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Abstract: A new discharge computational model is proposed on the basis of the integration of the
velocity profile across the flow cross-section in an internally corrugated pipe flowing partially full.
The model takes into account the velocity profiles in the pressurised pipe to predict the flow rate
under free-surface flow conditions. The model was evaluated through new laboratory experiments
as well as a literature datasets. The results show that flow depth and pipe slope may affect the
model accuracy; nevertheless, a prediction error smaller than 20% is expected from the model.
Experimental results reveal the influence of the pipe slope and flow depth on the friction factor
and the stage-discharge curves: the friction factor may increase with pipe slope, while it reduces
as flow depth increases. Hence, a notable change of pipe slope may lead to the variation of the
stage-discharge curve. A part of this study deals with numerical simulation of the velocity profiles
and the stage-discharge curves. Using the Reynolds-Averaged Navier-Stokes (RANS) equations,
numerical solutions were obtained to simulate four experimental tests, obtaining enough accurate
results as to velocity profiles and water depths. The results of the simulated flow velocity were used
to estimate the flow discharge, confirming the potential of numerical techniques for the prediction of
stage-discharge curves.

Keywords: corrugated pipe; laboratory experiments; numerical study; velocity profile; friction
factor; OpenFOAM

1. Introduction

Free-surface flow in corrugated pipes is a topic of interest for culvert and drain design. Culverts
traditionally are made of large corrugated steel pipes, whose surface is corrugated because of static
reasons. In high-slope drains, internally corrugated plastic pipes are commonly implemented: the
internal corrugation reduces the flow velocities so that drop manholes are unnecessary.

A correct estimation of a head loss parameter in the form of Darcy’s friction factor or Manning’s
roughness coefficient is crucial for the practical design of corrugated pipes. In this context, Morris [1,2]
was among the pioneers who made an effort to extract equations and diagrams to estimate the flow
friction factor in corrugated pipes. Nevertheless, in the past decades when his method was evaluated it
could not demonstrate satisfactory predictions of friction factors, in particular for small discharges [3,4].
Furthermore, the proposed method by Morris [1] was originally derived for axial or two-dimensional
flow conditions. These conditions should still be checked since it is possible that the velocity pattern in
a free-surface pipe flow is not essentially 2D.

Previous studies on the friction factor and flow velocity profiles of corrugated pipes were mainly
conducted under pressurised pipe flow conditions: a comprehensive literature review is available in
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Reference [4]. On the other hand, there are few studies on the friction factor and velocity profiles of
corrugated pipes under free-surface flow conditions. The following paragraphs point to the previous
studies on the hydraulics of corrugated pipes under free-surface flow conditions.

An earlier study on flow resistance of three relatively large corrugated pipes under both full-pipe
and free-surface flow conditions was performed by Webster and Metcalf [5]. The employed pipes
were 3, 5, and 7 ft in diameter. That study mainly focused on the velocity profile and friction factor
of the selected pipes under full-pipe flow conditions with less attention to the flow resistance of the
pipes under free-surface flow. Nevertheless, the finding of Webster and Metcalf [5] about the value
of Manning’s n when the pipes convey the flow under free-surface conditions is quite interesting:
they concluded that Manning’s n for free-surface flow is almost independent of the flow depth and is
around the value of 0.024 s/m1/3 obtained for full-pipe flow conditions.

Ead et al. [6] derived empirical equations to predict the flow velocity pattern within a steel
corrugated pipe. The measurement of the velocity profiles was conducted at the pipe centreline axis as
well as at the different lateral distances from the central vertical plane. Ead et al. [6] reported that the
well-known Prandtl equation for the rough wall is valid to predict the velocity profile at a region near
the corrugations, whereas, after a certain distance from the corrugations, there would be a deviation
from the logarithmic line. The proposed equations by Ead et al. [6] may be used to predict the location
where the velocity data points initiate to deviate from the Prandtl equation, the magnitude of the
deviation from the logarithmic line at each distance from the corrugation elements and the maximum
deviation of the velocity profile from the logarithmic line. Those authors also reported that their
findings agree with the dataset of a much larger pipe. Nevertheless, further study is needed to ensure
if the proposed equations are universally valid for all the corrugated pipes.

Giustolisi et al. [7] presented the results of a series of tests on three corrugated plastic pipes.
Water depths h and discharges Q were recorded for several slopes i ranging from 3.5% to 17.5%.
Their results show that the Manning roughness coefficient varies with flow depth and pipe slope.
They also introduced empirical equations for the friction factor of each pipe as well as one equation for
all the three tested pipes.

Analysis of 3D velocity data of a corrugated pipe under the free-surface flow condition by Clark
and Kehler [8] clarifies the existence of secondary currents, which contribute to the strong velocity
dip at the flow surface. The experiments by Clark and Kehler [8], conducted at relatively small
slopes (ranging from 0.028% to 0.27%), show similar shapes of the shear stress distributions for all the
designed slopes. The maximum shear stress for all tests was observed at the pipe centreline, being
around 10% larger than the mean shear stress. Moreover, Clark and Kehler [8] pointed out a notable
portion of the cross-sectional flow area with streamwise velocity smaller than the mean bulk flow
velocity. This area was observed within the 20% of the flow depth in the vicinity of the corrugated
culvert wall: identifying this low-velocity area is useful for fish passage regulations.

This study focuses on the hydraulic characteristics of a corrugated pipe under free-surface flow
conditions. In this case, a general law involves three flow variables (that is, the flow velocity, flow depth,
and energy grade line) as well as the pipe wall nature and geometry. Unfortunately, the wall geometry
cannot be easily expressed, since it involves at least the corrugation depth, the spacing between
corrugation crests, and the corrugation curvature. In addition, the pipe used for the laboratory tests is
smaller than those used for practical purposes, which of course makes it impossible to get the complete
similarity between the model and prototype and also makes it difficult to find the limit between the
hyper-turbulent flow and other flow regimes that may occur in the corrugated pipes.

The hydraulics of the selected pipe in the present study were previously investigated under
pressure by Calomino et al. [4]. The main objectives of performing new tests in the present study are
(1) to compare the friction factor of a corrugated pipe under the free-surface flow condition with that of
the pressurised pipe flow; (2) to consider the influence of the pipe slope on the stage-discharge curves;
(3) to develop a simple analytical model to predict the flow rate on the basis of the pressurised flow
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velocity profiles, that can be easily provided by the pipe producers; and (4) to predict flow velocity
profiles by means of numerical simulation and evaluate the accuracy of two turbulence closure models.

2. Materials and Methods

This section describes the details of the experimental facilities and procedure, the formulation
of a new analytical model to calculate pipe flow discharge, and the identification of the selected
numerical model.

2.1. Experimental Set-Up and Tests

A series of hydraulic tests were performed in the Laboratorio “Grandi Modelli Idraulici”, University
of Calabria, Italy, using an internally corrugated plastic pipe with a minimum internal diameter
D = 17.1 cm. The main geometric parameters of the pipe were the roughness height ε = 0.6 cm and the
longitudinal spacing of the roughness elements λ = 2.54 cm (Figure 1). The pipe was 15.85 m long and
placed on a steel truss, whose slope can be set to the required value. All the tests of this study were
conducted under free-surface flow conditions.
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Figure 1. The roughness geometry of the selected pipe in the present study: (a) details of the pipe
corrugation; (b) a photo of the roughness elements.

The pipe was fed by means of the laboratory circuit. A 1–2% accurate V-notch Thomson were
mounted in a metallic caisson or a 1–2% accurate Bazin weir, that is, a sharp-crested rectangular weir,
installed in a restitution channel allowed the discharge measurement. Small discharges (Q < 4 L/s)
were accurately estimated through a relationship previously obtained from the water levels upstream
to the Thomson weir and a calibrated volumetric tank. To measure the water levels along the pipe,
10 observation ports, around 120 cm distant from each other, were cut on the upper part of the pipe
(Figure 2).

At the pipe bottom, in the middle of each window, a pressure tap was installed at the trough of a
corrugation element and connected to a 1 cm diameter flexible pipe. Each flexible pipe was linked
to a manifold through a separate valve. The instantaneous water pressure at each pressure tap was
captured by means of a Druck pressure transducer at the manifold extremity and recorded with a data
acquisition system set to a frequency of 50 Hz. Preliminary tests clarified that a sampling duration of
30 s is adequate to obtain a stable time-averaged pressure head at the pressure taps. Before running the
experiments, the pressure transducer signal was accurately calibrated with water levels at a vertically
placed cylinder. The water level within the cylinder was measured using a point gauge with the
accuracy of 0.1 mm. The experimental campaign can be divided into two parts:

For the first part of the experiments, a total number of 34 tests was performed by changing the
pipe slope (i = 1.5%, 3.5% and 7.0%) and flow depth. During each test, the water surface level was
estimated by means of the measured pressure values. The water surface slope was also checked to be
the same as the bottom slope, ensuring the uniformity of the flow depth. For each test, after setting
the pipe slope, the flow discharge Q and the flow depth h were measured to calculate the bulk mean
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flow velocity U = Q/A, where A is the cross-sectional flow area, the hydraulic radius Rh, and the
Darcy-Weisbach friction factor f.Water 2018, 10, x FOR PEER REVIEW  4 of 22 
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Figure 2. (a) The observation ports cut on the top of the corrugated pipe; (b) a close-up view of an
observation port.

The second part of the experiments deals with the local flow velocity measurement. For two pipe
slopes (i = 1.5% and 7.0%), four tests were carried out with h/D of around 0.50 and 0.75 (see Table 1).
The velocity profiles were measured utilizing a Pitot-Prandtl tube along the vertical (or centreline)
as well as radial directions forming angles of π/8, π/4, 3/8π (22.5◦, 45◦, 67.5◦) with the vertical.
The employed Pitot-Prandtl tube was 4 mm in diameter and 60 mm long. It was operated from
the above, through one of the observation ports located at a distance of 10.5 m from the pipe inlet.
To allow for measurement operations along the transects, it was connected to a digital gauge and to
a digital goniometer. The inlet point of the Pitot-Prandtl tube was turned upstream, while its body
with the pressure taps was kept parallel to the pipe bottom. The first measurement point was set at
the middle of the corrugation crest, at a distance of 3 mm. The static and dynamic pressure data was
obtained in turn by the same pressure transducer and data acquisition system with 50 Hz frequency
in 30 s durations. The results were compared to those obtained from higher frequencies showing no
significant differences. The time-averaged local flow velocity: u =

√
2g∆ resulted from taking an

average from instantaneous total head minus static head: ∆. Assuming an error of 1 mm on ∆, one may
consider the error of around 2.5% for u = 0.5 m/s and of the order of 0.5% for u = 1.5 m/s.

Table 1. The experimental conditions of the local flow velocity tests.

Test No. i (%) Q (L/s) h (m) h/D Re

1 1.5 7.88 0.083 0.49 (~0.5) 119,539
2 1.5 14.53 0.1245 0.73 (~0.75) 165,873
3 7 13.63 0.0786 0.46 (~0.5) 213,771
4 7 25.95 0.1185 0.69 (~0.75) 308,736
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2.2. Discharge Computational Model

The proposed model takes into account water depth h and pipe slope i to predict the flow rate
through the following procedure:

1. Calculate the average shear velocity u∗ =
√

gRhi and the average roughness Reynolds number
R∗ = λu∗

ν , ν being the water kinematic viscosity;
2. Compute “pressurised” flow velocity profile by means of a simple power function with the

following form (see Reference [9]):
u
u∗

= α
( y

λ

)β
(1)

where α and β are the coefficient and the exponent of the velocity power function, respectively.
The results analysis by Calomino et al. [9] clarified that both the coefficient α and the exponent
β decrease with the discharge or with R*, and they are well expressed by the following two
equations for the pipe used in the present study:

α = −0.503 ln R∗ + 13.47 and β = −0.033 ln R∗ + 0.491 (2)

3. Integrate the velocity profile across the flow cross-section for two schemes of h ≤ r0 and h > r0:
where r0 = D/2.

2.2.1. h ≤ r0

Let it be r = r0 − y (see Figure 3a) and δ = arccos
(

r0−h
r

)
, so the element area, dA, is expressed as

follows, dr being the element radius:

dA = 2 arccos
(

r0 − h
r

)
r dr (3)

Assuming that the velocity distribution is the same as in the pressurized pipe flow and by
integration within the extremes r = r0 − h and r = r0, one can derive:

Q =
∫ r0

r0−h
u ∗ α

(
r0 − r

λ

)β

2 arccos
(

r0 − h
r

)
r dr (4)

The value of Q can be obtained from Equation (4) through the numerical integration.
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2.2.2. h > r0

Let it be a = 2r0 − h.
The flow is computed as the difference between a first part, Q1, as in pressurised flow concerning

the whole pipe, minus a second part, Q2, concerning the upper circle segment of height a. Q1 can be
estimated by integrating over the circle of radius r0, by means of the following equation:

Q1 = 2 · π · r2
0 · α · u∗

(
D
2λ

)β( 1
β + 1

− 1
β + 2

)
(5)

The value of u∗ can be derived from the water depth h as shown in Reference [9]; Q2 is obtained
with the same formulation of Section 2.2.1 with the value of u∗ derived also from the water depth, but
considering the distance a instead of water depth h.

2.3. Numerical Model

Recently, the researchers’ interest includes experimental observations as well as a numerical
simulation of flow in corrugated pipes. A review of numerical techniques used in this field is given in
Reference [4]. Those Authors also presented the details of the numerical simulation of the pressurised
pipe flow by means of Large Eddy Simulation (LES) for the 171 mm diameter pipe. In contrast,
the simulation of the free-surface flow in corrugated pipes is rare in the literature, especially when the
channel slope must be taken into consideration.

In the present study, the flow field is simulated by solving the three-dimensional
Reynolds-Averaged Navier-Stokes (RANS) equations (Reference [10], among others) in conservative
form as written here in Cartesian coordinates (the fluid is assumed as incompressible and viscous, and
the Einstein summation convention is applied to repeated indexes: i, j = 1, 2, 3):

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p
∂xi

+
∂

∂xj

(
2µsij − ρu′iu

′
j

)
(6)

∂ui
∂xi

= 0 (7)

where ρ is the fluid density, µ the water dynamic viscosity, and p the mean fluid pressure, xi(i = 1, 2, 3)
stand for the Cartesian coordinates, ui denote the mean components of the velocity, and t and sij are,
respectively, the time and the mean strain-rate tensor defined by

sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(8)

The quantity τij = −ρu′iu
′
j is the Reynolds-stress tensor. The Reynolds-stresses are components

of a symmetric second-order tensor. The diagonal components are normal stresses, whereas the
off-diagonal elements are shear stresses. Hence, the Reynolds averaging formulation introduces six
new unknown quantities that are the six independent components of the symmetric tensor τij without
additional equations. This means that the defined system is undetermined. To close the system,
the Boussinesq approximation was used [11]. The kinematic eddy-viscosity has been expressed as
a function of the turbulent kinetic energy k and the dissipation rate ω (Equation (9)), leading to a
‘two-equation’ turbulence model.

2.3.1. Two-Equation Turbulence Models

Two-equation models [10] provide one equation to compute the turbulent kinetic energy per unit
mass k and one more equation to calculate a specific dissipation rate ω. In fact, two-equation models
are complete to predict properties of a given turbulent flow without prior knowledge of the turbulence
structure [11]. In the present study, in order to constitute a relationship between the Reynolds stresses
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and the mean flow field and solve the closure problem, the k-ωmodel proposed by Wilcox [11] and
k-ω SST model developed by Menter [12] were used.

In the k-ωmodel, the viscosity term µt is defined as

µt = ρ
k
ω

(9)

while the turbulence kinetic energy per unit mass k and the dissipation rate ω obey the following:

ρ
∂k
∂t

+ ρuj
∂k
∂xj

= τij
∂ui
∂xj
− β∗ρkω +

∂

∂xj

[
(µ + σkµt)

∂k
∂xj

]
(10)

ρ
∂ω

∂t
+ ρuj

∂ω

∂xj
= α

ω

k
τij

∂ui
∂xj
− βρω2 +

∂

∂xj

[
(µ + σωµt)

∂ω

∂xj

]
(11)

In the above equation, α = 0.52; σk = 0.5; σω = 0.5, whereas, β and β∗ are computed through
auxiliary functions as presented in Wilcox [11].

The second selected turbulence model, the k-ω SST [12], has several relatively minor variations
from the original SST version [13,14]. The turbulence kinetic energy and the dissipation rate are
computed using

ρ
∂k
∂t

+ ρuj
∂k
∂xj

= P̃k − β∗ρkω +
∂

∂xj

[
(µ + σk1µt)

∂k
∂xj

]
(12)

ρ
∂ω

∂t
+ ρuj

∂ω

∂xj
= αρS2 − βρω2 +

∂

∂xj

[
(µ + σωµt)

∂ω

∂xj

]
+ 2(1− F1)ρσω2

1
ω

∂k
∂xj

∂ω

∂xj
(13)

where P̃k represents a production limiter used in the model to prevent the build-up of turbulence in
stagnation regions [12], F1 represents the blending function, defined as [13,14] follows:

F1 = tanh


{

min

[
max

( √
k

β∗ωy
,

500υ

y2ω

)
,

4ρσω2k
CDkωy2

]}4
 (14)

with CDkω = max
(

2ρσω2
1
ω

∂k
∂xj

∂ω
∂xj

, 10−10
)

and y represents the distance to the nearest wall. The
turbulent eddy viscosity is

µt =
ρa1k

max(a1ω, SF2)
(15)

where a1 = 0.31 [15], S is defined as the second invariant of the deviatoric stress tensor and F2 is a
second blending function [13,14] expressed as

F2 = tanh

[max

(
2
√

k
β∗ωy

,
500υ

y2ω

)]2
 (16)

All the constants are predicted through a blend from the corresponding constants. For example,
α is calculated as α = α1F1 + α2 (1− F1). This model contains the following closure coefficients:
β∗ = 9/100; σk1 = 0.85; σω1 = 0.5; σω2 = 0.856; α1 = 5/9; α2 = 0.44; β1 = 3/40 [12].

It is to be noted here that the choice of two k-ω type of turbulence models for this work is due
to their generally superior performance with respect to the more classical two-equation k-ε model
in wall-bounded flows and, in particular, to their suitability in complex boundary layer flows under
adverse pressure gradient and separation, as reported in Menter et al. [12].
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2.3.2. Numerical Solution

In the four open-channel experimental tests where the velocity was measured, the flow field
was simulated by solving the RANS equations with both the k-ω and k-ω SST closure models.
The governing Equations (6) and (7), together with the equations of turbulence models, were solved
numerically by means of the interFoam solver that is embedded in the OpenFoam® C++ libraries.
The interFoam solver has been designed for incompressible, isothermal, immiscible fluids using the
VoF (Volume of Fluid) phase -fraction based interface capturing approach [16]. The VoF method was
used in many investigations (see References [17–20], among others). The VoF method, proposed by
Hirt and Nichols [17], locates and tracks the free surface flow. In this method, each fluid phase (herein
air and water) has an individual fraction of the volume. If a cell is totally void of water but full of air,
the magnitude of volume fraction function is assigned to 0; however, when the cell is completely full
of water, the aforementioned magnitude is equal to 1. Note that, if the interface intercepts the cell,
the function will have a value between 0 and 1. Then, the indicator function, ζ, is expressed as

ζ(x, t) =


1 water
0 air

0 < ζ < 1 free surface
(17)

The two-phase flow can be assumed as a mixed fluid; hence, the density and dynamic viscosity
are defined as

ρ = ζ ρ1 + (1− ζ)ρ2 (18)

µ = ζµ1 + (1− ζ)µ2 (19)

in which the subscripts 1 and 2 stand for the two selected fluids [21].
The volume fraction function can be calculated by solving an advection equation for the velocity

vector field, V, as follows [17,21]:
∂ζ

∂t
+∇·(ζV) = 0 (20)

The governing equations are discretised with the Finite Volumes (FVM) (see References [21–23],
among others). As to the discretisation of the solution domain, a ‘structured’ mesh was built where the
dependent variables are stored at the cell centre of each cell space domain in a ‘co-located’ arrangement.

In the present study, the PISO (Pressure Implicit with Split Operator) technique suggested by
Issa [24] was employed to couple the pressure–velocity in transient computations. The PISO procedure
adopts the ‘Segregated Approach’ and the system of equations is solved sequentially [24]. Further
details of the transient solution procedure can be found in Reference [23]. The stability of the solution
procedure was ensured utilizing an adaptive time step with an initial value of 10−6 s in conjunction
with a mean Courant-Friedrichs-Lewy (CFL) number limit set to 0.5.

As shown in Figure 4, a three-dimensional computational grid was generated with an internal
diameter D = 0.171 m, a length L = 4 m, a roughness height ε = 0.006 m, and a longitudinal spacing
of the roughness elements λ = 0.0254 m. Experimental conditions and fluids properties used in the
simulations are presented in Tables 1 and 2, respectively.

A number of preliminary simulations were performed before selecting the final configuration of
the grids. The features of these simulations (that is, A, B, and C) are outlined in Table 3: ∆xi are the
approximated grid spacing in xi direction, whereas Ntotal is the total number of grid points.
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Table 2. The fluid properties.

Parameter Value

Air density 1.225 (g/m3)
Water density 1000 (kg/m3)

Air kinematic viscosity 1.48 × 10−5 (m2/s)
Water kinematic viscosity 1.0 × 10−6 (m2/s)

Table 3. The grid refinement progression for Test no. 1.

Parameters Simulation A Simulation B Simulation C (Final)

Ntotal 0.43 × 106 1.02 × 106 27.5 × 106

∆x1 (m) 0.004 0.003 0.001
∆x2 (m) 0.004 0.003 0.001
∆x3 (m) 0.004 0.003 0.001

The final three-dimensional finite-volume computational domain includes about 27.5 × 106 grid
points, with a grid spacing of approximately 1 mm. The computational domain has been rotated
around the x2 axis in order to obtain the longitudinal pipe slope of each test with the rotation matrix:

Rx2(θ) =

 cos θ 0 sinθ
0 1 0

− sin θ 0 cos θ

 (21)

where θ is the relevant angle of rotation.
For each simulation, the boundary conditions of no-slip and zero wall-normal velocity at the pipe

wall were imposed. On the x1-x3 lateral boundary plane that represents the longitudinal section of the
halfpipe, a symmetry boundary condition was set [25]. At the x2-x3 inlet section, the flow depth and
discharge values corresponding to the simulated test were applied. As for the x2-x3 outlet cross-section,
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the gradient of flow velocity was set to zero in the direction perpendicular to the boundary and a fixed
value was imposed to pressure, while the free-surface condition was enforced at the flow free surface.

At the beginning of each simulation, the pipe was initially empty and the flow was entered
through the pipe inlet. Simulations were run until a steady-state uniform flow condition was achieved.

A CPU based computational system was used to carry out the computations of the present
study. The system included 3 Worker Nodes, each one equipped with 4 CPU type E5-2640 (total
96 cores/16 threads @ 2.0 GHz), 128 GB RAM, 1899 MHz, and 1 TB disk space. The simulations were
conducted using 16 processors through the public domain openMPI implementation of the standard
Message Passing Interface (MPI) for the parallel running. The technique of parallel computing has
been adopted as domain decomposition to split the geometry and the associated fields into segments.
In this study, the ‘simple geometric decomposition’ technique was used, in which the domain is broken
into segments by direction. The computational time was about 240 h CPU time for each simulation.

3. Results and Discussion

3.1. Experimental Results

3.1.1. Stage-Discharge Curves

The measured discharges and flow depths are summarised in Figure 5 for the three tested pipe
slopes: i = 1.5, 3.5, and 7%. In this figure, the discharge data were normalised by the pressurised pipe
flow rate QP, and water depths were made non-dimensional by the minimum internal pipe diameter
D = 171 mm. As one can observe, the normalised stage-discharge values for i = 7% are sensibly lower
than what resulted for the other two smaller slopes. This is different from what occurs in a fully
turbulent flow regime since the Manning coefficients vary with the slope [7].

Note that QP in Figure 5 was estimated by integrating the velocity distribution over the pipe
cross-section as follows [9]:

Qp = 2 · A · α · u∗
(

D
2λ

)β( 1
β + 1

− 1
β + 2

)
(22)
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3.1.2. Friction Factors

If we consider the experimental values of the friction factors, we can represent them in the form of
the well-known Moody diagram by means of some curves with identical relative roughness: λ/(2Rh),
where Rh is the hydraulic radius, as shown in Figure 6.
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In this figure, the Reynolds number and friction factor are, respectively, Re = 4RhU/ν, and
f = 8giRh/U2, where g is the gravitational acceleration. It is clear that the curves of the friction factor
for the free-surface pipe flow (dashed lines) are generally above the pressurised pipe flow curve (solid
line), while under a free-surface flow, the relative roughness can be smaller than in the pressurised
condition. It seems that the relative roughness parameter, defined by Morris [1], does not properly
identify the roughness role under the free-surface flow condition. As noted in the Introduction,
Morris [1] derived his equations for full pipes or wide open-channel flows, where the flow is practically
2D. Figure 6 also depicts that a larger friction factor is expected for a smaller flow depth.

3.1.3. Velocity Profiles

The velocity profiles along the radial directions are shown in Figure 7. The velocity values were
made non-dimensional by means of the average shear velocity u∗ =

√
gRhi. Figure 7 contains the

profiles (solid lines) computed by the power function (Equation (1)), introducing the value of u∗ in it
for the selected free-surface test. As to the points above the mid pipe, the distances from the wall were
taken from the nearest wall. This method resulted in velocity profiles close enough to the experimental
data points.

One can note that the velocity along the centreline was properly simulated by the power function
until it decreases owing to the ‘dip phenomenon’. Along the other radial directions, the velocity
profile tends to follow the same velocity pattern along the centreline, even though with smaller
values. In general, the power function profile may be considered as an average velocity profile for
free-surface flow conditions with an acceptable deviation (mainly overestimation) with respect to the
experimental values.



Water 2018, 10, 638 12 of 23

Water 2018, 10, x FOR PEER REVIEW  11 of 22 

 

Morris [1] derived his equations for full pipes or wide open-channel flows, where the flow is 
practically 2D. Figure 6 also depicts that a larger friction factor is expected for a smaller flow depth. 

3.1.3. Velocity Profiles 

The velocity profiles along the radial directions are shown in Figure 7. The velocity values were 
made non-dimensional by means of the average shear velocity 𝑢𝑢∗  =  �𝑔𝑔𝑅𝑅ℎ𝑖𝑖. Figure 7 contains the 
profiles (solid lines) computed by the power function (Equation (1)), introducing the value of 𝑢𝑢∗ in 
it for the selected free-surface test. As to the points above the mid pipe, the distances from the wall 
were taken from the nearest wall. This method resulted in velocity profiles close enough to the 
experimental data points. 

One can note that the velocity along the centreline was properly simulated by the power function 
until it decreases owing to the ‘dip phenomenon’. Along the other radial directions, the velocity 
profile tends to follow the same velocity pattern along the centreline, even though with smaller 
values. In general, the power function profile may be considered as an average velocity profile for 
free-surface flow conditions with an acceptable deviation (mainly overestimation) with respect to the 
experimental values. 

 
Figure 7. The velocity distribution along radial directions: (a) Test 1; (b) Test 2; (c) Test 3; (d) Test 4. 

Figure 8 illustrates contours of the flow isovelocity on a 3D representation of the measured 
longitudinal flow velocity for Tests 1 and 2. To obtain the 3D velocity pattern, the polar coordinates 
of each velocity data point were transformed into Cartesian coordinates. A polynomial curve was 
fitted to the velocity data along the pipe centreline in order to estimate the velocity value at the free 
surface, where a parabolic distribution of velocity has been assumed. To get a smoothed 3D model, a 
3rd order polynomial function was fitted to the velocity data of each transect. Ultimately, the 
polynomial curves were transformed into splines. An application of a 3D velocity model is to estimate 
the bulk mean flow velocity or the flow rate conveying through the pipe directly from the measured 

0

2

4

6

8

10

12

14

16

18

20

0.1 1.0

u/
u *

y/λ

centreline
22,5°
45°
67,5°
Power function
Mid pipe

(a)
0

2

4

6

8

10

12

14

16

18

20

0.1 1.0

u/
u *

y/λ(b)

0

2

4

6

8

10

12

14

16

18

20

0.1 1.0

u/
u *

y/λ(c)
0

2

4

6

8

10

12

14

16

18

20

0.1 1.0

u/
u *

y/λ(d)

Figure 7. The velocity distribution along radial directions: (a) Test 1; (b) Test 2; (c) Test 3; (d) Test 4.

Figure 8 illustrates contours of the flow isovelocity on a 3D representation of the measured
longitudinal flow velocity for Tests 1 and 2. To obtain the 3D velocity pattern, the polar coordinates of
each velocity data point were transformed into Cartesian coordinates. A polynomial curve was fitted
to the velocity data along the pipe centreline in order to estimate the velocity value at the free surface,
where a parabolic distribution of velocity has been assumed. To get a smoothed 3D model, a 3rd
order polynomial function was fitted to the velocity data of each transect. Ultimately, the polynomial
curves were transformed into splines. An application of a 3D velocity model is to estimate the bulk
mean flow velocity or the flow rate conveying through the pipe directly from the measured velocity
data points. The developed 3D models of the present study predict flow discharges of 7.10 and
12.78 L/s for Tests 1 and 2. These values are 9.9% and 12% smaller than the corresponding observed
ones (see Table 1). The relatively small number of the measured velocity points with respect to the
entire flow cross-sectional area is a cause of the resulted prediction error.
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3.2. Evaluation of the Discharge Computation Model

The developed model in Section 2.2 is evaluated herein using the experimental data of the present
study (that is, the University of Calabria dataset) and three other literature datasets.

3.2.1. University of Calabria Dataset

Table 4 furnishes the predicted discharge for the pipe slopes 1.5% and 7.0%. For these four tests,
the velocity profiles are available (see Table 1). This Table clarifies that the model prediction error is
less than 15%. The percent prediction error e was calculated as

e =
Qcomp. −Qmeas.

Qmeas.
× 100 (23)

where Qcomp. and Qmeas. are the computed and measured flow discharges.

Table 4. The predicted discharge for the tests with velocity profiles.

Test No. i (%) Qmeas. (L/s) h (cm) Qcomp. (L/s) e (%)

1 1.5 7.88 8.3 7.97 1.1
2 1.5 14.53 12.45 14.74 1.4
3 7.0 13.63 7.86 15.62 14.6
4 7.0 25.95 11.85 29.47 13.6

Moreover, the 34 tests on the discharge measurement with the slopes 1.5%, 3.5%, and 7.0% were,
in turn, simulated. The maximum and minimum values of the model prediction error are as follows:
for i = 1.5%, emax = 11.7% and emin = −0.47%; for i = 3.5%, emax = 4.1% and emin = −15.2%; and,
for i = 7%, emax = 15.1% and emin = −12.0%. Figure 9 illustrates the computed and measured flow
discharges along with the lines representing the ±15% deviations, where most of the computed values
lay in.

Obviously, the proposed analytical model contains two sources of error. First, the velocity
profile in a pressurised pipe is not exactly the same as what occurs in a pipe under free-surface flow
conditions; indeed, in the pressurised pipe, the flow is symmetric with respect to the section centre,
while in free-surface flow, it is symmetric with respect to the section axis perpendicular to the pipe
bottom. Second, the model does not take into account the dip phenomenon along the velocity profiles.
Therefore, the identified flow velocity for the model is larger than the real values near the water
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surface; this may lead to slight over-predictions for larger pipe slopes. Considering the uncertainties in
velocity, water depth, and discharge measurement, apart from the model assumptions, such results
are acceptable.
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Figure 9. The measured and computed discharge of the University of Calabria dataset.

3.2.2. Webster and Metcalf Dataset [5]

Webster and Metcalf presented results of 11 tests under free-surface pipe flow in a 150.9 cm
corrugated pipe. To assess the proposed model by using this dataset, Equation (24) was used to
numerically integrate the velocity across the flow section:

u
u∗

=
1

0.397
ln

y
λ
+ 9.0 (24)

This equation was obtained from the velocity data of a test made by Webster and Metcalf [5]
under the pressurised flow condition (Figure 10a). The von Kármán κ and the constant are 0.397
and 9.0, respectively: these values are close to those usually assumed for rough turbulent flow. It is
interesting to note that choosing the corrugation height ε as the length scale instead of the spacing λ

will not change the slope of the regression line, but only the constant value.
The results (Figure 10b) show small over-predictions of the measured discharge values, with the

maximum and minimum deviations equal to 4.18% and −0.35% respectively; the maximum deviations
are associated with the flow depths of around D/2.
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Figure 10. The Webster and Metcalf dataset [5]: (a) the velocity profile of the pressurized pipe flow;
(b) the measured versus computed discharges for free-surface flow conditions.

3.2.3. Ead et al. Dataset [6]

Ead et al. did not take any velocity measurement under the pressurised pipe flow condition;
nevertheless, the computational model was run on the basis of the centreline velocity profile equation
adopted by Ead et al. as follows

u
u∗

= 5.75 log
(

yo

ks

)
+ 8.5 (25)

where u∗ is the local shear velocity and the distance yo is computed starting from 6 mm below the
roughness crest. The proposed flow model herein was used to integrate the velocity profiles across the
flow area. Figure 11 shows that the model prediction error is independent of the pipe slope, with a
maximum of 18% for h = 0.12 m and i = 1.4%. Small pipe slopes in the Ead et al. tests (less than 2.6%)
could be a reason for the independence of the model errors from the pipe slopes.

Water 2018, 10, x FOR PEER REVIEW  14 of 22 

 

 
Figure 10. The Webster and Metcalf dataset [5]: (a) the velocity profile of the pressurized pipe flow; 
(b) the measured versus computed discharges for free-surface flow conditions. 

3.2.3. Ead et al. Dataset [6] 

Ead et al. did not take any velocity measurement under the pressurised pipe flow condition; 
nevertheless, the computational model was run on the basis of the centreline velocity profile equation 
adopted by Ead et al. as follows 

𝑢𝑢
𝑢𝑢∗

 =  5.75 log �
𝑦𝑦𝑜𝑜
𝑘𝑘𝑠𝑠
� + 8.5 (25) 

where u*  is the local shear velocity and the distance yo is computed starting from 6 mm below the 
roughness crest. The proposed flow model herein was used to integrate the velocity profiles across 
the flow area. Figure 11 shows that the model prediction error is independent of the pipe slope, with 
a maximum of 18% for h = 0.12 m and i = 1.4%. Small pipe slopes in the Ead et al. tests (less than 2.6%) 
could be a reason for the independence of the model errors from the pipe slopes. 

 
Figure 11. The measured and computed discharge of the Ead et al. dataset [6]. 

  

0

2

4

6

8

10

12

14

16

0 1 10 100

u/
u *

y/λ(a)
0

1

1

2

2

3

3

0 1 2 3

Q
   

   
   

(m
3 /s

)

Q        (m3/s)meas. 

co
mp

.

(b)

0

50

100

150

200

250

0 50 100 150 200 250

Q
   

   
  (

l/s
)

Q        (l/s)

i=0.55%
i=1.4%
i=2.55%

meas. 

co
m

p.

Figure 11. The measured and computed discharge of the Ead et al. dataset [6].
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3.2.4. Giustolisi et al. Dataset [7]

Giustolisi et al. carried out free-surface flow tests without taking any velocity measurements.
The 171 mm pipe tested by those authors is somewhat different from the one used at the University of
Calabria, although the pipe producer was the same. Indeed, the roughness spacing λ was 22.5 mm in
Giustolisi et al. [7], whereas it was 25.4 mm in the pipe tested in the present study. Comparing the
stage-discharge curve of the University of Calabria dataset with that obtained from the Giustolisi et al.
data for the slope 3.5%, as presented in Figure 12a, clarifies that the curve resulted from the University
of Calabria data lies under the one observed by the aforementioned authors; indeed, this effect is
coherent with the pipe resistance, which increases, according to Morris [1], with the roughness spacing
λ for a wake-interference flow.

Figure 12b presents the predicted discharge results for the Giustolisi et al. dataset [7], utilizing the
proposed flow computation model, along with the velocity profile equation (Equations (1) and (2)).
It is evident that the simulated discharges match well enough with the experimental ones, even though
they appear to be overestimated as the pipe slope and water depth increase.
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Figure 12. (a) The stage-discharge curves for i = 3.5%; (b) the measured and computed discharge of the
Giustolisi et al. dataset.

3.3. Numerical Simulation Results

From Figures 13–16, one can find the normalized experimental velocity profiles versus y/r along
with the simulated profiles. The computed profiles in the flow core zone are more uniform than the
observed ones and the ‘velocity dip’, if present, is limited to a narrow band near the water surface.
The velocity values computed by the k-ωmodel are, in general, smaller than those computed by the
k-ω SST model. However, the profiles simulated by both models can be considered satisfactory when
compared with the experimental points. In particular, if one looks at Figures 13–16, in the portions of
the figures in which the experimental datasets are available, the latter are satisfactorily reproduced in
some cases by one model, in other cases by the other model, in some other cases (many of them) by
both. This means in the first place that the k-ω class of models can be used by all means in this type of
problems for engineering purposes. Moreover, the differences between experiments and numerical
data are well in the ranges usually encountered in using models of turbulence. A more accurate
correspondence between the experiments and calculations could be obtained only by changing the
approach, that is, using Direct Numerical Simulation of turbulence instead of modelling, but this
would require enormous computing resources, and also, it would be a physics-of-fluids study no more,
instead, an engineering one.
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Figure 17 illustrates the 3D representation of the simulated longitudinal velocity as well as the
simulated flow velocity contours using k-ω SST model for Tests 1 and 2. The general velocity pattern
and contours of the flow velocity are similar to what was previously obtained from the experimental
data (see Figure 8).

Table 5 furnishes a comparison between the numerical and experimental discharge values: Qnum.

and Qexp. The latter values were the sum of fluxes through each cell in the cross-section where the
velocity magnitudes were simulated. The table shows that the deviations are of small magnitudes in
any case. Similarly, the comparison between the simulated and measured water depths (that is, hnum.

and hexp.), as presented in Table 6, clarifies that the deviations are also negligible. The simulated water
levels of Tests 1 to 4 using the k-ω SST turbulence model are depicted in Figures 13–16.

Table 5. The comparison between the numerical and experimental discharge values.

Test No. Qexp. (L/s) Qnum. (L/s) (k-ω) Deviation (%) Qnum. (L/s) (k-ω SST) Deviation (%)

1 7.88 7.84 −0.51 8.00 1.52
2 14.53 14.25 −1.93 14.73 1.38
3 13.63 13.20 −3.15 13.91 2.05
4 25.95 25.50 −1.73 26.01 0.23

Table 6. The comparison between the numerical and experimental flow depths.

Test No. hexp. (cm) hnum. (cm) (k-ω) Deviation (%) hnum. (cm) (k-ω SST) Deviation (%)

1 8.30 8.0 −3.61 7.9 −4.82
2 12.45 12.4 −0.40 12.5 0.40
3 7.86 7.7 −2.04 8.1 3.05
4 11.85 12.6 6.33 11.8 −0.42
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Figure 13. The comparison of the experimental velocity profiles with the numerical simulation results
for Test 1 along four radial angles from the vertical: (a) 0◦; (b) 22.5◦; (c) 45◦; (d) 67.5◦.
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Figure 14. The comparison of the experimental velocity profiles with the numerical simulation results
for Test 2 along four radial angles from the vertical: (a) 0◦; (b) 22.5◦; (c) 45◦; (d) 67.5◦.
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Figure 15. The comparison of the experimental velocity profiles with the numerical simulation results
for Test 3 along four radial angles from the vertical: (a) 0◦; (b) 22.5◦; (c) 45◦; (d) 67.5◦.
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Figure 16. The comparison of the experimental velocity profiles with the numerical simulation results
for Test 4 along four radial angles from the vertical: (a) 0◦; (b) 22.5◦; (c) 45◦; (d) 67.5◦.
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Figure 17. The contours of the simulated flow velocity on a 3D representation of the simulated
longitudinal velocity: (a) Test 1; (b) Test 2 (unit: m/s).

Figure 18 shows the velocity vectors in one of the pipe cross-sections; in the bulk of flow,
the prevailing velocity direction is streamwise, whereas, near the pipe wall, stronger spanwise velocity
components appear. In general, the secondary circulation is relatively weak, with vector magnitude of
the order of no more than 1/10 of the streamwise component. In Figure 18, a solid line representing
the corrugation crest is also depicted. In some points, the transverse velocity vectors appear to cross
this line, owing to the vector scale. In reality, the tails of these vectors lay at 0.5 to 1 mm from the
wall. It should be noted that the present study was mainly conducted aiming at the prediction of flow
discharge and water level, and those results are rather satisfactory. The study of ‘secondary flows’
needs a more detailed step in the research, a much more physics-oriented approach rather than an
engineering-oriented one.

Figure 19 shows a longitudinal section of the pipe, including the velocity vectors within the
corrugation trough, where the recirculation region is obvious. Above this zone, a very weak layer with
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velocity direction towards the end of the corrugation trough occurs. The existence of this zone amplifies
the idea that the space inside the corrugation may not contribute much to the flow conveyance.Water 2018, 10, x FOR PEER REVIEW  19 of 22 
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In addition to the four tests with the observed velocities, two more simulations (that is, Tests
no. 5 and 6) were carried out with h/D = 0.25 and the pipe slopes i = 1.5% and i = 7%, respectively.
The results are available in Table 7, depicting very small deviations from the experimental data. The aim
of performing these two test was to assess the reliability of the numerical model in the generation of the
stage-discharge curve. Figure 20 illustrates a comparison of the numerical simulation results with the
stage-discharge curve for two pipe slopes. It is clear that the numerical simulation can be considered as
an alternative approach to generating the entire stage-discharge curve without performing laboratory
tests. In order to improve the present results, one may increase the spatial resolution of the computing
domain or, eventually, use the Large Eddy Simulation (LES) approach for numerical simulation. Both
these options require the use of a much more powerful computing system.

Table 7. The comparison between the numerical and experimental flow depths for Tests 5 and 6.

Test No. i (%) Q (L/s) h (cm) hnum. (cm) (k-ω) hnum. (cm) (k-ω SST)

5 1.5 2.42 4.5 4.3 4.4
6 7 3.30 4.2 4.3 4.2
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Figure 20. The experimental stage-discharge curve and the numerical simulations: (a) i = 1.5%;
(b) i = 7%.

4. Conclusions

The experimental results show that the stage-discharge curve of an internally corrugated pipe
may vary with the pipe slope. This is probably attributable to the dependency of the pipe hydraulic
roughness parameter (for example, Manning’s roughness coefficient) on the pipe slope. Moreover,
analysis of the Darcy friction factor revealed that under the free-surface flow condition, larger flow
depth may lead to the smaller friction factor, while, for a certain flow depth, the friction factor may
increase as the pipe slope increases. Of course, further study is needed to confirm such results for
other flow conditions, in particular for a wider range of the Reynolds number.

A simple model based on the velocity profiles observed in the pressurised pipe was developed
to compute the pipe flow discharge under the free-surface flow condition. The proposed model was
evaluated by means of new experiments as well as three other available literature datasets for the pipe
slopes up to 10.5%. This range covers many draining pipe slopes available in the field: according to
Dennis [25], land drainage pipes are placed at absolute gradients from 0 to around 8% (0.1% to 5% is
a more common range). The results showed that, in general, smaller accuracy is expected for larger
flow depths and pipe slopes. Nevertheless, the model offered accurate enough predictions of less than
20% error.
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The use of the numerical simulations based on the RANS equations provides a completely different
approach, by which good results can be obtained. In this case, the numerical simulations are based
only on the Navier–Stokes equations and the pipe wall geometry and do not demand any empirical
knowledge. The method looks promising if computational resources are available. Two well-known
turbulence models were assessed to predict the flow velocity profiles. Both models gave enough
accurate results. The simulated velocity field confirms the existence of recirculation zones within the
cavities as well as secondary currents in the cross-sectional plane. The numerical model is also able to
predict stage-discharge curve of the pipe flow on the basis of the simulated flow velocity field.
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