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Abstract: This work discusses smart building applications involving the Internet of Things (IoT)
which are focused on energy consumption monitoring and forecasting systems, as well as indoor
air quality (IAQ) control. Low-cost hardware integrating sensors and open source platforms are
implemented for cloud data transmission, data storage and data processing. Advanced data analytics
is performed by the seasonal autoregressive integrated moving average (SARIMA) method and a long
short-term memory (LSTM) neural network with an accurate calculation performance about energy
predictions. The proposed results are developed within the framework of the R&D project Data
System Platform for Smart Communities (D-SySCOM), which is oriented to a smart public building
application. The main goal of the work was to define a guideline-matching energy efficiency with
wellness in public indoor environments, by providing modular low-cost solutions which are easily
implementable for advanced data processing. The implemented technologies are suitable to define an
efficient organizational user protocol based on energy efficiency and worker wellness. The estimated
performance of mean square error (MSE) of 0.01 of the adopted algorithms proves the efficiency of the
implemented building monitoring system in terms of energy consumption forecasting. In addition,
the possibility of designing and implementing a modular low-cost hardware-software system was
demonstrated utilizing open source tools in a way that was oriented to smart buildings approaches.

Keywords: Internet of Things (IoT); SARIMA; LSTM; smart building; energy efficiency

1. Introduction

In energy systems, taking decisions on the basis of data collected by a powerful energy
monitoring is the only way to minimize consumption and to try to avoid high simultaneous
loads. The energy data processing is a key element for the estimation of Key Performance
Indicator (KPI) in smart buildings [1]. Energy monitoring, and the related efficiency
management can severely reduce costs (such as electrical utility costs), thus increasing the
lifetime of energy storage systems [2]. The first step in managing electric load consumption
is to know the electricity consumption profile versus time. Electrical power consumption
generally varies due to both user behaviors [3] and ambient conditions [4], which leads to
the demand of continuous control. According to data analytics, data mining techniques
are used for energy data classification, clustering and prediction [5]. Cloud systems [6] are
good candidates to process data detected by Internet of Things (IoT) sensors.

The energy consumption data can be collected and processed by the data center fa-
cilities through a wireless communication network using the message queuing telemetry
transport (MQTT) protocol [7] (a lightweight protocol specifically designed for machine-to-
machine—M2M—communication). In recent years, electrical load forecasting is getting
more and more important due to electricity market deregulation and to the integration
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of renewable energy production, operated in large plants as well as small ones on build-
ings [8]. To overcome the incoming challenges and ensure accurate power prediction,
predictive algorithms can be adopted such as seasonal ARIMA (SARIMA) [9], and long
short-term memory (LSTM) [10]. Specifically, SARIMA model is very similar to the au-
toregressive integrated moving average (ARIMA) model [11], except for an additional set
of autoregressive and moving average components; LSTM is a kind of recurrent neural
network (RNN) [12]. Both are used in general as forecasting methods. The ever-increasing
energy consumption and utility costs of building operations requires the exploration of
new strategies to optimize usage performance, to reduce energy waste, and to minimize
environmental impacts [13]. A successful approach to reach a high energy efficiency in
building spaces is the adoption of advanced energy management systems (EMSs) [14], for
instance those based on the combination of web interfaces monitoring energy consumption
and switching electric power [15], indoor environmental quality (IEQ) for efficient indoor
comfort (thermo-hygrometric, lighting, air quality and acoustics) [16], and user activity
checks [17].

The overall state of the art suggests the importance of smart building applications
to combine wellness functions with energy consumption aspects. The main goal of this
work is to provide modular and easily applicable design criteria for energy control systems
by focusing attention on the energy savings in public buildings generated by means of
low-cost electronic components. Two interfaces were so designed and implemented for a
basic prototype demonstrator: one collecting data to calculate energy consumption of the
different loads of the building, and one dedicated to indoor air quality (IAQ) monitoring,
capable of detecting light intensity, temperature and humidity. A low-cost Arduino-based
interface was then developed for sensors data collection and web publication as well as to
drive electronic components actuating energy-saving strategies. The use of a cloud-based
web interface provides for the formulation of the organizational protocol based on the
automated interventions when either anomalous energy consumption occurs, high values
of energy consumption are predicted or bad air quality conditions are found (see scheme of
Figure 1). The flowchart summarizes the organizational protocol adopted in this study for
the public building energy control. The protocol is made of different levels:

e the “field” level with the electronic interface for active data detection,
e the data monitoring levels accounting for results prediction,
e the adjusting final level, containing the procedures for energy efficiency enhancements.

WEB ENERGY INTERFACE WEB WELLNESS INTERFACE

Electric

Power (EP) 1AQ

[DATA MONITORING (DM)] [DATA MONITORING (DM)}

2

[ PREDICTION ]

<z

[ INTERVENTIONS ]

Figure 1. Organizational protocol used for the project web interfaces in a public smart building.

What is depicted in Figure 1 was developed within the framework of the Italian project
Data System Platform for Smart Communities (D-SySCOM) [18] (Lead company: SIT srl,
Partners: Aliser srl, Eulogic srl, Geatecno srl, Interdisciplinary Laboratory of Design and
Integrated Management of Industrial Plants—section of Applied Thermodynamics of the
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University of Salento, New Technologies Center for the Social Integration of the Disabled
at the University of Salento).

In Figure 2 the image and the floor plan of the building adopted for experimental
results are reported.

(a) (b)
Figure 2. (a) Photo and (b) floor plan (right) of the building adopted for the testing of the proto-

col indicated in Figure 1 (Municipal building of the municipality of Nardo in the South of Italy).
Experimentations were performed in the rooms indicated with the red circle.

The building in Figure 2 was provided with a modular information system architecture
which can simultaneously detect energy and IAQ data, thus ensuring at the same time
working quality and energy efficiency. A solution was found that was easily interfaceable
with advanced algorithms predicting indoor parameters. Both real-time and predicted
parameters are able to allow the optimization of the working environment, according
to the activities carried out inside. The chosen low-cost prototypes allow the extension
of monitoring to all the rooms of the building and the provided solution can be easily
transferred to other public buildings.

2. Materials and Methods
2.1. Energy Monitoring Modular Architecture (EP Interface)

The architecture of the developed loT-based power consumption monitoring system
has the following four-layers: perception, network, application and cognition layers.

At the perception layer, sensor devices are provided which measure and acquire power
process variables. At the network layer, information is sent to a cloud-based server. At the
application layer, the real-time information is stored and displayed. At the cognition layer,
data are post-processed while using machine learning for data analysis and forecasting
for assisting in the decision making. Figure 3 highlights the architecture of the system,
integrating both energy and IAQ modules: the first three layers (perception layer, network
layer, and application layer) are common for both modules; the cognition (the fourth layer)
only applies to the energy module and is finalized to improve the energy control by means
of machine learning algorithms.
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Figure 3. System structure of the system: modularity implementation of the technologies monitoring
energy parameters and indoor air quality.

2.1.1. Perception Layer (EP Interface)

The perception layer is directly linked to the central power supply node for power
measurement. The system measures the root-mean-square (RMS) instantaneous power,
by calculating the RMS current and RMS voltage from the electrical network (the Italian
network provides 220 V as an AC voltage level). The voltage is measured on the electric lines
passing through the step-down transformer and a voltage regulator adjusting the DC output
into a range acceptable for the MicroController Unit (MCU). The adopted microcontroller is
the Arduino Nano board, based on the ATmega328P. It is an Alf and Vegard’s RISC (AVR)
based microcontroller with 5 V supply, 8 bit and 16 MHz clock frequency. The software
code is the Arduino’s Wire programming language, executable on the Arduino Integrated
Development Environment (IDE). The electronic components of the setup measuring
electrical parameters is illustrated in Appendix A. The AC voltage measurement is adopted
to calculate the real power, the apparent power and the power factor. This measurement is
performed by using the ZMPT101B AC to AC voltage transformer which has high accuracy,
good consistency for voltage and power measurement and can measure up to 250 V AC.

To achieve the requested accuracy (error < 5%), the system underwent a calibration
procedure with an oscilloscope and a multimeter. The RMS current and voltage were
sampled approximately 50 times in 20 milliseconds (2.5 kHz) sampling frequency, and
the results were saved to a database. Then, the rolling average (a calculation to analyze
data points by creating a series of averages of different subsets of the full data set) of ten
measurements was used to calculate the power by means of the microcontroller. The data
was after passed to the ESP8266 Wi-Fi module uploading data to the AdafruitlO cloud
structured query language (SQL) server supporting MQTT protocol.

2.1.2. Network Layer (EP Interface)

This layer mainly transmits the detected data from the smart energy monitor to the
cloud sever. Data pre-processing methods, such as filtering and outlier removal processes,
are executed by the controller, reducing the quantity of transmitted data and the compu-
tational cost (are processed only useful data). After pre-processing, data are transferred
to the Wi-Fi module interfaced with the microcontroller, or stored in the transmit queue,
depending on the data effectiveness data length. The ESP8266 is a low-cost Wi-Fi chip
operating with the TCP/IP protocol and supporting IEEE 802.11 b/g/n Wi-Fi standards.
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2.1.3. Application Layer (EP Interface)

Data are published by the remote MQTT broker directly through the ESP8266 gateway
(publish/subscribe system). MQTT requires low bandwidth and has a data packet size
with low overhead minimum (>2 bytes) so that it has smaller supply power consumption.
This protocol is a data-agnostic protocol that can transmit data in various forms such as
binary data, text, XML, or JSON. As the web server is published, the dashboard-based web
application is accessible anywhere and anytime, thus enabling remote energy management.

2.1.4. Cognition Layer (EP Interface)

This layer defines the process following the cognitive computing algorithm. The main
functions of the cognitive layer are

e data pre-processing
e the data mining processing.

This layer is able to execute SARIMA and LSTM algorithms. The whole data mining
processing workflow is depicted in Figure 4: it is characterized by five phases (the first step
is the pre-processing phase, and the other four steps are related the data processing). The
dataset is split into training (75%) and test (25%) datasets to be processed by the machine
learning algorithms (best choice concerning algorithm optimization).

Step 1: Pre- Step 2: Feature Step 3: Model .gteP.J: Model Step 5:
validation and error

process raw data selection development Prediction
calculation

r y - v

Figure 4. Advanced architecture adopted for data detection and processing.

¥

The predicted values are compared to the actual values (measured) using different
metrics such as mean absolute error (MAE), mean squared error (MSE), root-mean-square
error (RMSE) [18].

The architecture in Figure 4 defines the steps of the cognition layer of Figure 3: data
are pre-processed extracting features, developing the forecasting model (validating it) and
predicting results. The main parameter used for the graphical forecasting view is the
electric energy.

2.2. Air Monitoring System Modular Architecture (IAQ Interface)

The modular IAQ architecture is characterized by three layers (see Figure 2): percep-
tion, network and application layers. In the perception layer, sensors acquire environmental
parameters. In the network layer, information is sent out to the cloud-based server. At
the application layer, the real-time information is displayed and the detected digital data
are archived.

2.2.1. Perception Layer (IAQ Interface)

The perception layer is the physical system composed by sensors and by the Arduino-
based MCU to collect and forward the parameters to the Wi-Fi node. Specifically, about
indoor air quality, the following parameters are measured (see Appendix B).

2.2.2. Network Layer (IAQ Interface)

This layer mainly transmits the data detected by the IAQ system to the cloud server by
using an ESP266-based NodeMCU v3 ESP8266 Wi-Fi chip. This layer forwards, transfers,
and sends data from the Arduino board to the cloud server.
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2.2.3. Application Layer (IAQ Interface)

Data are published by the remote MQTT broker through the ESP8266 gateway. The
adopted cloud server is ThingsBoard IO (open source IoT platform for device management,
data collection, processing and visualization). The graphical dashboards were developed
using Python.

2.3. Automatic Time-Series Decomposition and Dashboards

Decomposition is a useful abstraction for time series analysis and to inform forecasting
models. Decomposition is performed on the experimental dataset estimation. It is helpful
in breaking down the usage consumption in systematic and non-systematic components.
The estimated series are classified in four main components: the observed values, the trend
(the increasing or decreasing value in the series), the seasonality (the repeating short-term
cycle in the series), and the residual noise (the random variation in the series). This series
decomposition helps in understanding the complexity of the forecasting modeling to be
applied. Decomposition is performed both on hourly (Figure 5a), and daily (Figure 5b)
data. The statistical trends of Figure 5 show the possible dataset decomposition forms (on
hourly and daily basis) of the forecasting model.

Observed

Observed
6
4 /\/\/\/\W\J\/—\/\/\M/\/\/\/\/\N\/\/
Trend

Trend

5
MMW&/WW 4 JW
Seasonality

Seasonality

05
00 WMW
Residual

Residual

1 oo . .
°

%o ° .
e o0 %o o 0%
0 o ° o .o.. o e o ..- °® ° oo

02-11 02-25 03-10 03-24 -1 . .

.
01-21 02-04 02-18 03-03 03-17 03-31
Date

(a) (b)
Figure 5. (a) Time series decomposition hourly basis. (b) Time series decomposition daily basis.

3. Results
3.1. Energy Monitoring and IAQ Dashboards

First results concern the frontend dashboards of energy monitoring and IAQ system.
In Figure 6a, the Adafruit IO dashboards enabling remote energy control is illustrated.
The dashboards represent the real time signals and historical weekly energy consumption,
(every 7/15/30 days) indicating current, voltage and power trends. Figure 6b shows
the implemented web ThingsBoard, displaying both real time and historical IAQ data
(temperature, humidity, CO,, VOC levels, dust density).
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Figure 6. Dashboards of the implemented platform, monitoring air quality (a) and energy (b) tested
for a public building.

3.2. IAQ Parameter Monitoring

Figure 7 represents the real-time serial output of only BME sensor (see Appendix B)
evaluating the indoor air quality (IAQ) parameters (VOC concentration): in Figure 7a, the
real-time temperature is reported (expressed in °C) as well as relative humidity (see related
description in Appendix B); in Figure 7b, the PM; 5 IAQ index versus the time (measure-
ments of VOCs concentration) can be read. The adopted dust sensor (see Appendix B)
counts the dust particles into a range between 0 to 3000 particles (PCS) per 0.01 contamina-
tion factor (CF) [19,20]. Specifically, the sensor measures the PM; 5 IAQ index versus the
time. The “wellness” scale of PM, 5 level of house can be seen in ordinary ranges below
150 pc/0.01 cf. Figures 7b and 8 report the IAQ “wellness” bands.
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Figure 7. IAQ BME Serial Output: (a) temperature in °C and humidity percentage versus seconds.
(b) IAQ index (VOCs concentrations) and related “wellness” bands.

TAQ INDEX AIR QUALITY
0-50 Good

Figure 8. IAQ “wellness” bands indicated in the estimation of IAQ value of Figure 7b.

3.3. Data Mining to Understand Energy Consumption Behavior

The developed prototype platform for energy dashboards provides energy data
grouped as energy consumption per minute (Figure 9a), total energy consumption per
hour, (Figure 9b), average energy consumption based on the time of the day (Figure 10a), or
types of day (weekdays/weekends) (Figure 10b), and average weekly energy distribution
by days of week, both (Figure 11a) percentage-wise and (Figure 11b) consumption-wise.
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Figure 9. (a) Energy consumption per 10 s; (b) Average energy consumption per hour.
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Figure 10. (a) Hourly average energy consumption versus time. (b) Hourly average energy consump-
tion per weekday type.
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Figure 11. Average weekly energy distribution by days of week.

(a) Percentage-wise;
(b) Consumption-wise.
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3.3.1. SARIMA Forecasting Results

Figure 12 compares the SARIMA forecasting plot (one-step ahead forecasts) obtained
by the experimental results (blue lines show the real values, the orange is one step ahead
forecast values, and the gray color indicates the calculus error margin). Some details about
the SARIMA algorithm optimization are given in Appendix A.

1.0
—— kwh

forecast
0.8

0.6
0.4

"l LM A

0.0

Energy (kWh)

-0.2

25 26 27 28 29 30 31
Figure 12. SARIMA dashboard forecasting: energy consumption hourly forecasting.

3.3.2. RNN/LSTM Results

Alternatively, to the SARIMA approach, an RNN approach has been adopted for
energy forecasting. To further improve the performance of the SimpleRNN mode, LSTM
networks have been used. Hyperparameter tuning has been performed, and the parameters
used were time lag = 24, layer depth = 64, epochs = 500. Figure 13 depicts the performance
comparison of measured and forecasted values on 7 days test data, while utilizing SARIMA,
RNN and LSTM approaches. Figure 14 is the dashboard, depicting one-week ahead load
forecast utilizing LSTM as the preferred approach, based on the best reported performance
measures. Some details about the LSTM testing environment are shown in Appendix A.

Predictions comparison SARIMA/RNN/LSTM

1.0
—— Observed
—— SARIMA
0.8 RNN
—— LSTM

25 26 27 28 29 30 31

Figure 13. Prediction comparison of 3 different forecasting algorithms—SARIMA, RNN and LSTM.
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Figure 14. One week ahead load forecast by LSTM Predicted (red line) vs. actual load (blue line).

4. Discussion

In Table 1 LSTM can be observed to provide better error measurements if compared
with RNN and SARIMA, thus confirming the suitability of the LSTM algorithm for the
analyzed dataset.

Table 1. Performance metric comparison among the three algorithms.

Performance Metric SARIMA RNN LSTM

MAE 0.075166 0.080148 0.067111
MSE 0.018464 0.019442 0.018558
RMS 0.141396 0.139434 0.136226

A total 102,464 datapoints were processed for each of the two monitored room of the
experimental building of Figure 2 (one room is energy efficient by means of lighting and
temperature control and the other one is not efficient). A comparison between the rooms
has been performed concerning the period from April-December 2020:

e thermal energy savings were of 233 kWh (62.2%);
e ventilation electrical energy savings were of 17.5 kWh (25.1%);
e lighting electrical savings were of 282.2 kWh (88.6%).

The modular implementation can simultaneously show dashboards concerning, re-
spectively, energy monitoring and IAQ controls, stored in the same cloud platform: the
methodology based on the development of the different architecture layers (as illustrated
in Figure 3), integrates other sensors providing other possible information [1] (ventilation,
number of persons for room, lighting, energy renewable KP], etc.), and other dashboards
(for example for noise level data [21]). Monitored and predicted energy consumption data
are of primary importance to the planning of work activities in an efficient way. An example
is planning efficient electrical load switching operations [22,23] according to the workers
activities inside the public building, as well as load priorities [23]. The use of both energy
consumption and IAQ modules allows the formulation of intervention plans (bottom level
of Figure 1) based on the following procedure:

1-  energy consumption interventions based on the use of electricity, avoiding energy
waste and using energy either from renewables or from storage (thermal and electrical),
and possibly choosing low-cost hours;
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2- reengineering working spaces based on intelligent deactivation of electrical loads in
empty rooms;

3- new definition of the rooms occupation based on either work activities or electric
loads distribution;

4- engineering of new layouts by taking into account the “wellness” level provided by
the IAQ module;

5- other interventions can be performed in real time by continuously analyzing building
energy and IAQ dashboards.

The use of the very low cost electronic components described in the Appendices A and B,
and the adoption of an open source platform, makes it possible to install the modules in each
room of the building and to control all the parameters in the cloud. This aspect is important
for big public buildings which have several floors and many rooms.

Concerning advantages and disadvantages of the proposed technologies, in Table 2

some features are reported compared with commercial solutions.

Table 2. Comparison with commercial solutions.

Feature

Proposed Technologies

Commercial Technologies

Mechanical stability of the
electronic modules

The mechanical stability can be achieved after an
accurate design of the package containing
electronic components and printed circuit board
(PCB) connections.

The mechanical stability is guaranteed by
the industrialized package tasted during
the industrialization process.

Communication
stability

Both accurate design and maintenance are
necessary to ensure communication stability.

Commercial solutions normally provide a
sure communication stability.

Time forecasting
(setting parameters)

It is possible to set each parameter of the
forecasting algorithm.

Typically, commercial solutions do not
implement forecasting algorithms.

Sensor setting

The proposed solution allows us to optimize
important parameters (such as sampling time),
and transmission protocol.

The setting is a function of the availability
of the third-party company providing the
software.

The solutions are fully integrable with standard
protocols, and the modules are designed to
integrate in the same framework as other low-cost

The modules are typically integrable with

Integrability sensors detecting other indoor parameters. The other ones of the same compan
use of a possible software development kit (SDK) pany:
and of the open source software, allow favoring
the integration of the hardware and the software.
C The low cost is fundamental to implementing The cost of the compon.ents may 1 imit the
ost implementation (especially for big

modules when many rooms have to be controlled.

buildings).

Data availability

The availability of raw data allows to estimate
different KPI also considering a large number of
variables/parameters (as for complex KPI [1]).

Data are typically available on third party
databases, and cannot be easily used to
calculate other KPI which can be referred
to in the particular case study.

In Table 3, some research topics matching with the proposed technology by highlight-
ing its potential advantages are listed. The main issues can be summarized as follows:

simultaneous energy and IAQ monitoring system are applied on the same building;
a good error performance of the adopted algorithms (LSTM and SARIMA) can be
useful for energy forecasting;

e low-cost and open source solutions are suitable for the hardware integration of differ-
ent sensors and for the data processing software libraries;

e amethod to design platform architectures, implementing standard communication
protocols (such as MQTT), is available.
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Table 3. Comparison with commercial solutions.

Research Topics and
references

Applicability of the Proposed Technology
to the Research Topic

Advantages of the Proposed Technology
Matching with the Research Topic

Energy Management Systems
(EMS) [24-27]

EMS monitoring heavy loading, fault
conditions, energy consumption (considering
environment parameters),battery charging,
and estimating problems in electric power
systems.

Easy implementation for each type of
monitoring system, integrating versatile
synoptic panels controlling parameters (open
source platforms adaptable for the specific
environment or system to control and able to
estimate other non-standard parameters).

Energy Forecasting [28-36]

Methods such as artificial neural network
(ANN), SARIMA and LSTM for load, active
and reactive power forecasting.

Possibility to integrate for cloud or local
forecasting calculus different algorithms by
using the same software platform.

Smart metering network [37]

Long

RAnge (LoRA) technology for residential
electricity metering

networks.

Compatibility with LoRA protocol
constructing a LoRA IoT network (by means of
a specific access control layer).

Wireless Sensors Network
(WSN) [38-40]

WSN implementing long-range wide-area
networks (LoRaWAN), bluetooth low-energy
mesh long-Range (BLE-M-LR), and data
aggregation technologies.

Possibility to also structure the complex WSN,
adopting a low-cost Arduino-based technology
managing different wireless nodes (simply
constituted by a microcontroller unit, a radio
frequency transmitter, and a battery)
structured in different architectures.

Electronic Integrated
Chips [41-43]

Integration in boards of Bluetooth Low
Energy (BLE), and in general of low-cost
systems-on-chip solutions, allocating
resources efficiently.

Presence in the market of sensor technologies
compatible with different Arduino-based
boards, ensuring a full integration for
embedded BLE or Global Positioning System
(GPS).

Indoor air quality [44]

Indoor air quality (IAQ) monitoring
technology.

Possibility to integrate IAQ with EMS by
considering the same backend system.

Possible future developments of the present system will be addressed in future to
energy routing and strategy actuation features based on alerts detected by the platform.
Actually, on the same hardware, both energy management and building security would be
provided based both on sensors detection or Al prediction algorithms.

5. Conclusions

The paper proposes some hardware and software low-cost solutions which are useful

for smart building energy and IAQ monitoring. The low-cost modules allow for the
installation of the components in each room of the public building. The goal of the paper
was to propose a modular approach to electronic control modules. Acquired datasets have
been adopted to define optimization strategies for electrical energy consumption reduction
and worker wellness increase. The provided solutions are compatible and integrable with
other “open” modules controlling other parameters, and which are devoted to further
improve energy savings and wellness conditions. Interventions can be planned which are
also based on predicted energy consumption.

Compared to existing commercial solutions, the technology proposed here uses a
predictive LSTM algorithm, which is demonstrated to be more efficient than a SARIMA
one, for the specific dataset typology.

The formulation of more complex key performance building indicators, taking into
account priorities of electrical loads, is under investigation.

The adopted open source tools are fully integrated into an information system manag-
ing front-end interfaces with dashboards and back-end data systems collecting data. The
paper provides a low-cost solution to build up an advanced platform, suitable to control
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whole buildings with a modular implementation of the hardware solutions and compatible
with different sensor technologies and data transmission standard protocols.

The implementation of two main functions, such as energy and indoor air quality
monitoring, proves that managing sensors data displaced in complex networks is possible.
In addition, Python with the related open source libraries is compliant with the imple-
mentation of different machine learning algorithms, provided that there is a dataset to be
processed and performance to be achieved.

The adoption of more algorithms and sensors is fundamental to estimate innovative
KPIs as outputs of complex monitoring systems such as energy routing. In future works,
implementing synchronized electronic boards will be the goal, both for control and actua-
tion functions for cloud computing platforms or for edge computing systems interfacing
microcontrollers with data processing units. This achievement is possible as the modularity
of the solutions depicted here allows the design and to implementation of hybrid networks
constituted by cloud and edge data processing systems.
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Abbreviations

AC Alternating Current

ANN Artificial Neural Network

ARIMA AutoRegressive Integrated Moving Average
AVR Alf and Vegard’s RISC

BLE Bluetooth Low Energy

BLE-M-LR  Bluetooth Low Energy Mesh Long Range
CF Contamination Factor

DM Data Monitoring

D-SySCOM  Data System Platform for Smart Communities
EEPROM Electrically Erasable Programmable Read-Only Memory

EP Electric Power

EMS Energy Management System

GPS Global Positioning Systems

IAQ Indoor Air Quality

1EQ Indoor Environmental Quality
IoT Internet of Things

IDE Integrated Development Environment
P Internet Protocol

IRED Infrared Emitting Diode

KPI Key Performance Indicator

LoRA Long RAnge

LoRaWAN  Long-Range Wide-Area Networks
LSTM Long Short-Term Memory

MAE Mean Absolute Error

MCU MicroController Unit
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MOS  Metal Oxide Semiconductor
MQTT Message Queuing Telemetry Transport
MSE Mean Square Error

M2M  Machine to Machine

PCB Printed Circuit Board

RMS Root Mean Square

RNN  Recurrent Neural Network
SDK Software Development Kit
SQL Structured Query Language
TCP Transmission Control Protocol
VOC  Volatile Organic Compounds
WMS  Wireless Sensors Network

Appendix A

Figure Ala shows the whole electronic setup used for energy monitoring measuring
electrical current and voltage. The measurement system is non-invasive, i.e., the user does
not need to disconnect any wires or modify any connections within the distribution board
of the house (Figure Alb).

| — L. |
(b)

Figure A1. (a) Components of the energy monitor system. (b) CT coupled in a distribution board of a

residential home.

Data collected in cloud are processed by the SARIMA and LSTM algorithms. In
Figure A2 is illustrated the testing framework used for the algorithm optimization.

In [7]: |# Fitting the model

model = deep learner.LSTModel ()

I Train on 1469 samples, validate on 163 samples ~
Epoch 1/300
1469/1489 [ 1 - 1s 56Tus/step - 1
oss: 0.0387 - acc: 0.0000e+00 - wal_loss: 0.0350 - val acc: 0.
0000e+00
Epoch 2/500
1469/1489 [ ] - 0= 293us/step - 1
oss: 0.0254 - acc: 0.0000e+00 - wal loss: 0.0247 - val acc: 0.
0000e+00
Epoch 3/500
1469/1489 [ 1 - 0s 2%93us/step - 1
oss: 0.0174 - acc: 0.0000e+00 - val loss: 0.0236 - wal acc: 0.
0000e+00
Epoch 4/500
1469/1468 [ 1 - 1s 376us/step - 1
oss: 0.0175 - acc: 0.0000e+00 - wal_loss: 0.0230 - val acc: 0.
0000e+00
Epoch 5/500
1469/1469 [ ] - 1= 395us/step - 1 v

Figure A2. Testing framework of LSTM prediction.
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Figure A3a—d illustrates some plots used for the check of the SARIMA performance
algorithm, where are some plots related the optimization of algorithm checking testing
data distributions.

Standardized residual for "k"
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Figure A3. Testing of the SARIMA algorithm checking the best algorithm performance: (a) standard-
ized residual, (b) histogram of the estimated density distribution, (c) normal probability Q-Q plot,
(d) correlagram.

Appendix B

Arduino based MCU (Figure A4a) is able to collect and forward data of sensors

(illustrated in Figure A4b) to the WiFi node.

(b)
Figure A4. (a) IAQ Monitoring sensor setup. (b) BME, MQ, SHARP Sensors.

BME®680 is a low power consumption sensor unit that includes an environmental VOC,
temperature, humidity and barometric sensors. The operating current consumption
ranges from 5 to 25 mA. The sensor precision for temperature is £1.0 °C, the humidity
is £3% r.H and atmospheric pressure of £0.6 hPa. The BME680 sensor calculates the
sum of VOCs in the surrounding air to provide qualitative air quality data. This sensor
also incorporates a background auto-calibration feature in order to provide reliable
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IAQ qualitative data. The data is stored in Electrically Erasable Programmable Read-
Only Memory (EEPROM), which is then used for baseline correction for subsequent
readings. This process regards the recent measurement records to guarantee that IAQ
index ~25 matches to typical good air and IAQ index ~250 states for typical polluted
air. The sensor output resistance value varies according to VOCs concentrations, as
the higher the concentration of reducing VOCs, the lower the resistance and vice versa.
The TAQ qualitative range is from 0 to 500.

e  Sharp GP2Y1010AUOF is a dust sensor with an optical sensing system. An infrared
emitting diode (IRED) and a phototransistor are integrated into this device, detecting
the reflected light of dust in air. In particular, the sensor can detect fine particles
like those contained in cigarette smoke, with a capability for detecting them due to
the pulse pattern of output voltage. The features of compact size and low current
draw of 20 mA are particularly important for wireless embedded applications. The
sensor outup is an analog voltage proportional to the measured dust density, with a
sensitivity of 0.5 V per 0.1 mg/m?3. The detecting range of the sensor is from 0 mg/m3
to 0.5 mg/m3.

e  MQ Sensors are metal oxide semiconductor (MOS)-type gas sensors, also known as
chemiresistors. Their detection is based upon the change in resistance of the sensing
material when the gas comes into contact with the material. They have high sensitivity
for different gasses like ammonia, NOx, alcohols, aromatic compounds and smoke.
The conductivity of the sensor increases with the concentration of pollutant gas. The
sensitive material of MQ sensors is SnO,, which has lower conductivity in clean
air. When the target combustible gas exists, conductivity of the sensor increases
proportionally to gas concentration. The sensor module voltage is 5 V. The resistance
variation in the sensor module is converted into proportional voltage variation by the
use of external load resistance.

e BHI1750FVlis a photodiode-based analog ambient light intensity sensor integrated
into a circuit with a two wires serial bus interface. BH1750FVI has high resolution
when measuring light in a range between 1 and 65535 1x.
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