
Computers & Operations Research 166 (2024) 106625

A
0
n

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Real-time schedule adjustments for conflict-free vehicle routing
Tommaso Adamo, Gianpaolo Ghiani ∗, Emanuela Guerriero
Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Via per Monteroni, 73100 Lecce, Italy

A R T I C L E I N F O

Keywords:
Conflict-free vehicle routing and scheduling
Real-time optimization

A B S T R A C T

Conflict-Free Vehicle Routing Problems (CFVRPs) arise in manufacturing, transportation and logistics applications
where Automated Guided Vehicles (AGVs) are utilized to move pallets and containers. A peculiar feature of
these problems is that collision avoidance among vehicles must be considered explicitly. To make things more
complex, the uncertainty affecting both travel times and machine ready times often results in vehicle delays or
anticipations that require real-time modifications to the fleet nominal plan. In this paper, the determination of
such modifications (schedule adjustment problem in CFVRPs) is modeled as a sequential decision problem for
which we develop a tailored fast exact algorithm suitable for any objective function that is non-decreasing
in the arrival times. Computational results show that optimal solutions can be found within at most 3.3
milliseconds for instances with up to 300 vehicles with improvements of various performance measures up
to 74% compared to state-of-the-art solution algorithms.
1. Introduction

Using Automated Guided Vehicles (AGVs) to move pallets and
containers can considerably improve productivity and reduce costs in
warehouses, production plants and port terminals. As stated in the
latest report of Grand View Research (2022), the market for automated
guided vehicles (AGVs) is growing rapidly and was valued USD 3.81
billion in 2021. Experts predict that this trend will continue with a
projected annual growth rate of 10.2% from 2022 to 2030.

AGVs navigate through a network of configurable guide paths,
where the limited arc capacity must be taken into account explicitly
to prevent collisions among vehicles. This leads to a relevant vehicle
routing problem known as the Conflict-Free Vehicle Routing Problem
(CFVRP).

We now revise some of the most relevant contributions to the
solution of the CFVRP. For a more detailed analysis of the literature,
the reader is referred to Vis (2006) and Fragapane et al. (2021).

Kim and Tanchoco (1991) present a constructive heuristic that
generates a solution in a sequential fashion. At each iteration, the
procedure maintains, for each node of the flow path network, a list of
time windows reserved by scheduled vehicles and a list of free time
windows available for vehicles to be scheduled. Then the algorithm
routes the vehicles through the free time windows by solving a shortest
path problem with time windows (Desrosiers et al., 1983). (Krishnamurthy
et al., 1993) propose a column generation approach to solve a problem
arising in a Flexible Manufacturing System. The master problem im-
plemented makespan and conflict-free constraints, while subproblems

∗ Corresponding author.
E-mail addresses: tommaso.adamo@unisalento.it (T. Adamo), gianpaolo.ghiani@unisalento.it (G. Ghiani), emanuela.guerriero@unisalento.it (E. Guerriero).

were constrained shortest path problems with time-dependent costs on
the edges. Subsequently, Desaulniers et al. (2003) extend the problem
by considering the assignment of requests to vehicles; they provide an
exact method based on column generation embedded in a branch-and-
cut scheme to dispatch and route AGVs while minimizing production
delays. The problem of assigning, scheduling and routing vehicles si-
multaneously is solved by Corréa et al. (2007) through a decomposition
method. They combine constraint programming and mixed integer
programming (MIP) and use logic cuts to eliminate conflicting solu-
tions. (Gawrilow et al., 2008) compare conflict-free routes dynamically
computed using implicit time-expanded networks with an online static
route computation procedure. The former proves to be more successful
on graphs with high density, but very sensitive to delays or disruptions.
In contrast, in the latter approach the computed routes do not change
and are thus more robust against disturbances. Miyamoto and Inoue
(2016) present an integer programming model, a local search and a
random search for vehicle dispatching and conflict-free routing. Adamo
et al. (2018) develop a branch-and-bound algorithm to determine en-
ergy efficient solutions in terms of routes and speeds. Their approach
determines lower bounds by solving nonlinear problems in quadratic
time and generates branching constraints to avoid conflicts. (Murakami,
2020) uses a time–space network and formulate the problem as a MIP
problem.

In the context of planning the operations in an automated container
terminal, one has to consider the integrated scheduling of handling
equipment (quay cranes, yard cranes, etc.) and AGV conflict-free rout-
ing. For this problem (Zhong et al., 2020) develop a MIP model to
vailable online 19 March 2024
305-0548/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.cor.2024.106625
Received 8 August 2023; Received in revised form 8 March 2024; Accepted 14 Ma
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

rch 2024

https://www.elsevier.com/locate/cor
https://www.elsevier.com/locate/cor
mailto:tommaso.adamo@unisalento.it
mailto:gianpaolo.ghiani@unisalento.it
mailto:emanuela.guerriero@unisalento.it
https://doi.org/10.1016/j.cor.2024.106625
https://doi.org/10.1016/j.cor.2024.106625
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers and Operations Research 166 (2024) 106625T. Adamo et al.

T
d
p
p
p
p

p
F
c

2

t
f
c
e
w
l
G
(
𝜏
W
t
e
s
e
v

N
a
s
i
p
c
i
t
o
v
a
v
v

c
d
a
d
i
v
a

A
p
p
b
a

C
n
c

t̄

w
p
v

D
i
a
v
s
f
(

minimize total delay for a given task allocation. For another relevant
contribution see Cao et al. (2023) which also contains an in-depth
analysis of the literature.

Another line of research studies the dynamic version of the CFVRP
in which requests arrive in a random fashion. Recent remarkable
contributions in this area are: (Hwang and Jang, 2020) that develop a
reinforcement learning approach for the problem of conflict-free rout-
ing of overhead hoist transport vehicles in semiconductor fabrication
facilities; Chen et al. (2022) that integrate ant colony optimization into
a multi-agent system.

In this paper, we present a fast exact algorithm for the schedule ad-
justment problem in conflict-free vehicle routing problems (SA-CFVRP).
The motivation of the study is as follows: in AGV systems, unpredictable
AGV delays and anticipations may be caused by a number of random
events, such as processing times greater than expected at numerically
controlled machines, AGV low battery levels, vehicles slowing down to
avoid human operators cutting off their road, etc. As a consequence,
the fleet nominal plan can be become suboptimal or even unfeasible
(i.e., conflicts among vehicles may arise). We assume that AGVs are
under the control of a centralized system that monitors vehicle posi-
tions at a high rate (e.g., once every 300 ms). A peculiar feature of
the problem is that vehicles move very fast (at speeds in the order of
one/two meters per second) which requires SA-CFVRP algorithms to
recover feasibility in few milliseconds.

To the best of our knowledge, the only contribution to the SA-
CFVRP is Adamo et al. (2023) in which corrective actions were pre-
scribed only at the current positions of the AGVs in the nominal plan.
In this paper we go one step further. First, we model the problem
as a deterministic sequential decision process for which we devise a
preprocessing phase to reduce problem complexity. Second, we develop
an algorithm to adjust the nominal plan at multiple time points, which
enlarges the solution space and allows to achieve better performances.
In order to keep the computational burden low enough for real-time
applications, the prescribed corrective actions do not include modi-
fications to the paths followed by vehicles but only the insertion of
waiting times along the routes of the nominal plan. This is done while
preserving the precedence relationships among the nominal arrival
times at each single vertex visited by more than one vehicle. More
specifically, the main contributions of this work can be summarized
as follows.

• We introduce and motivate the SA-CFVRP as a deterministic se-
quential decision problem. We propose a policy that maps the state
(i.e. what positions the vehicles are at) to an action (i.e. vehicle
waiting times). We show that the proposed policy is based on the
solution of a linear program and prove that its solution is optimal
with respect to any objective function that is a non-decreasing
function of arrival times.

• We prove that the SA-CFVRP can be reformulated as a one-to-all
shortest paths problem on an auxiliary graph. In addition, we pro-
pose two polynomial-time algorithms that aim to reduce the in-
stance size through a pre-processing step to be executed just once
before the first stage, with the goal of improving computational
efficiency and scalability.

• We conduct a computational study to assess the performance
of the proposed approach and determine the maximum problem
instance size that can be solved in a real-time setting. The compu-
tational results showed that the proposed algorithm is able to find
the optimal solutions of instances with up to 300 vehicles within
at most 3.3 milliseconds.

he rest of this paper is organized as follows. The next section formally
efines the problem and introduces the notation used throughout the
aper. In Section 3 we propose a policy based on the solution of a linear
rogram and discuss its properties. In Section 4 we show that each base
roblem of SA-CFVRP is equivalent to a one-to-all-pairs shortest paths
roblem defined on an auxiliary graph. In Section 5 we present two
2

olynomial-time algorithms for reducing the size of the auxiliary graph.
inally, Section 6 presents some computational results, followed by the
onclusions in Section 7.

. Problem definition and notation

Let 𝐺 = (𝑉 ,𝐴, 𝜏) be a directed graph representing the internal
ransportation network of a material handling system served by a
leet 𝐾 of identical vehicles. The AGVs move along a guide path
onsisting of unit-capacity segments that can intersect only at their
ndpoints. The vertex set 𝑉 represents the endpoints of such segments,
here other components of the material handling system (such as

oading/unloading stations and storage positions) might be located.
iven a segment and its endpoints 𝑖 ∈ 𝑉 and 𝑗 ∈ 𝑉 , both arcs (𝑖, 𝑗) and
𝑗, 𝑖) belong to 𝐴, i.e. we assume that each segment is two-way. Function
∶ 𝐴 → N returns the nominal traversal time of any arc (𝑖, 𝑗) ∈ 𝐴.
ithout any loss of generality, we made the following assumptions:

raversal times are discrete, and vehicles are allowed to wait only at the
nd of the segments. For the sake of notational convenience the vehicle
hape is ignored. In the following we shall discuss how notation can be
xtended in a quite natural way to a realistic setting where a single
ehicle might occupy simultaneously more than one segment.

otation for the initial nominal conflict free plan. We assume that
n initial nominal plan has been previously determined as a feasible
olution of a conflict free vehicle routing problem defined on 𝐺. The
ndividual vehicle plan prescribes a route and a schedule, including
ossible waiting times at some vertices of 𝑉 . The initial nominal plan is
onflict-free and hopefully optimizes some performance measure. This
mplies that it satisfies a set of non-overlapping constraints, modeling
he unit-capacity of both vertices and arcs. In particular, two types
f conflicts may occur: a vertex-conflict, which happens when multiple
ehicles on different routes are headed towards the same vertex and
rrive at the same time, and an arc-conflict, which happens when a
ehicle tries entering a track segment already occupied by another
ehicle (in the same or in opposite direction).

For each vehicle ℎ ∈ 𝐾, the nominal plan prescribes a sequence 𝑆ℎ
onsisting of 𝑝ℎ locations to be visited by the vehicle. In particular, we
enote with 𝑠𝑖ℎ the 𝑖th vertex visited by the vehicle ℎ, with 𝑖 = 1,… , 𝑝ℎ
nd ℎ ∈ 𝐾. For notational convenience, we use the symbol 𝜏ℎ𝑖 to
enote the traversal time of the arc from vertex 𝑠ℎ𝑖 to vertex 𝑠ℎ,𝑖+1,
.e. 𝜏ℎ𝑖 ∶= 𝜏(𝑠ℎ𝑖, 𝑠ℎ,𝑖+1) with 𝑖 = 1,… , 𝑝ℎ − 1 and ℎ ∈ 𝐾. The nominal
alues of the arrival time and waiting time of vehicle ℎ at vertex 𝑠ℎ𝑖
re respectively denoted with t̄ℎ𝑖 and �̄�ℎ𝑖, for 𝑖 = 1,… , 𝑝ℎ and ℎ ∈ 𝐾.

n illustrative example. In Fig. 1 we provide an example of a nominal
lan for three vehicles (denoted as v0, v1 and v2) moving on the
hysical graph showed in Fig. 2(a), where arcs represent paths followed
y vehicles, with 𝑆v0 = [0, 1, 2, 5, 6, 7, 6, 9, 8], 𝑆v1 = [12, 11, 9, 6, 5, 2, 3]
nd 𝑆v2 = [10, 11, 9, 6, 5, 4].

onjunctive relationships. Given a vehicle ℎ ∈ 𝐾, the corresponding
ominal values of the arrival and waiting times satisfy the following
ondition:

ℎ,𝑖+1 = t̄ℎ𝑖 + �̄�ℎ𝑖 + 𝜏ℎ𝑖, (1)

ith 𝑖 = 1,… , 𝑝ℎ − 1. In the following we refer to (1) as a conjunctive
recedence relationship between the values of nominal arrival times at
ertices 𝑠ℎ𝑖 and 𝑠ℎ,𝑖+1.

isjunctive precedence relationships. Since the initial nominal plan
s conflict-free, the nominal values of arrival times and waiting times
lso induce a set of disjunctive precedence relationships for each vertex
isited by more than one vehicle. Each disjunctive precedence relation-
hip refers to the avoidance of either a node-conflict or an arc-conflict. As
ar as node-conflict is concerned, the disjunctive precedence relationship
2) holds between the nominal values of arrival times t̄ and t̄ of two
ℎ𝑖 𝑘𝑗

Computers and Operations Research 166 (2024) 106625T. Adamo et al.

̄

w
d
e
r

̄

̄

Fig. 1. The Gantt chart of the nominal plan.
̄

distinct vehicles arriving at the same vertex (i.e., 𝑠ℎ𝑖 = 𝑠𝑘𝑗) with vehicle
𝑘 preceding vehicle ℎ, that is:

tℎ𝑖 ≥ t̄𝑘𝑗 + �̄�𝑘𝑗 + 1, (2)

ith ℎ, 𝑘 ∈ 𝐾, 𝑘 ≠ ℎ, 𝑖 = 1,… , 𝑝ℎ and 𝑗 = 1,… , 𝑝𝑘. Regarding the
isjunctive precedence relationships corresponding to arc-conflicts, for
ach segment with endpoints 𝑠ℎ𝑖 and 𝑠ℎ,𝑖+1, the disjunctive precedence
elationship (2) holds between the nominal values t̄ℎ𝑖 and t̄𝑘𝑗 of two

distinct vehicles traversing the same segment with vehicle 𝑘 ∈ 𝐾
entering the segment at time t̄𝑘,𝑗−1, earlier than vehicle ℎ (i.e. t̄𝑘,𝑗−1 <
tℎ𝑖), traversing it in the same direction (i.e. 𝑠ℎ𝑖 = 𝑠𝑘,𝑗−1 ∧ 𝑠ℎ,𝑖+1 = 𝑠𝑘,𝑗)
or in the opposite one (i.e. 𝑠ℎ𝑖 = 𝑠𝑘,𝑗 ∧ 𝑠ℎ,𝑖+1 = 𝑠𝑘,𝑗−1).

The temporal network. Conjunctive/disjunctive precedence relation-
ships of the initial nominal plan can be represented by a temporal
network = (,), where each node in corresponds to a time
point t̄ℎ𝑖 with two types of outgoing arcs, with ℎ ∈ 𝐾 and 𝑖 = 1,… , 𝑝ℎ−1.
The former refers to conjunctive relationship (1) and connects time
point t̄ℎ𝑖 with time point t̄ℎ𝑖+1. The latter refers to the disjunctive
relationship (2) with one arc connecting time point t̄𝑘𝑗 to time point
tℎ𝑖, if t̄ℎ𝑖 > t̄𝑘𝑗 and one of the following conditions are satisfied:

• 𝑠ℎ𝑖 = 𝑠𝑘,𝑗−1 ∧ 𝑠ℎ,𝑖+1 = 𝑠𝑘,𝑗 , i.e. vehicles ℎ and 𝑘 traverse the same
segment in the same direction;

• 𝑠ℎ𝑖 = 𝑠𝑘,𝑗 ∧ 𝑠ℎ,𝑖+1 = 𝑠𝑘,𝑗−1, i.e. vehicles ℎ and 𝑘 traverse the same
segment in opposite directions;

• 𝑠ℎ𝑖 = 𝑠𝑘𝑗 ∧ 𝑠ℎ𝑖+1 ≠ 𝑠𝑘,𝑗+1, i.e. vehicles ℎ and 𝑘 traverse two distinct
intersecting segments;

with 𝑘 ∈ 𝐾, 𝑗 = 1,… , 𝑝𝑘 − 1 and ℎ ≠ 𝑘. For the sake of notational
convenience, we label each node of the temporal network with the
corresponding pair (ℎ, 𝑖) and denote with 𝛾 𝑖ℎ the set of starting nodes
of disjunctive arcs ingoing to the node (ℎ, 𝑖), with ℎ ∈ 𝐾 and 𝑖 =
1,… , 𝑝ℎ. The temporal network of the illustrative example is reported
in Fig. 2(b). In particular, we cluster the nodes on the basis of the
vehicle which they refer to. It is worth noting that each node (ℎ, 𝑖)
in the temporal network (for ℎ ∈ 𝐾, 𝑖 = 1,… , 𝑝ℎ) corresponds to a
vertex 𝑠ℎ𝑖, i.e. the physical vertex which the time point t̄ℎ𝑖 refers to.
In the example of the temporal network of Fig. 2(b), vehicles v1 and v2
traverse segments (6, 9) and (5, 6) in the same direction, with vehicle v1
preceding vehicle v2. The disjunctive arc ((𝑘, 𝑗), (ℎ, 𝑖)) = ((v1, 4), (v2, 3))
of Fig. 2(b) states that the vehicle v can enter segment (6, 9) only when
3

2

vehicle v1 leaves vertex 6, i.e. 𝑠v2 ,3 = 𝑠v1 ,3 = 9 ∧ 𝑠v2 ,4 = 𝑠v1 ,4 = 6.
Similarly the disjunctive arc ((v1, 5), (v2, 4)) states that vehicle v2 can
enter segment (5, 6) only when vehicle v1 leaves vertex 5, i.e. 𝑠v2 ,4 =
𝑠v1 ,4 = 6 ∧ 𝑠v2 ,5 = 𝑠v1 ,5 = 5.

Taking into account vehicles shape. More generally, each disjunctive
precedence relationship arising in the initial nominal plan is repre-
sentative of arrivals of two distinct vehicles either at the same vertex
or at adjacent vertices, i.e., endpoints of a segment. Such precedence
relationships represent a set of collision-avoidance rules that have
guided the search for the initial conflict-free nominal plan. In particular,
inequalities (2) state that the initial nominal values of both arrival times
and waiting times have been determined so that a vehicle may only
leave the vertex it currently occupies if it has claimed the next vertex on
its path. After a segment is left by a vehicle, its endpoints are released
and only then the segment can be claimed by another vehicle.

We can generalize the previous mechanism to model that the initial
nominal plan has been generated by taking into account the shape
of the vehicles. In this case the path followed by a single vehicle
corresponds to a sequence of adjacent non-overlapping zones visited
by a single vehicle. Moreover, 𝑆ℎ represents the sequence of adjacent
vertices visited by a reference point of the vehicle ℎ (typically its
center of gravity), with the nominal plan prescribing for each zone a
sequence of vehicles visiting it. The nominal plan of Fig. 3 reports the
schedule associated to the reference points of two vehicles traversing
two paths on the physical network of Fig. 4(a). Even though the paths
followed by the reference points do not intersect at any vertex, the
temporal network has to include a set of disjunctive arcs representing
the avoidance of zone-conflicts depicted in Fig. 5. The aim is to model
that each reference point is the center of a circle area occupied by
the vehicle, with ray value equal to 1 unit (i.e. the length of a single
segment in the considered example). Given the two reference point
paths, a nominal plan is conflict-free if, at any time instant, the distance
between the reference points is (strictly) greater than the diameter
of vehicle shape. This (sufficient) conflict-free condition is satisfied as
follows: when the vehicle 𝑣0 arrives at node 𝑠v0 ,2 = 5, it claims a portion
of the path of vehicle 𝑣1 associated to vertices 𝑠v1 ,3 = 9, 𝑠v1 ,4 = 6,
𝑠v1 ,5 = 7. For the nominal plan of Fig. 3, such zone-conflict avoidance
condition is encoded by the disjunctive relationships (2) associated to
arcs ((v0, 2), (v1, 3)), ((v0, 2), (v1, 4)), ((v0, 2), (v1, 5)) of Fig. 4(b), that is:

t ≥ t̄ + �̄� + 1,
v1 ,3 v0 ,2 v0 ,2

Computers and Operations Research 166 (2024) 106625T. Adamo et al.

̄

̄

̄

Fig. 2. Routes and temporal network of the nominal plan reported in Fig. 1.
tv1 ,4 ≥ t̄v0 ,2 + �̄�v0 ,2 + 1,

tv1 ,5 ≥ t̄v0 ,2 + �̄�v0 ,2 + 1.

According to the Gantt chart of Fig. 3, the nominal arrival times of ve-
hicle v0 and v1 satisfy (2), i.e. t̄v0 ,2 = 1, �̄�v0 ,2 = 0, t̄v1 ,3 = 2, t̄v1 ,4 = 3 and
tv1 ,5 = 4. We assume that relationships among non-adjacent vertices
are taken into account as zone-conflict avoidance rules when the initial
nominal plan is determined with the corresponding zone-disjunctive arcs
included in the temporal network.

Modeling SA-CFVRP as a deterministic sequential decision problem.
We assume that at a given time instant t(0) an initial nominal plan
is determined as a feasible solution of a conflict-free vehicle routing
problem defined on 𝐺. The SA-CFVRP is then modeled and solved
as a sequential decision problem by a centralized system, which is
responsible for monitoring the positions of the vehicles. We assume that
travel time 𝜏ℎ𝑖 is just an average of prior observations and, therefore,
is captured in the initial stage 𝑡(0), with (ℎ, 𝑖) ∈ . At each decision
stage, t(𝑞) a new nominal plan is generated, with 𝑞 ≥ 1 and t(𝑞) >
4

t(𝑞−1). The corresponding arrival and waiting times t̄(𝑞)ℎ𝑖 and �̄�(𝑞)
ℎ𝑖 (i.e. the

decision variables) are provided as input to the next decision stage
and referred to as the current nominal plan at time instant t(𝑞+1), with
𝑞 > 1, ℎ ∈ 𝐾 and 𝑖 = 1,… , 𝑝ℎ. At decision stage t(𝑞) the centralized
system validates the current nominal plan determined at the previous
stage and (possibly) prescribes corrective actions. It is worth noting that
our approach is data-driven, meaning that we do not explicitly model
travel time uncertainty but rather rely on observed data (Powell, 2021).
To this aim, we denote with 𝜉ℎ(t(𝑞)) and 𝜒ℎ(t(𝑞)) the planned and the
observed position of vehicle ℎ ∈ 𝐾 in 𝐺 at time t(𝑞), respectively. For
each vehicle ℎ ∈ 𝐾, we denote with 𝑑(𝑞)ℎ the deviation at time t(𝑞) from
the nominal plan prescribed at previous stage, that is

𝑑(𝑞)ℎ = t − 𝜉−1ℎ (𝜒ℎ(t(𝑞))),

with 𝑞 ≥ 1 and t(𝑞) > t(𝑞−1). A positive deviation means that the vehicle
is delayed with respect to the current nominal plan; in contrast, an early
vehicle leads to a negative deviation. Finally, an on-time vehicle has
null deviation.

Positive (or negative) deviations might disrupt the feasibility of the
current nominal plan. In order to avoid collisions among vehicles, a
set of corrective actions has to be prescribed in real-time. With the

Computers and Operations Research 166 (2024) 106625T. Adamo et al.
Fig. 3. The Gantt chart of a nominal plan with zone disjunctive precedence constraints.
Fig. 4. Routes and temporal network of the nominal plan reported in Fig. 3.
aim to keep low the computational burden, no changes are allowed to
both conjunctive and disjunctive precedence relationships of the initial
5

nominal plan prescribed at time t(0). Therefore corrective actions are
limited to anticipating/delaying some vehicles, i.e., by prescribing their

Computers and Operations Research 166 (2024) 106625T. Adamo et al.

F

w

d
d
w
s
n
a

3

P
v
n
c
t̄
ℎ
a
r
a
a
t
a
f

m

T
s
a
s
d

P
𝑑

P
n
p
v

𝑤

𝑤

P
m

t

f

t

f

P
t
o

𝑤

w
a

m

I
s
o

𝑤

w
a
i

t

w
t
I

𝑡

w
o

𝑡

Fig. 5. Illustration of the zone disjunctive precedence constraints in the example of
ig. 3.

aiting times at instants t(𝑞), with 𝑞 > 1. This leads to formulate a policy
based on the solution of a deterministic optimization problem (𝑞)

efined as follows. Given the current nominal plan and the deviations
etected at time t(𝑞), (𝑞) aims to determine possible adjustments of the
aiting times at several future time points, so that arrival times still

atisfy conjunctive/disjunctive precedence relationships of the initial
ominal plan and minimize the total deviation from the current nominal
rrival times, with 𝑞 > 1.

. An optimal policy for schedule adjustments

In this section we model the optimization problem (𝑞) as a Linear
rogram (LP) (3)–(7). Parameters of the proposed LP model are pro-
ided by the temporal network associated to the initial conflict-free
ominal plan along with the current nominal arrival times and the
orresponding (possible) deviations detected at a given time t(𝑞). Let
(𝑞)
ℎ𝑖 denote the current nominal arrival time for vehicle ℎ, where 𝑞 > 1,
∈ 𝐾 and 𝑖 = 1,… , 𝑝ℎ. As aforementioned, when not null deviations

re detected at a given time t(𝑞), the current nominal plan must be
evised in order to avoid collisions among vehicles. The corrective
ction consists in updating (increasing or decreasing) the waiting time
t some visited vertex, while optimizing a performance measure. To
his aim we define two continuous non-negative decision variables t(𝑞)ℎ𝑖
nd 𝑤(𝑞)

ℎ𝑖 , for each ℎ ∈ 𝐾 and 𝑖 = 1,… , 𝑝ℎ. The LP to be solved is as
ollows:

in
∑

ℎ∈𝐾

𝑝ℎ
∑

𝑖=1

(

t(𝑞)ℎ𝑖 − t̄(𝑞−1)ℎ𝑖

)

(3)

s.t.

t(𝑞)ℎ,𝑖+1 = t(𝑞)ℎ𝑖 +𝑤(𝑞)
ℎ𝑖 + 𝜏ℎ𝑖 ∀ ℎ ∈ 𝐾; 𝑖 = 1,… , 𝑝ℎ − 1 (4)

t(𝑞)ℎ𝑖 ≥ t(𝑞)𝑘𝑗 +𝑤(𝑞)
𝑘𝑗 + 1 ∀ ℎ ∈ 𝐾; 𝑖 = 1,… , 𝑝ℎ; (𝑘, 𝑗) ∈ 𝛾 𝑖ℎ (5)

t(𝑞)ℎ1 = t̄(𝑞−1)ℎ1 + 𝑑(𝑞)ℎ ∀ ℎ ∈ 𝐾 (6)
(𝑞) (𝑞)
6

tℎ𝑖 ,𝑤ℎ𝑖 ≥ 0 ∀ ℎ ∈ 𝐾; 𝑖 = 1,… , 𝑝ℎ (7) w
he objective function (3) minimizes the total completion time. Con-
traints (4) and (5) require that time points tℎ𝑖 satisfy both conjunctive
nd disjunctive precedence relationships of the nominal plan. Con-
traints (6) impose the detected deviations. Finally, constraints (7)
escribe non-negative conditions on arrival and waiting times.

We now demonstrate some properties of the LP problem (3)–(7).

roposition 3.1. Given a nominal plan, problem (3)–(7) is feasible for any
(𝑞) ∈ R|𝐾|.

roof. We observe that if all vehicles share a common deviation, then
o corrective actions are required. Therefore a feasible solution of LP
roblem (3)–(7) can be always determined by assigning the following
alues to waiting times:
(𝑞)
ℎ1 = �̄�(𝑞)

ℎ1 + max
𝑘∈𝐾

𝑑(𝑞)𝑘 − 𝑑(𝑞)ℎ , ∀ ℎ ∈ 𝐾

(𝑞)
ℎ𝑖 = �̄�(𝑞)

ℎ𝑖 ∀ ℎ ∈ 𝐾; 𝑖 = 2,… , 𝑝ℎ. □

roposition 3.2. Optimal arrival times 𝑡∗ℎ𝑖 for problem (𝑞) can be deter-
ined by the following recursive formula

∗
ℎ𝑖 = max{t∗ℎ,𝑖−1 + 𝜏𝑘,𝑖−1, max

(𝑘,𝑗)∈𝛾 𝑖ℎ
{t∗𝑘,𝑗+1 − 𝜏𝑘𝑗 + 1}}, (8)

or any 𝑖 = 2,… , 𝑝ℎ, with the initialization
∗
ℎ1 = t̄(𝑞−1)ℎ1 + 𝑑(𝑞)ℎ

or each vehicle ℎ ∈ 𝐾.

roof. We start by defining the projection of the polyhedron (4)–(7) in
he space of variables tℎ𝑖, obtained by expressing waiting times in terms
f arrival times as follows
(𝑞)
ℎ𝑖 ∶= t(𝑞)ℎ,𝑖+1 − t(𝑞)ℎ𝑖 − 𝜏ℎ𝑖 (9)

ith ℎ ∈ 𝐾 and 𝑖 = 1,… , 𝑝ℎ−1. Then model (3)–(7) can be reformulated
s:

in
∑

ℎ∈𝐾

𝑝ℎ
∑

𝑖=1
(t(𝑞)ℎ𝑖 − t̄(𝑞−1)ℎ𝑖) (10)

s.t.

t(𝑞)ℎ,𝑖+1 ≥ t(𝑞)ℎ𝑖 + 𝜏ℎ𝑖 ∀ ℎ ∈ 𝐾; 𝑖 = 1,… , 𝑝ℎ − 1 (11)

t(𝑞)ℎ𝑖 ≥ t(𝑞)𝑘,𝑗+1 − 𝜏𝑘𝑗 + 1 ∀ ℎ ∈ 𝐾; 𝑖 = 1,… , 𝑝ℎ, (𝑘, 𝑗) ∈ 𝛾 𝑖ℎ (12)

t(𝑞)ℎ1 = t̄(𝑞−1)ℎ1 + 𝑑(𝑞)ℎ ∀ ℎ ∈ 𝐾 (13)

t(𝑞)ℎ𝑖 ≥ 0 ∀ ℎ ∈ 𝐾; 𝑖 = 1,… , 𝑝ℎ (14)

t is worth noting that the inequalities (12) has been obtained by
ubstituting in (5) the following definition of waiting times 𝑤(𝑞)

𝑘𝑗 in terms
f the arrival times 𝑡(𝑞)𝑘𝑗 and 𝑡(𝑞)𝑘,𝑗+1, that is:
(𝑞)
𝑘𝑗 ∶= t(𝑞)𝑘,𝑗+1 − t(𝑞)𝑘𝑗 − 𝜏𝑘𝑗

ith ℎ ∈ 𝐾; 𝑖 = 1,… , 𝑝ℎ, (𝑘, 𝑗) ∈ 𝛾 𝑖ℎ. We start by observing that
compact formulation of (11) and (12) is provided by the following

nequalities
(𝑞)
ℎ𝑖 ≥ max{t(𝑞)ℎ,𝑖−1 + 𝜏ℎ,𝑖−1, max

(𝑘,𝑗)∈𝛾 𝑖ℎ
{t(𝑞)𝑘,𝑗+1 − 𝜏𝑘𝑗 + 1}}, (15)

ith 𝑖 = 2,… , 𝑝ℎ and ℎ ∈ 𝐾. Given a pair (ℎ, 𝑖), the minimum value of
(𝑞)
ℎ𝑖 satisfies by equality at least one of the inequalities (11) and (12).
n particular we have that
(̃𝑞)
ℎ𝑖 = max{𝑡(𝑞)ℎ,𝑖−1 + 𝜏ℎ,𝑖−1, max

(𝑘,𝑗)∈𝛾 𝑖ℎ
{𝑡(𝑞)𝑘,𝑗+1 − 𝜏𝑘𝑗 + 1}},

ith 𝑡(𝑞)ℎ𝑖 = min(t(𝑞)ℎ𝑖 , 𝑠. 𝑡. (11)–(14)). This implies the decomposability
f LP (10)–(14), i.e.,
∗
ℎ𝑖 = min(t(𝑞)ℎ𝑖 , 𝑠. 𝑡. (11)–(14)) ∀ ℎ ∈ 𝐾, 𝑖 = 2,… , 𝑝ℎ,
hich proves the thesis. □

Computers and Operations Research 166 (2024) 106625T. Adamo et al.

𝜏

𝜏

i

R

One implication of the previous proposition is that (8) determines
the minimum value of each arrival time t(𝑞)ℎ𝑖 . This implies that the re-
cursive formula (8) determines the optimal solution for any LP problem
defined on the polyhedron (11)–(14), where the objective function is a
non-decreasing function in the arrival times. This leads to the following
proposition.

Proposition 3.3. The recursive formula (8) can be used to make decisions
using any policy based on the solution of an LP problem defined on the
polyhedron (11)–(14), where the objective function is a non-decreasing
function in the arrival times, with ℎ ∈ 𝐾 and 𝑖 = 2,… , 𝑝ℎ.

4. A polynomial time optimal solution algorithm

Optimality conditions (8) suggest to utilize a dynamic programming
approach as a solution strategy. To this aim, we define an auxiliary
directed graph �̃�(𝑞) = (𝑉 , �̃�, 𝜏(𝑞)), where the vertex set 𝑉 is made up
of all the nodes of the original temporal network , plus a dummy
vertex (⋅, 0), i.e. 𝑉 = 𝑉 ∪ {(⋅, 0)}. The arc set �̃� ⊆ 𝑉 × 𝑉 represents the
precedence relationships modeled by (conjunctive) constraints (11) and
(disjunctive) constraints (12).

As a result, all the conjunctive arcs of the original temporal network
are included in �̃�, i.e. ((ℎ, 𝑖), (ℎ, 𝑖+1)), with ℎ ∈ 𝐾; 𝑖 = 1,… , 𝑝ℎ−1, whilst
if ((𝑘, 𝑗), (ℎ, 𝑖)) is a disjunctive arc in the original temporal network,
i.e. (𝑘, 𝑗) ∈ 𝛾 𝑖ℎ, then the arc ((𝑘, 𝑗+1), (ℎ, 𝑖)) is inserted in �̃�, with 𝑘, ℎ ∈ 𝐾
and 𝑘 ≠ ℎ. Finally �̃� also includes all dummy arcs outgoing from the
dummy node, i.e. ((⋅, 0), (ℎ, 1)), with ℎ ∈ 𝐾. Fig. 6 shows the set of arcs
�̃� and vertices 𝑉 of the auxiliary graphs associated to the temporal
network of Fig. 2(b). It is worth noting that all auxiliary graphs �̃�(1),
�̃�(2), … , �̃�(𝑞) share a common topological structure, given that the
vertex set 𝑉 and the arc set �̃� describe the precedence relationships of
the initial nominal plan. Indeed, between two consecutive stages what
has to be updated is only the cost function 𝜏(𝑞) ∶ �̃� → Z defined as
follows:

̃(𝑞)((⋅, 0), (ℎ, 1)) = t̄(𝑞−1)ℎ1 + 𝑑(𝑞)ℎ

̃(𝑞)((𝑘, 𝑗), (ℎ, 𝑖)) =

⎧

⎪

⎨

⎪

⎩

𝜏(𝑞)𝑘𝑗 if ℎ = 𝑘, 𝑗 = 𝑖 − 1

1 − 𝜏(𝑞)𝑘,𝑗−1 if (𝑘, 𝑗 − 1) ∈ 𝛾 𝑖ℎ
+∞ otherwise.

for ℎ, 𝑘 ∈ 𝐾; 𝑖 = 1,… , 𝑝ℎ; 𝑗 = 1,… , 𝑝𝑘.
Let (𝑞) be the one-to-all longest path problem on the directed

acyclic graph �̃�(𝑞), with (⋅, 0) as a source node.

Proposition 4.1. Problems (𝑞) and (𝑞) form a strong-dual pair.

Proof. It is worth noting that each arc of �̃� represents either a con-
junctive or a disjunctive precedence relationship in the nominal plan.
Since the nominal plan is conflict-free and the graph �̃�(𝑞) is acyclic, then
the thesis is proved by observing that the value t∗ℎ𝑖, computed with the
recursive formula (8), represents the weight of the longest path from
source vertex (⋅, 0) to vertex (ℎ, 𝑖) in �̃�(𝑞), for 𝑖 = 1,… , 𝑝ℎ and ℎ ∈ 𝐾. □

The longest path problem is well-known to be NP-hard on general
directed graphs (Schrijver et al., 2003). In contrast, it can be efficiently
solved in linear time on directed acyclic graphs (see, e.g., Sedgewick
and Wayne (2011)). In this work, we compute the longest path from
the source vertex to all the other vertices in �̃�(𝑞) as a shortest path on
−�̃�(𝑞) = (𝑉 , �̃�,−𝜏(𝑞)), i.e. the graph obtained by reversing the sign of
the weight for each arc. First, we run a topological sorting procedure
based on depth-first search. Subsequently, the search algorithm pro-
cesses each vertex in topological order and updates the distances from
neighboring vertices. The computational complexity of the algorithm is

̃ ̃
7

(|𝑉 | + |𝐴|).
Fig. 6. The auxiliary graph of the temporal network reported in Fig. 2(b).

5. A graph reduction procedure

A further improvement in the computations of the optimal solu-
tion of problem (𝑞) can be obtained by dominance rules aiming to
determine a reduced arc set �̃�′ ⊆ �̃�. We start by observing that,
apart from the arcs outgoing the dummy node, all remaining arcs of
�̃� can be univocally associated to a conjunctive/disjunctive constraint of
problem (𝑞). From Proposition 4.1 it descends that each arc belonging
to an optimal path in the (dual) problem (𝑞) corresponds to either a
conjunctive constraint (11) or a disjunctive constraint (12) satisfied as
an equality by an optimal solution of the (primal) problem (𝑞). This
mplies the following remark.

emark 1. If a conjunctive/disjunctive constraint of (𝑞) is redundant
then all paths traversing the corresponding arc in �̃� are dominated by
a path on �̃�(𝑞) optimal for (𝑞).

Computers and Operations Research 166 (2024) 106625T. Adamo et al.

w

v
r
v

1
1
1

1

In the following, we propose two alternative polynomial-time pro-
cedures to check whether sufficient redundancy conditions are satisfied
for a disjunctive constraint. The main underlying idea is that all aux-
iliary graphs share a common topological structure (𝑉 , �̃�) inherited
from the original temporal network = (,), where each arc
in generates a disjunctive/conjunctive constraint and therefore an
arc in �̃�. The proposed procedures aim to reduce �̃� by determining a
reduced temporal network ′

 = (,′
), with ′

 ⊆ . In particu-
lar, Algorithm 1 starts by including in ′

 all conjunctive arcs (lines
4 and 5). As an example, consider the disjunctive arcs ((0, 5), (1, 4))
and ((0, 3), (1, 6)) of the temporal network reported in Fig. 7(a). Arc
((0, 5), (1, 4)) corresponds to a precedence on the physical vertex 6,
i.e. 𝑠0,5 = 𝑠1,4 = 6. The corresponding disjunctive constraint requires
that: t0,5 < t1,4. Arc ((0, 3), (1, 6)) corresponds to a disjunctive constraint
on the physical vertex 2 and requires that t0,3 < t1,6. Nevertheless,
there also exists a path from (0, 3) to (1, 6), i.e. the path (0, 3) − (0, 4) −
(0, 5)−(1, 4)−(1, 5)−(1, 6), which implies that the disjunctive constraint
associated to ((0, 3), (1, 6)) is redundant, i.e.

t0,3 < t0,4 < t0,5 < t1,4 < t1,5 < t1,6 ⇒ t0,3 < t1,6.

The following proposition generalizes the considered case by defining
sufficient conditions for checking the redundancy of a constraint.

Proposition 5.1. An arc ((𝑘, 𝑗), (ℎ, 𝑖)) ∈ makes redundant any
disjunctive constraint associated to ((𝑘, 𝑗′), (ℎ, 𝑖′)) ∈ such that

𝑖′ ≤ 𝑖 ∧ 𝑗 ≤ 𝑗′ ∧ (𝑖 ≠ 𝑖′ ∨ 𝑗 ≠ 𝑗′) ∧ 𝑘 ≠ ℎ, (16)

with 𝑖, 𝑖′ = 1,… , 𝑝ℎ and 𝑗, 𝑗′ = 1,… , 𝑝𝑘.

Given two distinct vehicles ℎ ∈ 𝐾 and 𝑘 ∈ 𝐾, Algorithm 1 aims
to (iteratively) determine pairs of disjunctive arcs not satisfying (16).
Let us denote with ((𝑘, 𝑗𝓁), (ℎ, 𝑖𝓁)) ∈ the 𝓁-th disjunctive arc selected
by the Algorithm 1, with 𝓁 ≥ 1, for vehicles 𝑘 and ℎ. The pair of arcs
((𝑘, 𝑗𝓁−1), (ℎ, 𝑖𝓁−1)) and ((𝑘, 𝑗𝓁), (ℎ, 𝑖𝓁)) satisfies the following condition

𝑗𝓁−1 < 𝑗𝓁 ∧ 𝑖𝓁−1 < 𝑖𝓁 , (17)

with 2 ≤ 𝓁 ≤ min{𝑝ℎ, 𝑝𝑘}. It is worth noting that (17) defines a lexi-
cographic order between arcs, i.e. ((𝑘, 𝑗𝓁−1), (ℎ, 𝑖𝓁−1)) ≺ ((𝑘, 𝑗𝓁), (ℎ, 𝑖𝓁)).
This implies that (17) holds between arc ((𝑘, 𝑗𝓁), (ℎ, 𝑖𝓁)) and either any
previous selected arc 𝓁′ ≤ 𝓁 − 1 or any subsequent selected arc 𝓁′′ ≥
𝓁 + 1, that is:

((𝑘, 𝑗𝓁′), (ℎ, 𝑖𝓁′)) ≺ ((𝑘, 𝑗𝓁), (ℎ, 𝑖𝓁)) ≺ ((𝑘, 𝑗𝓁′′), (ℎ, 𝑖𝓁′′)).

In particular, Algorithm 1 includes in ′
 a disjunctive arc ((𝑘, 𝑗𝓁), (ℎ, 𝑖𝓁))

if it satisfies the following conditions.

𝑖𝓁 = min
𝑖𝓁−1+1≤𝑏≤𝑝ℎ

{𝑏 | 𝑗𝓁−1 + 1 ≤ 𝑎 ≤ 𝑝𝑘 ∧ (𝑘, 𝑎) ∈ 𝛾𝑏ℎ}, (18)

𝑗𝓁 = max
𝑗𝓁−1+1≤𝑎≤𝑝𝑘

{𝑎 | (𝑘, 𝑎) ∈ 𝛾 𝑖𝓁ℎ } (19)

ith the initialization 𝑖0 = 𝑗0 = 0.
The min and max operators in (18) and (19) are coded by scanning

ertices in associated to vehicles 𝑘 and ℎ backwardly and forwardly,
espectively (lines 8–13). In particular, Algorithm 1 scans forwardly
ertices (ℎ, 𝑖) associated to vehicle ℎ from 𝑖 = 1 to 𝑖 = 𝑝ℎ. During

the 𝑖th (outer) iteration the algorithm scans backwardly vertices (𝑘, 𝑗)
associated to vehicle 𝑘 from 𝑗 = 𝑝𝑘 to 𝑗 = 𝑗𝓁−1 + 1. If the current pair
of vertices ((𝑘, 𝑗), (ℎ, 𝑖)) corresponds to an arc of , then ((𝑘, 𝑗), (ℎ, 𝑖))
is included in ′

 . Then the inner loop is stopped after having updated
its stopping condition (line 12).

Time complexity for Algorithm 1 is (||2): the worst case occurs
when vehicles plans are completely disjoint, i.e.,

𝛾 𝑖ℎ = ∅ ℎ ∈ 𝐾, 𝑖 = 1,… , 𝑝ℎ.

Fig. 7(b) shows an example of graph reduction for the temporal net-
8

work in Fig. 7(a). The original directed acyclic graph in Fig. 7(a)
Algorithm 1 Graph reduction

1: function reduce()
2: ′

 ← ∅ ⊳ initially empty set
3: for ℎ ∈ 𝐾 do
4: for 𝑖 ← 2 to 𝑝ℎ do
5: add ((ℎ, 𝑖 − 1), (ℎ, 𝑖)) to ′

 ⊳ conjunctive arc
6: for 𝑘 ∈ 𝐾 ∶ 𝑘 ≠ ℎ do
7: 𝑝𝑟𝑒𝑣_𝑠𝑡𝑜𝑝 ← 1
8: for 𝑖 ← 1 to 𝑝ℎ do
9: for 𝑗 ← 𝑝𝑘 to 𝑝𝑟𝑒𝑣_𝑠𝑡𝑜𝑝, step −1 do

10: if ((𝑘, 𝑗), (ℎ, 𝑖)) ∈ then
11: add ((𝑘, 𝑗), (ℎ, 𝑖)) to ′

 ⊳ arc satisfying
(16)–(17)

12: 𝑝𝑟𝑒𝑣_𝑠𝑡𝑜𝑝 ← 𝑗 + 1
13: break
14: return ′

contains 35 arcs, i.e., 16 disjunctive arcs and 19 conjunctive arcs.
Algorithm 1 selects 7 disjunctive arcs out of 16. Nevertheless, Algorithm
1 does not exclude red-dashed arcs, although they are both redundant.
This is the case, for example, of path (0, 5)−(1, 4)−(2, 3)−(2, 4) resulting
from the arrivals of the three vehicles at the physical vertex 6, i.e. 𝑠0,5 =
𝑠1,4 = 𝑠2,4 = 6, at times t̄0,5 = 4, t̄1,4 = 7, t̄2,4 = 10 (see the nominal
plan of Fig. 1). Such a path makes redundant the disjunctive constraint
associated to arc ((0, 5), (2, 4)), that is:

t0,5 < t1,4 < t2,3 < t2,4 ⇒ t0,5 < t2,4.

Nevertheless, Algorithm 1 selects the disjunctive arc ((0, 5), (2, 4)), since
there does not exist a path from (0, 5) to (2, 4) involving only the two
vehicles 0 and 2. To overcome this limit, Algorithm 2 exploits set ′′

 .
At the initial step, ′′

 and ′
 include all arcs of . At a generic

iteration, Algorithm 2 can add a (new) arc to ′′
 , if it discovers a

path connecting its endpoints (lines 4–8). On the other hand, an arc
((𝑘, 𝑎), (ℎ, 𝑏)) is removed from ′

 , if during previous iterations a path
from (𝑘, 𝑎) to (ℎ, 𝑏) involving (𝓁, 𝑟) has been discovered (lines 9–14). As a
results, the preprocessing phase is able to generate an equivalent graph
with only 24 arcs out of the 35 arcs of the original temporal network,
with a selection of 5 disjunctive arcs out of the 16 original ones. More
generally, Algorithm 2 selects a (lower) number of disjunctive arcs with
a (higher) time complexity of (||3).

Algorithm 2 Topological reduction

1: function top-reduce()
2: ′

 ←
3: ′′

 ←
4: for (𝓁, 𝑟) ∈ do
5: for (𝑘, 𝑎) ∈ do
6: for (ℎ, 𝑏) ∈ do
7: if ((𝑘, 𝑎), (𝓁, 𝑟)) ∈ ′′

 ∧ ((𝓁, 𝑟), (ℎ, 𝑏)) ∈ ′′
 then

8: ′′
 ← ′′

 ∪ {((𝑘, 𝑎), (ℎ, 𝑏))}

9: for (𝓁, 𝑟) ∈ do
10: for (𝑘, 𝑎) ∈ do
11: for (ℎ, 𝑏) ∈ do
2: if 𝑘 ≠ ℎ then ⊳ remove only disjunctive arcs
3: if ((𝑘, 𝑎), (𝓁, 𝑟)) ∈ ′′

 ∧ ((𝓁, 𝑟), (ℎ, 𝑏)) ∈ ′′
 then

4: ′
 ← ′

 ⧵ {((𝑘, 𝑎), (ℎ, 𝑏))}

5: return ′

6. Computational results

This section presents the results of computational experiments car-
ried out to evaluate the performance of our method and its applicability

Computers and Operations Research 166 (2024) 106625T. Adamo et al.
Fig. 7. An example of graph reduction for the original nominal plan of Fig. 1.
in real-time contexts. In details, we compared the proposed solution
procedure for the base model of SA-CFVRP, with the more conservative
approach introduced in Adamo et al. (2023) and also with respect
to an off-the-shelf solver. Experiments were performed on a Linux
machine featuring an Intel Core i7 processor with 4 cores operating
at 2.5 GHz, and 16 GB of RAM. The algorithms were implemented in
C++. The linear program (3)–(7) has been solved with IBM ILOG CPLEX
22.1.1 (IBM, 2023).

We tested two sets of benchmark instances: the former refers to
Grid WareHouse (GWH) networks taken from the literature, whilst
the latter (RND) has been randomly generated. The GWH set has
been composed by using four different physical networks that mimic
real-world automated warehouses (Ma et al., 2017, Stern et al. (2019)).

Each network is characterized by a set of homogeneous rectangular
obstacles. The placement of obstacles follows a pattern consisting of
equally spaced rows and equally spaced columns. The instance name
warehouse-A-B-C-D-E encodes the features of the network as follows:
9

Table 1
Features of GWH physical networks.

Id Name Width Height Unreachable locations

W1 warehouse-10-20-10-2-1 161 63 4444
W2 warehouse-10-20-10-2-2 170 84 4504
W3 warehouse-20-40-10-2-1 321 123 16 884
W4 warehouse-20-40-10-2-2 340 164 17 004

• A: number of obstacles columns;
• B: number of obstacles rows;
• C: obstacle width;
• D: obstacle height;
• E: distance between rows/columns of consecutive obstacles.

Table 1 describes the main features of the GWH test instances.

Column headings have the following meaning:

Computers and Operations Research 166 (2024) 106625T. Adamo et al.
Fig. 8. Example of a GWH warehouse grid (Cohen et al., 2018).
• width of the grid expressed in terms of number of locations;
• height of the grid expressed in terms of number of locations;
• unreachable locations: the total number of locations occupied

by rectangular obstacles plus the edge locations of the grid.

For example, Fig. 8 shows an illustration taken from Cohen et al.
(2018) of instance warehouse-4-7-10-2-1, having a width of 55 locations,
a height of 24 locations and 714 unreachable locations.

There are 25 scenarios for any physical network. Each scenario
specifies a list of start/goal locations evenly distributed. We found
a feasible conflict-free nominal plan using a suboptimal variant of
the conflict-based search algorithm (Barer et al., 2014, Sharon et al.
(2015)) with a number of vehicles |𝐾| ∈ {50, 100, 150, 200, 250, 300}.
Therefore, we tested 600 GWH instances in total.

With regards to the RND set, we randomly generated a set of nom-
inal plans, with a number of vehicles |𝐾| ∈ {50, 100, 150, 200, 250, 300}.
Each vehicle is assigned a path consisting of a number of vertices ran-
domly generated according to a uniform distribution, i.e. 𝑝ℎ ∼ [70,100],
with ℎ ∈ 𝐾. Similarly, we randomly generated the traversal times
with uniformly distributed values, i.e. 𝜏 𝑖ℎ ∼ [10,30], with ℎ ∈ 𝐾, 𝑖 =
1,… , 𝑝ℎ−1. For each nominal plan, the disjunctive arcs were generated
based on a conflict graph, which is a directed graph where each node
corresponds to a vehicle and the arc (ℎ, 𝑘) represents a pair of vehicles
such that there exists at least one disjunctive arc from vehicle ℎ to
vehicle 𝑘, for ℎ, 𝑘 ∈ 𝐾. A parameter 𝜆 models the sparsity of the conflict
graph, taking values in {0%, 25%, 50%, 75%}, where 0% corresponds to
a complete graph. To generate the set of disjunctive arcs associated
with each arc (ℎ, 𝑘) in the conflict graph, the following procedure was
applied. Initially, a zero matrix with dimensions of 𝑝ℎ rows and 𝑝𝑘
columns was considered. Iteratively, a null element (𝑖, 𝑗) was randomly
selected from the matrix, with 𝑖 = 1,… , 𝑝ℎ and 𝑗 = 1,… , 𝑝𝑘. Once
a null element (𝑖, 𝑗) was chosen, it was set to 1, along with all the
elements (𝑖′, 𝑗′) that satisfied condition (16). Additionally, the chosen
element (𝑖, 𝑗) was used to add the disjunctive constraint ((ℎ, 𝑖), (𝑘, 𝑗)) to
the nominal plan. The procedure stops when the sparsity of the matrix
gets greater than 30%. It is worth noting that setting elements (𝑖′, 𝑗′)
satisfying condition (16) to 1 allowed us to avoid generating ‘‘trivial’’
redundancies. For each pair (|𝐾|, 𝜆) we generated 15 instances resulting
in a total number of 360 RND instances.

For both sets of benchmark instances (GWH and RND), misalign-
ments of vehicles with respect to the nominal plan were also uniformly
distributed, with 𝑑ℎ ∼ [−20,20] and ℎ ∈ 𝐾. We tested the proposed
approaches with respect to four objective functions 𝑧1, 𝑧2, 𝑧3 and 𝑧4. In
particular, 𝑧1 measures the total corrective delay of each vehicle w.r.t.
the nominal plan, i.e.

𝑧1 = min
∑

ℎ∈𝐾

(

t(𝑞)ℎ,𝑝ℎ
− t̄(𝑞−1)ℎ,𝑝ℎ

)

;

𝑧2 measures the total weighted corrective delay w.r.t nominal timetable,
i.e.

𝑧2 = min
∑

𝑤ℎ

(

t(𝑞)ℎ,𝑝ℎ
− t̄(𝑞−1)ℎ,𝑝ℎ

)

10

ℎ∈𝐾
Table 2
Computational results — GWH instances.

Network |K| T0 T1 T2 T3 DEV1 DEV2 DEV3 DEV4
[ms] [ms] [ms] [ms] [%] [%] [%] [%]

W1 50 437.06 0.01 0.08 0.05 13.2 14.3 0.0 6.2
100 1574.70 0.04 0.21 0.16 16.6 17.1 0.6 16.7
150 3707.35 0.08 0.36 0.37 17.7 17.7 0.5 22.3
200 7414.27 0.13 0.61 0.67 19.1 18.9 0.4 26.5
250 13 359.15 0.20 0.98 1.11 18.8 18.7 0.5 27.9
300 21 513.42 0.28 1.53 1.67 17.7 17.7 0.6 26.6

W2 50 425.17 0.01 0.08 0.04 13.6 14.1 0.1 6.5
100 1215.36 0.03 0.19 0.12 18.5 18.6 0.2 16.5
150 2466.87 0.08 0.32 0.25 18.1 17.6 0.3 21.0
200 4338.21 0.13 0.50 0.42 18.6 18.7 0.4 23.7
250 7079.06 0.20 0.78 0.66 18.0 18.4 0.5 24.5
300 10 529.45 0.29 1.05 0.97 17.4 17.2 0.5 24.7

W3 50 754.58 0.01 0.13 0.06 9.1 6.1 0.1 1.3
100 2135.55 0.04 0.30 0.19 13.6 14.1 0.1 7.4
150 4459.01 0.07 0.56 0.38 16.7 16.4 0.2 13.4
200 7761.37 0.13 0.83 0.65 16.4 16.6 0.1 15.9
250 12 322.44 0.20 1.37 1.14 17.6 17.6 0.1 20.2
300 18 430.17 0.29 1.94 1.64 17.4 17.0 0.4 22.4

W4 50 708.70 0.01 0.14 0.06 5.6 7.5 0.0 1.4
100 1852.06 0.03 0.30 0.15 13.5 14.0 0.1 5.7
150 3176.26 0.07 0.53 0.29 17.0 16.1 0.2 12.0
200 5335.99 0.13 0.87 0.50 17.3 17.1 0.1 14.6
250 8269.27 0.20 1.23 0.79 17.8 17.8 0.1 18.1
300 13 030.09 0.29 2.08 1.33 20.0 20.2 0.2 24.3

AVG 6345.65 0.12 0.71 0.57 16.2 16.2 0.3 16.7

with 𝑤ℎ ≥ 0 for ℎ ∈ 𝐾; 𝑧3 measures the makespan, i.e.

𝑧3 = min max
ℎ∈𝐾

t(𝑞)ℎ,𝑝ℎ
.

Finally, 𝑧4 measures the total lateness of the vehicles with respect to
their due dates t̄(0)ℎ,𝑝ℎ

+ 𝜌ℎ for ℎ ∈ 𝐾, i.e.

𝑧4 = min
∑

ℎ∈𝐾
max {0, t(𝑞)ℎ,𝑝ℎ

− t̄(0)ℎ,𝑝ℎ
− 𝜌ℎ}

Weights 𝑤ℎ and parameters 𝜌ℎ were generated uniformly as:

𝑤ℎ ∼ [0,20], 𝜌ℎ ∼ [0,20],

with ℎ ∈ 𝐾.
Tables 2 and 3 aim to compare the performance of the proposed

approach with the performance of both algorithm by Adamo et al.
(2023) and the linear program (3)–(7) solved by IBM ILOG CPLEX
22.1.1. The computational results are reported in Tables 2 and 3 under
the following headings:

• T0: average time in milliseconds required to solve linear program
(3)–(7);

• T1: average time in milliseconds spent by the algorithm proposed
in Adamo et al. (2023);

Computers and Operations Research 166 (2024) 106625T. Adamo et al.
Fig. 9. Arcs reduction — GWH instances.
Table 3
Computational results — RND instances.
𝜆 |K| T0 T1 T2 T3 DEV1 DEV2 DEV3 DEV4
[%] [ms] [ms] [ms] [ms] [%] [%] [%] [%]

0 50 608.29 0.01 0.10 0.12 79.3 79.4 0.4 64.9
100 2274.64 0.02 0.25 0.43 66.9 67.0 0.5 65.0
150 6569.55 0.04 0.48 0.98 83.0 83.4 0.5 79.1
200 12 636.14 0.06 0.66 1.58 69.2 69.4 0.6 70.0
250 21 503.70 0.09 0.90 2.34 70.8 70.2 0.7 74.8
300 33 425.86 0.13 1.22 3.29 74.2 74.2 0.8 76.6

25 50 464.58 0.01 0.10 0.10 82.1 78.5 0.4 69.7
100 1745.48 0.02 0.23 0.33 87.1 86.9 0.5 73.8
150 4784.70 0.04 0.45 0.78 82.9 82.3 0.6 77.0
200 9196.09 0.06 0.60 1.22 70.7 70.4 0.4 74.8
250 15 466.61 0.09 0.82 1.88 69.0 68.9 0.5 71.6
300 23 644.13 0.12 1.04 2.59 71.2 71.7 0.5 74.1

50 50 350.87 0.01 0.09 0.07 84.1 86.5 0.3 46.7
100 1249.35 0.02 0.21 0.24 74.1 73.6 0.3 66.1
150 3154.16 0.04 0.39 0.56 80.2 80.1 0.4 71.4
200 5902.28 0.06 0.55 0.93 79.3 78.6 0.5 74.8
250 9697.25 0.09 0.76 1.46 61.1 61.3 0.5 65.2
300 14 639.01 0.13 0.87 1.86 67.2 67.2 0.5 70.5

75 50 214.06 0.01 0.08 0.05 64.4 64.0 0.0 36.0
100 716.56 0.02 0.17 0.15 80.6 81.0 0.2 55.0
150 1652.10 0.04 0.31 0.30 67.4 68.2 0.2 57.3
200 2893.84 0.06 0.48 0.56 72.8 71.9 0.2 62.6
250 4659.25 0.10 0.61 0.82 76.0 76.0 0.3 68.9
300 6867.06 0.15 0.72 1.08 69.3 69.0 0.3 66.7

AVG 7679.81 0.06 0.50 0.99 74.3 74.2 0.4 67.2

• T2: average time in milliseconds spent in the topological sorting
proposed by Sedgewick and Wayne (2011);

• T3: average time in milliseconds spent in longest path computa-
tions;

• DEV𝑖: the average percentage gap of the objective function values,
i.e.

𝐷𝐸𝑉𝑖 =
𝑧𝐴𝑖 − 𝑧𝑖
𝑧𝐴𝑖

,

with 𝑖 = 1,… , 4 and 𝑧𝐴𝑖 denotes the objective function value
determined by Adamo et al. (2023).
11
For each row we report averages across all 25 instances for the GWH
set and 15 instances for the RND set. Tables 2 and 3 demonstrate
that the proposed approach determines the optimal solution with an
average computational time of approximately 1 millisecond. Above all,
in terms of computing time, our exact algorithm outperformed the
off-the-shelf solver even with a few vehicles. It is worth noting that,
although the approach proposed by Adamo et al. (2023) may exhibit
better time-efficiency, it yields remarkably worse solutions compared
to our method, particularly in terms of total delay.

From a managerial point of view, allowing adjustments of the
waiting times w.r.t. future time points in order to avoid conflicts
was profitable across the four objective functions (especially on total
corrective delay, total weighted corrective delay and total lateness).
These enhancements directly translate into higher throughput within
the physical layout.

Table 2 shows that GWH instances have better performance when
considering more vehicles, probably due to a better utilization of the
layout. Tables 4 and 5 show the impact of graph reduction algorithms
on the real-time computation of the longest path on �̃�(𝑞). The columns
headings are:

• 𝛥| |: average percentage reduction in the cardinality of arc set,
that is:

𝛥| | =
| | − |′

 |

| |

• 𝑇𝑟: average preprocessing time spent in graph reduction;
• 𝛥𝑇3: average percentage reduction of computing time 𝑇3, i.e.

𝛥𝑇3 =
𝑇3 − 𝑇 ′

3
𝑇3

,

where 𝑇 ′
3 is the computing time on the reduced graph.

We also determined an upper bound for 𝛥| | by executing the proce-
dure (dubbed Algorithm 3) reported in Appendix, which is a slight vari-
ant of the Floyd–Warshall’s all-pairs-shortest-paths algorithm (Floyd,
1962; Warshall, 1962). This procedure cannot be executed as a pre-
processing step since it computes all-pairs-shortest-paths on the basis
of the current auxiliary graph �̃�(𝑞). However, it identifies all the arcs

Computers and Operations Research 166 (2024) 106625T. Adamo et al.

n

Table 4
Impact of graph reduction — GWH instances.

Instances Algorithm 1 Algorithm 3 Algorithm 2

Network |K| | | | | 𝛥| | T𝑟 𝛥T3 𝛥| | T𝑟 𝛥T3 𝛥| | T𝑟 𝛥T3
[%] [s] [%] [%] [s] [%] [%] [s] [%]

W1 50 4675 9531 33.4 0.06 34.5 38.1 7.05 48.9 38.1 6.78 48.1
100 9463 33 673 47.4 0.30 54.1 59.4 58.65 64.6 59.4 61.15 64.3
150 14 260 77 054 53.9 0.75 60.1 71.2 231.99 73.1 71.2 250.27 72.5
200 19 168 140 813 57.2 1.45 63.5 77.8 668.24 78.4 77.8 707.92 77.0
250 24 276 232 115 59.3 2.49 67.5 82.5 1557.38 82.8 82.4 1597.46 81.9
300 29 500 350 063 60.7 3.85 70.6 85.5 3043.24 84.5 85.5 3061.60 84.5

W2 50 5349 8603 24.7 0.08 29.2 27.2 9.41 35.2 27.1 8.96 34.3
100 10 623 24 558 37.5 0.34 43.0 43.9 61.60 51.9 43.8 64.87 50.6
150 15 966 48 728 44.5 0.83 52.1 54.6 220.48 60.5 54.5 245.76 59.4
200 21 373 83 688 49.4 1.58 54.4 62.8 583.42 66.6 62.6 660.22 65.0
250 26 849 130 445 52.7 2.61 58.1 68.8 1302.22 71.1 68.7 1483.28 69.9
300 32 286 185 926 54.8 3.93 59.2 72.9 2520.24 75.5 72.8 2861.51 74.4

W3 50 9645 14 099 20.4 0.25 26.5 22.0 43.33 27.8 22.0 39.59 26.6
100 19 226 40 941 34.8 1.10 44.4 40.1 301.05 49.3 40.1 306.80 49.0
150 29 083 81 876 42.7 2.72 53.0 51.6 1095.09 59.7 51.6 1176.22 57.9
200 38 757 137 902 47.7 5.15 58.1 59.7 2850.89 66.5 59.7 3162.54 66.4
250 48 597 213 250 51.3 8.53 62.0 66.1 6469.46 70.1 66.0 7188.30 69.3
300 58 289 305 486 53.8 12.87 63.1 70.8 12 419.66 71.3 70.7 14 140.22 69.1

W4 50 11 038 13 740 12.9 0.31 19.0 13.6 64.64 19.9 13.6 63.03 19.2
100 21 725 33 620 23.3 1.30 27.6 25.4 400.88 34.7 25.4 427.83 32.4
150 32 510 62 175 31.6 3.07 36.0 36.0 1335.13 42.2 35.9 1518.22 36.7
200 43 556 100 245 37.6 5.78 43.3 44.2 3431.52 45.9 44.1 4045.13 45.4
250 54 570 148 207 42.0 9.49 42.2 50.8 8041.00 54.5 50.7 14 198.72 50.4
300 65 648 210 372 45.8 14.12 30.9 57.8 27 971.07 51.4 57.6 30 765.78 48.5

AVG 26935 111963 42.5 3.46 48.0 53.5 3111.99 57.8 53.4 3668.42 56.4
Table 5
Impact of graph reduction — RND instances.

Instances Algorithm 1 Algorithm 3 Algorithm 2

𝜆 |K| | | | | 𝛥| | T𝑟 𝛥T3 𝛥| | T𝑟 𝛥T3 𝛥| | T𝑟 𝛥T3
[%] [%] [s] [%] [%] [s] [%] [%] [s] [%]

0 50 4261 32 229 57.8 0.03 43.2 71.2 11.40 54.9 69.9 12.40 54.9
100 8525 121 614 61.9 0.16 58.0 79.2 114.23 66.1 77.6 120.93 62.8
150 12 757 268 002 63.4 0.40 62.0 82.7 430.81 72.4 81.0 462.12 71.7
200 17 081 471 663 64.1 0.78 60.1 84.7 1107.41 74.0 83.0 1200.63 71.3
250 21 262 732 231 64.6 1.28 56.2 86.0 2234.09 75.3 84.3 2456.09 71.0
300 25 413 1 049 747 64.9 1.92 56.4 87.0 3940.60 73.8 85.3 4374.14 73.5

25 50 4235 25 225 55.4 0.03 41.6 66.4 9.61 57.8 65.3 10.74 52.9
100 8520 93 287 60.5 0.17 53.3 75.6 97.34 59.9 74.2 104.72 57.2
150 12 783 204 201 62.4 0.41 61.7 79.7 383.83 68.6 78.1 411.62 67.7
200 16 993 357 833 63.4 0.78 57.8 82.2 982.51 68.7 80.4 1059.20 68.2
250 21 214 554 296 64.0 1.31 60.2 83.8 2007.71 72.1 82.0 2185.93 68.7
300 25 465 793 762 64.4 1.95 58.2 85.0 3620.15 70.8 83.1 3970.99 69.7

50 50 4229 18 209 51.1 0.03 40.7 58.9 7.25 48.2 58.0 8.41 47.8
100 8526 65 129 57.8 0.16 46.8 69.8 76.79 53.0 68.4 84.69 50.1
150 12 782 140 333 60.5 0.40 58.0 74.8 310.56 61.0 73.3 336.38 60.7
200 16 992 244 171 61.9 0.76 59.3 77.9 809.51 64.6 76.2 874.29 63.0
250 21 220 376 813 62.8 1.26 61.3 79.9 1694.52 69.0 78.1 1836.75 66.0
300 25 507 537 521 63.4 1.91 57.7 81.5 3114.96 65.9 79.6 3391.30 65.5

75 50 4219 11 230 41.5 0.03 45.6 44.6 4.16 49.4 44.2 5.03 47.3
100 8492 36 771 51.2 0.14 39.1 57.5 46.36 45.2 56.6 54.21 44.3
150 12 745 76 531 55.5 0.35 41.7 64.2 196.19 47.8 63.0 222.61 43.1
200 16 980 130 765 57.9 0.67 51.4 68.3 529.94 53.3 66.9 592.38 51.6
250 21 201 198 951 59.5 1.12 53.5 71.2 1142.42 56.6 69.7 1268.13 55.5
300 25 515 281 449 60.5 1.70 53.0 73.4 2133.44 57.4 71.7 2330.70 53.4

AVG 14871 284248 59.6 0.74 53.2 74.4 1041.91 61.8 72.9 1140.60 60.0
w
t

that do not belong to any shortest path on −�̃�(𝑞), thereby providing an
upper bound on 𝛥| |.

The results reported in Tables 4 and 5 empirically demonstrate
how the computational times for finding the longest paths can be
reduced to less than one millisecond by utilizing the reduction proce-
dure presented in Section 5. Specifically, Algorithm 1 was capable of
removing approximately 60% of the redundant arcs, resulting in a sig-
12

ificant improvement in computational times of about 53%. Although c
Algorithm 2 incurred a higher computational burden, it achieved a
substantial reduction in the number of arcs, approaching the upper
bound determined by Algorithm 3. This trend is also illustrated in
Figs. 9 and 10.

An increase of |𝐾| determines a remarkable growth of 𝑇𝑟, especially
ith respect to Algorithms 2 and 3. Finally, Tables 3 and 5 show

hat lower 𝜆 values (i.e. denser conflict graphs) correspond to higher

omputational times.

Computers and Operations Research 166 (2024) 106625T. Adamo et al.
Fig. 10. Arcs reduction — RND instances.
7. Conclusions

In this paper, we have addressed the problem of determining sched-
ule adjustments in Conflict-Free Vehicle Routing Problem when some
vehicles deviate from a nominal plan. This problem is of the utmost
importance in manufacturing, transportation, and logistics facilities
that utilize AGVs to transport loads between stations. We have modeled
the SA-CFVRP as a sequential decision problem and have proposed a
fast exact algorithm to solve it. Through an extensive empirical study,
we have demonstrated that our exact algorithm is much faster than
the IBM ILOG CPLEX 22.1.1 solver. Results have also showed that the
proposed approach have consistently outperformed the (Adamo et al.,
2023) procedure in terms of objective function values, with computing
times in the same order of magnitude (less than 3.3 milliseconds for
instances with up to 300 vehicles).

Future research might focus on the exploitation of historical data to
generate robust plans in order to reduce the need of corrective actions
and increase the overall efficiency.

An additional research opportunity is based on the following obser-
vation: the proposed approach works well when delays and anticipa-
tions stem from minor (endogenous) uncertainties, primarily associated
with the continuous time and space dynamics of the fleet of vehicles.
However, this (data-driven) approach may encounter challenges in the
face of relevant disruptions such as a vehicle blocking an arc because
of a major mechanical failure. In this case, a new nominal plan has
to be generated by considering that a vehicle is out of service and at
least an arc of the path layout is not available. To this purpose fast
re-optimization techniques might be valuable.

CRediT authorship contribution statement

Tommaso Adamo: Writing – review & editing, Writing – original
draft, Validation, Methodology, Investigation, Conceptualization. Gian-
paolo Ghiani: Writing – review & editing, Writing – original draft, Su-
pervision, Methodology, Investigation, Conceptualization. Emanuela
13
Guerriero: Writing – review & editing, Writing – original draft, Super-
vision, Methodology, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no conflict of interest.

Data availability

Data will be made available on request.

Acknowledgments

This work was partly supported by Ministero dell’Università e della
Ricerca (MUR) of Italy. This support is gratefully acknowledged (‘‘De-
creto Ministeriale n. 1062 del 10-08-2021. PON Ricerca e Innovazione
14-20 nuove risorse per contratti di ricerca su temi dell’innovazione’’
contract number 12-I-13147-10).

Appendix

In general, we can reduce graph �̃�(𝑞), without any topological
consideration, using a slightly modified version of the well-known
Floyd–Warshall’s procedure (Floyd, 1962; Warshall, 1962) as reported
in Algorithm 3.

Algorithm 3 removes every arc in �̃� not belonging to any longest
path in �̃�(𝑞). In particular, we changed the original algorithm at line 17
where we introduced a minus sign in order to compute longest paths on
�̃�(𝑞), and we added line 10 to remove every unnecessary arc. It is worth
noting that completeness of the original Floyd–Warshall’s algorithm in
finding all-pairs shortest paths also ensures completeness of Algorithm
3. Time complexity is obviously (|𝑉 |

3).

http://data.crossref.org/fundingdata/funder/10.13039/501100021856

Computers and Operations Research 166 (2024) 106625T. Adamo et al.
Algorithm 3 Floyd-Warshall reduction

1: function fw-reduce(�̃�(𝑞))
2: �̃�′ ← �̃�
3: 𝑐 ← init(�̃�(𝑞))
4: for (𝓁, 𝑟) ∈ 𝑉 do
5: for (𝑘, 𝑗) ∈ 𝑉 do
6: for (ℎ, 𝑖) ∈ 𝑉 do
7: if 𝑐((𝑘, 𝑗), (𝓁, 𝑟)) ≠ +∞ ∧ 𝑐((𝓁, 𝑟), (ℎ, 𝑖)) ≠ +∞ then
8: if 𝑐((𝑘, 𝑗), (ℎ, 𝑖)) > 𝑐((𝑘, 𝑗), (𝓁, 𝑟))+𝑐((𝓁, 𝑟), (ℎ, 𝑖)) then
9: 𝑐((𝑘, 𝑗), (ℎ, 𝑖)) ← 𝑐((𝑘, 𝑗), (𝓁, 𝑟)) + 𝑐((𝓁, 𝑟), (ℎ, 𝑖))

10: remove ((𝑘, 𝑗), (ℎ, 𝑖)) from �̃�′

11: return �̃�′

12: function init(�̃�(𝑞))
13: 𝑐 ← new 2D array of size |𝑉 | × |𝑉 |

14: for (𝑘, 𝑗) ∈ 𝑉 do
15: for (ℎ, 𝑖) ∈ 𝑉 do
16: if ((𝑘, 𝑗), (ℎ, 𝑖)) ∈ �̃� then
17: 𝑐((𝑘, 𝑗), (ℎ, 𝑖)) ← −𝜏(𝑞)((𝑘, 𝑗), (ℎ, 𝑖))
18: else
19: 𝑐((𝑘, 𝑗), (ℎ, 𝑖)) ← +∞
20: return 𝑐

References

Adamo, T., Bektaş, T., Ghiani, G., Guerriero, E., Manni, E., 2018. Path and speed
optimization for conflict-free pickup and delivery under time windows. Transp.
Sci. 52 (4), 739–755.

Adamo, T., Ghiani, G., Guerriero, E., 2023. Recovering feasibility in real-time
conflict-free vehicle routing. Comput. Ind. Eng. 183, 109437.

Barer, M., Sharon, G., Stern, R., Felner, A., 2014. Suboptimal variants of the conflict-
based search algorithm for the multi-agent pathfinding problem. In: Proceedings of
the International Symposium on Combinatorial Search, vol. 5, (1), pp. 19–27.

Cao, Y., Yang, A., Liu, Y., Zeng, Q., Chen, Q., 2023. AGV dispatching and bidirectional
conflict-free routing problem in automated container terminal. Comput. Ind. Eng.
184, 109611.

Chen, J., Zhang, X., Peng, X., Xu, D., Peng, J., 2022. Efficient routing for multi-AGV
based on optimized ant-agent. Comput. Ind. Eng. 167, 108042.

Cohen, L., Koenig, S., Kumar, T.S., Wagner, G., Choset, H., Chan, D.M., Sturtevant, N.R.,
2018. Rapid randomized restarts for multi-agent path finding: Preliminary results.
In: AAMAS. pp. 1909–1911.

Corréa, A.I., Langevin, A., Rousseau, L.-M., 2007. Scheduling and routing of automated
guided vehicles: A hybrid approach. Comput. Oper. Res. 34 (6), 1688–1707.
14
Desaulniers, G., Langevin, A., Riopel, D., Villeneuve, B., 2003. Dispatching and conflict-
free routing of automated guided vehicles: An exact approach. Int. J. Flexible
Manuf. Syst. 15 (4), 309–331.

Desrosiers, J., Pelletier, P., Soumis, F., 1983. Plus court chemin avec contraintes
d’horaires. RAIRO Oper. Res. 17 (4), 357–377.

Floyd, R.W., 1962. Algorithm 97: shortest path. Commun. ACM 5 (6), 345.
Fragapane, G., De Koster, R., Sgarbossa, F., Strandhagen, J.O., 2021. Planning and

control of autonomous mobile robots for intralogistics: Literature review and
research agenda. European J. Oper. Res. 294 (2), 405–426.

Gawrilow, E., Köhler, E., Möhring, R.H., Stenzel, B., 2008. Dynamic routing of
automated guided vehicles in real-time. In: Mathematics–Key Technology for the
Future. Springer, pp. 165–177.

Grand View Research, 2022. Automated guided vehicle market size, share & trends
analysis report by vehicle type, by navigation technology, by application, by end
use industry, by component, by battery type, and segment forecasts, 2022–2030.
https://www.grandviewresearch.com/industry-analysis/automated-guided-vehicle-
agv-market.

Hwang, I., Jang, Y.J., 2020. Q (𝜆) learning-based dynamic route guidance algorithm
for overhead hoist transport systems in semiconductor fabs. Int. J. Prod. Res. 58
(4), 1199–1221.

IBM, 2023. V22.1.1: User’s manual for CPLEX. https://www.ibm.com/docs/en/icos/22.
1.1.

Kim, C.W., Tanchoco, J.M., 1991. Conflict-free shortest-time bidirectional AGV routeing.
Int. J. Prod. Res. 29 (12), 2377–2391.

Krishnamurthy, N.N., Batta, R., Karwan, M.H., 1993. Developing conflict-free routes for
automated guided vehicles. Oper. Res. 41 (6), 1077–1090.

Ma, H., Li, J., Kumar, T., Koenig, S., 2017. Lifelong multi-agent path finding for online
pickup and delivery tasks. In: Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems. pp. 837–845.

Miyamoto, T., Inoue, K., 2016. Local and random searches for dispatch and conflict-free
routing problem of capacitated AGV systems. Comput. Ind. Eng. 91, 1–9.

Murakami, K., 2020. Time-space network model and MILP formulation of the conflict-
free routing problem of a capacitated AGV system. Comput. Ind. Eng. 141,
106270.

Powell, W.B., 2021. Reinforcement Learning and Stochastic Optimization. John Wiley
& Sons, Hoboken, NJ.

Schrijver, A., et al., 2003. Combinatorial optimization: polyhedra and efficiency, vol.
24, (2), Springer.

Sedgewick, R., Wayne, K., 2011. Algorithms, fourth ed. Addison-Wesley Professional.
Sharon, G., Stern, R., Felner, A., Sturtevant, N.R., 2015. Conflict-based search for

optimal multi-agent pathfinding. Artificial Intelligence 219, 40–66.
Stern, R., Sturtevant, N., Felner, A., Koenig, S., Ma, H., Walker, T., Li, J., Atzmon, D.,

Cohen, L., Kumar, T., et al., 2019. Multi-agent pathfinding: Definitions, variants,
and benchmarks. In: Proceedings of the International Symposium on Combinatorial
Search, vol. 10, (1), pp. 151–158.

Vis, I.F., 2006. Survey of research in the design and control of automated guided vehicle
systems. European J. Oper. Res. 170 (3), 677–709.

Warshall, S., 1962. A theorem on boolean matrices. J. ACM 9 (1), 11–12.
Zhong, M., Yang, Y., Dessouky, Y., Postolache, O., 2020. Multi-AGV scheduling for

conflict-free path planning in automated container terminals. Comput. Ind. Eng.
142, 106371.

http://refhub.elsevier.com/S0305-0548(24)00097-2/sb1
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb1
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb1
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb1
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb1
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb2
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb2
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb2
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb3
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb3
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb3
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb3
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb3
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb4
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb4
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb4
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb4
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb4
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb5
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb5
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb5
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb6
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb6
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb6
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb6
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb6
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb7
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb7
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb7
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb8
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb8
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb8
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb8
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb8
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb9
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb9
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb9
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb10
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb11
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb11
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb11
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb11
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb11
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb12
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb12
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb12
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb12
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb12
https://www.grandviewresearch.com/industry-analysis/automated-guided-vehicle-agv-market
https://www.grandviewresearch.com/industry-analysis/automated-guided-vehicle-agv-market
https://www.grandviewresearch.com/industry-analysis/automated-guided-vehicle-agv-market
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb14
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb14
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb14
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb14
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb14
https://www.ibm.com/docs/en/icos/22.1.1
https://www.ibm.com/docs/en/icos/22.1.1
https://www.ibm.com/docs/en/icos/22.1.1
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb16
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb16
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb16
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb17
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb17
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb17
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb18
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb18
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb18
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb18
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb18
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb19
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb19
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb19
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb20
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb20
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb20
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb20
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb20
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb21
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb21
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb21
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb22
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb22
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb22
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb23
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb24
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb24
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb24
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb25
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb25
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb25
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb25
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb25
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb25
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb25
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb26
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb26
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb26
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb27
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb28
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb28
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb28
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb28
http://refhub.elsevier.com/S0305-0548(24)00097-2/sb28

	Real-time schedule adjustments for conflict-free vehicle routing
	Introduction
	Problem definition and notation
	An optimal policy for schedule adjustments
	A polynomial time optimal solution algorithm
	A graph reduction procedure
	Computational results
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix
	References

