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A B S T R A C T

Correlation-based hierarchical clustering methods for time series typically are based on a suit-
able dissimilarity matrix derived from pairwise measures of association. Here, this dissimilarity
is modified in order to take into account the presence of spatial constraints. This modification
exploits the geometric structure of the space of correlation matrices, i.e. their Riemannian
manifold. Specifically, the temporal correlation matrix (based on van der Waerden coefficient)
is aggregated to the spatial correlation matrix (obtained from a suitable Matérn correlation
function) via a geodesic in the Riemannian manifold. Our approach is presented and discussed
using simulated and real data, highlighting its main advantages and computational aspects.

1. Introduction

The study of stochastic dependence among random variables is one of the first fundamental steps when dealing with a data
analysis problem, especially in high dimensions. As is well known, starting with the Pearson’s linear correlation coefficient, various
alternatives have been provided that enable the detection of non-linear dependencies among variables. In particular, when these
dependence measures are assumed to be invariant under monotone transformation of the involved variables, the concept of copula
naturally comes into play (Joe, 2015; Nelsen, 2006).

When many variables are considered, a preliminary way to summarize the information about the (pairwise) association is
provided by clustering algorithms (see, e.g., Maharaj et al. (2019)), that are able to identify clusters of variables such that within-
cluster dependence is larger than between-cluster dependence (see Di Lascio et al. (2017), Fuchs et al. (2021) and references therein).
By highlighting possibly nonlinear interdependencies among variables, such algorithms can be exploited as a first explanatory
analysis, for example, in the construction of multivariate stochastic models (see, e.g., Czado et al. (2012), Dißmann et al. (2013),
Côté and Genest (2015), Górecki et al. (2017, 2021), Palacios-Rodriguez et al. (2023)). Moreover, clustering procedures have
been used to detect comovements of time series. In fact, starting with seminal works on correlation-based hierarchies of financial
returns (Mantegna, 1999; Marti et al., 2021b), such procedures have been provided helpful information for managing financial
risks, especially for portfolio diversification, when the tail association is of interest (see, e.g., De Luca and Zuccolotto (2011, 2021),
Durante et al. (2015)).

According to Fouedjio (2020), when general-purpose clustering methods are used in the case of geo-referenced data, the resulting
clusters can be spatially scattered over the geographic domain, even if spatial coordinates are considered as attributes. Such a
situation may be undesirable for many applications.

In the literature, the spatial information is mainly considered in two ways. One approach groups individuals that are both
similar and contiguous, often by applying a contiguity constraint to some other grouping strategy (see. e.g., Murtagh (1985)
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and also Guénard and Legendre (2022) for hierarchical algorithms). An alternative viewpoint, also known as soft contiguity or
soft constraints, applies some form of spatial weighting function to the separating distances/dissimilarities. In this case, instead
of enforcing the constraint strictly, a penalty term is often added to control the strength of the constraint. This allows for more
flexibility in the clustering process and can result in more reasonable solutions when the constraints are difficult to satisfy exactly
(see, e.g., Chavent et al. (2018), Distefano et al. (2020), D’Urso and Vitale (2020), D’Urso et al. (2023), Fouedjio (2016), Oliver
and Webster (1989), Romary et al. (2015)). In a copula-based framework, this latter approach has been adopted for time series
in Disegna et al. (2017) (see also Palacios-Rodriguez et al. (2023)), for extremal observations in Benevento et al. (2023), Zuccolotto
et al. (2023), and for panel data in Di Lascio et al. (2021).

Following these lines of investigations, the goal of this paper is to propose a hierarchical clustering method for time series
hat accounts for capturing the temporal dependence with a (soft) spatial constraints. To this end, we glue together two objects: a
orrelation matrix whose entries correspond to the pairwise association between time series (measured with the van der Waerden
oefficient); a correlation matrix that reflects the spatial information. This aggregation is tuned by means of a suitable transformation
hat preserves the unique mathematical structure of correlation matrices, known as the Riemannian manifold, as recently considered
n David and Gu (2019, 2022), Thanwerdas and Pennec (2021). In fact, mathematical operations on the correlation matrices may not
ecessarily be coherent (i.e., the structure of the correlation matrix may not be preserved). Thus, a (spatially-driven) modification
f a correlation matrix may destroy its structure that contains more information as a whole than the sum of independent pairwise
orrelation coefficients (You and Park, 2022).

This contribution is organized as follows. Section 2 presents the proposed algorithm for correlation-based hierarchical clustering
ith spatial constraints (Spatial-CHC). As a matter of fact, the algorithm can be also used when no spatial constraint is present. Thus,
ection 3.1 presents a simulation study to compare its performance with existing linkage-based clustering methods already presented
n Fuchs et al. (2021). An illustration of the Spatial-CHC is instead presented in Section 3.2. In Section 4 the methodology is applied
o an empirical analysis of the extreme temperature trends in Apulia region (Italy), combined with geographical information, i.e., the
ctual locations of the weather stations. Section 5 concludes.

. The methodology

We are interested in clustering a set of time series, represented by a (𝑇 × 𝑛)-data matrix, where 𝑛 is the number of units and 𝑇
s the time period length. The data matrix 𝐗 is hence represented in the form

𝐗 =
⎡

⎢

⎢

⎣

𝑥11 ⋯ 𝑥1𝑛
⋯ ⋯ ⋯
𝑥𝑇 1 ⋯ 𝑥𝑇 𝑛

⎤

⎥

⎥

⎦

here 𝑥𝑡𝑖 is a generic element that represents the value of the 𝑖th time series (𝑖 = 1,… , 𝑛) at the 𝑡th period (𝑡 = 1,… , 𝑇 ). We set
𝑖 = (𝑥1𝑖,… , 𝑥𝑇 𝑖)⊤.

For 𝑖 = 1,… , 𝑛 the 𝑖th time series is associated with a 𝑝-dimensional vector 𝐬𝑖 of features that contains additional information
n the phenomenon under consideration. In our setting, we will refer to 𝐬𝑖 as the spatial information, since it will typically contain
he information about the geographic coordinates of the location at which the 𝑖th time series is observed. However, this vector may
ontain also other (deterministic) variables. For instance, for some financial stock 𝑖, 𝐱𝑖 may represent the log-returns observed at
imes 1,… , 𝑇 , while 𝐬𝑖 may collect information about the financial sector, balance sheet, etc.

Given the input matrices 𝐗 (temporal matrix) and (𝐬⊤1 ,… , 𝐬⊤𝑛 ) (spatial matrix), as well as a weighting parameter 𝛼 ∈ [0, 1], the
Spatial-CHC algorithm will provide as output a hierarchical representation (Contreras and Murtagh, 2015) of the original time series.

The Spatial-CHC method is grounded on two main ideas. First, temporal and spatial information should be represented in terms
of correlation matrices. In fact, according to Fuchs et al. (2021), the dissimilarity between two variables can be obtained by some
transformation of association measures that assign the maximal value to the comonotonic case. Second, merging temporal and spatial
information should reflect the intrinsic geometry of the space of such correlation matrices. In this respect, the geometric structure of
the set of correlation matrices will be considered (David and Gu, 2019, 2022). The whole procedure will mainly require five steps,
as illustrated in detail below.

2.1. Data preprocessing

Since we are interested in the rank-invariant dependence among the time series, we should take into account that, in order to
provide fully valid results, 𝐱1,… , 𝐱𝑛 should be regarded as i.i.d. sample from a joint continuous distribution function 𝐻 . However,
the iid assumption can fails in various cases.

In such a case, as common in this framework (see, e.g., Durante et al. (2015)), we can consider that each matrix 𝐗 is a realization
of the stochastic volatility model (Rémillard, 2017)

𝐗𝑡 = 𝜇𝜇𝜇𝑡(𝜃𝜃𝜃) + 𝜎𝜎𝜎𝑡(𝜃𝜃𝜃)𝜀𝜀𝜀𝑡, (1)

where the innovations 𝜀𝜀𝜀𝑡 are iid with marginal mean equal to 0 and marginal unit variance, with continuous joint distribution
function 𝐻 . Moreover, 𝜇𝜇𝜇 and 𝜎𝜎𝜎 are the (time-varying) conditional mean and standard deviation, respectively, and they are both
2
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𝑡−1-measurable and independent of 𝜀𝜀𝜀𝑡. Here, 𝑡−1 contains the information from the past and possibly information from exogenous
variables as well. Since the distribution function 𝐻 is continuous, there exists a unique copula 𝐶 so that for all

𝐻(𝑥1,… , 𝑥𝑛) = 𝐶(𝐹1(𝑥1),… , 𝐹𝑑 (𝑥𝑑 )),

where 𝐹1,… , 𝐹𝑛 are the distribution functions of the innovations. As is well-known, the copula 𝐶 contains full information about
the monotone association between the involved variables (see, e.g., Durante and Sempi (2016)).

Now, given an estimator 𝜃𝜃𝜃 of 𝜃𝜃𝜃, the parameters’ vector of the stochastic model (1), we can compute the residuals

𝐞𝑡 = (𝐱𝑡 − 𝜇𝜇𝜇𝑡(𝜃𝜃𝜃))∕𝜎𝜎𝜎𝑡(𝜃𝜃𝜃).

The normalized ranks of the residuals are called pseudo-observations and can be used to calculate the copula 𝐶 and its related
functionals (like measures of association). In fact, even if the stochastic volatility model is appropriate, the residuals are not i.i.d.
However, the empirical copula process based on the residuals has the same asymptotic behaviour as the empirical copula process for
i.i.d. observations as shown in Rémillard (2017). Thus, one can apply the rank-based copula inference procedures on the estimated
residuals as if they were the innovations.

In applications, frequent choices for the marginal models are ARMA models for the conditional means, and GARCH models for
the conditional variances. The name copula-GARCH model is often used to refer to such types of models (Chen and Fan, 2006;
Jondeau and Rockinger, 2006).

2.2. Extract the temporal dependence

Once the time series have been filtered via suitable marginal models, we have to extract the information about their pairwise
dependence. Among various possible alternatives, here we focus on the van der Waerden correlation coefficient 𝜁 (see, e.g., Genest
and Verret (2005)), also known as normal score correlation or Gaussian rank correlation. We recall that such a coefficient is defined,
for any continuous random pair (𝑋, 𝑌 ) with copula 𝐶 and marginals 𝐹𝑋 and 𝐹𝑌 by

𝜁 (𝑋, 𝑌 ) = 𝜌𝑃 (𝛷−1(𝐹𝑋 (𝑋)), 𝛷−1(𝐹𝑌 (𝑌 ))),

where 𝜌𝑃 denotes the linear Pearson’s correlation, while 𝛷 denotes the standard Gaussian distribution (Koike and Hofert, 2020).
Interestingly, van der Waerden coefficient is also a concordance measure, that can be expressed as an integral of a function with
respect to a copula measure (Genest and Verret, 2005).

Our main interest in this coefficient stands in the following fact. Given a random vector of dimension 𝑛 ≥ 2, the (𝑛×𝑛) matrix that
collects the (pairwise) normal score correlations is semidefinite positive, since 𝜁 is a Pearson’s correlation. Moreover, the converse
implication is also true in the following sense: for any symmetric, positive semi-definite matrix 𝐌 in [−1, 1]𝑛×𝑛 with diagonal elements
one, there exists a 𝑛-dimensional random vector whose normal score correlation matrix coincides with 𝐌. In other words, the set
of van der Waerden’s matrices coincides with the set of all correlation matrices (Hofert and Koike, 2019, Proposition 5).

In the following, we denote by Corr(n) the class of all correlation matrices, i.e. symmetric, positive semi-definite matrices in
[−1, 1]𝑛×𝑛 with diagonal elements one. Clearly, Corr(n) ⊂ Sym+(𝑛), the class of symmetric, positive semi-definite matrices.

Remark. Notice that Corr(n) does not coincides with the set of all correlation matrices derived from other popular measures of
concordance like Kendall’s 𝜏 and Blomqvist’s 𝛽 (Hofert and Koike, 2019). Moreover, Corr(n) coincides with the set of all Spearman’s
rank correlation matrices only when 𝑛 ≤ 9, but not when 𝑛 ≥ 12, while the case where 𝑛 ∈ {10, 11} remains to be settled (Devroye
and Letac, 2015; McNeil et al., 2022; Wang et al., 2019).

Thus, given the pseudo-observations extracted from the original time series, we denote by 𝐌𝑇 the (𝑛× 𝑛) matrix that collects all
the estimated pairwise values of van der Waerden coefficient among the time series, i.e.

𝐌𝑇 =
⎡

⎢

⎢

⎣

𝜁11 ⋯ 𝜁1𝑛
⋯ ⋯ ⋯
𝜁𝑛1 ⋯ 𝜁𝑛𝑛

⎤

⎥

⎥

⎦

(2)

where 𝜁𝑖𝑗 denotes the estimated van der Waerden’s coefficient between the residuals 𝐞𝑖 and 𝐞𝑗 extracted from the 𝑖th and 𝑗th time
series. Specifically,

𝜁𝑖𝑗 =
1
𝑛

𝑇
∑

𝑘=1
𝛷−1

(

𝑅𝑘𝑖
𝑛 + 1

)

𝛷−1
( 𝑅𝑘𝑗

𝑛 + 1

)

, (3)

here 𝛷 is the standard Gaussian distribution function, and 𝑅𝑘𝑖 is the rank of 𝑒𝑘𝑖 among (𝑒1𝑖,… , 𝑒𝑇 𝑖). For more details, see Koike
and Hofert (2020).

As written above, 𝐌𝑇 ∈ Corr(n) and represents the dependence similarity. In particular, (𝐌𝑇 )𝑖𝑗 = 1 whenever the 𝑖th time series
3
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2.3. Extract the spatial dependence

Analogously to the temporal case, we would like to construct a matrix 𝐌𝑆 ∈ Corr(n) that interprets the spatial information given
y 𝐬1,… , 𝐬𝑛. With a little abuse of language, we will refer to such a matrix as the spatial dependence matrix.

To this end, we fix a suitable distance 𝑑 between the features associated to each time series. In most cases, the Euclidean distance
ill be used when the features are geographical coordinates.

A correlation matrix 𝐌𝑆 can be hence obtained by transforming the distance among points to correlations so that the correlation
etween 𝐬𝑖 and 𝐬𝑗 decreases as their distance 𝑑(𝐬𝑖, 𝐬𝑗 ) increases. In this context, a popular choice is to use the Matérn family of
orrelation (Diggle and Ribeiro, 2007; Stein, 1999; Abramowitz and Stegun, 1965). In such a case, the correlation function depends
nly on the distance 𝑢 between the points and it is given by

𝜌Matern(𝑢) =
21−𝜈
𝛤 (𝜈)

(

𝑢
𝜙

)𝜈
𝐾𝜈

(

𝑢
𝜙

)

, (4)

where 𝜙 is a positive length-scale parameter, 𝛤 (⋅) is the standard Gamma function and 𝐾𝜈 (⋅) is a modified Bessel function (Abramowitz
and Stegun, 1965). The positive parameter 𝜈 effectively controls the shape of the function.

The correlation matrix interpreting the spatial information is hence the 𝑛 × 𝑛 matrix

𝐌𝑆 =
⎡

⎢

⎢

⎣

𝜌11 ⋯ 𝜌1𝑛
⋯ ⋯ ⋯
𝜌𝑛1 ⋯ 𝜌𝑛𝑛

⎤

⎥

⎥

⎦

(5)

where 𝜌𝑖𝑗 = 𝜌Matern(𝑑(𝐬𝑖, 𝐬𝑗 )) with 𝑖, 𝑗 ∈ {1,… , 𝑛}. Since the matrix 𝐌𝑆 is by definition positive semi-definite and it has all the
elements in the diagonal equal to one, we have 𝐌𝑆 ∈ Corr(n).

Clearly, the Matérn correlation function can generate very different correlation structure according to the chosen parameters. In
the present context, we suggest to calibrate its parameters so that a given practical range is fixed, which we define as the distance
𝑢0 at which the correlation is 0.05, i.e. 𝜌Matern(𝑢0) = 0.05 (Diggle and Ribeiro, 2007).

In the following, we will mainly consider two main cases: (a) the exponential case 𝜌Matern(𝑢) = exp(−𝑢∕𝜙); (b) the Gaussian case
𝜌Matern(𝑢) = exp(−(𝑢∕𝜙)2). In the simulation and in the case study, the effects of these different choices are discussed.

2.4. Merging temporal and spatial dependence

Now, suppose that both the temporal matrix 𝐌𝑇 and the spatial matrix 𝐌𝑆 are obtained. As known, both matrices belong to
Corr(n). Moreover, hereinafter, we assume that they have full rank. Our aim is to construct a matrix 𝐌𝛼 as a function that depends
on 𝐌𝑇 , 𝐌𝑆 and a given 𝛼 ∈ [0, 1], that, roughly speaking, can interpolate the two input matrices. In fact, notice that the linear
combination (1 − 𝛼)𝐌𝑇 + 𝛼𝐌𝑆 may not be a convenient choice, as showed for instance in Marti et al. (2021b). To this end, two
genuine questions should be answered:

(a) how far is 𝐌𝑇 from 𝐌𝑆?
(b) is there any optimal trajectory that pushes 𝐌𝑇 forward to 𝐌𝑆?

To answer both questions we rely on the geometric structure of the space of positive definite matrices (see, e.g., Bhatia (2009))
and of related subspace of correlation matrices (David and Gu, 2019; Thanwerdas and Pennec, 2021, 2022). As is known (see,
e.g., Bhatia (2009, section 6)), the space Sym+(𝑛) is a manifold with a natural Riemannian structure. It can be equipped with the
distance

𝑑Sym+ (𝐀,𝐁) = ‖Log
(

𝐀−1∕2𝐁𝐀−1∕2)
‖𝐹 , (6)

where ‖ ⋅ ‖𝐹 represents the Frobenius norm. Moreover, there exists a unique geodesic joining two matrices 𝐀 and 𝐁 (Bhatia, 2009,
Theorem 6.1.6) and it is given by

𝛾𝐀,𝐁(𝑡) = 𝐀1∕2 Exp
(

𝑡Log
(

𝐀−1∕2𝐁𝐀−1∕2))𝐀1∕2, 𝑡 ∈ [0, 1]. (7)

Furthermore,

𝑑Sym+ (𝐀, 𝛾𝐀,𝐁(𝑡)) = 𝑡 ⋅ 𝑑Sym+ (𝐀,𝐁) (8)

for every 𝑡 ∈ [0, 1] (Bhatia, 2009, eq. (6.12)).
The middle point of the geodesic 𝛾𝐀,𝐁(0.5) ∈ Sym+(𝑛) corresponds to the (Riemannian) mean of the two matrices (see Moakher

(2005, Proposition 3.5) and also (Kubo and Ando, 1980)). In general, it does not coincide with (𝐀+𝐁)∕2. Moreover, it also satisfies

arg min
𝐂∈Sym+(𝑛)

(

𝑑2Sym+ (𝐂,𝐀) + 𝑑2Sym+ (𝐂,𝐁)
)

. (9)

Now, mathematical operations of the correlation matrices under the Sym+(𝑛) geometry may not necessarily be coherent (i.e., the
structure of the correlation matrix may not be preserved), necessitating a post-hoc normalization (see, e.g., Marti et al. (2021a)).
To this end, we consider the space Diag (𝑛) of (𝑛 × 𝑛) diagonal matrices with positive entries. We denote by 𝜋 ∶ Sym+(𝑛) → Corr(n)
4
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the function given by 𝜋(𝐀) = 𝐃−1∕2𝐀𝐃−1∕2, where 𝐃 is the diagonal matrix whose entries are the diagonal entries of 𝐀. According
to David and Gu (2022) (see also (Huckemann et al., 2010)), we can define the following distance on Corr(n):

𝑑Corr(𝐀,𝐁) = inf
𝐃∈Diag+(𝑛)

𝑑Sym+ (𝐀,𝐃𝐁𝐃). (10)

Notice that 𝑑Corr is a distance on Corr(n), thus 𝑑Corr(𝐀,𝐁) = 𝑑Corr(𝐁,𝐀) even if different 𝐃 satisfy Eq. (10). The geodesic joining 𝐀
and 𝐁 can be taken as the projection of the geodesic connecting 𝐀 and 𝐁̃, which is the unique element in 𝜋−1(𝐁) that has minimal
𝑑Sym+ -distance from 𝐀. This can be written as

𝛾Corr
𝐀,𝐁 (𝑡) = 𝜋

(

𝐀1∕2 Exp(𝑡Log(𝐀−1∕2𝐃∗𝐁𝐃∗𝐀−1∕2))𝐀1∕2) (11)

where

𝐃∗ = arg inf
𝐃∈Diag+(𝑛)

𝑑Sym+ (𝐀,𝐃𝐁𝐃). (12)

A closed-form expression of the matrix 𝐃∗ is difficult to obtain Thanwerdas (2022). However, some numerical procedures based
on gradient descent method have been suggested in David and Gu (2019) (see also (You and Park, 2022)). See Algorithm 1.

Thus, for any fixed 𝛼 ∈ [0, 1] a way to merge temporal and spatial dependence is obtained by the matrix

𝐌𝛼 = 𝛾Corr
𝐌𝑇 ,𝐌𝑆

(𝛼), (13)

which belongs to the geodesic joining the two matrices. Clearly, 𝐌0 = 𝐌𝑇 and 𝐌1 = 𝐌𝑆 .

Remark. Numerical computations in Marti et al. (2021b) seems to indicate that 𝐌𝛼 coincides with the solution of the minimization
problem

𝐌𝛼 = arg min
𝐂∈Corr(n)

(

(1 − 𝛼) ⋅ 𝑑2Corr(𝐂,𝐀) + 𝛼 ⋅ 𝑑2Corr(𝐂,𝐁)
)

, (14)

i.e. it is the weighted (Riemannian) mean of 𝐀 and 𝐁. This conjecture seems to be confirmed by the procedure described in Riquelme
and Ortiz (2023, Algorithm 3) (see also (Riquelme, 2002)). However, we have been not able to provide a formal proof of this
statement.

The main steps for calculating the matrix 𝐌𝛼 are summarized below in Algorithm 1 (see also the supplementary material in You
and Park (2022)). The convergence of the computation of 𝐃∗ follows from the convergence of the gradient descent algorithm as
shown in David (2019, chapter 3).

Algorithm 1 Calculation of 𝐌𝛼 .

input: the temporal matrix 𝐌𝑇 , the spatial matrix 𝐌𝑆 , the mixing parameter 𝛼 ∈ [0, 1]

calculate 𝐃∗ ≈ 𝐃∗ in (12)
initialize 𝐃(0) = 𝐼𝑛, a stepsize 𝜏 > 0, stop_tol = 𝜖
while ‖𝐃(𝑡+1) − 𝐃(𝑡)

‖𝐹 ≤ 𝜖 do:
𝐁(𝑡) ← 𝐼𝑛 ∙ 𝑆𝑦𝑚𝑚[𝐃(𝑡)𝐿𝑜𝑔(𝐌𝑇𝐃(𝑡)𝐌−1

𝑆 𝐃(𝑡))]
𝐃(𝑡+1) ← 𝐃(𝑡)𝐸𝑥𝑝(−2𝜏(𝐃(𝑡))−1𝐁(𝑡))
where ∙ is the Hadamard product, and 𝑆𝑦𝑚𝑚 extracts symmetric component of a matrix

end while

calculate 𝐌𝛼 in (13)
𝛤𝛼 ← 𝐌1∕2

𝑇 Exp(𝛼 Log(𝐌−1∕2
𝑇 𝐃∗𝐌𝑆𝐃∗𝐌−1∕2

𝑇 ))𝐌1∕2
𝑇

initialize 𝐃𝛼 = 𝟎𝑛×𝑛
𝑑𝑖𝑎𝑔(𝐃𝛼) ← 𝑑𝑖𝑎𝑔(𝛤𝛼)
𝐌𝛼 ← 𝐃−1∕2

𝛼 𝛤𝛼𝐃
−1∕2
𝛼

return: 𝐌𝛼

2.5. Apply the hierarchical clustering algorithm

Given 𝛼 ∈ [0, 1] and given the correlation matrix 𝐌𝛼 , we have to transform 𝐌𝛼 into a dissimilarity matrix 𝛥𝛥𝛥𝛼 = (𝛿𝛼𝑖𝑗 ), which can
epresent the input of various (agglomerative) hierarchical clustering algorithms. As is known, 𝛥𝛥𝛥𝛼 must satisfy:

(a) 𝛿𝛼𝑖𝑗 ≥ 0 for every 𝑖, 𝑗;
(b) 𝛿𝛼𝑖𝑖 = 0 for every 𝑖;

𝛼 𝛼
5

(c) 𝛿𝑖𝑗 = 𝛿𝑗𝑖 for every 𝑖, 𝑗.
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Thus, a natural choice is to consider 𝛥𝛥𝛥𝛼 = 1 −𝐌𝛼 .

Remark. In the literature, various alternatives have been provided to transform a correlation matrix 𝐌 by applying to its entries
a strictly decreasing 𝑓 ∶ [−1, 1] → [0,+∞[ with 𝑓 (1) = 0. For instance, 𝑓 (𝑥) =

√

1 − 𝑥2 and 𝑓 (𝑥) =
√

0.5(1 − 𝑥) (Van Dongen and
Enright, 2012). However, such modifications are mainly used when the triangle inequality must be satisfied, i.e. a distance rather
than a dissimilarity is required.

The matrix 𝛥𝛥𝛥𝛼 can be hence used to perform any hierarchical clustering algorithm that requires as input a dissimilarity matrix.
The dissimilarity 𝛥𝛥𝛥𝛼 depends on the chosen hyper-parameter 𝛼. Thus, if 𝛼 approaches 0, then the algorithm output will result in

a partition that is closer to the one that could be obtained with the temporal correlation only. Conversely, choosing an 𝛼 closer to
1 will lead to a partition more similar to the one related to the spatial information.

As a main feature of the Spatial-CHC algorithm, the parameter 𝛼 describes the relative influence between the spatial and the
temporal dependence in a convenient Riemannian metric. So, it may provide a way to directly assign the weight of the spatial effects
on the procedure (provided it is available to the decision maker). Thus, the value 𝛼 = 0.5 can be adopted as the way to summarize
spatial and temporal dependence when no preference among the two criteria is expressed.

In general, the problem of selecting a suitable value for 𝛼 ∈ [0, 1] has been crucial in analogous studies. In Romary et al. (2015),
it is heuristically recommended to put 5-30% on the geographical coordinates and the remainder to the other attributes. However, in
many cases, the algorithm is run for different values of 𝛼 (and a fixed number 𝐾 of clusters) and a choice is made according to some
external criteria. In Chavent et al. (2018), for instance, the value 𝛼 is selected so that it increases the geographical homogeneity of

partition in 𝐾 clusters without adversely affecting the (non-spatial) feature homogeneity. To this end, a concept of pseudo within-
luster inertias is introduced. In Le (2021), 𝛼 is determined so that it maximizes the spatial auto-correlation among post-cluster

units. This approach allows the cluster formation to be largely based on the temporal dependence, while the spatial information
only fine-tunes the final cluster partition. Similar criteria are adopted in the present context.

Specifically, inspired by Zuccolotto et al. (2023), in order to select a suitable 𝛼 ∈ [0, 1] we proceed as follows.

(1) We define a discrete set of 𝛼’s values in [0, 1] and a maximum number of clusters 𝐾max;
(2) For each 𝛼

(a) we perform a hierarchical cluster algorithm from the dissimilarity 𝛥𝛥𝛥𝛼 = 1 −𝐌𝛼 ;
(b) we choose the number of clusters 𝐾𝛼 that maximizes a given internal validation index (i.e. Dunn Index) over different

values of 𝐾 ∈ {2,… , 𝐾max};
(c) given the optimal 𝐾𝛼 , we evaluate the cluster composition by the same internal validation index but calculated with

reference to the dissimilarity matrices 1 −𝐌𝑇 and/or 1 −𝐌𝑆 ;

(3) For the given 𝛼 values, we plot the internal validation indices calculated with respect to 𝐌𝑇 and/or 𝐌𝑆 . Finally, we choose
the optimal value 𝛼 that approximately preserves the internal validity index with respect to the temporal dissimilarity by
giving, at the same time, an improvement on the performances with respect to the spatial component.

n illustration of the method is given in Sections 4 and 3.2.

. A simulation study

Here, we present a simulation study to show the performance of the proposed dissimilarity matrix in two cases: (a) when 𝛼 = 0,
.e. the spatial information is not relevant; (b) when 𝛼 belongs in [0, 1].

3.1. The purely temporal case

In Fuchs et al. (2021) the performance of hierarchical clustering methods has been studied, when pairwise dissimilarity matrices
are based on various measures of association (like Kendall’s tau, Spearman’s rho and Blomqvist’s beta), and the classical linkage
functions are considered. Here, we would like to compare these methods with the hierarchical clustering method based on van der
Waerden’s coefficient (without any spatial constraint), which has not been considered in the previous studies.

Thus, we consider the following simulation setup. A random vector 𝐗 of dimension 𝑛 ∈ {60, 120} is constructed in the following
way:

• it is formed by 𝑘 ∈ {3, 6, 12} independent subvectors 𝐗𝑘 of an equal and fixed size;
• each 𝐗𝑘 is distributed according to a copula generated from two different copula models, namely Clayton and Gumbel (for

the definition of these families and their simulation, see, e.g., Mai and Scherer (2017)), with pairwise Kendall’s tau equal to
𝜏.

or 𝐵 = 500 replications, 𝑁 ∈ {50, 100} independent realizations from 𝐗 are simulated with 𝜏 ∈ {0.1, 0.2, 0.3}. Hence, for each
imulated scenario:

• we apply a hierarchical clustering algorithm with linkage function equal to average or maximum (complete linkage) and
pairwise dissimilarity derived from Blomqvist’s 𝛽, Spearman’s footrule 𝜙, Kendall’s 𝜏, Spearman’s 𝜌 and van der Waerden 𝜁 ;
6
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Table 1
A comparison of the mean and standard deviation of the ARI obtained after 500 repetitions of the method. The data are simulated from
an 𝑛 = 60 dimensional random vector with 𝐾 independent groups having a Clayton copula with Kendall’s 𝜏 equal to 0.1, 0.2, and 0.3
within each group and number of clusters equal to 𝐾 = 3, 𝐾 = 6, and 𝐾 = 12, respectively. Each column represents the ARI with respect
to the true partition by varying (𝑖) the pairwise dissimilarity measure among Blomqvist’s 𝛽, Spearmans’ 𝜙, Kendall’s 𝜏, Spearman’s 𝜌,
and van der Waerden’s 𝜁 and (𝑖𝑖) linkage method among the average, and complete (maximum) one. Sample size equal to 100 points.

𝑛 = 60, 𝑁 = 100, Clayton model

𝜏 = 0.1; 𝐾 = 3 𝜏 = 0.2; 𝐾 = 6 𝜏 = 0.3; 𝐾 = 12

Mean 𝜎 Mean 𝜎 Mean 𝜎

𝛽 average 0.51 0.18 0.85 0.10 0.96 0.06
𝛽 complete 0.30 0.17 0.68 0.14 0.90 0.09

𝜙 average 0.79 0.15 0.98 0.03 1.00 0.00
𝜙 complete 0.62 0.21 0.96 0.06 1.00 0.01

𝜏 average 0.80 0.14 0.99 0.03 1.00 0.00
𝜏 complete 0.64 0.21 0.96 0.06 1.00 0.00

𝜌 average 0.80 0.14 0.98 0.03 1.00 0.00
𝜌 complete 0.64 0.20 0.97 0.05 1.00 0.01

𝜁 average 0.83 0.13 0.99 0.02 1.00 0.00
𝜁 complete 0.70 0.20 0.98 0.05 1.00 0.00

• we derive the corresponding partition in 𝐾 clusters by cutting the dendrogram at a suitable height;
• we calculate the Adjusted Rand Index (Hubert and Arabie, 1985) (ARI, hereafter) to measure the agreement between the

obtained partition and the true one. We remind that a larger Adjusted Rand Index means a higher agreement between two
partitions and the maximum value of the index is 1.

Notice that, since the choice of the copula family seems to be irrelevant in the previous simulation studies (Fuchs et al., 2021), we
do not extend the study to other families. Analogously, we do not consider the minimum linkage (single method), since it generally
shows poor performance.

The distribution of ARI for each simulated scenario is shown in the figures in Appendix. In Table 1 we summarize the values of
the mean and the standard deviation for an excerpt of the simulated scenarios.

From the simulation study, the following interpretation can be done:

• As one could have expected, the lower is the degree of dependence among the variables of a group, the harder is for the
hierarchical clustering algorithm to identify the true partition. Moreover, the larger is the sample size, the better are the
results for a given dependence degree. Thus, the use of van der Waerden coefficient is in agreement with similar methods.

• However, the method based on the 𝜁 coefficient seems to perform similarly/slightly better than the methods based on Kendall’s
𝜏 and Spearman’s 𝜌.

• Similarly to other studies (Fuchs et al., 2021), the average linkage method appears to be more satisfactory than the complete
one.

• At the increase of number of variables to cluster, we do not observe any substantial changes for 𝜏 = 0.1, while the interquartile
range seems to be lower for higher number of variables for 𝜏 ∈ {0.2, 0.3}, which represents a lower spread of data.

Overall, the finite-sample performance of van der Waerden coefficients for correlation-based clustering is in agreement
with/slightly better than other popular rank-correlation coefficients. Moreover, as we have explained above, its application in
presence of spatial constraints has the advantage to be grounded on a consistent mathematical framework (related to the geometric
structure of the space of correlation matrices).

Remark. The simulation study has been developed by using the R packages (Hofert et al., 2022) and Asquith (2022) for the copula
simulations and estimation of the measures of association. For the general hierarchical clustering algorithms, we also use (Maechler
et al., 2022).

3.2. An illustration with spatial constraints with simulated data

The spatial clustering techniques illustrated in Section 2 could not be directly validated through simulation procedures, since the
final clustering solution, which represents the main task of the method, is determined on the ground of the method itself. However,
we could assess the impact on the temporal clustering of the clusters arising from distinct spatial information. This could be another
way to highlight how relevant the spatial information is in characterizing the clusters’ composition. To this end, we illustrate the
Spatial-CHC algorithm in the following simulated scenario.

Similarly to Section 3.1, we consider 𝑛 = 54 time series of length 𝑇 = 100. For simplicity, the time series are grouped in 𝐾 = 3
(equally sized) clusters and, specifically, they are obtained from three independent 18-dimensional Archimedean copulas of the
7

Clayton family with pairwise Kendall’s 𝜏 = 0.2 as one of the cases of Section 3.1 (the Gumbel case can be done analogously and
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Fig. 1. The plot shows the geographic sites where the time series have been collected. Each colour represents a different temporal cluster to which the related
time series belongs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

produces similar results). Moreover, we assume that each time series is associated with some geographic coordinates that can be
interpreted as the location of the sites where the observations have been collected.

Fig. 1 shows the geographic proximity of the observation sites, which can be separated into three regions. The colours represent
he true 3-group cluster composition induced by the temporal data generating model. As can be seen, the spatial proximity only

partially overlap with the temporal structure. For instance, 12 time series of the red temporal cluster are located in the south-west
region, while 6 time series belong to other geographic areas.

Temporal dependence From the observed time series, we calculate the temporal matrix 𝐌𝑇 as in Section 2.2. Fig. 2 shows the
dendrogram derived from the hierarchical clustering (average linkage) applied to the dissimilarity matrix 1 − 𝐌𝑇 . The
corresponding 3-group cluster composition is in agreement with the configuration in Fig. 1.

Spatial dependence By using the spatial information given by geographic coordinates, as in Section 2.3, we compute two different
Matérn correlation functions: (a) the exponential case with parameters 𝜙 = − 𝑢0

ln(𝜌Matern(𝑢0))
and 𝜈 = 0.5; (b) the Gaussian case

with parameters 𝜙 = 𝑢0
√

− ln(𝜌Matern(𝑢0))
and 𝜈 = +∞. In both cases, we empirically set 𝑢0 = 4 to have a common practical range.

Now, we want to observe how the cluster partition is modified when we gradually increase the influence of the spatial information
y replacing the dissimilarity matrix 1 −𝐌𝑇 (which coincides with 𝛥𝛥𝛥0) with the matrix 𝛥𝛥𝛥𝛼 = 1 −𝐌𝛼 , letting 𝛼 go from 0 to 1.

We start with the exponential case. For the sake of illustration, we consider 𝛼 = 0.5. First, in Fig. 3 we show how the matrix 𝛥𝛥𝛥0.5

moothly mixes the characteristics of 𝛥𝛥𝛥0 and 𝛥𝛥𝛥1. The dendrogram deriving from the hierarchical clustering (average linkage) with
issimilarity matrix 𝛥𝛥𝛥0.5 is shown in Fig. 4. As can be seen, it partially overlaps with the dendrogram in Fig. 2, while rearranging
he other variables also according to spatial constraints.

Now, we follow the procedure described in Section 2.5 to select a suitable 𝛼 ∈ [0, 1] based on an internal validity index. Here,
we use the Dunn Index, which is a scalar that formalizes the idea of a ratio between between-cluster separation and within-cluster
compactness for general dissimilarity input data and a fixed number of clusters (Dunn, 1974; Hennig et al., 2015). Specifically, for
a discrete set of 𝛼’s values in [0, 1] we choose the number of clusters 𝐾 by maximizing the Dunn Index over different values of
𝐾 ∈ {3,… , 10} with respect to the matrix 𝐌𝛼 . Then, we use the selected 𝐾𝛼 to compute the Dunn Index with respect to 𝐌𝑇 and

𝑆 . We show the results of the procedure in Fig. 5. The graph in Fig. 5 suggests that all the values of 𝛼 between 0 and 0.3 are
uitable choices because the temporal cluster compactness does not have a clear loss. Alternatively, for 𝛼 = 0.35 the temporal cluster

compactness is not at its minimum value yet, but it shows an improvement in the spatial compactness. Based on the observation of
0.15 0.35 0.5
8

the plot, we perform the hierarchical clustering with the dissimilarity matrices 𝛥 and 𝛥 , in addition to the one with 𝛥 .
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Fig. 2. Structure of the dendrogram representing the hierarchical clustering of the temporal dependencies.

Fig. 3. The left panel represents the temporal dissimilarities in the data set. The central panel represents the dissimilarities 𝛥𝛥𝛥0.5. The right panel represents
the spatial dissimilarities. Darker colours represent stronger similarities among the data, which means that the darker squares are groups of data with similar
characteristics. This reflects the behaviour of the clustering.

Fig. 4. Structure of the dendrogram representing the hierarchical clustering of 𝛥𝛥𝛥0.5.
9
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Fig. 5. Evolution of the Dunn Index for 𝛼 ∈ [0, 1], in the exponential case (left) and in the Gaussian case (right). The red points represent the Dunn Index
computed with respect to the temporal matrix; the green points represent the Dunn Index computed with respect to the spatial matrix. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Comparison of the partitions obtained with 𝜟0.15 or 𝜟0.5 and 𝜟0 (temporal dependence) and 𝜟1 (spatial dependence) respectively. In the

first two columns we compare the cophenetic index; in the last two, we compare the ARI index.
𝜟0.15 𝜟0.5 𝜟0.15 𝜟0.5

Exp 𝜟0 Coph = 0.978 Coph = 0.412 ARI = 1.000 ARI = 0.308
𝜟1 Coph = 0.245 Coph = 0.726 ARI = 0.221 ARI = 0.435

Gauss 𝜟0 Coph = 0.796 Coph = 0.161 ARI = 0.673 ARI = 0.220
𝜟1 Coph = 0.325 Coph = 0.850 ARI = 0.309 ARI = 1.000

From the maximization of the Dunn index we obtain that the optimal number of clusters performed with 𝛥𝛥𝛥0.15 is 𝐾⋆
0.15 = 3 while

for 𝛥𝛥𝛥0.35 is 𝐾⋆
0.35 = 6 and for 𝛥𝛥𝛥0.5 is 𝐾⋆

0.5 = 10. The composition of the identified clusters is shown in Fig. 6. Analogously, the optimal
number of clusters computed for 𝛥𝛥𝛥0 and computed for 𝛥𝛥𝛥1 is 3 in both cases, and, hence, in agreement with the data generating
process.

Summarizing, at the increase of 𝛼 in [0, 0.5], the procedure tends to split a larger (and spatially dispersed) cluster into two or
more clusters that are smaller but more spatially concentrated.

We repeat the simulation in the case the spatial matrix is obtained from the Gaussian kernel function. In Fig. 5 we show the
evolution of the Dunn Index computed according with Section 2.5. The figure suggests that the compactness of temporal clusters is
lost for very small values of 𝛼. A suitable choice in this example could be 𝛼 = 0.15 as the temporal compactness has not reached its
minimum value yet, while the spatial one has started growing.

In Fig. 7 we show the distribution of the elements in the clusters with respect to the dissimilarities 𝛥0.15 and 𝛥0.5. When 𝛼 = 0.15
each group is preserving the temporal behaviour even if some elements are influenced by the space (i.e., the element 44 or 19).
Moreover, as expected, when 𝛼 = 0.5 the cluster distribution corresponds to the purely spatial one.

To complete the illustration, in Table 2 we compare the values of the Adjusted Rand Index (ARI) between the (optimal) cluster
composition obtained from the different dissimilarity matrices, both in the exponential and in the Gaussian case. Moreover, the table
also shows the value of the Cophenetic index between the related dendrograms. We recall that the cophenetic index is a measure
for comparing two dendrograms, i.e., it measures the cophenetic correlation between two trees (Galili, 2015). The value can range
between −1 and 1.

4. A case study with climatological data

Here we exploit the Spatial-CHC algorithm for finding a common behaviour of temperatures trends. Specifically, given a
geographic region having various weather stations that collect temperature data, we aim at identifying agglomerations of cities
characterized by similar temperature behaviour over time and, eventually, by a geographic proximity.

In this analysis, we consider daily temperature levels (in Celsius) in 23 municipalities located in Apulia region (Southern Italy)
collected by ARPA Puglia1 from January 2019 to December 2022. The Weather Service has performed the process of collecting
and validating the weather data of the Telemetry Network, made up of 5 automatic stations located at its provincial offices in
ARPA Puglia and 18 weather stations belonging to the Regional Air Quality Network (RRQA). The temperature parameters are

1 http://www.webgis.arpa.puglia.it/meteo/index.php
10
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Fig. 6. [Exponential case] Distribution of the elements in the clusters with respect to the dissimilarities 𝛥𝛥𝛥0.15 with 𝐾⋆
0.15 = 3 (on the top-left), with respect to

0.35 with 𝐾⋆
0.35 = 6 (on the top-right) and with respect to 𝛥𝛥𝛥0.5 with 𝐾⋆

0.5 = 10 (on the bottom). Each colour represents a different cluster. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. [Gaussian case] Distribution of the elements in the clusters with respect to the dissimilarities 𝛥𝛥𝛥0.15 with 𝐾⋆
0.15 = 7 (on the left) and with respect to 𝛥𝛥𝛥0.5

ith 𝐾⋆
0.5 = 3 (on the right). Each colour represents a different cluster. (For interpretation of the references to colour in this figure legend, the reader is referred

o the web version of this article.)
11
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Fig. 8. (Left) Geographical coordinates of the locations in the data set. See Fig. 10 for the corresponding locations on the map. (Right) Distribution of maximum
monthly temperature for the 23 stations in the period 2019–2022.

validated according to ‘‘Guidelines for checking the validity of hydro-meteorological data’’ (Barbero et al., 2017), developed within
the National System for the Protection of the Environment. The website also provides a map with the locations of all the weather
stations (longitude and latitude) that have been used to compute the geographical distances and the spatial matrix as described in
Section 2.3. Furthermore, we accessed another weather website2 containing weather data to acquire the missing data of some days.
From these time series, temperatures monthly maxima were computed, resulting in a data set with 𝑛 = 23 time series and 𝑇 = 48
observations. The geographical coordinates of the locations as well as the distribution of the maximum monthly temperatures for
the 23 stations are shown in Fig. 8.

According to Section 2.1, individual time series have been preprocessed in order to remove seasonal effects. The resulting
residuals from the time series are hence used to compute the pseudo-observations. The filtered data are then used to determine
the pairwise dependencies as described in Section 2.2. The dissimilarity matrix related to temporal dependence is hence visualized
in Fig. 9. The corresponding clustering composition in 𝐾 = 8 groups is illustrated in Fig. 10. Here, the average linkage is used and
the number of clusters is selected via Dunn index.

In order to compute the spatial dependence, according to Section 2.3, we use two different Matérn correlation functions: (a) the
exponential case; (b) the Gaussian case. In both cases, we empirically set 𝑢0 = 45 to have a common practical range.

We hence perform the Spatial-CHC algorithm with these two different pairs of Matérn correlation functions according to
ection 2.4. The corresponding merging matrix 𝐌𝛼 is obtained via (13). As the hierarchical clustering algorithm, we use the average
inkage function, which has proved to perform well in the simulation study.

In order to select a suitable 𝛼 ∈ [0, 1], we proceed as in Section 2.5. Specifically, for a discrete set of 𝛼’s values in [0, 1] we choose
the number of clusters 𝐾 by maximizing the Dunn Index over different values of 𝐾 ∈ {3,… , 8} with respect to the matrix 𝐌𝛼 . Then,
we use the selected 𝐾𝛼 to compute the Dunn Index with respect to 𝐌𝑇 and 𝐌𝑆 . The obtained results are shown in Fig. 11.

In the exponential case a suitable 𝛼 to pick is 𝛼 = 0.5, which maximizes the Dunn index with respect to the temporal matrix by
iving an improvement on the performances with respect to the spatial matrix. Analogously, in the Gaussian case, the most suitable
value is 𝛼 = 0.3.

Focusing on the final cluster solutions in the exponential case (see Fig. 12), we can notice that the Spatial-CHC algorithm
ostly preserves the temporal cluster configuration, but also incorporates some stations that are very similar with respect to their

eographical locations. For example, the northern stations in cluster 1 (𝛼 = 0.5) were separated in the purely temporal case.
In the Gaussian case, first we notice that the cluster composition obtained with the purely spatial information coincides with the

xponential case, represented in Fig. 12(a). Then, the obtained output is given in Fig. 13 for 𝛼 = 0.3 (optimal choice). Moreover, for
he sake of illustration, we also include the case with 𝛼 = 0.5, which can be considered as an intermediate case between temporal
nd spatial information. As can be seen, the clusters obtained with the Spatial-CHC for 𝛼 = 0.5 are geographically connected,
lthough, in general, the method does not force the spatial contiguity between elements. For instance, the cluster 1 with 𝛼 = 0.3 is

not geographically connected (see 13(a)).

2 https://www.ilmeteo.it/portale/archivio-meteo
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Fig. 9. Temporal dissimilarities in the data set. The 23 stations are alphabetically ordered. Only some of those are labelled in the picture.

Fig. 10. Optimal cluster composition of time series derived from hierarchical clustering (average linkage) and purely temporal dissimilarity matrix 𝛥𝛥𝛥0.

Fig. 11. Evolution of the Dunn Index for 𝛼 ∈ [0, 1], in the exponential case (left) and in the Gaussian case (right). The red points represent the Dunn Index
computed with respect to the temporal matrix; the green points represent the Dunn Index computed with respect to the spatial matrix. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. [Exponential case] (a) Optimal cluster composition of time series derived from hierarchical clustering (average linkage) and pure spatial similarities
(geographic locations); (b) optimal cluster composition of time series derived from hierarchical clustering (average linkage) and similarities 𝐌0.5.

Fig. 13. [Gaussian case] (a) cluster composition of time series derived from hierarchical clustering (average linkage) and similarities 𝐌0.3; (b) optimal cluster
composition of time series derived from hierarchical clustering (average linkage) and similarities 𝐌0.5.

Interestingly, both the choices of the Matérn correlation function preserve the evidence of the different behaviour of some
particular stations by keeping them in separate clusters, which is not visible in the purely spatial configuration (see e.g. stations 18
or 20).

5. Conclusions

This paper introduces the Spatial-CHC algorithm that incorporates spatial/ geographical information in the clustering of time
series. The algorithm requires the construction of two matrices which lie in the space of correlation matrices. In particular, the
information about the time series’s pairwise dependence is extracted via van der Waerden’s correlation coefficients, while the spatial
information are interpreted by a correlation matrix exploiting the Matérn correlation function. The two matrices are then glued
through a geodesic function depending on a mixing parameter 𝛼 ∈ [0, 1] that preserves the geometric properties of correlation
matrices. In particular, to build the geodesic, we rely on the geometric structure of the space of positive definite matrices and of
related subspace of correlation matrices. The geodesic is such that it is a correlation matrix itself for each 𝛼 ∈ [0, 1]. A hierarchical
clustering method is performed with a dissimilarity matrix constructed from the correlation matrix depending on 𝛼.

From a theoretical point of view, to the best of our knowledge, the computational aspects about the properties of the distance in
the space of all correlation matrices Corr(n) have not been fully explained (see, e.g., Thanwerdas (2022, Theorem 6.6)), although
the numerical simulations about their use are quite promising (see also (Marti et al., 2021a; You and Park, 2022)).

Different simulation studies and a real case study have been presented to illustrate the usefulness and effectiveness of the
suggested clustering method for time series. In particular, the findings of the simulation studies suggest that the use of van der
Waerden coefficient is in agreement with similar methods. As regards the interpretation of the spatial information, in each example
we provide two different examples of Matérn correlation functions, namely the exponential and the Gaussian. Even if there are
some differences, based also on the choice of the parameters, the optimal cluster composition of the time series derived from the
hierarchical clustering with pure spatial similarities in the two cases have shown a similar behaviour in all the simulations. A reason
for this may be that the spatial correlation matrix only provides a soft constraint to the whole procedure and, hence, different choices
for the spatial model does not provide substantial changes in the whole procedure.

Moreover, the simulations clearly show the effect that the gradual introduction of the spatial constraint has to the clusters
configuration. The application of the Spatial-CHC method to the real case study demonstrates how it may be used to pick groups
that are both dependent and spatially close, improving the applicability of the cluster analysis results. As regards the choice of 𝛼,
14
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Fig. 14. Data simulated from an 𝑛 = 60 dimensional random vector with 𝐾 independent groups having a Clayton copula with Kendall’s 𝜏 equal to 0.1 (left), 0.2
(middle), and 0.3 (right) within each group. Each row corresponds to a number of clusters equal to 𝐾 = 3 (up), 𝐾 = 6 (middle) and 𝐾 = 12 (down). Each boxplot
represents the ARI (y-axis) with respect to the true partition by varying (𝑖) the pairwise dissimilarity measure among Blomqvist’s 𝛽, Spearmans’ 𝜙, Kendall’s 𝜏,
Spearman’s 𝜌, and van der Waerden’s 𝜁 (in blue) and (𝑖𝑖) linkage method among the average, and complete (maximum) one. In each blox plot the 𝑥-axis starting
with the average linkage and 𝛽, continues with the complete linkage and 𝛽, and ends with the complete linkage and 𝜁 . Sample size equal to 50 points (see text).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

we provide both a theoretical insight based on the definition of the distance on Corr(n), and a practical observable criterion, based
on the Dunn Index.
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(

Fig. 15. Data simulated from an 𝑛 = 60 dimensional random vector with 𝐾 independent groups having a Gumbel copula with Kendall’s 𝜏 equal to 0.1 (left), 0.2
middle), and 0.3 (right) within each group. Each row corresponds to a number of clusters equal to 𝐾 = 3 (up), 𝐾 = 6 (middle) and 𝐾 = 12 (down). Each boxplot

represents the ARI (y-axis) with respect to the true partition by varying (𝑖) the pairwise dissimilarity measure among Blomqvist’s 𝛽, Spearmans’ 𝜙, Kendall’s 𝜏,
Spearman’s 𝜌, and van der Waerden’s 𝜁 (in blue) and (𝑖𝑖) linkage method among the average, and complete (maximum) one. In each blox plot the 𝑥-axis starting
with the average linkage and 𝛽, continues with the complete linkage and 𝛽, and ends with the complete linkage and 𝜁 . Sample size equal to 50 points (see text).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Data simulated from an 𝑛 = 60 dimensional random vector with 𝐾 independent groups having a Clayton copula with Kendall’s 𝜏 equal to 0.1 (left), 0.2
(middle), and 0.3 (right) within each group. Each row corresponds to a number of clusters equal to 𝐾 = 3 (up), 𝐾 = 6 (middle) and 𝐾 = 12 (down). Each boxplot
represents the ARI (y-axis) with respect to the true partition by varying (𝑖) the pairwise dissimilarity measure among Blomqvist’s 𝛽, Spearmans’ 𝜙, Kendall’s 𝜏,
Spearman’s 𝜌, and van der Waerden’s 𝜁 (in blue) and (𝑖𝑖) linkage method among the average, and complete (maximum) one. In each blox plot the 𝑥-axis starting
with the average linkage and 𝛽, continues with the complete linkage and 𝛽, and ends with the complete linkage and 𝜁 . Sample size equal to 100 points (see
text). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 17. Data simulated from an 𝑛 = 60 dimensional random vector with 𝐾 independent groups having a Gumbel copula with Kendall’s 𝜏 equal to 0.1 (left), 0.2
middle), and 0.3 (right) within each group. Each row corresponds to a number of clusters equal to 𝐾 = 3 (up), 𝐾 = 6 (middle) and 𝐾 = 12 (down). Each boxplot

represents the ARI (y-axis) with respect to the true partition by varying (𝑖) the pairwise dissimilarity measure among Blomqvist’s 𝛽, Spearmans’ 𝜙, Kendall’s 𝜏,
Spearman’s 𝜌, and van der Waerden’s 𝜁 (in blue) and (𝑖𝑖) linkage method among the average, and complete (maximum) one. In each blox plot the 𝑥-axis starting
with the average linkage and 𝛽, continues with the complete linkage and 𝛽, and ends with the complete linkage and 𝜁 . Sample size equal to 100 points (see
text). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
18
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Fig. 18. Data simulated from an 𝑛 = 120 dimensional random vector with 𝐾 independent groups having a Clayton copula with Kendall’s 𝜏 equal to 0.1 (left),
.2 (middle), and 0.3 (right) within each group. Each row corresponds to a number of clusters equal to 𝐾 = 3 (up), 𝐾 = 6 (middle) and 𝐾 = 12 (down).

Each boxplot represents the ARI (y-axis) with respect to the true partition by varying (𝑖) the pairwise dissimilarity measure among Blomqvist’s 𝛽, Spearmans’ 𝜙,
endall’s 𝜏, Spearman’s 𝜌, and van der Waerden’s 𝜁 (in blue) and (𝑖𝑖) linkage method among the average, and complete (maximum) one. In each blox plot the
-axis starting with the average linkage and 𝛽, continues with the complete linkage and 𝛽, and ends with the complete linkage and 𝜁 . Sample size equal to 50
oints (see text). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
19



Spatial Statistics 59 (2024) 100797A. Benevento and F. Durante
Fig. 19. Data simulated from an 𝑛 = 120 dimensional random vector with 𝐾 independent groups having a Gumbel copula with Kendall’s 𝜏 equal to 0.1 (left),
0.2 (middle), and 0.3 (right) within each group. Each row corresponds to a number of clusters equal to 𝐾 = 3 (up), 𝐾 = 6 (middle) and 𝐾 = 12 (down).
Each boxplot represents the ARI (y-axis) with respect to the true partition by varying (𝑖) the pairwise dissimilarity measure among Blomqvist’s 𝛽, Spearmans’ 𝜙,
Kendall’s 𝜏, Spearman’s 𝜌, and van der Waerden’s 𝜁 (in blue) and (𝑖𝑖) linkage method among the average, and complete (maximum) one. In each blox plot the
𝑥-axis starting with the average linkage and 𝛽, continues with the complete linkage and 𝛽, and ends with the complete linkage and 𝜁 . Sample size equal to 50
points (see text). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 20. Data simulated from an 𝑛 = 120 dimensional random vector with 𝐾 independent groups having a Clayton copula with Kendall’s 𝜏 equal to 0.1 (left),
.2 (middle), and 0.3 (right) within each group. Each row corresponds to a number of clusters equal to 𝐾 = 3 (up), 𝐾 = 6 (middle) and 𝐾 = 12 (down).

Each boxplot represents the ARI (y-axis) with respect to the true partition by varying (𝑖) the pairwise dissimilarity measure among Blomqvist’s 𝛽, Spearmans’ 𝜙,
endall’s 𝜏, Spearman’s 𝜌, and van der Waerden’s 𝜁 (in blue) and (𝑖𝑖) linkage method among the average, and complete (maximum) one. In each blox plot the
-axis starting with the average linkage and 𝛽, continues with the complete linkage and 𝛽, and ends with the complete linkage and 𝜁 . Sample size equal to 100
oints (see text). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 21. Data simulated from an 𝑛 = 120 dimensional random vector with 𝐾 independent groups having a Gumbel copula with Kendall’s 𝜏 equal to 0.1 (left),
0.2 (middle), and 0.3 (right) within each group. Each row corresponds to a number of clusters equal to 𝐾 = 3 (up), 𝐾 = 6 (middle) and 𝐾 = 12 (down).
Each boxplot represents the ARI (y-axis) with respect to the true partition by varying (𝑖) the pairwise dissimilarity measure among Blomqvist’s 𝛽, Spearmans’ 𝜙,
Kendall’s 𝜏, Spearman’s 𝜌, and van der Waerden’s 𝜁 (in blue) and (𝑖𝑖) linkage method among the average, and complete (maximum) one. In each blox plot the
𝑥-axis starting with the average linkage and 𝛽, continues with the complete linkage and 𝛽, and ends with the complete linkage and 𝜁 . Sample size equal to 100
points (see text). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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