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Abstract. The deuteron, the only two-nucleon bound state, has a shallow character: its binding energy is
strictly related to zero-energy parameters, the triplet scattering length 3anp and triplet effective range 3rnp. This
fact places the deuteron inside the universal window, a region in which systems having a large value of the two-
body scattering length are located. When the scattering length is large compared to the interaction range certain
types of correlations can be observed. Increasing the number of nucleons these correlations are responsible
for the particular spectrum of light nuclei as for example the lack of excited states in three- and four-nucleon
systems. In this presentation some constraints imposed by the large values of the singlet and triplet scattering
lengths in the spectrum of light nuclear systems are discussed.

1 Introduction

When the kinetic and potential energies are such that their
difference is almost zero the system is close to support
a bound state. The scattering length is large and nega-
tive, and a virtual state is located close to the zero-energy
threshold. With a small change of the system parameters,
the scattering lengths jumps from −∞ to +∞ and the vir-
tual state transforms into a bound state. In this particu-
lar region, when the scattering length is large with respect
to the interaction range, the bound (or virtual) state has a
shallow character. It is worth to note that weakly bound
systems define a class of universality. Due to the large tail
of the wave function, the particles stay most of the time
outside the interaction range and many of their properties
can be explained in terms of the probability to be in that
region. This probability is well estimated by the relation
1 − re/a, with re the effective range and a the scattering
length. Close to the unitary limit, a → ∞, the ratio re/a
has a small value. Moreover these two quantities deter-
mine the s-wave phase-shift δ at low energies through the
effective range expansion

k cot δ = −
1
a

+
1
2

rek2 . . . (1)

with the energy E = ~2k2/m. From the experimental
point of view, these two quantities are extracted from the
phases analyzing their behavior at very low energies, when
the effective range function, S k = k cot δ, reaches a lin-
ear dependence in terms of the energy. Accepted val-
ues in the case of two nucleons are 3anp = 5.419(7) fm
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and 3rnp = 1.753(8) fm for the spin S = 1 state and
1anp = −23.740(20) fm and 1rnp = 2.77(5) fm for the
spin S = 0 state, see Ref.[1] and references therein. In
the case of two neutrons the quantities in the S = 0
state are 1ann = −18.90(40) fm and 1rnn = 2.75(11) fm.
For two protons the values are 1app = −7.8063 fm and
1rpp = 2.773(14) fm. However after subtracting the
electromagnetic contribution, the scattering length results
1app = −17.137 fm. Though there is some model depen-
dence in subtracting the electromagnetic contribution, all
values of these quantities are such that the two-nucleon
system in both spin states is located close to the unitary
limit.

A model independent description of the physics inside
the unitary window can be given by an effective field the-
ory (EFT) based on the separation of scales between the
typical momenta Q ∼ 1/a of the system and the underly-
ing high momentum scale ∼ 1/`, with ` a typical range
of the system [2–5]. This condition is well fulfilled in
nuclear physics and this approach is known as pionless-
EFT. Using EFT one can systematically improve the pre-
diction of the observables. For instance the effective range
expansion can be reproduced by such an expansion. At
leading order (LO) the information encoded in the scatter-
ing length a is introduced, whereas the finite-range nature
of the interaction, represented by the effective range re, is
found at the next-to-the-leading order (NLO). In addition,
inside the unitary window, there is an energy pole close to
the two-particle threshold. The extension of the effective
range function to the negative energy pole results in

kd =
1
a

+
1
2

rek2
d . . . (2)

where E2 = −~2k2
d/m is the energy of the virtual or bound

state.
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The most remarkable property of systems at the unitary
limit appears in the three-body system where the Efimov
effect can be observed [6, 7]. When the strength of the
two-body interaction is such that there is a bound state at
zero-energy, an infinite tower of geometrically distributed
energy states appears in the three-body system with the
energy threshold E3 = 0 as an accumulating point. The
energy ratio of successive levels En+1

3 /En
3 = e−2π/s0 is a

universal constant, with s0 depending on the mass ratio
of the constituents; for three equal bosons s0 ' 1.00624
so that e−2π/s0 ' (1/22.7)2. This effect, predicted by V.
Efimov around 50 years ago, was observed 35 years after
its prediction by the group of R. Grimm [8]. An enormous
amount of work, experimental as well as theoretical, has
been, and still is, dedicated to study this phenomenon. An
introduction to this sector of research can be found in the
following reviews [9–16] and references therein.

In the present work we discuss a description of systems
inside the unitary window based on a gaussian potential.
We call this a gaussian characterization of the window and
use the characterization to link different systems along the
window and to study the appearance of correlations. As a
difference to the standard use of the EFT framework, the
gaussian characterization treats at the same level the scat-
tering length and effective range [17–22], so many times
the obtained results have to be compared to the NLO of
the EFT framework.

2 Gaussian characterization of the
two-nucleon system

The dynamics of two-body systems inside the universal
window is highly independent of the details of their mu-
tual interaction. This is motivated by Eq.(1) and (2): the
presence of the shallow state allows for a second order ex-
pansion of its energy in re/a introducing a strict correlation
between the low energy parameters a, kd and re

k−1
d =

a
2

(
1 +

√
1 − 2re/a

)
. (3)

When this relation is fulfilled with an error at the level of
(re/a)2, the bound or virtual state can be considered shal-
low. Moreover, these quantities completely determine the
S -matrix of systems having one bound or virtual state

S(k) =
k + ikd

k − ikd

k + i/rB

k − i/rB
, (4)

where we have introduced the length rB = a − 1/kd.
To highlight the universal properties of systems be-

longing to the unitary window, we propose to study the
two-nucleon system using of a two-parameter short-range
potential. We consider this potential a minimal low-energy
representation of the two-particle interaction fixed by two
low-energy data, a (or kd) and re (or rB). Specifically we
use a Gaussian potential

V(r) = V0e−r2/r2
0 , (5)

where r is the interparticle distance, while the strength
V0 and the range r0 are parameters useful to explore the

low-energy dynamics associated with the existence of one
(bound or virtual) state close to threshold. In Fig.1 we
show how we proceed to characterize the unitary window
using the gaussian potential. In the upper panel the solid
circles indicate the location of the NN system inside the
unitary window. The circles are placed using the corre-
sponding experimental data (in the pp case electromag-
netic effects have been substracted). The solid line en-
compasses the solutions of the Schrödinger equation using
the gaussian potential with variable strength and range. In
fact, the only condition imposed to find the gaussian curve
is to limit the gaussian potential to support one bound
state for positive values of a and to have no bound states
for negative values of a. Once these conditions are veri-
fied the results of a generic gaussian potential lie on the
solid curve. The specific values of the gaussian parame-
ters necessary to describe a particular system are given in
the bottom panel from the position of each system on the
x-axis. As a example a gaussian potential with a range
r0 = 1.55 fm is able to describe simultaneously the triplet
np scattering length, the effective range and the deuteron
binding energy. In the caso of the 0+ states, the np, nn
and pp systems are well described by a gaussian of range
r0 = 1.85 fm.

Different points along the gaussian curve are related
trough the running of the gaussian strength

V0mr2
0

~2 = C0 (1 + α1
r0

a
+ α2

( r0

a

)2
+ . . .) (6)

where C0 = 2.6840 is the value at which a bound state
starts to be supported by the potential and α1, α2 are con-
stants, the same for all gaussian potentials [23, 24]. The
above equation can be used to connect different systems
lying on the gaussian curve. For example the gaussian
curve can be designed using a gaussian potential with con-
stant range and variable strength. The complete curve can
be explored in this way and the above formula relates the
strength of the gaussian potential to the different values of
the scattering length. Constructing the curve in this way
the values of the ratio re/a at which specific systems are
located (those indicated by the symbols in Fig.1) will be
reached. Therefore a second possible movement on the
curve would be to vary the strength V0 and the range r0
maintaining fixed the ratio re/a. The above equation re-
lates the pairs of values r0,V0 needed to perform this ac-
tion. It should be noted that systems having the same ratio
re/a are connected by a scale transformation: a→ λa and
kd → kd/λ implies rB → λrB and re → λre.

When the interaction between two particles is strongly
repulsive at short distances the two-body system is, as a
consequence, highly correlated. For bound systems the
probability to be inside the repulsive core is very small.
Accordingly, the wave function in that region is almost
zero and increases rapidly towards the attractive region.
Therefore the total energy results from a big cancellation
between the kinetic and potential energy. Systems such as
the deuteron are examples of this kind of correlation. It
is interesting to analyze the description of these systems
in terms of the low-energy parameters. Outside the in-
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Figure 1. Upper panel: the binding momentum as a function of
the scattering length (both in units of the effective range) for a
gaussian potential. Specific systems are shown by colored sym-
bols. Bottom panel: the binding momentum as a function of the
scattering length (both in units of the gaussian range). The posi-
tion onto the x-axis of the indicated systems is given.

teraction region the s-wave reduced wave function of the
system is

ψB(r → ∞) = Cae−kdr , (7)

where Ca is the asymptotic normalization constant well
described, inside the unitary window, by the relations

C2
a = 2kd

1
1 − kdre

= 2kde2kdrB . (8)

These relations are fulfilled up to second order in the ratio
re/a. At the same order the mean square radius results

〈r2〉 =
a2

8

[
1 +

( rB

a

)2
]

=
1

8k2
d

e2kdrB . (9)

Both observables are governed by the scaling function
fsc = e2kdrB . At the same order, the probability Pe of the
particles to be in the classical forbiden region is defined as

Pe = C2
a

∫ ∞

2rB

e−2kdrdr =
C2

a

2kd
e−4kdrB =

1 − kdre

e−4kdrB
= e−2kdrB ,

(10)

where we have identified 2rB = reakd as the lower limit for
two particles to be considered outside the interaction re-
gion [21].Very close to the unitary limit Pe ≈ 1− re/a. For
weakly bound systems Pe is governed by the ratio 2kdrB,
therefore we consider the systems inside the unitary win-
dow as strongly correlated. In the Table 1 we give the
experimental values for the deuteron observables (second
column) and the calculated values using the scaling func-
tion fsc (third column). As can be seen the experimen-
tal values are estimated well below a 1% accuracy. Bet-
ter than the expected error given by (re/a)2 which for the
S = 1 state is about 0.1.

E (MeV) 2.224575(9) 2.223
Ca (fm−1/2) 0.8781(44) 0.8786√
〈r2〉 (fm) 1.97535(85) 1.971

Pe 0.601

Table 1. Experimental values (second column) and calculated
values (third column) of the indicated observables.

3 The universal window for A ≤ 6

The gaussian characterization introduced at the level of
two particles can be extended to describe a general number
of particles. In this case the potential energy is

V = V0

∑
i< j

e−r2
i j/r

2
0 , (11)

and the unitary window can be explored by varying the
parameters of the gaussian potential. Though the above
potential applies well for equal boson systems, in the case
of nucleons the potential could be different in the differ-
ent spin-isospin states. Accordingly we extend the above
definition to

V = V0

∑
i< j

e−r2
i j/r

2
0P01 + V1

∑
i< j

e−r2
i j/r

2
1P10 , (12)

where P01 projects on spin-isospin channels S = 0,T = 1
and P10 projects on spin-isospin channels S = 1,T = 0.
Due to antisymmetrization these two channels correspond
to an s-wave interaction, therefore the gaussian parameters
can be fixed by the low energy s-wave parameters. In order
to maintain low the number of parameters in the following
we explore the unitary window using the same range val-
ues, r0 = r1, in both spin states. It is interesting to notice
that in this case and when the two terms are at the unitary
limit, the potential results [23]

V = 2.6840
~2

mr2
0

∑
i< j

e−r2
i j/r

2
0 , (13)

and the binding momentum for A = 3, 4 are [19]

K3 =
0.4883

r0
, (14)

K4 =
1.1847

r0
. (15)
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To determine the binding energies at the unitary limit of
the three- and four-nucleon systems, the range of the gaus-
sian potential has to be known. In order to determine the
range, we proceed in the following way. In Fig.2 we show
the gaussian characterization of the universal window for
three- and four nucleons obtained using a gaussian po-
tential having equal range in both spin channels and the
two strengths, V0 and V1, related to follow the nuclear
cut, defined as the path in which the singlet and triplet
np scattering lengths have a fixed ratio 1anp/

3anp = −4.3
(see Refs.[19, 25]). In the figure the solid green square
and solid red square show the position of 3H and 4He
on the gaussian curve. In fact at those positions the ra-
tio κN/kd =

√
EN/E2 correspond to the experimental ra-

tios. For N = 3,
√

E3/E2 = 3.81, whereas for N = 4,
√

E4/E2 = 13.13. The corresponding values at the x-axis
are kdr0 = 0.457, for N = 3, and kdr0 = 0.481, for N = 4.
From the deuteron binding momentum kd = 0.231 fm−1

we can determine the ranges r(3)
0 and r(4)

0 . With these
ranges the following gaussian potentials

V = V0

∑
i< j

e−(ri j/r
(N)
0 )2
P01 + V1

∑
i< j

e−(ri j/r
(N)
0 )2
P10 (16)

describe simultaneously the experimental values of EN

and E2 at the position of the gaussian curve indicated by
the green square (N = 3) and red square (N = 4) in the
figure. From the obtained ranges we can determine the
binding energies at the unitary limit.

E3 = 0.4883
~2

m[r(3)
0 ]2

= 2.54 MeV , (17)

E4 = 1.1847
~2

m[r(4)
0 ]2

= 13.5 MeV . (18)

The above values are the values at unitary if the systems
follow the nuclear cut moving from the physical point to
the unitary limit. To check to which extend the gaussian
path encodes movements along the unitary window we can
scale one of the widely used NN potentials, the Argonne
AV14 potential [26]. The AV14 potential can be cast in the
following way

V(i, j) =
∑

p=1,14

Vp(ri j)O
p
i j =

∑
S Tν

VS T
ν (ri j)OS T

ν (i j) (19)

with Op
i j the 14 operators that characterize the potential.

In the last equality the potential is given in the four spin-
isospin channels S T = 01, 10, 00, 11. To bring the po-
tential to the unitary limit the spin-isospin channels S T =

01, 10 are scaled by 1.0633 and 0.8 respectively. With this
calibration the two scattering lengths, 1anp and 3anp, are
close to infinity. The binding energy of 3H calculated with
the scaled potential results B(3H) = 2.4 MeV, very close to
the value predicted by the gaussian characterization. This
numerical observation confirms the low sensitivity to the
interaction details this particular region has.

Figure 2 shows another interesting question regarding
the existence of excited states in 3H and 4He. At unitar-
ity the spectrum of 3H has the Efimov structure, an infi-
nite tower of geometrically distributed states accumulat-
ing at E = 0. In the figure the first state is shown with

0.0 0.2 0.4 0.6
(r0/aB)1/2

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

−
(r

0
κ
N

)1/
2

d
3H∗

3H

4He∗

4He

Figure 2. The binding momentum for N = 2, 3, 4 as a function
of the two-body binding momentum kd = 1/aB, both in units of
the gaussian range, calculated using the spin-dependent gaussian
potential.3H∗ and 4He∗ are the first excited state for the three- and
four-nucleon system, respectively.

the orange dashed line. As the parameters of the gaussian
potential are varied to follow the nuclear cut, the excited
state disappears very soon crossing the two-body threshold
and becoming a virtual state [20]. The excited state disap-
pears around a value of the triplet scattering length of 18
fm, very far from the physical point. Therefore we can
conclude that the absence of excited states in the three-
nucleon system is related to the position of the deuteron
in the universal window and can be explained using the
gaussian characterization of the window. In the case of
4He, Fig.2 shows that there is an excited state at unitarity
and that the excited state remains along the path (blue di-
amonds). However in the figure the Coulomb interaction
has not been considered. When it is taken into account, the
three-nucleon systems, 3H and 3He, split and at the same
time the excited state of 4He move into the continuum [19].

We now comment on the formation of the A = 6 nu-
clei as emerging from the unitary limit. This is illustrated
in Fig.3. At unitarity, the potential of Eq.(13) is used to
solve the Schrödinger equation for A ≥ 3. Due to antisym-
metrization of the wave function, the A = 6 nuclei result
unbound below the 4He threshold. Differently from what
happens at the physical point, at unitarity the np system
has zero energy and, therefore 6He and 6Li have the same
threshold represented by the 4He binding energy. As the
strength of the potential increases along the nuclear cut the
two nuclei appear, first 6Li (violet squares) and then 6He
(red stars). The exact position of these nuclei on top of the
gaussian characterization is discussed in Ref.[19]. In the
figure the energies are given in units of the triton energy
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Figure 3. The energies of the two-, three-, four- and six-nucleon
systems, in units of the triton binding energy ET , as a function
of the two-body energy, in units of the deuteron energy. Sym-
bols indicate the different nuclei (red and blue circles represent-
ing protons and neutrons respectively). The ’*’ indicates excited
states.

ET as a function of the two-body energy in units of the
deuteron energy.

4 Conclusions

In the present work we have discussed the gaussian charac-
terization of the unitary window in the case of few-nucleon
systems. Systems belonging to this window show low sen-
sitivity to the interaction details. The dynamics is gov-
erned by the scattering length and by the location on the
unitary window given by the ratio re/a. The gaussian paths
are useful to connect different systems, for example atomic
and nuclear systems, or the same system in different spin
channels, as the NN system in S = 0 or S = 1. They
are also useful to follow real (or ideal) movements of the
systems inside the window. Though in nuclear systems at
present it is not possible to perform experiments in which
the nuclear interaction is changed, this can be achieved
for atomic systems in traps using Feshbach resonances.
For these particular systems, trapped cold atoms, it was
shown that a particular class of universal properties ap-
pears known as van der Waals universality. In Ref. [21]
this property has been discussed showing that this class
of universality is well described by the gaussian charac-
terization. This is a manifestation of two facts; from one
side, due to the low importance on the details of the in-
teraction, the real interaction between two-particles can be
effectively represented by a two-parameter potential as a

gaussian. At that point, movements of the systems inside
the unitary window can be followed by varying the param-
eters of that effective potential. On the other hand, move-
ments along the window can be followed by scaling the
original potential with the result that the scaled potential
follows closely the gaussian path. In the present discussion
we have shown explicitly this fact by constructing a two-
body gaussian potential able to describe simultaneously
the triton and deuteron biding energies and, with a differ-
ent range, the alpha particle and the deuteron. Then, using
the range of those gaussian potentials, we have predicted
the corresponding binding energies at unitarity. To verify
the quality of this procedure we have proposed an ideal ex-
periment by scaling the spin-isospin channels S ,T = 0, 1
and 1, 0 of the AV14 potential in order to bring the sys-
tem at the unitary limit. Then we have calculated the 3H
binding energy at unitarity, using the scaled potential, and
surprisingly the energy value resulted very close to that
one predicted by the gaussian potential showing that the
scaled potential follows the gaussian path.

One important property of the gaussian characteriza-
tion is the possibility of connecting the physical points to
the unitary limit allowing the study of the nuclear levels at
this limit. In this respect the unitary limit can be seen as
a mirror of the nuclear levels in which the scale symmetry
is better realized. First of all we have shown the evolution
of the excited states. At unitarity the three-nucleon sys-
tem described by the potential of Eq.(13) has an infinite
number of excited states geometrically distributed (Efimov
specrum). By varying the strength of the interaction fol-
lowing the nuclear cut, the system moves away from that
limit and the excited states disappear one by one, the last
one when the np scattering length is around 18 fm. In the
case of 4He, the excited state is present along the gaussian
path and its evolution onto a resonance state depends on
the inclusion of the Coulomb interaction. Interestingly we
have shown that 6He and 6Li are not bound at the unitary
limit, their binding strongly depends on the deuteron one.
They emerge as stable states close to the point at which the
excited state of the triton disappears. We can conclude that
the particular spectrum of the light nuclei is strongly de-
termined by the position of the deuteron and the 0+ virtual
states inside the unitary window. With the corresponding
scattering lengths and effective ranges as the only input
parameters, the A ≤ 6 spectrum can be predicted and con-
tinuously linked to the unitary point. The extension of the
present analysis up to 12C is at present underway.
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