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1. Introduction

A submanifold M of a pseudo-Riemannian manifold is said to be parallel if its second fundamental form h (and hence, 
all the extrinsic invariants derived from it) is covariantly constant. Parallel submanifolds extend in a natural way the notion 
of totally geodesic submanifolds, for which h = 0 and so, the geodesics of a totally geodesic submanifold are also geodesics 
of the ambient space. Thus, the study of parallel and totally geodesic hypersurfaces of a given pseudo-Riemannian manifold 
is a natural problem, which enriches our knowledge and understanding of the geometry of the manifold itself.

Parallel hypersurfaces of a locally symmetric ambient space are locally symmetric, but this property does not extend to 
more general ambient spaces. This fact makes it particularly interesting to investigate parallel hypersurfaces of homogeneous 
spaces which are not locally symmetric. Moreover, in pseudo-Riemannian settings, hypersurfaces of different signatures can 
occur, so that their investigation is at the same time harder and richer than in the Riemannian case.

Parallel surfaces have been intensively studied in three-dimensional Lorentzian ambient spaces. We may refer to [4–7]
for several examples. Understandably, the study of parallel hypersurfaces becomes more difficult for ambient spaces of 
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higher dimension. On the other hand, also because of their relevance in Mathematical Physics, four-dimensional Lorentzian 
manifolds are natural candidates for this kind of study. Classifications of parallel hypersurfaces in some classes of four-
dimensional Lorentzian and pseudo-Riemannian manifolds may be found in [8], [9], [11], [13]. We may observe that in 
some cases, homogeneous pseudo-Riemannian four-manifolds do not allow parallel and totally geodesic hypersurfaces (see 
for example [9], [13]).

In this paper we classify parallel and totally geodesic hypersurfaces within the wide class of Gödel-type spacetimes, with 
particular regard to the homogeneous examples. In 1949, Gödel [15] obtained a solution to Einstein field equations with 
cosmological constant for incoherent matter with rotation. In this interesting model, closed timelike geodesics occur. Gödel’s 
example has been generalized to a family of rotating cosmological spacetimes, depending on two functions of one variable.

In the usual notation of Theoretical Physics, which considers Lorentzian metrics of signature (+, −, −, −), Gödel-type 
spacetimes are described by the Lorentzian metrics

g = [dt + H(r)dφ]2 − dr2 − D2(r)dφ2 − dz2, (1.1)

where t is the time variable and (r, φ, z) are cylindrical coordinates, so that r ≥ 0, φ ∈ R (undetermined for r = 0) and 
z ∈R. As det(g) = −D2(r), we have D(r) �= 0 for the metric g to be nondegenerate.

1.1. Gödel-type homogeneous spacetimes

A Gödel-type spacetime is homogeneous (i.e., it admits a group of isometries acting transitively on it) if and only if there 
exist some real constants α and ω, such that

D ′′ = αD, H ′ = −2ωD (1.2)

(see [20], [22]). We may refer to the following works and references therein for some of the several topics which have been 
investigated for Gödel-type homogeneous spacetimes: causality properties [2], [21], curvature collineations [17], matter 
collineations [10], energy and momentum [23], geodesics [14], the lightcone [12], geodesic connectedness [1], characteriza-
tions [19], Klein-Gordon equations [16], Ricci solitons [3].

According to the sign of the real constants α and ω, Gödel-type homogeneous spacetimes are classified into the following 
four non-isometric classes [10]:

Class I: α = m2 > 0, ω �= 0. Then, the solution to (1.2) is given by

H(r) = 2ω

m2
[1 − cosh(mr)], D(r) = 1

m
[sinh(mr)]. (1.3)

Class II: α = 0, ω �= 0. In this case,

H(r) = −ωr2, D(r) = r. (1.4)

Class III: α = −μ2 < 0, ω �= 0. Then,

H(r) = 2ω

μ2
[cos(μr) − 1], D(r) = 1

μ
[sin(μr)]. (1.5)

Class IV: α �= 0, ω = 0. After a suitable change of coordinates, H(r) = 0 and D(r) is either as in (1.3) or as in (1.5), 
depending on whether α = m2 > 0 or α = −μ2 < 0, respectively.

The standard Gödel spacetime belongs to Class I and is obtained for m2 = 2ω2. Metrics belonging to Class II and to 
Class I with 0 < m2 < 4ω2 have only one noncausal region. For m2 ≥ 4ω2 there exist no closed timelike curves. The limiting 
case m2 = 4ω2 is a completely causal homogeneous Gödel-type spacetime. Homogeneous Gödel-type metrics admit a five-
dimensional group of isometries, except for

• the limiting case m2 = 4ω2, which admits a seven-dimensional group of isometries [22], and
• Class IV, where the group of isometries is six-dimensional.

Indeed, the two cases listed above are locally symmetric (see also [3]). As such, they are somewhat trivial for the actual 
study, as their parallel hypersurfaces are locally symmetric, too.

Metrics in Class III admit infinitely many causal and noncausal regions. Metrics in Class IV are also known as degenerate
Gödel-type spacetimes, since their rotation is ω = 0. Finally, one excludes from the above classification the trivial case 
α = ω = 0, which corresponds to the Minkowski spacetime. Throughout the paper we shall always exclude this case.

The paper is organized in the following way. In Section 2 we report the needed preliminary information about parallel 
and totally geodesic hypersurfaces and the description of the Levi-Civita connection and curvature of Gödel-type spacetimes. 
In Section 3 we investigate the class of their hypersurfaces admitting a Codazzi second fundamental form, which include 
parallel (and totally geodesic) hypersurfaces. Finally, in Section 4 we deal with the classification and explicit description of 
parallel and totally geodesic hypersurfaces of Gödel-type spacetimes. We shall also point out several examples of proper 
constant mean curvature and minimal parallel hypersurfaces.
2



G. Calvaruso, L. Pellegrino and J. Van der Veken Journal of Geometry and Physics 198 (2024) 105108
2. Preliminaries

2.1. Parallel and totally geodesic hypersurfaces

Let F : Mn → M̄n+1 be an isometric immersion of pseudo-Riemannian manifolds. We shall denote both metrics by g . 
Let ξ be a unit normal vector field on the hypersurface, with g(ξ, ξ) = ε ∈ {−1, 1}. Denote by ∇M and ∇ the Levi-Civita 
connections of Mn and M̄n+1 respectively. Let X and Y be vector fields on Mn (we will always identify vector fields tangent 
to Mn with their images under dF ). The well known formula of Gauss

∇X Y = ∇M
X Y + h(X, Y )ξ (2.1)

defines the second fundamental form h of the immersion, which is a symmetric (0, 2)-tensor field on Mn .
M is said to be totally geodesic if h = 0. This is equivalent to the geometric property that every geodesic of M is also a 

geodesic of the ambient space M̄ .
Next, consider the covariant derivative ∇Mh of the second fundamental form, given by

(∇Mh)(X, Y , Z) = X(h(Y , Z)) − h(∇M
X Y , Z) − h(Y ,∇M

X Z)

for all vector fields X, Y , Z tangent to M . The hypersurface is said to be parallel, or to have parallel second fundamental 
form, if

∇Mh = 0. (2.2)

Clearly, totally geodesic hypersurfaces are parallel.
It is well known that M is locally symmetric when ∇M R = 0. Thus, condition (2.2) can be seen as the extrinsic analogue 

of local symmetry. Indeed, just like the Riemann-Christoffel curvature tensor R contains all the information on the intrinsic 
geometry of a pseudo-Riemannian manifold, the second fundamental form h contains all the extrinsic geometric information, 
concerning how Mn is immersed in M̄n+1.

Such a correspondence is even more evident when the ambient space M̄n+1 is symmetric. In fact, let Mn → M̄n+1 denote 
a complete, connected and embedded hypersurface of a simply connected symmetric space. Then, Mn is parallel if and only 
if for every p ∈ Mn there exists an isometry σp of M̄n+1 such that σp(p) = p, dσp|T p Mn = −idT p Mn , dσp|T ⊥

p Mn = idT ⊥
p Mn

and σp Mn = Mn (see [18]). Hence, Mn itself is symmetric and the geodesic symmetries of Mn extend to isometries of the 
ambient space. More in general, parallel hypersurfaces of locally symmetric ambient spaces are again locally symmetric.

We now state the equations of Gauss and Codazzi, which follow from (2.1) by a straightforward computation. Denote by 
R M and R the Riemann-Christoffel curvature tensors of Mn and M̄n+1 respectively. The equations of Gauss and Codazzi then 
respectively read

g(R(X, Y )Z , W ) = g(R M(X, Y )Z , W ) + ε (h(X, Z)h(Y , W ) − h(X, W )h(Y , Z)) , (2.3)

g(R(X, Y )Z , ξ) = ε
(
(∇Mh)(X, Y , Z) − (∇Mh)(Y , X, Z)

)
, (2.4)

where X , Y , Z and W are tangent to Mn . Throughout this paper, we will always use the sign convention R(X, Y ) =
[∇X , ∇Y ] − ∇[X,Y ] .

The hypersurface is said to have a Codazzi second fundamental form if ∇Mh is symmetric in its three arguments. Clearly, 
by equation (2.4), this is equivalent to requiring that R(X, Y )ξ = 0 for all vector fields X and Y on M . It is evident that 
totally geodesic and parallel hypersurfaces have a Codazzi second fundamental form.

Finally, another necessary condition for totally geodesic and parallel hypersurfaces is semi-parallelism. We recall that M
is said to be semi-parallel if R M · h = 0, where, for all vectors X, Y , Z , W tangent to M ,

(R M · h)(X, Y , Z , W ) = −h(R M(X, Y )Z , W ) − h(Z , R M(X, Y )W ).

2.2. Curvature and connection of Gödel-type metrics

Let g denote an arbitrary Gödel-type metric g , as described by (1.1) with respect to the coordinate system 
(x1, x2, x3, x4) = (t, r, φ, z). We shall denote by {∂i = ∂

∂xi
} the basis of coordinate vector fields. Then, it is easy to check 

that

E1 = ∂1, E2 = ∂2, E3 = − H

D
∂1 + 1

D
∂3, E4 = ∂4 (2.5)

form a pseudo-orthonormal basis for g , namely −g(E1, E1) = g(E2, E2) = g(E3, E3) = g(E4, E4) = −1 and g(Ei, E j) = 0 if 
i �= j. In addition, we can observe that the only possibly non-vanishing Lie bracket of the above vector fields is given by
3
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[E2, E3] = − H ′

D
E1 − D ′

D
E3. (2.6)

We can now describe the Levi-Civita connection ∇ of g with respect to the basis {Ei}. By means of the Koszul formula and 
(2.6) we get

∇E1 E1 = 0, ∇E2 E1 = − H ′
2D E3, ∇E3 E1 = H ′

2D E2, ∇E4 E1 = 0,

∇E1 E2 = − H ′
2D E3, ∇E2 E2 = 0, ∇E3 E2 = H ′

2D E1 + D ′
D E3, ∇E4 E2 = 0,

∇E1 E3 = H ′
2D E2, ∇E2 E3 = − H ′

2D E1, ∇E3 E3 = − D ′
D E2, ∇E4 E3 = 0,

∇E1 E4 = 0, ∇E2 E4 = 0, ∇E3 E4 = 0, ∇E4 E4 = 0.

(2.7)

We now consider the curvature tensor of g . Starting from (2.7) we find by a direct calculation that with respect to {Ei}, the 
curvature tensor is completely determined by the following possibly non-vanishing components

R(E1, E2)E1 =
(

H ′
2D

)2
E2, R(E1, E2)E2 =

(
H ′
2D

)2
E1 −

(
H ′
2D

)′
E3,

R(E1, E2)E3 =
(

H ′
2D

)′
E2, R(E1, E3)E1 =

(
H ′
2D

)2
E3,

R(E1, E3)E3 =
(

H ′
2D

)2
E1, R(E2, E3)E1 = −

(
H ′
2D

)′
E2,

R(E2, E3)E2 = −
(

H ′
2D

)′
E1 + 3H ′2−4D D ′′

4D2 E3, R(E2, E3)E3 = − 3H ′2−4D D ′′
4D2 E2.

(2.8)

3. Hypersurfaces with a Codazzi second fundamental form

Let F : M → (M̄, g) denote the immersion of a hypersurface into a Gödel-type spacetime and ξ the unit normal vector 
field to the hypersurface. As the following result shows, given any hypersurface M with a Codazzi second fundamental form, 
some necessary algebraic conditions hold for the components of ξ with respect to the frame {E1, E2, E3, E4} on M̄ .

Theorem 3.1. Let F : M → M̄ be a hypersurface with a Codazzi second fundamental form and ξ the unit normal vector field, with 
g(ξ, ξ) = ε ∈ {−1, 1}. Consider the pseudo-orthonormal frame {Ei} on M̄ defined in (2.5) and set

f1 =
(

H ′

2D

)2

, f2 = −
(

H ′

2D

)′
, f3 = 3 f1 − D ′′

D
.

Then, every point of M has a neighborhood U ⊆ M on which one of the following conditions holds:

(I) ξ = E4;

(II) ξ = E2;

(III) ξ = cos θ E2 + sin θ E3 for some function θ : U →R and f2 = 0;

(IV) ξ = aE1 + cE3 for some functions a, c : U →R and ac( f1 + f3) − (a2 + c2) f2 = 0;

(V) ξ = aE1 + dE4 for some functions a, d : U →R and f1 = 0;

(VI) ξ = aE1 + bE2 + cE3 for some functions a, b, c : U →R and f2 = f1 + f3 = 0.

Remark 3.2. Note that in the statement of Theorem 3.1, f j means f j ◦ F |U . In order to simplify the presentation, we use this 
notation from now on in the rest of the paper. The same notation is used for functions H and D .

Proof. We first observe that functions f1, f2, f3 are not independent from each other. In fact, if f1 = 0 then f2 = 0. On the 
other hand, if f2 = 0, then f1 is a constant. Moreover, if f1 = f2 = f3 = 0, then we get α = ω = 0 (see (1.2)), that is, the 
trivial case of a Minkowski spacetime, which we will exclude.

Consider now ξ = aE1 + bE2 + cE3 + dE4, for some functions a, b, c, d : U → R satisfying a2 − b2 − c2 − d2 = g(ξ, ξ) =
ε = ±1 �= 0. Then, the following vector fields are tangent to the hypersurface:

X1 = bE1 + aE2, X4 = cE2 − bE3,

X2 = cE1 + aE3, X5 = dE2 − bE4,

X3 = dE1 + aE4, X6 = dE3 − cE4.

If h is Codazzi, equation (2.4) yields that R(Xi, X j)ξ = 0 for every i, j ∈ {1, . . . , 6}. In particular,
4
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0 = R(X1, X2)ξ = a2bf2 E1 − a(ac( f1 + f3) − (a2 + c2) f2)E2 + ab(af1 − cf2 + af3)E3, (3.1)

0 = R(X1, X5)ξ = b2df1 E1 + bd(af1 − cf2)E2 + b2df2 E3, (3.2)

0 = R(X2, X3)ξ = acdf1 E1 − a2df1 E3, (3.3)

0 = R(X2, X4)ξ = −abcf2 E1 + c(ac( f1 + f3) − (a2 + c2) f2)E2 − bc(af1 − cf2 + af3)E3, (3.4)

0 = R(X4, X5)ξ = b2df2 E1 + bd(af2 − cf3)E2 + b2df3 E3. (3.5)

We will treat separately two cases, depending on whether a = 0 or a �= 0.

Case 1: a = 0. In this case, equation (3.4) implies that c3 f2 = 0. Hence, we have the following two subcases.
Case 1.1: a = c = 0. By equation (3.2) we then have b2df1 = 0. If b = 0 we get case (I) in the statement; for d = 0 we 

recover the case (II). Finally, if f1 = 0, then f2 = 0 and from equation (3.5) we also find f3 = 0, so that we get the case we 
excluded.

Case 1.2: a = f2 = 0. It follows from equation (3.2) that b2df1 = 0. If d = 0, then g(ξ, ξ) = −b2 − c2 = −1 and we obtain 
the case (III) in the statement. If either f1 = 0 or b = 0 we recover the previous cases.

Case 2: a �= 0. In this case, it follows from equation (3.1) that bf2 = 0. So, we distinguish two subcases.
Case 2.1: b = 0. Equation (3.3), as a �= 0, yields that df1 = 0. If d = 0, taking into account equation (3.4) we find case 

(IV) in the statement. If f1 = 0, then from equation (3.1) we get a2cf3 = 0 which, excluding the case of the Minkowski 
spacetime, yields case (V) in the statement.

Case 2.2: f2 = 0. In this case, it follows from equation (3.2) that b2df1 = 0. If d = 0, from equation (3.1) we obtain the 
case (VI) in the statement. If either f1 = 0 or b = 0 we recover some of the cases we already obtained. �

In the following results we provide an explicit description for the immersion F : M → M̄ of all hypersurfaces corre-
sponding to most of the cases listed in Theorem 3.1, namely, types (I)–(III) and (V) (the treatment of types (IV) and (VI) is 
more technically demanding and each includes different subcases, as it may be seen from the classification of their parallel 
hypersurfaces in the next section).

Theorem 3.3. Let F : M → M̄ denote a hypersurface of type (I) in Theorem 3.1. Then, the immersion can be described explicitly in local 
coordinates as

F (u1, u2, u3) = (u1, u2, u3,0).

In particular, these timelike hypersurfaces are totally geodesic.

Proof. As ξ = E4, taking into account (2.5), we get that the tangent space to M at every point is given by span{E1, E2, E3} =
span{∂1, ∂2, ∂3}. With respect to coordinates (u1, u2, u3) = (x1, x2, x3) on M , after applying a translation in the x4-direction, 
we obtain the required parametrization for F .

Finally, it follows from (2.7) that the component of ∇Ei E j along ξ = E4 vanishes for all i, j = 1, 2, 3. In particular, by the 
formula of Gauss (2.1) this implies that h = 0. Thus, M is totally geodesic. �
Theorem 3.4. Let F : M → M̄ denote a hypersurface of type (II) in Theorem 3.1. Then, the immersion can be described explicitly in 
local coordinates as

F (u1, u2, u3) =
(

u1 − H

D
u2, c,

1

D
u2, u3

)
,

where c is a real constant. In particular, these timelike hypersurfaces are parallel and flat.

Proof. Since ξ = E2, vector fields E1, E3, E4 span the tangent space to M at every point.
A direct calculation, using (2.5) and (2.7), gives

∇E1 E1 = 0, ∇E3 E1 = H ′
2D ξ, ∇E4 E1 = 0,

∇E1 E3 = H ′
2D ξ, ∇E3 E3 = − D ′

D ξ, ∇E4 E3 = 0,

∇E1 E4 = 0, ∇E3 E4 = 0, ∇E4 E4 = 0.

(3.6)

Since vector fields in (3.6) are normal to M , by the Gauss formula (2.1) we get

∇M
Ei

E j = 0, i, j ∈ {1,3,4} (3.7)

and so, ∇M = 0. In particular, M is flat and the vector fields E1 = ∂u1 , E3 = ∂u2 and E4 = ∂u3 may be taken as coordinate 
vector fields on M .
5
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Denote now by F : M → M̄, (u1, u2, u3) �→ (F1(u1, u2, u3), . . . , F4(u1, u2, u3)) the immersion of the hypersurface in the 
local coordinates introduced above. By (3.10) and (2.5), we obtain

(∂u1 F1, ∂u1 F2, ∂u1 F3, ∂u1 F4) = (1,0,0,0),

(∂u2 F1, ∂u2 F2, ∂u2 F3, ∂u2 F4) = (− H
D ,0, 1

D ,0),

(∂u3 F1, ∂u3 F2, ∂u3 F3, ∂u3 F4) = (0,0,0,1).

(3.8)

Integrating (3.8) we find

F1 = u1 − H

D
u2 + c1, F2 = c2, F3 = 1

D
u2 + c3, F4 = u3 + c4

for some real constants c1, c2, c3 and c4. After a reparametrization, we obtain the immersion given in the statement.
Again from (3.6) and the Gauss formula, we get that the second fundamental form is determined by

h(E1, E1) = 0, h(E1, E3) = H ′
2D , h(E3, E4) = 0,

h(E1, E4) = 0, h(E3, E3) = − D ′
D , h(E4, E4) = 0.

(3.9)

Observe that, by (3.9), h depends only on x2. Therefore, by (3.7) and (3.9), we get at once that ∇Mh = 0, that is, M is 
parallel. �
Remark 3.5. From (3.9) we can observe that hypersurfaces of type (II) described in Theorem 3.4 are totally geodesic if and 
only if D ′(r) = H ′(r) = 0, that is, D and H are constants, so that M̄ is isometric to the Minkowski space.

Proposition 3.6. Let F : M → M̄ denote a hypersurface of type (III) listed in Theorem 3.1. Then there exist local coordinates (u1, u2, u3)

on M such that the immersion is explicitly given by

F (u1, u2, u3) = (u1 + G1(u2), G2(u2), G3(u2), u3)

for some functions G1 , G2 , G3 satisfying D2
(
G ′

1 + G ′
2

)2 = (H − 1)2
(
1 − (G ′

3)
2
)
. In particular, these timelike hypersurfaces are flat.

Proof. Since ξ = cos θ E2 + sin θ E3 for some function θ : U →R, vector fields

Y1 = E1, Y2 = sin θ E2 − cos θ E3, Y3 = E4 (3.10)

span the tangent space to M at each point. Using (3.10) and (2.7), a direct calculation gives

∇Y1 Y1 = 0, ∇Y2 Y1 = − H ′
2D ξ, ∇Y3 Y1 = 0,

∇Y1 Y2 =
(
− H ′

2D + Y1(θ)
)

ξ, ∇Y2 Y2 =
(

Y2(θ) − D ′
D cos θ

)
ξ, ∇Y3 Y2 = 0,

∇Y1 Y3 = 0, ∇Y2 Y3 = 0, ∇Y3 Y3 = 0.

(3.11)

Since all these vector fields are normal to M , using the Gauss formula, we get

∇M
Yi

Y j = 0, i, j ∈ {1,2,3}. (3.12)

Thus, M is flat and vector fields Yi = ∂ui , i = 1, 2, 3, are coordinate vector fields on M .
Next, from (3.10), (3.11) and the Gauss formula, we get that the second fundamental form is determined by

h(Y1, Y1) = 0, h(Y1, Y3) = 0, h(Y2, Y3) = 0,

h(Y1, Y2) = − H ′
2D , h(Y2, Y2) = Y2(θ) − D ′

D cos θ, h(Y3, Y3) = 0,
(3.13)

where we used the symmetry of h, which is equivalent to ∂u1θ = 0 with respect to the coordinates introduced above. 
Moreover, f1 is a constant, as f2 = 0.

Denote now by F : M → M̄, (u1, u2, u3) �→ (F1(u1, u2, u3), . . . , F4(u1, u2, u3)) the immersion of the hypersurface in the 
local coordinates introduced above. By using (3.10) and (2.5), we obtain

(∂u1 F1, ∂u1 F2, ∂u1 F3, ∂u1 F4) = (1,0,0,0),

(∂u2 F1, ∂u2 F2, ∂u2 F3, ∂u2 F4) = ( H
D cos θ, sin θ,− 1

D cos θ,0),

(∂ F , ∂ F , ∂ F , ∂ F ) = (0,0,0,1).

(3.14)
u3 1 u3 2 u3 3 u3 4

6
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Observe that, by (3.14), ∂u3θ = 0. In fact, 0 = ∂u3(∂u2 F2) = (∂u3θ) cos θ . Integrating (3.14), we find

F1 = u1 +
u2∫

c1

H

D
cos θ ds, F2 =

u2∫
c2

sin θ ds, F3 = −
u2∫

c3

cos θ

D
ds, F4 = u3 + c4, (3.15)

for some real constants ci, i = 1, 2, 3, 4. After a reparametrization, we obtain the immersion given in the statement. �
Proposition 3.7. Let F : M → M̄ denote a hypersurface of type (V) listed in Theorem 3.1. Then there exist local coordinates (u1, u2, u3)

on M such that, up to isometries of the ambient space, the immersion is explicitly given by

F (u1, u2, u3) = (G1(u1) − Hu3, u2, u3, G4(u1))

for some functions G1 , G4 satisfying (G ′
1)

2 − (G ′
4)

2 = −ε.

Proof. Since ξ = aE1 +dE4 for some function a, d : U →R and ||ξ ||2 = a2 −d2 = ε = ±1, there exists some smooth function 
θ : U �→R such that

ξ = eθ + εe−θ

2
E1 + eθ − εe−θ

2
E4.

Then, the following vector fields span the tangent space to M at each point:

Y1 = eθ − εe−θ

2
E1 + eθ + εe−θ

2
E4, Y2 = E2, Y3 = E3. (3.16)

Using (3.16), the condition f1 = 0 and (2.7), a direct calculation gives

∇Y1 Y1 = Y1(θ)ξ, ∇Y2 Y1 = Y2(θ)ξ, ∇Y3 Y1 = Y3(θ)ξ,

∇Y1 Y2 = 0, ∇Y2 Y2 = 0, ∇Y3 Y2 = D ′
D Y3,

∇Y1 Y3 = 0, ∇Y2 Y3 = 0, ∇Y3 Y3 = − D ′
D Y2.

(3.17)

From (3.17), using the Gauss formula (2.1), we get that the Levi-Civita connection on M is completely determined by the 
following possibly non-vanishing components:

∇M
Y3

Y2 = D ′

D
Y3, ∇M

Y3
Y3 = − D ′

D
Y2. (3.18)

Next, from (3.16), (3.17) and the Gauss formula, we conclude that the second fundamental form is determined by

h(Y1, Y1) = Y1(θ), h(Yi, Y j) = 0, for all (i, j) �= (1,1), (3.19)

where we took into account the symmetry condition for h, which yields Y2(θ) = Y3(θ) = 0. Moreover, as f2 = 0, we deduce 
that f1 is a constant.

We now look for a system of local coordinates (u1, u2, u3) on M , such that

∂u1 = Y1, ∂u2 = Y2, ∂u3 = αY2 + βY3 (3.20)

for some smooth functions α, β on M . Requiring that [∂u2 , ∂u3 ] = 0, we get⎧⎨
⎩

Y2(α) = 0,

Y2(β) = D ′
D β.

Observe that we only need one solution for α and β in the system above in order to find a coordinate system (u1, u2, u3)

on the surface M . So, we take α = 0 and β = D(r) = D(u2).
With respect to the coordinates introduced above, the symmetry conditions for h read ∂u2θ = ∂u3θ = 0. Therefore, θ =

θ(u1).
Denote now by F : M → M̄, (u1, u2, u3) �→ (F1(u1, u2, u3), . . . , F4(u1, u2, u3)) the immersion of the hypersurface in the 

local coordinates introduced above. By using (3.16) and (2.5), we obtain

(∂u1 F1, ∂u1 F2, ∂u1 F3, ∂u1 F4) = ( eθ −εe−θ

2 ,0,0, eθ +εe−θ

2 ),

(∂u2 F1, ∂u2 F2, ∂u2 F3, ∂u2 F4) = (0,1,0,0),

(∂ F , ∂ F , ∂ F , ∂ F ) = (−H,0,1,0).

(3.21)
u3 1 u3 2 u3 3 u3 4

7
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Integrating (3.21) we have

F1 = ∫ u1
c1

eθ −εe−θ

2 ds − Hu3, F2 = u2 + c2,

F3 = u3 + c3, F4 = ∫ u1
c4

eθ +εe−θ

2 ds,

for some real constants ci, i = 1, 2, 3, 4. After a reparametrization, we obtain the immersion given in the statement. �
4. Parallel and totally geodesic hypersurfaces

We shall now proceed with the classification of parallel and totally geodesic surfaces in the different cases listed in 
Theorem 3.1. Cases (I) and (II) have already been completely treated in the previous section.

Case (III): ξ = cos θ E2 + sin θ E3 for some function θ : U →R and f2 = 0.
Recall that the description obtained in Proposition 3.6 applies to these hypersurfaces. There, we have constructed (com-

muting) coordinate vector fields

∂u1 = Y1, ∂u2 = Y2, ∂u3 = Y3

and gave explicit expressions for the second fundamental form in (3.13). Starting from (3.12) and (3.13), it is easily seen 
that the immersion is parallel if and only if

Y2

(
Y2(θ) − cos θ

D ′

D

)
= 0, (4.1)

since θ does not depend on either x1 or x4. Then, using that ∂u2 = sin θ∂2 − cos θ∂3, we can rewrite (4.1) as follows:

∂u2(ln(D cos θ)) = −λ tan θ (4.2)

for λ ∈ R. Therefore, the parametrization of M given in Proposition 3.6, together with the condition (4.2), characterizes 
completely parallel hypersurfaces of M̄ in the case (III).

In addition we now describe the totally geodesic examples. It follows at once from (3.13) that M is totally geodesic if 
and only if

Y2(θ) − cos θ
D ′

D
= 0,

which by integration gives explicitly

θ = arccos
(ρ

D

)
, (4.3)

where ρ is a real constant. By (4.3), equation (3.14) for the immersion F : M → M̄, (u1, u2, u3) �→ (F1(u1, u2, u3), . . . ,
F4(u1, u2, u3)) of the hypersurface in the local coordinates introduced above, now reads

F1 = u1 + ρ

u2∫
c1

H

D2
ds, F2 = ∫ u2

c2

√
1 − ( ρ

D

)2
ds,

F3 = −ρ

u2∫
c3

1

D2
ds, F4 = u3 + c4

(4.4)

for some real constants ci, i = 1, 2, 3, 4.

Example 4.1. Consider the special case where θ is constant on M . Then, condition (4.1) becomes

∂u2(D)

D
= −λ tan θ,

with λ ∈R, which is satisfied for

D = ρe−λ tan θu2

for some real constant ρ . Taking into account f2 = 0, this example corresponds to a homogeneous metric in the class I, with 
α = λ2. Moreover, from H ′ = −2ωD , with ω a real constant, we obtain
8
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H = 2ωρ

λ cos θ
e−λ tan θ u2 + k

with k a real constant. Then, up to translation, the immersion of the hypersurface in the local coordinates introduced above 
is given by F : M → M̄, (u1, u2, u3) �→ (F1(u1, u2, u3), . . . , F4(u1, u2, u3)), with

F1 = u1 + 2ω
λ

u2 + k cos2 θ
λρ sin θ

eλ tan θu2 , F2 = sin θ u2,

F3 = − cos2 θ
λρ sin θ

eλ tan θu2 , F4 = u3.

Case (IV): ξ = aE1 + cE3 with a, c : U →R satisfying ac( f1 + f3) − (a2 + c2) f2 = 0.

Since ξ = aE1 + cE3 for some function a, c : U →R and ||ξ ||2 = a2 − c2 = ε = ±1, we distinguish two subcases.

Case (IV.i): ε = −1.
In this case there exists some smooth function θ : U �→R such that

ξ = sinh θ E1 + cosh θ E3.

Then, the following vector fields span the tangent space to M at each point:

Y1 = E2, Y2 = E4, Y3 = cosh θ E1 + sinh θ E3. (4.5)

The condition ac( f1 + f3) − (a2 + c2) f2 = 0 now becomes

tanh(2θ) = 2 f2

f1 + f3
,

that means θ = θ(x2) since f1, f2 and f3 only depend on x2.

Remark 4.2. From the definition of f1, f2, f3 we easily see that in this case, H ′ �= D ′ . In fact, if H ′ = D ′ , then, the above 
equation yields tanh(2θ) = 1, which cannot occur.

Using θ = θ(x2) in (4.5) and (2.7), a direct calculation gives

∇Y1 Y1 = 0, ∇Y2 Y1 = 0, ∇Y3 Y1 = A(x2)Y3 + B(x2)ξ,

∇Y1 Y2 = 0, ∇Y2 Y2 = 0, ∇Y3 Y2 = 0,

∇Y1 Y3 = (Y1(θ) − H ′
2D )ξ, ∇Y2 Y3 = 0, ∇Y3 Y3 = A(x2)Y1,

(4.6)

where

A(x2) = sinh θ

D

(
H ′ cosh θ − D ′ sinh θ

)
, B(x2) = D ′

D
sinh θ cosh θ − H ′

2D
(sinh2 θ + cosh2 θ).

From (4.6), using the Gauss formula (2.1), we get that the Levi-Civita connection on M is completely determined by the 
following possibly non-vanishing components:

∇M
Y3

Y1 = A(x2)Y3, ∇M
Y3

Y3 = A(x2)Y1. (4.7)

Next, from (4.5), (4.6) and the Gauss formula, we conclude that the second fundamental form is determined by

h(Y1, Y3) = h(Y3, Y1) = Y1(θ) − H ′

2D
, h(Yi, Y j) = 0, for all (i, j) �= (1,3), (4.8)

where, by the symmetry condition for h, Y1(θ) − H ′
2D = B(x2). Moreover, since θ depends only on x2, we get

θ ′ = sinh θ

D

(
D ′ cosh θ − H ′ sinh θ

)
.

In order to find the cases where M is parallel, we first impose M to be semi-parallel by requiring R M · h = 0, which yields:(
A′ + A2

)
h(Y1, Y3) = 0.

Then, we have that either A′ + A2 = 0 or h(Y1, Y3) = 0.

First case: A′ + A2 = 0.
9



G. Calvaruso, L. Pellegrino and J. Van der Veken Journal of Geometry and Physics 198 (2024) 105108
In this case, by (4.7) it easily follows that R M = 0 and so, M is flat. Moreover, integrating A′ + A2 = 0 we get explicitly

A(x2) = 1

x2
+ k,

where k is a real constant. From (4.8), it is now straightforward that ∇Mh = 0 if and only if θ ′′ = ( H ′
2D )′ , whence θ ′ = H ′

2D + λ

for some real constant λ. Thus, since H ′ �= D ′ we have

θ = 1

2
ln

2Dλ ± √
4D2λ2 + (D ′)2 − (H ′)2

D ′ − H ′ .

We now look for a system of local coordinates (u1, u2, u3) on M , such that

∂u1 = Y1, ∂u2 = Y2, ∂u3 = αY2 + βY3 (4.9)

for some smooth functions α, β on M . Requiring that [∂u2 , ∂u3 ] = 0, we get{
Y1(α) = 0,

Y1(β) = Aβ.

A solution for α and β in the system above is given by α = 0 and β = x2ekx2 .
With respect to the coordinates (u1, u2, u3) we just introduced, conditions for θ read ∂u2θ = ∂u3θ = 0. Therefore, θ =

θ(u1).
Denote now by F : M → M̄, (u1, u2, u3) �→ (F1(u1, u2, u3), . . . , F4(u1, u2, u3)) the immersion of the hypersurface in the 

local coordinates introduced above. By using (4.5) and (2.5), we obtain

(∂u1 F1, ∂u1 F2, ∂u1 F3, ∂u1 F4) = (0,1,0,0),

(∂u2 F1, ∂u2 F2, ∂u2 F3, ∂u2 F4) = (0,0,0,1),

(∂u3 F1, ∂u3 F2, ∂u3 F3, ∂u3 F4) = β|F (cosh θ − H
D sinh θ,0, 1

D sinh θ,0).

(4.10)

Integrating (4.10) we get

F1 = (
cosh θ − H

D sinh θ
)
(u1 + c2)ek(u1+c2)u3 + c1, F2 = u1 + c2,

F3 = sinh θ
D (u1 + c2)ek(u1+c2)u3 + c3, F4 = u2 + c4,

for some real constants ci, i = 1, 2, 3, 4.

Second case: h(Y1, Y3) = 0.
In this case, from (4.8) we deduce that M is totally geodesic. Moreover, as H ′ �= D ′ , from Y1(θ) − H ′

2D = B(x2) = 0 we get

θ = 1

4
ln

(
D ′ + H ′

D ′ − H ′

)
.

We then choose a system of local coordinates (u1, u2, u3) on M , such that

∂u1 = Y1, ∂u2 = Y2, ∂u3 = αY2 + βY3, (4.11)

for some smooth functions α, β on M . Requiring that [∂u2 , ∂u3 ] = 0, we get{
Y1(α) = 0,

Y1(β) = Aβ.

We choose as solution for α and β in the system above α = 0 and β = exp
∫

A(x2)dx2, where we set

A(x2) = D ′ − √
(D ′)2 − (H ′)2

2D
.

With respect to the coordinates (u1, u2, u3) introduced above, the conditions for θ read ∂u2θ = ∂u3θ = 0. Therefore, θ =
θ(u1).

Denote now by F : M → M̄, (u1, u2, u3) �→ (F1(u1, u2, u3), . . . , F4(u1, u2, u3)) the immersion of the hypersurface in the 
local coordinates introduced above. By using (4.5) and (2.5), we obtain
10



G. Calvaruso, L. Pellegrino and J. Van der Veken Journal of Geometry and Physics 198 (2024) 105108
(∂u1 F1, ∂u1 F2, ∂u1 F3, ∂u1 F4) = (0,1,0,0),

(∂u2 F1, ∂u2 F2, ∂u2 F3, ∂u2 F4) = (0,0,0,1),

(∂u3 F1, ∂u3 F2, ∂u3 F3, ∂u3 F4) = β|F (cosh θ − H
D sinh θ,0, 1

D sinh θ,0).

(4.12)

Integrating (4.12) we obtain

F1 = β
(
cosh θ − H

D sinh θ
)

u3 + c1, F2 = u1 + c2,

F3 = β sinh θ
D u3 + c3, F4 = u2 + c4

for some real constants ci, i = 1, 2, 3, 4.

Case (IV.ii): ε = 1.
This case is completely analogous to the case (IV.i), taking now

ξ = cosh θ E1 + sinh θ E3.

Then, in this case, the following vector fields span the tangent space to M at each point:

Y1 = E2, Y2 = E4, Y3 = sinh θ E1 + cosh θ E3. (4.13)

Again we recover θ = θ(x2). The connection on M and the second fundamental form have analogous description as in (4.7)
and (4.8), taking into account the differences expressed in (4.13) and that we now have

A(x2) = cosh θ

D

(
D ′ cosh θ − H ′ sinh θ

)
, B(x2) = H ′

2D
(sinh2 θ + cosh2 θ) − D ′

D
sinh θ cosh θ.

Next, in this case the condition of semi-parallelism gives two different subcases: either Y1(A) + A2 = 0 and M flat, or M is 
totally geodesic. The description of parallel and totally geodesic hypersurfaces is obtained by the corresponding ones for the 
previous case, simply interchanging sinh with cosh in the parametrization.

Case (V): ξ = aE1 + dE4 for some functions a, d : U →R and f1 = 0.

These hypersurfaces have been described in general in Proposition 3.7. There, we constructed coordinate vector fields

∂u1 = Y1, ∂u2 = Y2, ∂u3 = DY3

and gave explicit expressions for the second fundamental form in (3.19). Starting from (3.18) and (3.19), it is easily seen that 
the immersion is parallel if and only if ∂u1 θ is constant. As θ does not depend on u2, u3, we then have θ(u1) = k1u1 + k2, 
for some real constants k1, k2. We treat separately the cases k1 �= 0 and k1 = 0.

Case (V.i): k1 �= 0.
In this case, denote by F : M → M̄ : (u1, u2, u3) �→ (F1(u1, u2, u3), . . . , F4(u1, u2, u3)) the immersion of the hypersurface 

in the local coordinates introduced above. By using (3.16) and (2.5), we obtain

(∂u1 F1, ∂u1 F2, ∂u1 F3, ∂u1 F4) = ( eθ −εe−θ

2 ,0,0, eθ +εe−θ

2 ),

(∂u2 F1, ∂u2 F2, ∂u2 F3, ∂u2 F4) = (0,1,0,0),

(∂u3 F1, ∂u3 F2, ∂u3 F3, ∂u3 F4) = (−H,0,1,0).

(4.14)

Integrating (4.14) we find

F1 = ek1u1+k2 +εe−k1u1−k2

2k1
− Hu3 + c1, F2 = u2 + c2,

F3 = u3 + c3, F4 = ek1u1+k2 −εe−k1u1−k2

2k1
+ c4

(4.15)

for some real constants c1, c2, c3 and c4. After a reparametrization, we obtain the immersion explicitly given by

F (u1, u2, u3) =
⎧⎨
⎩

(c cosh(u1) + Hu3, u2,−u3, c sinh(u1)) for M spacelike,

(c sinh(u1) + Hu3, u2,−u3, c cosh(u1)) for M timelike,

for some real constant c.

Case (V.ii): k1 = 0.
In this case θ = k2 is a constant. Denote again by F : M → M̄ : (u1, u2, u3) �→ (F1(u1, u2, u3), . . . , F4(u1, u2, u3)) the 

immersion of the hypersurface in the local coordinates introduced above. By using (3.16) and (2.5), we obtain
11
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(∂u1 F1, ∂u1 F2, ∂u1 F3, ∂u1 F4) = ( ek2 −εe−k2

2 ,0,0, ek2 +εe−k2

2 ),

(∂u2 F1, ∂u2 F2, ∂u2 F3, ∂u2 F4) = (0,1,0,0),

(∂u3 F1, ∂u3 F2, ∂u3 F3, ∂u3 F4) = (−H,0,1,0),

which, by integration, yield

F1 = ek2 −εe−k2

2 u1 − Hu3 + c1, F2 = u2 + c2,

F3 = u3 + c3, F4 = ek2 +εe−k2

2 u1 + c1,

(4.16)

for some real constants ci , i = 1, 2, 3, 4.
After a reparametrization we obtain

F (u1, u2, u3) =
⎧⎨
⎩

(sinh(k2)u1 − Hu3, u2, u3, cosh(k2)u1) for M spacelike,

(cosh(k2)u1 − Hu3, u2, u3, sinh(k2)u1) for M timelike.

Case (VI): ξ = aE1 + bE2 + cE3 for some functions a, b, c : U →R and f2 = f1 + f3 = 0.

We first observe that conditions f2 = f1 + f3 = 0 imply that

H ′ = −2ωD, D ′′ = 4ω2 D,

where ω is a real constant. This corresponds to

• the limiting case within the homogeneous case I) if ω �= 0;
• the Minkowski spacetime if ω = 0.

In the limiting case, M̄ decomposes as the product N3
1(c) ×R of a Lorentzian three-manifold of constant sectional curvature 

c > 0 and a real line [3].
Since ξ is a unit vector field tangent N3

1(c), applying a suitable isometry, it suffices to consider the cases ξ = E1 (timelike) 
and ξ = E2 (spacelike).

Case (VI.i): ξ = E1 .
Since ξ = E1, vector fields E2, E3, E4 span the tangent space to M at every point.
A direct calculation, using (2.5) and (2.7), gives

∇E2 E2 = 0, ∇E3 E2 = H ′
2D ξ + D ′

D E3, ∇E4 E2 = 0,

∇E2 E3 = − H ′
2D ξ, ∇E3 E3 = − D ′

D E2, ∇E4 E3 = 0,

∇E2 E4 = 0, ∇E3 E4 = 0, ∇E4 E4 = 0.

(4.17)

From (4.17) and the Gauss formula, the symmetry of the second fundamental form implies that H ′ = 0 and so, h = 0, that 
is, M is totally geodesic. However, in this case M̄ is isometric to the Minkowski space. Therefore, we shall exclude this case.

Case (VI.ii): ξ = E2 .
This is a special case of case (II). We already know from Proposition 3.4 that M is parallel and flat. Requiring that M is 

totally geodesic, from (3.9) we deduce again f1 = f2 = f3 = 0, so that M̄ is isometric to the Minkowski space.

The above calculations and conclusions are summarized in the following main classification results of totally geodesic 
and parallel hypersurfaces of Gödel-type spacetimes.

Theorem 4.3. Let F : M → M̄ be a totally geodesic hypersurface of a Gödel-type spacetime. Consider the coordinates (x1, x2, x3, x4)

on M̄ introduced in Section 2. Then there exist local coordinates (u1, u2, u3) on M, such that up to isometries, the immersion is given 
by one of the following expressions.

• For any value of H and D:

(a) F (u1, u2, u3) = (u1, u2, u3, 0) and M is timelike.

• If H ′
is constant:
2D

12
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(b) F (u1, u2, u3) =
(

u1 + ρ
∫ u2

0
H
D2 ds,

∫ u2
0

√
1 − ( ρ

D

)2
ds,−ρ

∫ u2
0

1
D2 ds, u3

)
,

for a real constant ρ and M is timelike.

• If 

∣∣∣∣∣
(

H ′
D

)′

(
H ′
D

)2− D′′
D

∣∣∣∣∣ < 1 and (D ′)2 > (H ′)2:

(c) F (u1, u2, u3) =
⎧⎨
⎩

((tanh θ − D) u3, u1, u3, u2) and M is spacelike,

((coth θ − D) u3, u1, u3, u2) and M is spacelike

with θ = 1

4
ln

(
D ′+H ′
D ′−H ′

)
.

• If H is constant:

(d) F (u1, u2, u3) =
⎧⎨
⎩

(tanh θ u1 − Hu3, u2, u3, u1) and M is spacelike,

(coth θ u1 − Hu3, u2, u3, u1) and M is timelike
for some real constant θ .

Theorem 4.4. Let F : M → M̄ be a proper (i.e., not totally geodesic) parallel hypersurface of a Gödel-type spacetime. Consider the co-
ordinates (x1, x2, x3, x4) on M̄ introduced in Section 2. Then there exist local coordinates (u1, u2, u3) on M, such that up to isometries 
the immersion is given by one of the following expressions:

• For any value of H and D:

(1) F (u1, u2, u3) =
(

u1 − H

D
u2, c,

1

D
u2, u3

)
,

where c is a real constant and M is timelike.

• If H ′
2D is constant:

(2) F (u1, u2, u3) =
⎛
⎝u1 +

u2∫
0

H

D
cos θ ds,

u2∫
0

sin θ ds,−
u2∫

0

cos θ

D
ds, u3

⎞
⎠,

with ∂u2(ln(D cos θ)) = −λ tan θ for some real constant λ and M is timelike.

• If 

∣∣∣∣∣
(

H ′
D

)′

(
H ′
D

)2− D′′
D

∣∣∣∣∣ < 1 and 4D2λ2 + (D ′)2 ≥ (H ′)2 for some real constant λ:

(3) F (u1, u2, u3) =

⎧⎪⎨
⎪⎩

((
sinh θ − H

D cosh θ
)

u1eku1 u3, u1,
cosh θ

D u1eku1 u3, u2

)
and M is spacelike,((

cosh θ − H
D sinh θ

)
u1eku1 u3, u1,

sinh θ
D u1eku1 u3, u2

)
and M is timelike,

where k is a real constant and

θ = 1

2
ln

2Dλ ± √
4D2λ2 + (D ′)2 − (H ′)2

D ′ − H ′ ;

• If H is constant:

(4) F (u1, u2, u3) =
⎧⎨
⎩

(cosh(u1) − Hu3, u2, u3, sinh(u1)) and M is spacelike,

(sinh(u1) − Hu3, u2, u3, cosh(u1)) and M is timelike.

Minimal hypersurfaces are the well-known generalizations of totally geodesic hypersurfaces, defined by the vanishing of 
the trace of h. More in general, a constant mean curvature (CMC) hypersurface is defined requiring that the trace of the second 
fundamental form is constant. There is an ever growing interest toward these classes of hypersurfaces. With regard to the 
class of parallel hypersurfaces of Gödel-type spacetime we classified, a straightforward calculation leads to the following.
13



G. Calvaruso, L. Pellegrino and J. Van der Veken Journal of Geometry and Physics 198 (2024) 105108
Corollary 4.5. Let M be a parallel hypersurface of a Gödel-type spacetime, as described in Theorem 4.4. Then, M is a minimal but not 
totally geodesic hypersurface if and only if:

(a) either M corresponds to case (1) with D constant, or

(b) M corresponds to case (3).

Remark 4.6. The above case (b) extends to the whole class of Codazzi hypersurfaces of type (IV) in Theorem 3.1, that is, all 
such hypersurfaces are minimal.

Corollary 4.7. Let M be a parallel hypersurface of a Gödel-type spacetime, as described in Theorem 4.4. Then, M is a hypersurface of 
constant mean curvature (CMC �= 0) if and only if one of the following occurs:

(a) M corresponds to case (1) with D ′ constant;

(b) M corresponds to case (2);

(c) M corresponds to case (4).

Data availability

No data was used for the research described in the article.
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