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A crucial challenge in medicine is choosing which drug (or combination) will be
the most advantageous for a particular patient. Usually, drug response rates differ
substantially, and the reasons for this response unpredictability remain ambiguous.
Consequently, it is central to classify features that contribute to the observed drug
response variability. Pancreatic cancer is one of the deadliest cancers with limited
therapeutic achievements due to the massive presence of stroma that generates an
environment that enables tumor growth, metastasis, and drug resistance. To under-
stand the cancer–stroma cross talk within the tumor microenvironment and to develop
personalized adjuvant therapies, there is a necessity for effective approaches that offer
measurable data to monitor the effect of drugs at the single-cell level. Here, we develop
a computational approach, based on cell imaging, that quantifies the cellular cross talk
between pancreatic tumor cells (L3.6pl or AsPC1) and pancreatic stellate cells (PSCs),
coordinating their kinetics in presence of the chemotherapeutic agent gemcitabine. We
report significant heterogeneity in the organization of cellular interactions in response
to the drug. For L3.6pl cells, gemcitabine sensibly decreases stroma–stroma interactions
but increases stroma–cancer interactions, overall enhancing motility and crowding. In
the AsPC1 case, gemcitabine promotes the interactions among tumor cells, but it does
not affect stroma–cancer interplay, possibly suggesting a milder effect of the drug on
cell dynamics.

pancreatic cancer | cross talk | chemotherapy | statistical mechanics | stochastic processes

Cell–cell interaction in complex multicellular organisms is an intricate phenomenon
affected by specific physiological environments (1). This interplay is pivotal in
maintaining tissue organization and homeostasis, so as to coordinate an appropriate
response to dangerous perturbations. When these dialogues go wrong, diseases may
rise: The best example is cancer, which can be defined as a social dysfunction within the
cellular community (2) and used as a model system to study intercellular communications.
Modeling and predicting cellular interactions which provide insight into the mechanism
of disease development and progression is thus of utmost importance (3–5).

A benchmark case is the interplay between pancreatic ductal adenocarcinoma (PDAC)
cell lines and pancreatic stellate cells (PSCs) since their mutual interaction is known to
be critical for PDAC progression (6, 7): In this setting, many efforts have been devoted
to assessing whether soluble mediators produced by carcinoma cells stimulated motility,
proliferation, and matrix synthesis of PSCs and how these interactions enhance tumor
growth and progression (8–10). A major part of the literature affirms that chemoresistance
in PDAC is partially due to a unique presence of fibrous, stiff extracellular matrix
(desmoplasia) surrounding the tumor, that could affect the intratumoral drug penetration
(11). However, the role of desmoplasia in cancer progression is complex and remains
somehow controversial; in 2014, Gore and Korc went through the available literature
trying to clarify whether the stroma is a friend or foe in PDAC (12): Indeed, in
that period, several studies had demonstrated how targeting the stroma resulted in
undifferentiated and more aggressive pancreatic cancer (13, 14). Desmoplasia mainly
derives from PSCs that are activated to proliferate and produce collagens, laminin, and
fibronectin (15); consequently, besides the physical role played by desmoplasia, another
key aspect to consider is the molecular cross talk between stroma and tumor cells,
that regulates each cell type’s survival, migration, and other protumorigenic properties.
The lack of proper experimental models and approaches for inspecting this cross talk
contributed to enhancing poor knowledge related to PDAC underlying mechanisms.
Indeed, despite the need to study the complex interactions between PDAC cells and
PSCs, very limited in vitro options currently exist (16, 17). A possible reason is
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that the study of cell dynamics, from direct cellular contact to
soluble mediators, is complicated as it usually involves advanced
techniques ranging from gene expression analyses to coim-
munoprecipitation, proximity labeling proteomics, fluorescence
resonance energy transfer imaging, X-ray crystallography, and
more (18).

Here, restricting to signaling affecting the cell’s kinetics, we
present a cheap computational approach that allows quantifying
the existence and intensity of interactions ruling the cell’s
dynamics: In a nutshell, via standard fluorescence microscopy
imaging and cell tracking, we collect the phase space of the
experiment, namely, the ordered time series of all the cell’s
positions and velocities. This information constitutes the input
of our computational protocol, that returns as output the
effective intensity of interactions among the various cells and
an exhaustive quantitative description of their dynamics. Note
that the method can predict the existence and effective magnitude
of the interaction but not its biological nature. Yet, despite this
limitation, this approach can compare how different drugs affect
the kinetics of the same ensemble of cells; hence, it can play as a
tool to quantify kinetic cancer’s drug response.

Specifically, we preliminary evaluate the effect of two PDAC
cell lines on PSCs kinetics by performing a standard wound-
healing assay: We make a scratch in a monolayer of PSCs and
then expose the cells to a control medium or conditioned medium
of L3.6pl or AsPC1 cells for a period of 42 h. As shown in
Fig. 1 A and B, PSCs’ migration is heterogeneously affected upon
AsPC1 or L3.6pl conditioned media administration, suggesting
the dependency of the dynamic behavior of PSCs from factors
secreted by tumor cells, thus highlighting the existence of specific
cells’ interactions. En route toward their quantification, we
then perform the following comparative tests: For each tumor
cell (i.e., AsPC1 or L3.6pl), we mix the PDAC cells with the
PSCs homogeneously to inspect i) how cells orchestrate their
coordination (i.e., how they interact) to form larger aggregates
and ii) whether and how PSCs infiltrate these aggregates.
We then repeat the experiments by adding in the medium
5 μM of gemcitabine. By comparison among the two series of
experiments, we infer the role of the chemotherapeutic treatment
in tumor–stroma kinetics.

In these experiments, drug vs no-drug, (Fig. 1C ) tumor cells
are left to freely interact with PSCs, keeping the ratio 25% of
pancreatic tumor cells (“tumor” from now on) and 75% of PSCs
pancreatic stellate cells (“stroma” from now on). The tumor and
stroma cells are labeled with different fluorescent tracking dyes
for time-lapse confocal imaging (Methods for further details) to
produce two distinct datasets containing all the cell’s positions
at given time points (Fig. 1D) and thus, by differentiating two
consecutive time frames, also the cell’s velocities, namely the
“phase space” of the whole experiment (Fig. 1E) that is the input
of the computational protocol (Fig. 1 F and G).

To obtain a clear scenario of the cell’s kinetics, the key
observable to investigate is the cell’s velocity: We split the study
of this vector by analyzing its direction by means of maximum-
entropy statistical analysis and its modulus by means of stochastic
processes theory. By the former, we infer the existence and
magnitude of interactions among cells; by the latter (taking
advantage of the homogeneous initial state), we inspect whether
and how the two cellular populations tend to form aggregates,
to mix e.g., stroma can infiltrate within the tumoral clumps
(19), etc. Finally, a third and independent correlation analysis
guarantees overall coherence and reliability of the results. These
are obtained by merging outcomes of these three approaches

(reported one per section in the following): Comparing exper-
iments with and without gemcitabine, we finally conclude on
the role of the drug in governing the overall kinetics under
investigation.

On the Cell’s Sensing and Interactions. Interactions can be
inferred by studying the directional aspects of the cell’s velocities:
As standard in this case (20–22), we study the normalized
orientational order parameter

n̂i(t) :=
Evi(t)
||Evi(t)||

=
Eri(t +1t)− Eri(t)
||Eri(t +1t)− Eri(t)||

,

defined as the velocity Evi(t) of a given cell i at time t divided
by its modulus, namely, the angle tracing the orientation, or
simply the direction of that cell. Do the cells tend to cooperate,
to align, or, rather, to move independently? And how their
coordination—if any—is affected by the drug? To answer these
questions, we need to know the collective properties of the cell’s
directions, probabilistically coded by some unknown probability
distribution P(n̂) that we aim to find out by maximum entropy
analysis (20).

Given a dataset n̂ = n̂1(1), ..., n̂i(t), ..., n̂N (T ) (composed
of multiple observations of the quantity n̂i(t) from t = 1 to
t = T and for all the cells we track, i.e., i ∈ (1, ..., N )), this
approach allows reconstruction of the probability distribution
P(n̂) from a limited number of empirical observations (too small
to reconstruct the probability distribution directly from the data)
by requiring such a probability distribution to reproduce all
the experimental measurements yet being minimally structured,
in a standard Occam razor way (namely, at the maximum
entropy).

Using the labels S and T for stroma and tumor respectively,
we need the inferred probability distribution to predict corre-
lations that match the measured ones, namely, empirical one-
point C1(n̂S), C1(n̂T ) and two-point C2(n̂S , n̂S), C2(n̂T , n̂T ),
C2(n̂S , n̂T ) correlation functions (SI Appendix for their defi-
nition). To find P(n̂) explicitly, we introduce the following
Lagrange multipliers (that force the entropy to produce this
matching): a coupling JS (resulting from the constraint on
C2(n̂S , n̂S) that accounts for stroma–stroma interactions), a
coupling JT (resulting from the constraint on C2(n̂T , n̂T ) that
accounts for tumor–tumor interactions), and a mixed coupling
JM (resulting from the constraint on C2(n̂S , n̂T ) that accounts
for mixed interactions among stroma and tumor cells). The
values of these couplings have to be inferred from data, and
should they result positive (negative), they would imply a positive
(negative) effective interaction, while zero values represent
the absence of interaction. Further, HS = (HS,x , HS,y) and
HT = (HT,x , HT,y) are two bidimensional extraparameters (i.e.,
simple homogeneous external fields) that we should include
to deal with a possible persistency coded in the one-point
correlation functions C1(n̂S), C1(n̂T ); see the cartoon in Fig. 2A
to capture the meaning of the various parameters. We refer to
SI Appendix for a detailed explanation of the maximum entropy
principle (in particular, Sec. 1.A for its construction suitable
for the present analysis, SI Appendix, section 1.B for the related
resolution, and SI Appendix, section 1.C for its extensive synthetic
validation).

The extremization of the Shannon entropy returns P(n̂)
as the Boltzmann–Gibbs distribution of a cost function
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Fig. 1. Cartoon depicting the whole experimental and computational setups. In the first row, we inspect how PSCs migrate in a wound-healing assay with 2D
indirect coculture (panel A). PSCs were grown in a cell monolayer and exposed, after a scratch, to a conditioned medium from AsPC1 or L3.6pl cells. As shown in
panel B, where the vertical axes quantify the ratio between the area of the scratch and the total area, the contaminated medium sensibly affects cell migration,
confirming the presence of information exchanges among the various cellular lines. Prompted by this preliminary check, we define the following protocol to
quantify such interactions: PDAC tumor cells (L3.6pl or AsPC1, red symbols) and stromal cells (PSC, green symbols) are cocultured in a cell culture dish with
or without gemcitabine (5 μM) up to 58 h (panel C); time-lapse confocal fluorescence microscopy is applied to track the positions of the cells vs. time (panel
D); trajectories of each cell are reconstructed and, by temporal differentiation, the whole phase space of the experiment is acquired (panel E), namely, the
time-ordered series of all the cell’s positions and velocities: This information is the input to our algorithmic approach, split in stochastic process analysis (panel
F ) and maximum-entropy statistical inference (panel G). A last check based on correlation analysis ensures the correctness and global coherence of the results.

H(n̂S , n̂T | JS , JT , JM , HS , HT ) that is an explicit function of
these couplings { JS , JT , JM } and fields {HS , HT } and that reads as

P(n̂) =
1

Z(J, H)
exp (−H(n̂S , n̂T | J, H)) [1]

H ∼
−1

N (N − 1)

NS ,NS∑
i 6=j

JS n̂Si n̂
S
j +

NT ,NT∑
i 6=j

JT n̂Ti n̂
T
j

+
NS ,NT∑
i 6=j

JM n̂Si n̂
T
j

− 1
N

HS ·

NS∑
i

n̂Si + HT ·

NT∑
j

n̂Tj

 ,

[2]

where N = NS + NT , and Z( J, H), the partition func-
tion (23), acts as the normalization of P(n̂): We obtained
a cost-function of a bipartite Heisenberg–Kuramoto model
(22, 24).

Hereafter, we report the values of these parameters as resulted
from the inference. In the first two rows of Fig. 2, beyond
the picture in panel A, we present results on synthetic datasets
generated accordingly to the Heisenberg–Kuramoto and Vicsek
models (SI Appendix for details) to calibrate the computational
machinery: The maximum entropy analysis reconstructs with
high accuracy the (known) values of the drifts H (Fig. 2 B and
C ) as well as of the interactions (Fig. 2, panels D, E , and F
respectively, for JT , JM , and JS). In the third and fourth rows of
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A B C

D E F

G H I

J K L

Fig. 2. Inferring the interactions via maximum entropy technique. Panel A: Cartoon stylizing two cells per cellular lineage (different lineages in different colors)
interacting via the three possible couplings JT (tumor–tumor interactions), JS (stroma–stroma interactions), and JM (mixed interactions tumor–stroma) and,
eventually, perceiving a planar field (e.g., a chemotactic gradient) Hx , Hy . Panels B–F : results of the maximum entropy inference on synthetic datasets simulated
by the Heisenberg–Kuramoto model. We simulated 20,000 synthetic trajectories—whose parameters were known—and analyzed their phase space. We plot
on the horizontal line the true value of the parameters and on the vertical line the inferred ones. In particular, external fields are reported in panels B and
C , while the interactions among tumor–tumor, tumor–stroma, and stroma–stroma are reported in panels D, E, and F respectively. Panel G–I: Results from the
L3.6pl experiments: distributions of the inferred couplings in the two datasets (without the drug in orange and with the drug in blue). While JT is roughly left
invariant by the drug (panel G) and stable on low intensities (suggesting poor tumor–tumor interactions), JM is by far increased (panel H), and JS is sensibly
decreased (panel I) by the presence of gemcitabine, the whole suggesting that an effect of the drug is to diminish stroma–stroma interactions and to enrich
mixed ones. Panel J–L: Results from the AsPC1 experiments: distributions of the inferred couplings in the two datasets (without the drug in orange and with
the drug in blue). While JT is sensibly increased by the presence of the drug (panel J), mixed interactions are almost absent with or without the drug (panel K ),
and stroma–stroma interactions mildly leveraged by the drug.

Fig. 2 G, H , and I as well as panels J , K , and L, respectively, we
report the distributions of the key parameters JT , JM , and JS for
the L3.6pl and the AsPC1 cases: By inspecting these plots, we
conclude that

• Interactions among L3.6pl cancerous cells are not influenced
by the drug (panel G), while interactions among AsPC1

cancerous cells are strongly enhanced by the drug (panel J ),
highlighting a significant heterogeneity these cells manifest in
the kinetic response to gemcitabine.

• Interactions between stroma cells and L3.6pl cancerous cells are
deeply influenced by the drug (panelH ): In particular, without
gemcitabine, there are roughly no interactions among stroma
and tumor, while in the presence of the drug, pronounced
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A B

C D
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G H

Fig. 3. Evolution of the average intercellular distances (ICD) versus time. First line panels: Ratio of the root mean square displacement over a standard diffusion
〈x2
〉 ∼ t for both tumor (blue) and stromal (orange) cells (dataset with the drug: panel A; dataset without the drug: panel B. The control (dashed black line) is

the Brownian pure diffusion reference. Second line panels: Distributions, for the L3.6pl case, of mean intercellular distances DT,T (t), DT,S(t), and DS,S(t) (Eq.
3). Dataset without the drug: panel C; dataset with the drug: panel D. The trajectories, that are almost ballistic, show drastic differences in the evolution of
these quantifiers over time: Overall, in the dataset with gemcitabine, cells show sensibly more activity and more capacity of reducing relative intercellular
distance with respect to the cells belonging to the dataset without the drug, suggesting that—due to gemcitabine—the two different populations of cells tend
to stick together (i.e., DT,S(t) is a monotonic decreasing function in time). Third line panels: Distributions, for the AsPC1 case, of mean intercellular distances
DT,T (t), DT,S(t), DS,S(t) (Eq. 3). Dataset without the drug: panel E; dataset with the drug: panel F . The main difference with respect to the L3.6pl counterpart is
that DT,S(t) no longer decreases in time. It remains roughly constant (suggesting that dialogues among different cell lines are not pronounced in this case);
further, DT,T (t) mildly increases over time. Note that the different offsets in panels C–F are due to the heterogeneous initial state obtained by mixing the two
cellular lines and do not contain relevant information on crowding. Fourth line panels: Ratio among the distributions of the velocities (distribution of velocities
in the presence of the drug over distribution of velocities in the absence of the drug) for the L3.6pl case (panel H) and the AsPC1 case (panel H): We highlight
that, while in panel G both the stroma and the tumor acquire motility (as both the orange and blue curve are above one for higher values of velocity �), this
does not happen in the AsPC1 case, where solely the tumoral line acquires motility.
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interactions do appear. On contrary, for the AsPC1 case, there
are no net mixed interactions neither without nor with the
drug (panel K ).

• Interactions within the stroma are impaired by the drug:
For the L3.6pl scenario (panel I ) this is manifest; PSCs
sensibly diminish to interact reciprocally in the presence
of gemcitabine (possibly to enhance interactions with the
cancerous counterpart). This appears mildly in the AsPC1 case
too, as reported in panel L.

As last remarks on this approach, we note that we worked in a
Bayesian setting (25) to allow evaluating the errors affecting the
estimates of the parameters directly providing their probability
distributions (Fig. 2 and SI Appendix). However, we also stress
that, beyond the reward of a useful picture capturing effective
cells’ interactions, their interpretation should be done with great
care as these are not real interactions but just the result of the
correlations kept in the extremization (see e.g., refs. 23, 26–28
and references therein): Indeed, maximum entropy approaches
return Boltzmann–Gibbs distributions of cost functions that lack
a Hamiltonian interpretation, further they possibly offer room for
criticism as their absence of assumptions may result unreasonable
(21, 29).

On the Cell’s Diffusion and Crowding. As the two types of cells are
homogeneously mixed together, there is no global chemotactic
gradient neither in the experiment with no-drug (ND) nor in the
one with the drug (D); hence, in the long-run limit, cells should
overall perform Brownian motion (their dynamics is expected
asymptotically diffusive): This is confirmed in the first row of
panels in Fig. 3 where we show the temporal evolution of the
ratio between the empirical root mean square displacement of
the two lineages and that of a pure Brownian diffusion (the
control in the panels) for both the datasets, without the drug
(panel A) and with the drug (panel B). While on the short
timescale, cells deviate from pure diffusion (and actually their
motion can be locally ballistic); for long-enough times, the two
collapse on the control (as deepened in SI Appendix, sections
2.A and 2.B).

However, looking at shorter times, it is also evident that
interactions among cells take place and that these are enhanced

by the presence of the drug: To inspect their effects, e.g., whether
and how cells thicken, we study the average intercellular distance
D(t), as a function of time t, defined as

DA,B(t) = 〈||Era(t)− Erb(t)||〉a∈A,b∈B, [3]

where the averages are restricted to the cellular type such that
A = (S, T ) and B = (S, T ) giving rise to three quantifiers:
DS,S(t), DS,T (t), and DT,T (t).

If there is no crowding, these quantifiers are expected to
fluctuate around constant values over time; conversely, if S and T
types are merging, DS,T (t) should be a monotonously decreasing
function (likewise, if those cells are spreading away, DS,T (t) is
expected to increase in time). These markers are depicted in the
second row of panels in Fig. 3 for the L3.6pl case for both the
datasets, without the drug (panel C ) and with the drug (panel D)
and in the third row of panels in Fig. 3 for the AsPC1 case for
both the datasets, without the drug (panel E) and with the drug
(panel F ).

Remarkably, for the L3.6pl scenario, while DS,S(t) remains
(approximately) constant in both the experiments, DS,T (t)
and DT,T (t) are (approximately) constant solely in the dataset
without the drug, while in the presence of gemcitabine, these
are monotonically decreasing functions of time. In particular,
DS,T (t) significantly experiences this phenomenon, suggesting
that while tumor cells tend to form agglomerations also, stromal
ones tend to join in due to the presence of the drug. This is
no longer true in the AsPC1 counterpart where DS,T (t) stays
constant even in the presence of the drug.

We also highlight that, while the motion of these cells is
globally diffusive at the macroscale (Fig. 3 A and B and deepened
in SI Appendix), local interactions give rise to ballistic motion,
typical of sensing cells (22, 30) as the best fit for their (average)
reciprocal distances vs. time returns roughly linear dependence
of time for DA,B(t) vs. t: A local ballistic shortage suggests that
the T and S lineages are actually interacting, as it happens in the
L3.6pl case (Fig. 3D) in complete agreement with the inferential
outcomes by maximum entropy extremization of the previous
section.

Further, we plot the ratio among the velocity distributions
pertaining to the stroma and to the tumor in the presence vs.

A B C

D

Fig. 4. Fluorescence imaging of tumor–stroma cocultures during chemotherapy and evaluation of cell proliferation. Panel A Representative fluorescence
images of L3.6pl cells (red) cocultured with PSCs (green), in the presence or absence of 5 μM gemcitabine (Gem) for 0, 48, and 58 hours. (Scale bars, 100 μm.)
Panel B Representative fluorescence images of AsPC1 cells (red) cocultured with PSCs (green), in the presence or absence of 5 μM Gem for 0, 48, and 58 h. (Scale
bars, 100 μm.) Panel C) Percentage of L3.6pl and PSCs after treatment with 5 μM Gem, counted with the hemocytometer (Left graph) or with the flow cytometer
(Right graph) at the indicated times. n ≥ 3. Panel D) Percentage of AsPC1 and PSCs cells after treatment with 5 μM Gem, counted with the hemocytometer (Left
graph) or with the flow cytometer (Right graph) at the indicated times. n ≥ 3; P ≤ 0.05.
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A B

C D

E F

G H

I J

Fig. 5. Metric vs. topological correlations. Panels A-D Metric correlation functions for both the cellular lines (L3.6pl and AsPC1) and the drug (D)/nondrug (ND)
cases as reported in the titles. r0 = 1 μm. Best fits are provided with Cm(r) ∝ rm (the three values of m are reported for TT interactions Tm, TS interactions
Mm , and SS interactions Sm). Panels E–H Topological correlation functions for both the cellular lines (L3.6pl and AsPC1) and the drug (D)/nondrug (ND) cases as
reported in the titles. Best fits are provided with Ct(n) ∝ nt (the three values of t are reported for TT interactions Tt , TS interactions Mt , and SS interactions St ).
Panel I) Mean distance of the nearest neighbors for both the cellular lines (L3.6pl and AsPC1) and the drug (D)/nondrug (ND) cases as reported in the legend.
Linear best fits are provided with rn = r1

√
n, r1 accounting for the mean nearest-neighbor distance. The inferred values of r1 are reported in the legend for the

various cases. Panel J Cellular density plot returning the mean number of cells sampled in a 60 μm2 area within a given distance r: Note that all the curves share
the maximum roughly slightly above a mean cellular diameter (i.e., � ∼ 40 μm) highlighting the presence of clumps (this point is deepened in the last section of
SI Appendix).
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absence of the drug, i.e., the ratio “(drug distribution)/(no drug
distribution)” for both stromal and tumor cells (panel G for the
L3.6pl case and panel H for the AsPC1 case): In the L3.6pl
kinetics, the effect of gemcitabine is to speed up the cells above
a threshold (that is slightly different between S and T cells
resulting in ∼0.3 μm/min and 0.2 μm/min, respectively), and
this phenomenon is sensibly more pronounced for the stroma (the
latter is possibly approaching cancerous clumps, coherently with
the rise of the mixed interactions inferred in the previous section;
Fig. 2H ). In the AsPC1 counterpart, instead, stroma dynamics
results almost unaffected by the presence of gemcitabine also
from this perspective (coherently with Fig. 2K where mixed
interactions have not been detected). Finally, we correlate the
outcomes of the effects of the drug by counting live/dead cells
by flow cytometry: As presented in Fig. 4, 5 μM gemcitabine
decreased L3.6pl cell proliferation (roughly∼50%) as compared
to the control group (Fig. 4 A and C ), but it did not affect AsPC1
proliferation (Fig. 4 B and D). Manual and automatic counting
of dead and live cells (Methods for further details) showed
that the stromal cell population resulted highly resistant to the
treatment.

On the Nature of the Correlations. Following (31, 32), we now
develop a systematic study of metric vs. topological correlations
to confirm results achieved by previous inspections and to deepen
the understanding of whether the inferred interactions are mainly
ruled by metric or topological distances.

The metric correlation function measures the reciprocal
influence of all the cell’s couples of the type (A,B)—where (A,B)
can be tumor–tumor (T), mixed stroma–tumor (M), or stroma–
stroma (S)—that lie within a distance ∼ r, and it is defined as

CT∨M∨S
m (r) =

〈∑TT∨TS∨SS
i∈A,j∈B n̂i(t) · n̂j(t)δε(r − rij)∑TT∨TS∨SS

i∈A,j∈B δε(r − rij)

〉
T

,

where the kernel δε(r) is a smoothed Dirac delta, rij = ‖Exi(t)−
Exj(t)‖, and ε is the mean cellular diameter. These correlation
functions are shown in Fig. 5 for both the L3.6pl and AsPC1
cases: Panel A and panel C are made in the presence of the
drug, while panel B and panel D in the absence of the drug.
Away from cell-to-cell contact interaction (happening at small r,
i.e., log2(r) ≤ 4.5/4.8 μm), the relaxation of these correlations
is best-fitted with a power-law Cm(r) ∼ Amrγm : The inferred
coefficients γ S

m, γ
M
m , γ T

m are reported in Tables 1 and 2.
For the L3.6pl case, the main influence of the drug in the

metric correlations appears on the mixed ones (tumor–stroma):
In this case, the presence of gemcitabine roughly halves the
scale factor γM

m (i.e., γM
m ∼ −0.68 → −0.37), and this

implies a longer correlation length. The whole is in complete
agreement with outcomes by maximum entropy analysis (that
highlight a raise in the mixed interactions, Fig. 2 panel H ) and
stochastic process theory (that return as the steeper quantifier
DS,T (t), Fig. 3 panel D). The scale factors γ T

m , γ S
m of the

other metric correlations (i.e., tumor–tumor and stroma–stroma)

Table 1. L3.6pl case
m (ND | D) t (ND | D)

T −0.84± 0.05 −0.80± 0.07 −0.39± 0.05 −0.44± 0.05
M −0.68± 0.05 −0.37± 0.07 −0.39± 0.02 −0.27± 0.02
S −0.48± 0.05 −0.46± 0.05 −0.28± 0.03 −0.26± 0.06

Table 2. AsPC1 case
m (ND | D) t (ND | D)

T −0.89± 0.04 −0.48± 0.14 −0.41± 0.07 −0.24± 0.05
M −0.85± 0.12 −0.96± 0.29 −0.42± 0.6 −0.48± 0.15
S −0.93± 0.12 −0.93± 0.21 −0.39± 0.10 −0.33± 0.15

change mildly by the presence/absence of the drug (again in
agreement with previous outcomes). For the AsPC1 case, the
main influence of the drug in the metric correlations gets manifest
for the tumor–tumor ones again with a one-half variation of the
scale factor γ T

m (i.e. γ T
m ∼ −0.89 → −0.48). Such a slower

decay for the correlation function (hence a longer correlation
length) is again in agreement with the outcomes of the maximum
entropy analysis (Fig. 2J ) and stochastic process theory (that
returns as the steeper quantifier DT,T (t), Fig. 3F ). The scale
factors γM

m , γ S
m of the other correlations (i.e., tumor–stroma and

stroma–stroma) change mildly by the presence/absence of the
drug (again in agreement with previous outcomes).

The topological correlation function measures the reciprocal
influence of all cell’s couples of types T, M, and S that lie within
a neighborhood built by the closer n cells and it is defined as

CT∨M∨S
t (n) =

〈∑TT∨TS∨SS
i∈A,j∈B n̂i(t) · n̂j(t)δj,Nn(i)∑TT∨TS∨SS

i∈A,j∈B δj,Nn(i)

〉
T

,

where

δj,Nn(i) =
{

1 if j is the n-neighbor of i,
0 otherwise.

These correlation functions are shown in Fig. 5 for both the
L3.6pl and AsPC1 cases: Panel E and panel G are made in
the presence of the drug, while panel F and panel H in the
absence of the drug. Their behavior is again comparable with
a scale-free relaxation, and best-fits have been performed with
Ct(n) = Atnγt : The scale factors γ T

t , γM
t , γ S

t are reported in
the Tables 1 and 2. Considerations similar to those pertaining to
the metric case can be drawn.

Finally, as both metric and topological correlation functions
can be reasonably fitted by power-laws, but metric’s fits are less
robust, to confirm their behavior and inspect whether interactions
ruling a cell’s coordination are dominated by one type or the
other (33), we provide a scaling argument. At first, we note that
there exists roughly a factor two among the two types of scale
factors, i.e., γm ∼ 2γt for all the three cases (S, M, T). If both the
correlations (metric and topological) are truly scale-free, it should
happen that Cm(r)/Ct(n) does not scale, nor in r neither in n,
i.e., Cm(r)/Ct(n) ∝ (rγm/nγt ) ∼ const. To check this behavior,
we must find a relation expressing r as a function of n or vice versa:
This dependence can be experimentally accessed as reported in
Fig. 5I where we show that it sharply happens that r(n) ∝

√
n

for all the cases (S, M, T), all the experiments (drug/no drug),
and both the tumor cell lines (L3.6pl and AsPC1). This implies
that Cm(r)/Ct(n) ∼ const, confirming the long range action
of both these types of correlations. While this inspection does
not rule out any prevalence in the correlations governing the
interactions, it ensures that—on the spatial scale captured by
the microscope—homogeneity in cellular densities is enough to
justify the mean field nature of the maximum entropy inference.
As a last remark, we note that, despite homogeneity, cellular
density is not strictly constant; Fig. 5J . In particular, this plot
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shows peaks at the mean cellular diameter (possibly highlighting
the formation of lumps by contact interactions), and the more
pronounced case—measured by the steepness of the function in
the origin—is the L3.6pl case in the drug setting, while the less
pronounced one is the AsPC1 case, still in the drug setting (again
in agreement with previous findings): We deepen this point in
the last section of SI Appendix.

Discussion

We applied an in vitro experimental system, resembling a
part of the stromal microenvironment, to study stroma–cancer
pancreatic kinetics interactions. By time-lapse confocal imaging,
we tracked tumor and stroma cells cocultured in the presence
(or in the absence, for comparison) of a chemotherapeutic agent
(gemcitabine): The resulting datasets, storing cells’ positions and
velocities, supplied sufficient information to infer the effect of
the drug on stroma–cancer kinetics, as well as their dynamical
cross talk, due to a computational algorithm. Focusing on
cells’ velocities, we analyzed the directions and moduli of these
vectors separately: The former were investigated via maximum-
entropy inference; the latter were studied via stochastic processes.
Further, a third analysis of their correlations ensured global
consistency, the whole resulting in a unified synergistic approach
for quantifying cells’ dynamics and interactions.

By performing the same analysis with and without gemcitabine
on two different tumor lines, L3.6pl and AsPC1, we quantified
the effect of the drug on their dynamics. We found that,
for the L3.6pl cells, gemcitabine highly increased heterotypic
interactions (i.e., tumor–stroma), much more than homotypic
interactions, that are almost left invariant for the tumor and
actually diminished for the stroma. As a result of such enhanced
interactions, cells tended to form clusters and, locally, the
dynamics of the involved cells turned ballistic, resulting in marked
acquired motility. In the AsPC1 cells, instead, the effect of the
drug was sensibly milder, nor were mixed interactions raised;
neither their dynamics acquired enhanced motility. Correlating
these results with counts on dead/live cells, we conclude that
in the L3.6pl scenario, the drug killed roughly ∼50% of the
cancerous cells without affecting the vitality of the stroma, but
the same did not happen in the AsPC1 case.

Focusing on research aspects, these findings contribute to an
increase in the number of techniques (integrating those mainly
-omics derived) available to quantify drug response to cancer.
Focusing on clinical aspects, as stroma can play a very broad
critical role—ranging from cancer fighter to cancer facilitator—
our method could help (at a very cheap cost) to quickly
understand whether the stroma–tumor interaction harms the
therapy or not.

Methods
Cell Cultures. PDAC cell lines, i.e., L3.6pl, AsPC1, and pancreatic stellate cells,
i.e., PSCs, were grown in DMEM supplemented with 10% fetal bovine serum
(FBS) and 1% of penicillin–streptomycin (all from Sigma-Aldrich). Cells were
maintained in a humidified environment with 5% CO2 at 37 ◦C and were
passaged at∼80% confluency.

Wound-Healing Assay. Six-well plates were incubated with 0.01 mg/ml of
fibronectin (Sigma-Aldrich) for 30 min at 37 ◦C before rinsing with phosphate-
buffered saline (PBS, Invitrogen). Each well was seeded with 5 · 105 PSCs
and maintained at 37 ◦C and 5% CO2 for 24 h to allow cell adhesion and
the formation of a confluent monolayer. These confluent PSC monolayers were

scratched with 10-μL pipette tips to create a wound, and then, the medium was
removed and replaced with a fresh low-serum-supplemented culture medium
(1% FBS, control) or with a conditioned medium (conditioned for 48 h) which
had been generated from AsPC1 or L3.6pl. All scratch assays were performed
in quadruplicate. Quantification of the wound area was performed with the
wound-healing size tool, an ImageJ plugin (34).

Tumor–Stroma Staining and Coculture. To distinguish the two cell popu-
lations and to identify the precise position of cells in order to track them, the
CellMaskTM Deep Red Plasma Membrane Stain (InvitrogenTM) was used to mark
tumor cell cytoskeleton (false-colored in red in Fig. 1 A and B), while nuclei of
both cell lines were marked with Hoechst 33342 (Sigma-Aldrich) (false-colored
in green in Fig. 1 A and B). In detail, CellMaskTM Deep Red was diluted in
order to reach a concentration of 5 μg/mL and was added to cell media for 15
min before washing; Hoechst 33342 was diluted at 200 μg/ml and incubated
with cells for 30 min before washing. Once stained, the living cells were mixed
according to the ratio found in physiological tumors, i.e., 25% of tumor cells
versus 75% of stroma cells. In detail, 15.000 cancerous cells (L3.6pl or AsPC1)
and 45.000 PSCs were cocultured within a well of a 8-well chamber slide
(IBIDI). When moved to the confocal microscope, cells were incubated with L15
medium (Life Technologies), that is properly designed for supporting cell growth
in environments without CO2 equilibration. Of note, we used a phenol red-free
media, to reduce background fluorescence.

Drug Treatment. To analyze the effects of anticancer drugs on tumor–stroma
cross talk, we performed the same experiments by treating the cells with
gemcitabine.Tothisaim,gemcitabineHCl (suppliedbySelleckchem)wasdiluted
in DMEM (or in L15 medium just before confocal laser scanning microscopy) at
5 μM final concentration.

Time-Lapse Confocal Laser Scanning Microscopy. Confocal laser scanning
microscopy (CLSM) was performed with a Leica TCS SP8 (Leica Microsystems
GmbH, Wetzlar, Germany) microscope (objective HC PL APO CS2 40x/1.30 OIL).
Time-lapse CLSM was carried out after 48 h of coculture for 10 consecutive hours.
To this aim, 10 h of acquisitions were collected, each one composed of 60 time
frames (one acquisition every 10 min); each acquisition was constituted by 16
neighboring regions (4× 4 matrix) and a 25-μm-thick Z-stack with a z-step value
of 1 μm.

Cell Counting. For these experiments, long-term staining was carried out by
transfections with Lipofectamine 2000 (InvitrogenTM). L3.6pl, AsPC1 cells, and
PSCs were transfected with 100 ng of mCherry–zeocin or GFP–puromycin vectors
and selected with zeocin and puromycin, respectively, for all the culturing time,
in order to generate red L3.6pl or AsPC1 (mCherry) and green PSCs (GFP) cells.
The transfection was performed following the manufacturer’s instructions. All
the experiments were conducted by coculturing 30.000 L3.6pl cells with 90.000
PSCs in a 24-well plate for 0, 48, and 58 h, in the presence or absence of
5 μM gemcitabine. Then, bright-field and fluorescence microscope acquisitions
were performed to visualize the cell morphology. Images were acquired at room
temperature using a LEICA DM6000 inverted microscope (Leica) on a DC 350 FX
camera (Leica).

FACS analyses at the indicated time points were performed. The nuclei of all
cell lines were marked with Hoechst 33342 (Sigma-Aldrich). After sorting, the
red (L3.6pl and AsPC1) and green (PSCs) cells were manually (hemocytometer)
or automatically (FACS) counted.

Samples (n > 6) were run on the FACS Canto II (BD). Results for continuous
variables are presented as means ± standard deviation (SD) of at least
three independent experiments. Treatment groups were compared with the
independent samples t test. P < 0.05 was considered statistically significant.
All analyses were performed using GraphPad Prism7.

We refer to SI Appendix to deepen the theoretical and computational aspects
of the research as well as all the statistical details.
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Data, Materials, and Software Availability. Code and data-sets are available
as SI Appendix.
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