, (25)

3. Governing Equations of the Problem

The governing equations of the problem are determined by applying the Hamiltonian
principle within the time interval [t0, t1] as follows:∫ t1

t0

[δU − δK− δW] = 0, (26)

where δU, δW and δK are the variations in the strain energy, external work and kinetic
energy, respectively. More specifically, the strain energy of the piezoelectric plate is defined
as follows:

U = 1
2

(∫ ro
ri

∫ 2π
0

∫ ht
2

− ht
2

(
σt

r εt
r+σt

θεt
θ + 2τt

rzεt
rz − Dt

rEt
r − Dt

zEt
z − Bt

r Ht
r − Bt

z Ht
z
)
rdθdrdζt

+
∫ ro

ri

∫ 2π
0

∫ hc
2

− hc
2
(σc

r εc
r+σc

θ εc
θ + 2τc

rzεc
rz)rdθdrdζc∫ ro

ri

∫ 2π
0

∫ hb
2

− hb
2

(
σb

r εb
r+σb

θ εb
θ + 2τb

rzεb
rz − Db

r Eb
r − Db

z Eb
z − Bb

r Hb
r − Bb

z Hb
z

)
rdθdrdζb

) (27)

The total kinetic energy of the annular sandwich plate is expressed as follows:

K =
1
2

(∫ ro

ri

∫ 2π

0

∫ h
2

− h
2

ρi

{((
.

U
i
)2

+

(
.

W
i
)2
) }

rdrdθdζ i (28)

where h is the total thickness of structure. Moreover, the work conducted by the external
forces is defined as follows:

W =
1
2

∫ ro

ri

∫ 2π

0

(
(Nt + Ne + Nm)

(
∂2w
∂r2 +

1
r

∂w
∂r

)
+ kww− kg

(
∂2w
∂r2 +

1
r

∂w
∂r

))
rdrdθ, (29)

where kw and kg define the Winkler and Pasternak stiffnesses, respectively; Nt, Nc, Ne and
Nm refer to the normal forces induced by the temperature variation, ∆T, moisture change,
∆C, and external electric and magnetic potentials, which are, in turn, defined as follows:

Ne = 2e31V0, Nt = λhi∆T, Nc = ςhi∆C Nm = 2d31λ0. (30)

By substituting Equations (27)–(29) into Equation (26), we obtain the following gov-
erning equations of motion:

Nb
r−Nb

θ
r + ∂Nb

r
∂r +

Nc
r−Nc

θ
r + ∂Nc

r
∂r +

Nt
r−Nt

θ
r + ∂Nt

r
∂r =

(
Ib
0 + Ic

0 + It
0

) ..
u0

+
(

It
0

ht
2 + It

1

) ..
θ

t
r + Ib

1

..
θ

c
r +

(
Ib
1 − Ib

0
hb
2

) ..
θ

b
r ,

(31)
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ht
2

(
Nt

r−Nt
θ

r + ∂Nt
r

∂r

)
+

Mt
r−Mt

θ
r + ∂Mt

r
∂r −Qt

rz =
(

It
0

ht
2 + It

1

) ..
u0

+ hb
2

(
ht
2 It

0 + It
1

) ..
θ

b
r +

[
It
2 + ht It

1 +
(

ht
2

)2
It
0

]
..
θ

t
r,

(32)

hc
2

(
Nt

r−Nt
θ

r + ∂Nt
r

∂r

)
− hc

2

(
Nb

r−Nb
θ

r + ∂Nb
r

∂r

)
+

Mc
r−Mc

θ
r + ∂Mc

r
∂r −Qc

rz =(
hc
2 It

0 + Ic
1 −

h2
2 Ib

0

) ..
u0 +

hc
2

(
It
1 +

ht
2 It

0

) ..
θ

t
r +

[(
hc
2

)2(
It
0 + Ib

0

)
+ Ic

2

]
..
θ

c
r

− hc
2

(
Ib
1 −

hb
2 Ib

0

) ..
θ

b
r ,

(33)

− hb
2

(
Nb

r−Nb
θ

r + ∂Nb
r

∂r

)
+

Mb
r−Mb

θ
r + ∂Mc

r
∂r −Qb

rz =
(

Ib
1 −

hb
2 Ib

0

) ..
u0

+

[
Ib
2 − hb Ib

1 +
(

hb
2

)2
Ib
0

]
..
θ

b
r +

hc
2

(
hb
2 Ib

0 − Ib
1

) ..
θ

c
r ,

(34)

∂Qb
r

∂r + Qb
r

r + ∂Qc
r

∂r + Qc
r

r + ∂Qt
r

∂r + Qt
r

r − (Nt + Nm + Ne + Nc)
(

∂2w
∂r2 + 1

r
∂w
∂r

)
+kww− kg

(
∂2w
∂r2 + ∂w

r∂r

))
=
(

It
0 + Ib

0 + Ic
0

) ..
w0,

(35)

∫ hb
2

− hb
2

[
cos

(
πζb

hb

)
∂Dr

∂r
+

π

hb
sin

(
πζb

hb

)
Dz

]
dζb = 0, (36)

∫ ht
2

− ht
2

[
cos
(

πζt

ht

)
∂Dr

∂r
− π

ht
sin
(

πζt

ht

)
Dz

]
dζt = 0, (37)

∫ hb
2

− hb
2

[
cos

(
πζb

hb

)
∂Br

∂r
+

π

hb
sin

(
πζb

hb

)
Bz

]
dζb = 0, (38)

∫ ht
2

− ht
2

[
cos
(

πζt

ht

)
∂Br

∂r
− π

ht
sin
(

πζt

ht

)
Bz

]
dζt = 0, (39)

The stress resultants M, N and Q can be described as follows:

∫ ht
2

− ht
2

[
cos
(

πζt

ht

)
∂Br

∂r
− π

ht
sin
(

πζt

ht

)
Bz

]
dζt = 0, (40)

Qi
r =

∫ h i
2

− h i
2

τi
rz dζ i, i = t, c, b j = r, θ (41)

and

Ii
f =

∫ hi
2

− hi
2

ρiζ ikdζ i, f = 0, 1, 2 (42)

More details about these terms can be found in Appendix A.
Various boundary conditions at both edges of the sandwich plate are, thus, assumed

as follows [18]:

• Clamped edge: 
u0 = 0
θt

r = 0
θc

r = 0
θb

r = 0
w0 = 0

, (43)

• Simply supported edge:
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u0 = 0
ht
2 Nt

r + Mt
r = 0

hc
2 Nt

r + Mc
r − hc

2 Nb
r = 0

− hb
2 Nb

r + Mb
r = 0

w = 0

, (44)

• Free edge:



Nt
r + Nc

r + Nb
r = 0

ht
2 Nt

r + Mt
r = 0

hc
2 Nt

r + Mc
r − hc

2 Nb
r = 0

− hb
2 Nb

r + Mb
r = 0

Qt
r + Qc

r + Qb
r = 0

, (45)

The DQM is now adopted to solve the equilibrium equations. In this numerical
method, the partial derivative of a function with respect to the spatial variables at a given
discrete point is approximated as a weighted linear sum of the function values at all
discrete points chosen in the solution domain. According to the DQM, the nth order partial
derivative of a function F(r) can be approximated as follow [31]:

∂nF(rj)

∂rn =
N

∑
k = 1

A(n)
jk F(rk), n = 1, . . . , N − 1 (46)

in which N is the total number of grid points and A(n)
jk represents the weighting coefficients.

The Chebyshev–Gauss–Lobatto polynomials are here adopted to determine the spaced
position of the grid points [31], namely:

rj = ri +
ro − ri

2

(
1− cos

(
2j− 1
N − 1

)
π

)
. (47)

where ri and ro are the inner and external radii, respectively. At the end, based on Equation
(46), the motion equations can be written in matrix form as:

[KD] + [M]ω2
{

Yb
Yd

}
=

{
0
0

}
, (48)

in which [KD] is the stiffness matrix, [M] is the mass matrix and ω refers to the circular
natural frequencies of the system. The dynamic displacement vector [Y] for both boundary
and domain points is expressed as follows:

[Y] =

[
{u0}T ,

{
θt

r
}T , {θc

r}
T ,
{

θb
r

}T
, {w0}T ,

{
Φt}T ,

{
Φb
}T

,
{

Ψt}T ,
{

Ψb
}T
]

. (49)

4. Numerical Results

A large parametric investigation was performed to check for the sensitivity of the
vibration response for the FG annular plates covered by magneto-electro-elastic layers,
and surrounded by a Pasternak foundation, for different input parameters, primarily,
temperature, moisture, external voltage, different boundary conditions, elastic foundations,
thickness ratio, power index and number of grid points. The properties of BaTiO3/CoFeO4,
ceramic (alumina) and metal (aluminum) are presented in Tables 1 and 2, in line with
Refs. [33] and [27], respectively.
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Table 1. Material properties of BaTiO3/CoFeO4 [33].

Properties

Q11 (Pa) 2.86× 1011

Q12 (Pa) 1.73× 1011

Q55 (Pa) 0.453× 1011

e31 (C/ m2) −4.4
e33 (C/ m2) 18.6

d31 (N/ Am) 580.3
d33 (N/ Am) 699.7
∈11 (C2/Nm2) 8.0× 10−11

∈33 (C2/Nm2) 9.3× 10−11

g11 = g33 3.0× 10−12

µ11

(
Ns2/C2

)
−590× 10−6

µ33

(
Ns2/C2

)
157× 10−6

α11 = α22 (/K) 1× 10−6

β11
(
m3/kg

)
0

β33
(
m3/kg

)
1.1× 10−4

χ1 = χ3 (Cm/ Kg) 0
τ1 = τ3(N/AmK) 6.0× 10−3

γ1 = γ3 (C/m2 K) −13.0× 10−5

ν1 = ν3

(
N/Am2Kg

)
0

Table 2. Material properties of ceramic and metal [27].

Properties

Ec (Pa) 380× 109

ρc (kg/ m3) 3800
αc (/K) 7× 10−6

βc (wt%H2O)−1 0.001
υc = υm 0.3
Em (Pa) 70

ρm (kg/ m3) 2707
αm (/K) 23× 10−6

βm (wt%H2O)−1 0.44

At the same time, in the attempt to validate the proposed formulation, a simplified
analysis was carried out, first, without considering the external facesheets, the hygrothermal
environment and the LW theory, in line with Refs. [6,35]. The dimensionless frequency
ω∗ = ωh

√
ρ/C11 was, thus, determined, for different grid point discretization, as reported

in Table 3, being C11 = E(1− υ)/(1 + υ)(1− 2υ).

Table 3. Validation of present work with respect to Refs. [6,35].

Frequencies Reference N
5 7 8 9 10

ω∗1 Jodaei et al. [6] 0.081 0.08 0.0798 0.0797 0.0796
Nie and Zhang [35] 0.0798 0.0812 0.0814 0.0802 0.0807

Present 0.0805 0.0797 0.0795 0.0795 0.0795

ω∗2 Jodaei et al. [6] 0.0834 0.083 0.0827 0.0827 0.0826
Nie and Zhang [35] 0.0829 0.0843 0.0843 0.0832 0.0837

Present 0.0828 0.0827 0.0822 0.0822 0.0822

ω∗3 Jodaei et al. [6] 0.0954 0.0957 0.0953 0.0953 0.0952
Nie and Zhang [35] 0.0956 0.0969 0.0968 0.0958 0.0961

Present 0.0948 0.0952 0.095 0.095 0.095
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The accuracy and convergence of the DQM-based results are summarized in Table 4
in terms of dimensionless frequency for the selected sandwich annular plate, with clamped
supports at both edges under different variations in temperature. More specifically, the
dimensionless frequency is computed as

ω∗ = ωr2
i
√

ρtht/D (50)

in which
D = Emh3

t /12(1− υ2
m) (51)

Table 4. Convergence behavior and accuracy of the DQM.

g Grid Points (N) ω∗ ω∗ ω∗

∆T = 0[◦C] ∆T = 100[◦C] ∆T = 200[◦C]

1 5 12.4713 12.3882 12.3046
7 13.3089 13.2251 13.1407
8 13.3076 13.2238 13.1394

10 13.3076 13.2238 13.1394
2 5 12.0093 11.9403 11.8710

7 12.7439 12.6747 12.6051
8 12.7437 12.6745 12.6049

10 12.7437 12.6745 12.6049
3 5 11.7305 11.6691 11.6074

7 12.4071 12.3456 12.2838
8 12.4070 12.3455 12.2837

10 12.4070 12.3455 12.2837

Moreover, in order to verify the free vibration of the annular plate by considering the
electromagnetic layer, it is sufficient to consider the material property and geometry used
in Ref. [36]. A comparison between the present results and Ref. [36] is shown in Table 5. As
can be seen from this table, there is excellent agreement between them.

Table 5. Validation of present work with respect to Ref. [36].

ω∗1 VE
Dimensionless
Frequency (ω)

Ωh = −106 Ωh = 0 Ωh = 106

Reference −108 2.88 3.08 3.25
0 2.85 3.06 3.23

108 2.83 3.02 3.21

Present −108 2.91 3.16 3.33
0 2.94 3.16 3.31

108 2.87 3.10 3.30

The results are derived for different values of DQM grid points, with a fast rate
of convergence, even with a reduced number of grid points equal to eight. Thus, the
systematic investigation accounts for the effects of the Winkler and Pasternak coefficients
on the dimensionless frequency, as plotted in Figures 2 and 3 vs. the radial ratio of the
annular sandwich plates. The thickness and radial ratios are set here as ht/hc = 0.5 and
ri/ro = 0.2, whereas temperature and moisture variations are assumed to be null, i.e.,
∆T = 0 and ∆C = 0, respectively. As visible in Figures 2 and 3, an increasing radial ratio
gradually reduces the value of the frequency. As the Winkler and Pasternak coefficients
increase, the dimensionless frequency also increases due to an increased stiffness and
stability in the structure for the same radial ratio ri/ro. At the same time, the effect of the
Pasternak coefficient is more effective than the Winkler one. This is due to the presence
of both normal and transverse shear loads, as considered in the Pasternak foundation but
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not in the Winkler one, which is described in the normal direction. Figure 4 shows the
variation in the dimensionless frequency with the thickness ratio under different external
electric potentials while assuming kw = 0, kg = 0, ∆T = 0 and ∆C = 0. Note that
the application of an electric potential can vary the frequency response of the sandwich
structure, whereby a negative electric potential decreases the dimensionless frequency,
and a positive voltage can yield the opposite effect. The enforcement of negative/positive
voltages, indeed, seems to generate an axial compressive/tensile force in the top layer, with
a consecutive variation in the overall structural stiffness. This means that the application of
an external electric potential is an effective controlling parameter for the behavior of the
structure. Figure 5 describes the variation in the dimensionless frequency with the thickness
ratios under different external magnetic potentials, λ. Based on the plots in this figure, it
is clear that a negative magnetic potential decreases the dimensionless frequency under
the same thickness ratio assumption, where the contrary occurs under the application of a
positive voltage. The influence of a power law index, g, on the dimensionless frequency
is illustrated in Figure 6 for different ri/ro ratios while keeping a null value for kw, kg in
the clamped structure. As visible from the plots in the figures below, the dimensionless
frequency decreases monotonically for an increased power index under a fixed ri/ro ratio,
with a clear upward shift of curves, for an increased rational value of ri/ro.
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Another parameter that can be changed to control the stability of a system, however,
is represented by moisture. As plotted in Figure 7, the frequency features a monotone
decrease for an increasing ri/ro ratio under the same assumption for ∆C, whereas an
increase in moisture can provide a slight reduction in the frequency response under the
same assumption for ri/ro. A more pronounced sensitivity of the frequency response
is noticed in temperature. As plotted in Figure 8, an increased temperature variation
seems to reduce the frequency response of the structure with a fixed geometry due to
an overall reduction in its stiffness. The highest sensitivity, in any case, is observed for
different structural constraints, as depicted comparatively in Figure 9 for clamped–clamped,
clamped–simply and simply–simply supports, as well as different radial ratios, while
keeping g = 0 and (hc/ht) = 2.5 fixed. Note that the use of clamped supports makes
the structure stiffer and more stable such that it could support higher loads than simply
supported structures.
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5. Conclusions

This paper investigated the vibration of FG annular plates integrated with magneto-
electro-elastic layers subjected to a hygrothermal environment and resting on an elastic
foundation. The LW theory is proposed to define the problem, whose governing equations
are derived from the Hamiltonian principle. Thus, the DQM is successfully applied as an
efficient numerical tool to solve the problem for the different enforcements of boundary
conditions. A large numerical campaign investigated the effect of varying Pasternak and
Winkler coefficients, external voltage, temperature and moisture, thickness ratio, radial
ratio and boundary conditions. Based on a comparative evaluation of results, it seems that
an increased temperature or moisture yields a decrease in frequency and stability of the
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annular structure. At the same time, increased external electric and magnetic potentials,
enable an overall increase in the natural frequency of the annular sandwich plate. In any
case, we noticed that there exists an inverse relationship between radial ratio and frequency
response of the annular sandwich plates, such that higher radial ratios can significantly
reduce the structural stiffness and dimensionless frequency. Finally, it was found that
increased values of the Pasternak and Winkler coefficients can enable an overall increase in
the structural stiffness, with a consequent increase in natural frequencies.
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