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Abstract: The synthesis of a novel uracil derivative, 3-cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-
2,4(1H,3H)-dione (4), is reported via a four-component reaction involving an α-chloroketone (1), an
aliphatic isocyanate (2), a primary aromatic amine (3) and carbon monoxide. The proposed reaction
mechanism involves a Pd-catalyzed carbonylation of 2-chloro-1-phenylethan-1-one (1), leading to a
β-ketoacylpalladium key intermediate, and, at the same time, in situ formation of non-symmetrical
urea deriving from cyclohexyl isocyanate (2) and p-toluidine (3). After a chemo-selective acylation of
the non-symmetrical urea and the subsequent cyclization of the acylated intermediate, 3-cyclohexyl-
6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione (4) is formed. Uracil derivative 4 was isolated in
good yield (73%) and fully characterized by 1H, 13C, 2D 1H-13C HSQC and 2D 1H-13C HMBC NMR,
FT-IR spectroscopy and GC-MS spectrometry.
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1. Introduction

Nitrogen heterocycles and specifically pyrimidines are widespread in many natural
biologically active molecules. Uracil represents a valuable six-membered N-heterocycle
(Figure 1a) that frequently occurs in nature due to one of the four nucleic bases of RNA [1].
In the discovery of new drugs, uracil derivatives are considered very fascinating molecules,
both because of their synthetic accessibility and their drug-like properties thanks to the
substituents connected at the N1, N3, C5 and C6 positions of the uracil ring [2].
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Figure 1. (a) Structure of the uracil nucleic base. (b) Examples of bio-active uracil derivatives: 
saflufenacil (herbicide); terbacil (pesticide); 5-fluorodeoxyuridine (anti-cancer agent); zidovudine 
(anti-HIV drug). 
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Figure 1. (a) Structure of the uracil nucleic base. (b) Examples of bio-active uracil derivatives:
saflufenacil (herbicide); terbacil (pesticide); 5-fluorodeoxyuridine (anti-cancer agent); zidovudine
(anti-HIV drug).
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Uracil derivatives have a wide spectrum of pharmacological activities and clinical
applications. For example, differently substituted uracils containing a benzoyl moiety
exhibit herbicidal activity (saflufenacil, Figure 1b) [3] and alkyl-substituted uracils are
often employed as pesticides for treatment of citrus and pineapple plantations (terbacil,
Figure 1b) [4]. Regarding their pharmacological properties, many uracil-containing drugs
have anti-cancer and antiviral activities (fluorodeoxyuridine and zidovudine, respectively,
Figure 1b) [5].

There are many synthetic strategies to achieve the uracil heterocycle. Among the
reported methods, the simplest one involves the hydrolysis process of cytosine by adding
H2O to produce uracil and ammonia [1]. However, the most widely used methodology
to obtain uracil is via a condensation reaction between urea and maleic acid in fuming
sulfuric acid [6]. Moreover, many heterocyclic scaffolds can be achieved by employing
carbonylative processes, often palladium catalyzed [7–9].

As part of our ongoing interest in the field of metal-catalyzed reactions [10–13] and
more specifically of Pd-catalyzed carbonylative syntheses of heterocycles [14–16], herein
the multicomponent synthesis of the novel uracil derivative 3-cyclohexyl-6-phenyl-1-(p-
tolyl)pyrimidine-2,4(1H,3H)-dione (4, Scheme 1) is reported. Heterocycle 4 was prepared
via a palladium-catalyzed carbonylation reaction of α-chloroketone 2-chloro-1-phenylethan-
1-one (1) in the presence of cyclohexyl isocianate (2) and p-toluidine (3) under a CO atmo-
sphere [17] (Scheme 1).
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Scheme 2. Proposed mechanism for the four-component synthesis of uracil derivative 4. 

It should be emphasized that the acylation of urea 6 occurred chemoselectively only 
at the alkyl-substituted nitrogen atom. The observed selectivity was likely due to the 
higher nucleophilicity of the alkyl-substituted nitrogen atom compared to the aryl-substi-
tuted nitrogen. The subsequent cyclization of intermediate 7, promoted by an 

Scheme 1. Pd-catalyzed multicomponent synthesis of the uracil derivative 3-cyclohexyl-6-phenyl-1-
(p-tolyl)pyrimidine-2,4(1H,3H)-dione 4.

2. Results and Discussion

Regarding the reaction mechanism of the multicomponent synthesis of uracil derivative
4, we hypothesize the following pathway: a Pd-catalyzed carbonylation of α-chloroketone
1 firstly affords the β-ketoacylpalladium intermediate 5, that subsequently acylates the non-
symmetrical urea 6 [18]. The latter was generated in situ from the nucleophilic addition of
p-toluidine 3 to the cyclohexyl isocyanate 2 (Scheme 2).
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nucleophilicity of the alkyl-substituted nitrogen atom compared to the aryl-substituted
nitrogen. The subsequent cyclization of intermediate 7, promoted by an intramolecular
nucleophilic attack of the aryl-substituted nitrogen to the carbonyl group, afforded the
desired uracil derivative 4 through a condensation process [17] (Scheme 2). The resulting
3-cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione 4 was isolated after column
chromatography in 73% yield.

The uracil derivative 3-cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione 4
was fully characterized by 1H, 13C, 2D 1H-13C HSQC and 2D 1H-13C HMBC NMR, FT-IR
spectroscopy and GC-MS spectrometry (see Supplementary Materials for copies of spectra).
The 1H NMR spectrum of uracil derivative 4, recorded at 25 ◦C in CDCl3 solution, shows the
presence of a distinctive singlet proton at 5.81 ppm due to the vinylic proton, H-5, (Figure 2)
of the uracil moiety, in analogy with the chemical shift of similar uracil derivatives reported
in a previous work [17]. The signal at 4.87 ppm, a multiplet similar to a triplet of triplets,
was attributed to the axial H1′” bonded to the tertiary C-1′” of the cyclohexyl substituent.
This peak has multiplicity due to a vicinal axial–axial (ax–ax) coupling, 3J = 12.2 Hz, and
a vicinal axial–equatorial (ax–eq) coupling, 3J = 3.8 Hz. Other protons belonging to the
cyclohexyl ring appear in the spectrum as follows. (a) The two equivalents axial protons
H-2′” resonate at 2.46 ppm, the signal is a multiplet resembling a quartet of doublets. The
multiplicity (qd) comes from three couplings of similar magnitude (12.2 Hz, one geminal
(2J), two vicinal (axial–axial) with H-3′” and H-1′”) and a smaller coupling (3J = 3.8 Hz)
corresponding to a vicinal axial–equatorial interaction with H-3′”. (b) Four multiplets are
observed in the range from 1.84 to 1.16 ppm relative to the remaining 8H of the cyclohexyl
ring. (c) Finally, the singlet at 2.25 ppm was clearly assigned to the methylic protons of the
p-tolyl moiety (see Supplementary Material for a copy of the 1H NMR spectrum).
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Figure 2. Structure of uracil derivative 4 with carbon atoms numbered.

The 13C NMR spectrum shows the presence of four characteristic signals belonging to
the carbons of the uracil ring: (1) The carbonyl carbon C4 resonates at 162.9, as confirmed
by the coupling with protons H-5 and H-1′” observed in the HMBC spectrum. (2) The
carbonyl carbon C-2 resonates at 152.0 ppm and appears as a broad signal, likely because of
the bonds with quadrupolar nuclei N-1 and N-2. Its proximity to the cyclohexyl ring was
proven by an intense cross peak with the proton H-1′” (HMBC). (3) The peak at 103.3 ppm
was assigned to the C-5 of the uracil nucleus based on its coupling with H-5 observed in the
HSQC spectrum. (4) The resonance of carbon C-6 was assigned to the peak at 153.9 ppm
and confirmed by a cross peak with protons H-5 and H-2′’ (HMBC). (See Supplementary
Materials for copies of the 13C NMR, 2D HSQC and 2D HMBC spectra.)

3. Materials and Methods
3.1. General Methods

NMR spectra were recorded on a Bruker 500 MHz spectrometer and chemical shifts
were reported in parts per million (δ). The following abbreviations were used to ex-
plain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet,
quin = quintuplet, sext = sextet, sep = septet and br = broad. The FT-IR spectrum was
recorded on a Perkin-Elmer 681 spectrometer. GC-MS analyses were performed on a HP
5995C model. Analytical thin-layer chromatography (TLC) was carried out on pre-coated
0.25 mm thick plates of Kieselgel 60 F254, and visualization was accomplished by UV light
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(254 nm) or by spraying a solution of 5% (w/v) ammonium molybdate and 0.2% (w/v)
cerium(III) sulfate in 100 mL 17.6% (w/v) aq. sulfuric acid and heating to 473 K until blue
spots appeared. Chromatography was conducted using silica gel 60 with a particle size
distribution of 40–63 µm and 230–400 ASTM. Reagents and solvents, unless otherwise
specified, were purchased from Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA) and
TCI (Tokyo Chemical Industry, Europe, N. V., Eschborn, Germany) and used without any
further purification. Petroleum ether refers to the 40–60 ◦C boiling fraction.

3.2. Synthesis of 3-Cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione (4)

A solution containing cyclohexyl isocyanate 2 (125.2 mg, 128 µL, 1.0 mmol), 2-chloro-
1-phenylethan-1-one 1 (463.8 mg, 3.0 mmol), p-toluidine 3 (160.7 mg, 1.5 mmol), Pd(AcO)2
(trimeric, FW = 673.46, 4 mol%, 27.0 mg, 0.04 mmol), PPh3 (83.9 mg,0.32 mmol) and NEt3
(202.4 mg, 278 µL, 2.0 mmol) in anhydrous THF (15 mL) was placed in a 45 mL autoclave.
The autoclave was purged three times and pressurized with CO at 27 atm. Then, the
reactor was heated at 110 ◦C under magnetic stirring for 10 h. After this time, the reaction
system was cooled to room temperature, carefully depressurized and the solvent was
evaporated under reduced pressure to give a crude material. The crude mixture was
purified by column chromatography on silica gel using petroleum ether/AcOEt 80:20 as
the eluent, affording 3-cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione (4) as a
clear yellow oil (263.2 mg, 73% yield).

1H NMR (400.12 MHz, CDCl3): δ 7.24–7.22 (m, 1H), 7.19–7.16 (m, 2H), 7.11–7.10 (m,
2H), 7.04–7.03 (m, 2H), 6.95–6.93 (m, 2H), 5.81 (s, 1H), 4.87 (tt, J = 12.2, 3.8 Hz, 1H), 2.46 (qd,
J = 12.2, 3.8 Hz, 2H), 2.25 (s, 3H), 1.84–1.82 (m, 2H), 1.73–1.63 (m, 3H), 1.39–1.37 (m, 2H),
1.21–1.16 (m, 1H); 13C NMR (100.62 MHz, CDCl3): δ 162.9, 153.9, 152.0, 138.2, 134.8, 133.5,
129.4, 129.3, 128.9, 128.3, 128.1, 103.3, 54.2, 28.4, 26.3, 25.3, 21.0; FT-IR (film, cm−1): 2931,
2856, 1703, 1657, 1623, 1512, 1447, 1417, 1406, 1360, 1344, 815, 764, 728, 716, 697, 532; GC-MS
(70 eV) m/z: 360 (M+, 1), 279 (100), 235 (16), 207 (31), 194 (17), 91 (13), 77 (4), 65 (6), 55 (4).

4. Conclusions

The novel uracil derivative 3-cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-
dione (4) was synthetized through a four-component Pd-catalyzed reaction and isolated by
column chromatography in good yield (73%). The uracil derivative 4 was fully character-
ized by 1H, 13C, 2D 1H-13C HSQC and 2D 1H-13C HMBC NMR, FT-IR spectroscopy and
GC-MS spectrometry.

Supplementary Materials: The following spectra are available online: 1H NMR (CDCl3, 500 MHz);
13C NMR (CDCl3, 125 MHz); 2D 1H-13C HSQC NMR (CDCl3)—Aromatic portion; 2D 1H-13C HSQC
NMR (CDCl3)—Uracil portion; 2D 1H-13C HSQC NMR (CDCl3)—Aliphatic portion; 2D 1H-13C
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