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Inspired by some traits of human intelligence, it is proposed that wetware
approaches based on molecular, supramolecular, and systems chemistry can
provide valuable models and tools for novel forms of robotics and AI, being
constituted by soft matter and fluid states as the human nervous system
and, more generally, life, is. Bottom-up mimicries of intelligence range from
the molecular world to the multicellular level, i.e., from the Ångström (10−10

meters) to the micrometer scales (10−6 meters), and allows the development of
unconventional chemical robotics. Whereas conventional robotics lets humans
explore and colonise otherwise inaccessible environments, such as the deep
oceanic abysses and other solar system planets, chemical robots will permit
us to inspect and control the microscopic molecular and cellular worlds. This
article suggests that systems made of properly chosen molecular compounds
can implement all those modules that are the fundamental ingredients of
every living being: sensory, processing, actuating, and metabolic networks.
Autonomous chemical robotics will be within reach when such modules are
compartmentalised and assembled. The design of a strongly intertwined web
of chemical robots, with or without the involvement of living matter, will
give rise to collective forms of intelligence that will probably reproduce, on a
minimal scale, some sophisticated performances of the human intellect and will
implement forms of “general AI.” These remarkable achievements will require
a productive interdisciplinary collaboration among chemists, biotechnologists,
computer scientists, engineers, physicists, neuroscientists, cognitive scientists,
and philosophers to be achieved. The principal purpose of this paper is to spark
this revolutionary collaborative scientific endeavour.

KEYWORDS

chemical artificial intelligence, chemical robots, artificial neural networks, proteins,
DNA, fuzzy logic, Bayesian inference

1 Introduction

The research field of AI and Robotics has the declared objective of building intelligent
machines and the implicit purpose of understanding what intelligence is, especially that
shownbyhumans (Russell andNorvig, 2010), and according to certain paradigms.Although,
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as humans, we have been meditating on our intelligence, at least,
since the birth of philosophy in ancient Greece (i.e., since the
far VI century BC), we are still missing a universally accepted
definition. Minsky (2006) coined the expression “suitcase word” for
terms like intelligence, which is multifaceted. Human intelligence
has many features, and its definition might depend on the context.
Attempting to define it from the Complexity Science viewpoint,
it might be proclaimed that intelligence is an amazing emergent
property of the human nervous system (HNS; Gentili, 2021a). As
such, it is expected that by assembling artificial complex systems
that are architectural mimicry of the HNS, some performances
of human intelligence should pop up. This idea is supported
by the methodology that the cognitive scientists Gallistel and
King (2009) and the neuroscientist Marr (2010) have proposed
to understand any biological complex system. Their methodology
requires analysing the HNS at three distinct levels. The first
analysis is at the “computational level” and requires determining
inputs, outputs, and the system’s computations. The second one
is at the “algorithmic level” and involves formulating algorithms
reproducing the previously found computations. The final analysis
is performed at the “implementation level” and requires designing
and implementing artificial mechanisms that run the formulated
algorithms. This methodology has been embraced by chemists
who try to mimic some performances of human intelligence using
chemistry: they contribute to AI and Robotics by tracing a new path
and developing unconventional Chemical Artificial Intelligence
(CAI; Gentili, 2013). In the first part of this series (Gentili and
Stano, 2023b), it has been demonstrated—according to the current
experimental investigations—that molecules and supramolecules
can be exploited to reproduce some elementary functions, such
as “sensing,” “computing,” “communicating,” and “working.” In
this second part, it will be shown that it is feasible to imitate
more elaborate performances of human intelligence by recurring
to Systems Chemistry. Systems Chemistry refers to the design
of complex mixtures of properly chosen chemical compounds
that can give rise to emergent properties, i.e., properties that go
beyond the sum of the characteristics of the system’s individual
constituents (Ashkenasy et al., 2017). The emergent properties of
artificial chemical mixtures, designed according to the three-
level analysis mentioned above, can show some primary forms of
intelligence.

2 Chemical robotics

The ultimate and ambitious goal of Systems Chemistry in the
field of CAI is the development of the so-called Chemical Robotics
(also named Molecular Robotics or Cybernetics; Hagiya et al.,
2014; Murata et al., 2022). Chemical Robots are supposed to be
autonomous and adaptive molecular assemblies, confined through
a membrane, and provided with four other modules, which are also
the prerogatives of every living cell (see Figure 1). The first is the
sensory module, made of the molecular and supramolecular logic
gates described in part I (Gentili and Stano, 2023b). The sensory
module guarantees data collection related to the surrounding
environment’s features and the robot’s internal state. The sensory
data must be processed by an artificial neural network module,
which also takes the decisions. The resolutions trigger the action

of the effectors’ module, which is constituted by proper assemblies
of molecular machines. Finally, the intelligent activities of any
Chemical Robot should be sustained by a metabolic unit. An
obvious application of Chemical Robots can be identified in
nanomedicine, i.e., as smart drug-delivery (or drug-producing)
agents. In such a scenario, miniaturized Chemical Robots will
be implanted in living beings where they will interplay with
living cells and organelles to perform bio-medical actions, such
as releasing a drug in the right place and at the right moment.
They should become “Medical Doctors within individual cells”
(Shapiro, 2012) or auxiliary elements of the natural immune systems.
These autonomous elements should be programmable molecular
computing devices capable of computing synthetic biopolymers and
releasing them in response to environmental inputs. It is convenient,
then, to describe their design and operation in the computationalist
paradigm, here based on and related to the central dogma of
molecular biology (Crick, 1970). All the potential performances
of any living being are encoded in the chemical composition of a
polymer, which is the DNA. Its information is transcribed into a
specific sequence of the polymer RNA through RNA polymerase.
Finally, it is translated into a peculiar poly-aminoacidic sequence
(i.e., a protein) through the ribosome. This naturally occurring
way of processing information has striking similarities with the
working principle of the universal computing machine proposed
by Alan Turing in 1936. The Turing machine (Turing, 1936) works
on an infinitely long tape (which can be a potentially unbounded
DNA or RNA polymer). It contains a head (it can be RNA
polymerase or the ribosome) that can write and read symbols
while moving forward and backwards on the tape. A Chemical
Robot, driven by a DNA- or RNA-based Turing machine, can
face any solvable computing problem and regulate biomolecular
processes in vivo because it can interact directlywith the biochemical
environment, offering new avenues for gene therapy (Varghese et al.,
2015). Chemical Robots may also be employed to safeguard the
environment and face problems related to energy and food supplies
(Murata et al., 2013). Chemical Robot’s performances depend on
the compartmentalisation of its modules and how well they are
assembled and integrated. The perfect epitome is represented by any
unicellular microorganism. Hence, the development of Chemical
Robotics can be rightly embeddedwithin the broad field of synthetic
biology. In particular, the Chemical Robot we are referring to
can be fabricated through the bottom-up approach (Luisi, 2002;
Guindani et al., 2022), i.e., by assembling all the molecular elements
required to ensure the expected functions. As a result, the so-called
synthetic (or artificial) cells are obtained.

2.1 Artificial neural networks

A pivotal role in a Chemical Robot is played by its artificial
neural network module. As mentioned above, it can be a DNA-
or RNA-based Turing machine, or it might be more similar
to the human brain. The human brain is a complex network
of about 80× 109 nerve cells (Herculano-Houzel, 2009), whose
outstanding performances derive from its massive parallelism. The
parallelism is generated by the remarkable connectivity of the
neurons, each having up to 104 synapses. Each neuron is a non-
linear switching dynamical system with an intrinsic operating
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FIGURE 1
Sketch showing the required fundamental elements of a Chemical Robot, whose prototype is any unicellular organism. A Chemical Robot is a chemical
system confined by (1) a chemical boundary along which are deployed (2) the sensors; it includes (3) the Artificial Neural Network (ANN), (4) the
Effectors’ module, and (5) the metabolic unit. All the listed components must be strongly intertwined, conferring to the Chemical Robot the power of
perceiving, generating knowledge, planning and acting: in a nutshell, autonomy and intelligence. It should perform analytical processing, practical, and
regulatory functions (Zhang et al., 2019).

frequency that can reach the kHz range. It is reasonable to think
of approaching some elementary computational functions of the
human brain by devising Artificial Neural Networks (ANN). ANNs
are biologically inspired networks wherein the nodes, i.e., the
neural analogues, send signals between each other throughweighted
edges, representing synaptic links. The high interconnectivity of
any ANN guarantees massively parallel computation and high
defect tolerance (Ha and Ramanathan, 2011). ANNs allow the
implementation of adaptive computation. Adaptive computational
systems are capable of pattern recognition, content addressable
memory, control systems, medical diagnosis, and all those problems
that are now prerogatives ofmachine learning algorithms (Alpaydin,
2020). ANNs are traditionally implemented in software. However, it
is more energetically convenient to implement them in hardware.
Neuromorphic engineering in hardware is developed mainly
through memristive devices, which can change their conductance
in response to electrical pulses. Memristors are made of different
material classes ranging from magnetic alloys, metal oxides,
and chalcogenides to 2D van der Waals or organic materials
(Christensen et al., 2022). Molecular and Systems Chemists propose
alternative implementations of neural surrogates and ANNs in
wetware.

Proteins are valuable neural surrogates at the molecular level
(Bray, 1995). They constitute the basic information-processing
elements of the complex intracellular molecular reaction network
that controls the physiology of living cells and organisms. In the
signalling network of every cell, a protein, which links a substrate in
its active site and transforms it chemically into a specific product,
acts as a computational node. The information is encoded in the
three-dimensional structure of the molecules, and it is primarily

communicated through diffusion and, when possible, through
advection of the liquid solution. The simple molecules that work as
inputs and outputs of all the protein-based information-processing
events establish most of the links among the proteins. Sometimes,
the link is direct and implies protein-protein associations. In cellular
signalling networks, a high degree of nonlinearity, mimicking that
of neural networks, is guaranteed by allosteric proteins. A protein
is allosteric when its activity towards a peculiar substrate is affected
by other molecules (called effectors) that link to other sites of the
same protein (Dokholyan, 2016). The effectors can accelerate or
decelerate the reaction governed by the protein. Sometimes, the
chemical species produced by a protein can play as its own effector
and positive or negative feedback actions can be implemented.
The protein-based signalling networks are the brains of living
cells because they process the sensory data related to the external
environment and internal cellular state and take the appropriate
course of action, triggering specific epigenetic events, i.e., activating
and/or inhibiting the expression of specific genes inDNA (Roederer,
2005).

The other two fundamental macromolecular ingredients of
every cell, i.e., DNA and RNA, have also been proposed as
basic elements for implementing ANNs. DNA and RNA exist as
strands made of sequences of four smaller molecules known as
nucleotides: Adenine (A), thymine (T), guanine (G), and cytosine
(C) in the case of DNA, and in RNA, uracil (U) substitutes T.
Each nucleotide is complementary to another specific nucleotide
due to the number and strength of hydrogen bonds that are
established: A is complementary to T (or U in the case of RNA),
and C to G. Based on this peculiar chemical complementarity, it
is possible to exploit partially doubled-stranded molecules of DNA
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or RNA as neural surrogates. When a single-stranded DNA (or
RNA) molecule finds a partially double-stranded molecule with a
complementary sequence, they bind, causing the partially doubled-
stranded molecule to shed the strand that was previously on it.
The single-stranded DNA molecule that successfully binds to the
partially double-stranded DNA molecule acts as the system’s input,
whereas the strand kicked off by the bonding DNA molecule
acts as the system’s output. Once released, an output strand can
be input by interplaying with another partially double-stranded
DNA molecule. ANNs built using DNA or RNA hybridisation
reactions, in which two complementary single-stranded DNA
or RNA molecules bond to form a double-stranded molecule,
can run challenging computations (Qiu et al., 2013). They can
be employed to solve NP-complete problems (Cox et al., 1999),
such as the Travelling Salesman Problem (Adleman, 1994), or
they can be appropriate for the recognition of variable patterns
(Cherry and Qian, 2018).

Neural surrogates can be alternatively implemented through
proper reactive chemical systems that, when maintained far from
the thermodynamic equilibrium, reproduce the dynamics of real
neurons (Przyczyna et al., 2020). They replicate the oscillatory,
chaotic, or excitable dynamic regimes of real neurons (Izhikevich,
2007). A well-known instance is the Belousov-Zhabotinsky (BZ)
reaction, which can proceed in oscillatory, chaotic, or excitable
regimes depending on the physicochemical conditions (Epstein and
Pojman, 1998). Information is encoded in the concentrations of
specific chemical species, which determine the electric potential
values and the UV-visible absorption properties of the macroscopic
solutions. Distinct neural surrogates of the type of the BZ reaction
can communicate through diffusion or advection, as in the case
of the proteins, or, alternatively, through the propagation of
chemical waves. Communication becomes ultrafast when the light
transmitted or emitted by the neural surrogates is used as signals.
Optical signals are quickly transferred among physically distant
neural surrogates (Gentili et al., 2017; Gentili et al., 2018). When
all the neural surrogates that are reciprocally linked are in their
oscillatory regime, it is possible to implement Spiking Neural
Networks (SNNs). SNNs, also called Oscillatory Neural Networks
(ONNs), constitute a promising computing paradigm. It is analog
because the information is encoded on the frequency of the
oscillators and the phase relations between oscillators. It is low-
power because the information is not encoded in the amplitude
of the signals, and therefore the signal amplitude can be very low,
reducing power consumption (Corentin et al., 2021). ONNs are
helpful for recognising variable patterns. Memorised patterns are
synchronised oscillatory states in which neurons fire periodically
with certain relations between their phases (Hoppensteadt and
Izhikevich, 2000). ONNs also promise to contribute to cutting-
edge computing that should go beyond Moore’s law by devising
alternative architectures to current electronic computers. Moore’s
law plays a relevant role when we face the computation of hard
problems, i.e., whenwe face exponential problems (or NP problems)
with large dimensions. We can expect to solve accurately NP-
problems only if we devise ultrafast computing machines. Since
Moore’s law will stop holding soon because transistors are made
of a few atoms, the only way to solve NP problems having
large dimensions is to design novel computing architectures,
revolutionizing the Von Neumann architecture of current electronic

computers (Csaba and Porod, 2020). Such hard problems can also be
faced through a top-down strategy (Gorecki, 2022): After choosing
a proper computing chemical medium, how the input and the
output information are encoded must be fixed. The properties of
the medium must be controlled by some adjustable macroscopic
parameters. Within this strategy, the values of parameters for
which the output gives the most accurate solution must be found.
To perform such optimization, several training examples are
needed to verify the accuracy of computation performed by the
medium.

3 Sophisticated reasonings: fuzzy
logic and Bayesian inference

Chemical Robotswill never be capable of tightly reproducing the
power of human minds if they rely only upon Boolean logic. They
might need to take rational decisions in environments dominated
by uncertainty, partiality and relativity of truth. In these situations,
other types of logic and inference are required. For instance, fuzzy
logic is particularly helpful in the case of partially true statements
and context-dependent decisions. It reproduces how humans make
decisions using syllogistic statements of the type IF…, THEN…
expressed through the natural language (Zadeh, 1997). Adjectives
employed in the formulation of syllogistic statements are fuzzy sets
granulating the numerical values of the variables. The meaning
of any adjective is context-dependent, likewise the position and
shape of fuzzy sets. A reason why fuzzy logic is a good model of
human capability to compute with words has been attributed to
some intrinsically fuzzy features of the HNS (Zadeh, 2002; Gentili,
2014). The information of any physicochemical stimulus is encoded
hierarchically (Figure 2 shows the specific case of human vision):
the modality at the molecular level, the intensity and its time-
evolution at the cellular level, and the spatial distribution at the
sensory organ level. These features of any stimulus are encoded as
fuzzy information because the collections of molecules and cells
involved in any sensory system work as ensembles of fuzzy sets,
granulating the attributes of the physicochemical variables. The
afferent neurons connecting the sensory cells to the brain operate
further granulations of the variables through their peculiar receptive
fields (Gentili, 2018). All the higher-level intelligent activities,
such as sensory perception, knowledge generation, planning, and
decision-making, are believed to take place in the neocortex,
which comprises almost 30× 109 billion neurons and about 1014

synapses. Both anatomically and functionally, the cerebral cortex
is describable as a hive of cortical columns (Mountcastle, 1997;
Rakic, 2008). Since humans usually navigate uncertain conditions,
the reasoning seems highly consistent with Bayesian probabilistic
inference (Pouget et al., 2013). If the symbol CC represents the
cortical columns activated in either a perception or a decision or
an action H, within the context c, then, the posterior probability
p(H|CC,c), according to the Bayes’ formula, is given by:

p(H|CC,c) =
p(CC|H,c)p(H,c)

p(CC,c)

It is a combination of the current information, represented by
the likelihood p(CC|H,c), and past information, embodied in the
prior probability p(H,c), normalized by the plausibility p(CC,c).
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FIGURE 2
The hierarchical fuzziness and encoding in human vision. In the bottom left part, graph (A) shows the absorption bands of the three retinals that belong
to the so-called “Blue,” “Green,” and “Red” cones. They are three molecular fuzzy sets granulating the visible spectral region. They allow encoding the
modality of the light stimuli. Graph (B) shows the schematic structure of a rod with many retinals in its outer segment: lights (represented by the yellow
lightning) with the same spectral compositions but different intensities excite different amounts of the retinals. The intensity of the light is encoded as
the degree of membership to the cellular fuzzy set (see the right panel). Graph (C) represents a sketch of the retina. The spatial distribution of the light
stimuli is encoded at the tissue level through the array of cellular fuzzy sets on the retina (see the right panel). Plot (D) shows that all three
compartments (thick stripes, thin stripes, and inter-stripes) of the cortical visual area V2 participate, at different degrees, in the experience of colour,
orientation, size, and direction of the objects that humans see [data extrapolated from Gegenfurtner (2003)]. The three compartments are intrinsically
fuzzy. They are connected to the fuzzy Cortical Columns of the visual area V1.

All the terms appearing in Bayes’ formula can be interpreted as
fuzzy information because experimental evidence demonstrates
that the cortical columns work as fuzzy sets (Gegenfurtner, 2003;
Gentili, 2021b): distinct cerebral events belong to the several cortical
columns at different degrees. The brain as a whole seems to
have a highly distributed functionality with many different areas
contributing to every its function (Wells, 2005).

Such interpretation of sophisticated human reasoning blazes
a trail for its chemical implementation. Chemistry will allow
the imitation of the hierarchical fuzziness and information
encoding of the HNS through a bottom-up approach. In the
first part of this series of two papers (Gentili and Stano,
2023b), it has already been mentioned that single fuzzy sets
can be implemented at the molecular level through those
compounds that exist as ensembles of conformers (conformers

are molecules that differ just in the 3D arrangement of their
constitutive atoms). Any conformational collection has context-
dependent features: the conformers’ identity and relative
abundance (Gentili and Perez-Mercader, 2022). Mixing properly
chosen molecular fuzzy sets enlarge the power of information
encoding.

Suppose the intermingled molecular fuzzy sets are sensitive
to the same physicochemical variables. In that case, they can
carry out the granulation and graduation of the variables, like
the three retinals (the “Blue,” “Green,” and “Red” ones) shown
in Figure 2A. The mimicry of human colour vision at the level
of the retina, implemented through mixtures of photochromic
compounds, which absorb different portions of the UV and
originate specific absorption bands in the visible region, has allowed
extending human vision to the ultraviolet (Gentili et al., 2016).
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TABLE 1 Lists of the problems that can be faced by exploiting solutions that emerge from CAI.

CAI Solutions Problems domain

Molecular logic gates Probes of the microscopic world

Molecular machines Effector Modules of Chemical Robots

Chemical robots
Auxiliary elements of the immune system: protect and cure humans. Medical Doctor in a cell: diagnosis and therapy

Suppliers of energy, food, and protection of the environment

Artificial neural networks Adaptive computation: pattern recognition, content addressable memory, control systems, medical diagnosis

Oscillatory neural networks Recognition of variable patterns; beyond Moore’s law computing: facing NP-problems

DNA-based ANNs NP-problems and recognition of variable patterns

Fuzzy molecules and macromolecules Chemical words for a molecular language expressing partial truths and context-dependent decisions

Chemical fuzzy neural networks Modelling and predicting non-linear causal events and recognizing variable patterns

IoBNT
Bayesian inference; diagnosis and therapies for human health; control and cleaning in natural ecosystems or urban areas

Energy-efficient computing

When the molecular fuzzy sets, which are mixed in the same
solution, participate in different chemical reactions and give rise to a
chemical web because they share reagents and products, they allow
the implementation of chemical fuzzy neural networks. Suppose
these webs are recurrent because they include feedback actions. In
that case, they become the chemical counterparts of the neuro-
fuzzy algorithms that are good at modelling non-linear causal
relationships, predicting aperiodic time series, and recognising
variable patterns (Gentili and Stano, 2022; Braccini et al.,
2023). The feedback actions that can alter the strength of the
reciprocal connections confer learning abilities to the chemical
network.

Higher cognitive functions can be achieved by hierarchically
increasing the chemical fuzzy neural networks’ complexity. In
synthetic cells, distinct modules playing different functions can
be assembled through their compartmentalization, likewise in
living cells (Gentili and Stano, 2023a). One step further towards
the hierarchical implementation of chemical artificial intelligence
can be taken by designing networks of synthetic cells. Their
performances will depend on their network’s architecture, how
the artificial cellular nodes communicate, and the adaptability
of the reciprocal links. When the edges are strong enough, a
sort of swarm or collective intelligence (Couzin, 2007; Watson
and Levin, 2023) exhibiting Bayesian inference might emerge.
Such powerful webs of synthetic cells might also establish strong
connections with living cells and originate the so-called Internet
of Bio-Nano Things (IoBNTs; Stano et al., 2023). The hybrid and
collective intelligence of the IoBNTs promises to have a plethora
of applications (Akyildiz, et al., 2015; Kuscu and Unluturk, 2021),
such as diagnosis and therapies for human health and control and
cleaning in natural ecosystems or urban areas. In the IoBNTs,
even two- (Kagan et al., 2022) or three-dimensional cultures of
human brain cells (brain organoids; Smirnova et al., 2023) might
be involved. Brain organoids can more easily recapitulate the
histoarchitecture and functionality of the fuzzy cortical columns.
Therefore, it is reasonable to envisage that such IoBNTs will
approach the power of human intelligence more closely to process

complex information based on uncertain and context-dependent
data, with the extraordinary energetic efficiency of the human brain
(Herculano-Houzel, 2012).

4 Conclusive remarks

The potentialities of CAI presented in this article, and the
previous one (Gentili and Stano, 2023b) are summarized in Table 1.
Moving from Molecular to Supramolecular and finally to Systems
Chemistry, the complexity of the problems domain that can be faced
apparently increases. Although Chemical AI and robotics are still in
their infancy, undoubtedly, it is worth pursuing their development.
Among the most impressive achievements of traditional AI and
robotics are those pushing robots where humans cannot arrive:
the exploration of the marine abysses and the colonization of
other planets. Chemical AI and robots can help humans to explore
another space poorly investigated so far, i.e., the molecular world.
As the same Kurzweil (2014) proclaimed, the “colonization” of
the molecular world “will provide tools to effectively combat
poverty, clean up the environment, overcome diseases, and extend
human longevity.” Massively distributed intelligent chemical
robots will greatly expand our memories and sensory and
computational abilities. The authors hope these perspectives on
Chemical AI and robotics (parts I and II) will spark a productive
interdisciplinary collaboration among chemists, biotechnologists,
physicists, computer scientists, engineers, neuroscientists, cognitive
scientists, philosophers, and biologists. The development of
inanimate intelligent chemical systems through a bottom-up
approach will have not only remarkable technological repercussions
on our societies but will probably unveil that outstanding event
that occurred about 4.5 billion years ago, and that was the
appearance of life on Earth: a sort of phase transition (Solé et al.,
1996; Perez-Mercader, 2004) from an inanimate world devoid of
agents to the appearance of the first chemical systems capable of
exploiting matter and energy to “handle” information and pursue
goals.
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