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Abstract: Finned tube heat exchangers are used in many technological applications in both civil and
industrial sectors. Their large-scale use requires a design aimed at reaching high thermal efficiency
as well as avoiding unnecessary waste of resources in terms of time and costs. Therefore, in the
last decades, research in this area has developed considerably and numerous studies have been
conducted on modeling in order to predict heat exchangers (HXs) performance and to optimize
design parameters. In this paper, the main studies carried out on plate-finned tube HXs have been
collected, analyzed, and summarized, classifying existing models by their scale approach (small,
large, or multi-scale). In addition, the main methods of design optimization with a focus on circuitry
configurations have been illustrated. Finally, future developments and research areas that need more
in-depth analysis have been identified and discussed.

Keywords: heat exchanger; design; model; optimization; hybrid method; evaporator; performance;
multi-scale model; circuit arrangement; refrigerant circuit layout

1. Introduction

Heat exchangers (HXs) are devices that provide heat transmission between two or
more fluids at different temperatures [1]. It is of great importance to ensure optimum
performance as they are employed in a wide range of engineering applications, such as
process, power production, food and chemical applications, manufacturing industry, refrig-
eration, air-conditioning, electronics, and space applications. Since they are so widespread,
there are different types of HXs as well as different classifications have been proposed
based on the construction, heat transfer process, surface compactness, flow arrangement,
heat transfer mechanism, and number of fluids [2]. Figure 1 shows the most common
classification according to construction.

A finned tube HX is made up of a number of tubes with fins attached to the outside
which can be normal, transverse, helical, or longitudinal to the tube. Similarly, continuous
plate-fin sheets may be attached to the array of tubes by a tight mechanical (press) fit,
adhesive bonding, tension winding, soldering, brazing, welding, or extrusion, which can
be organized in a staggered or in-line form.

In this type of coil, a fluid for heat transmission, such as oil, water, or refrigerant, flows
inside round, rectangular, or elliptical-shaped tubes exchanging heat with another medium,
such as air, which flows between the fins. A good overview of the thermal characteristics
of plate-finned and unfinned tube heat exchangers can be found in [3] where the authors
address not only the most important thermofluid correlations, but also the influence of the
most important design parameters on the performance of HXs. The impact of the fin type
and geometry on the performance is instead discussed extensively by Basavarajappa [4]
who concluded that better performance can be obtained with a larger fin area and by
creating turbulence in the fluid, which also causes bulk fluid mixing.
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density greater than 700 m2/m3 is defined as a compact heat exchanger (CHX), when it is 
above 10.000 m2/m3 it can be classified as a micro heat exchanger [5]. CHXs of plate-fin 
and tube-fin types are widely used as vehicular HXs, evaporators and condensers in re-
frigeration, in the air-conditioning industry, automotive radiators, etc. Their strengths 
can be compactness as well as lightness and reduced production costs simultaneously 
achieving high heat transfer performance with low pressure drop. Compact heat ex-
changers’ most recent scientific and technological advances are illustrated in [6–8]. Fol-
lowing a life-cycle approach, Hesselgreaves et al. [6] shared an interesting exergetic 
analysis of heat exchangers seen as part of a system. The same method was applied by 
Zohuri [7], who performed a thermal study beginning with the design of compact heat 
exchangers and continuing through the operational and safety steps. In his work, Zohuri 
also suggested alternative designs with the aim to maximize the exchanger heat transfer 
rate. The reduction of fouling in heat exchangers and their systems, however, is given 
special attention by Klemes et al. [8], who describe fouling deposition and threshold 
fouling mechanisms and also offer practical knowledge of the most recent process inte-
gration techniques. 
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Some of the extended surface exchangers are compact: an HX with a surface area
density greater than 700 m2/m3 is defined as a compact heat exchanger (CHX), when it
is above 10.000 m2/m3 it can be classified as a micro heat exchanger [5]. CHXs of plate-
fin and tube-fin types are widely used as vehicular HXs, evaporators and condensers in
refrigeration, in the air-conditioning industry, automotive radiators, etc. Their strengths can
be compactness as well as lightness and reduced production costs simultaneously achieving
high heat transfer performance with low pressure drop. Compact heat exchangers’ most
recent scientific and technological advances are illustrated in [6–8]. Following a life-cycle
approach, Hesselgreaves et al. [6] shared an interesting exergetic analysis of heat exchangers
seen as part of a system. The same method was applied by Zohuri [7], who performed
a thermal study beginning with the design of compact heat exchangers and continuing
through the operational and safety steps. In his work, Zohuri also suggested alternative
designs with the aim to maximize the exchanger heat transfer rate. The reduction of fouling
in heat exchangers and their systems, however, is given special attention by Klemes et al. [8],
who describe fouling deposition and threshold fouling mechanisms and also offer practical
knowledge of the most recent process integration techniques.

Furthermore, different fin configurations are possible for finned tube heat exchangers,
as shown in Figure 2. It has been shown that the fin type and geometry are some of
the parameters that most influence the performance of an exchanger both in terms of
heat transfer rate and pressure drops [9]. The HXs with fins that generate turbulent flow
through corrugation, louvers, and vortex generators develop a greater heat transfer rate,
but, on the other hand, there is an increase in flow resistance and therefore an increase in
pressure drops.
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In the last decades, the growing cost of energy and raw materials has forced more and
more efficient design of heat exchangers to avoid unnecessary oversizing or malfunctions
of these devices. So various mathematical models, and analytical and experimental studies
were developed to model the HXs and predict, as efficiently as possible, the performances
in terms of heat transfer rate and pressure drops. In this review paper, the main models
for predicting the performance of plate-finned tube exchangers will be discussed and
analyzed in detail, classifying them by their approach scale as small, large, or multi-scale
models. Moreover, many efforts have been made by researchers to identify the optimal
configuration of an exchanger as well as many useful tools to optimize their performance
according to operating conditions. Therefore, in the second part of this work the main
optimization techniques will be illustrated together with the geometric parameters that
most influence HXs performance. Finally, the most promising future research paths will be
analyzed to identify research areas that would be better to deepen with future research.

2. Heat Exchanger Design Procedure

The design process of a heat exchanger is a very complex problem as there are many
involved parameters to take into account, with complex correlations. Establishing a cor-
rect design procedure is the first step for designing an efficient exchanger and avoiding
malfunctions. The design aim is certainly to satisfy the process requirements; therefore the
designers must obtain all the information such as fluids flow rates, operating and maximum
pressures, temperatures, and also all the constraints of cost, space, and types of materials.
A schematic representation of a typical design procedure can be seen in Figure 3. Designers
select the construction type of the device, geometry, and all the materials involved, tak-
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ing into consideration not only the operating conditions but also issues concerning costs,
maintenance, reliability, and safety of the device.
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The HX design process can be classified as a sizing problem (design problem), where
the goal is to determine the size of the exchanger, or a rating (performance analysis),
where the exchanger already exists or has been chosen and the performance needs to
be assessed [10]. Often, the solutions to this problem are many and then the choice is
guided by other criteria such as costs. If the chosen exchanger does not fully satisfy all the
requirements, another design must be chosen through an iterative procedure. Once the
thermohydraulic performance design has been completed, the second step is to determine
the mechanical properties by the design of inlet and outlet nozzles, connectors, temperature
and pressure measurement devices, etc. In addition, steady-state and transient thermal
stress studies must also be performed. Another very important aspect is maintenance:
the positioning and configuration of the exchanger must allow correct cleaning and easy
accessibility to all the components, especially those most exposed to problems of corrosion,
erosion, and vibrations. Once the mechanical design has also been completed, the cost
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analysis has to be performed to obtain to the optimal solution of an exchanger that satisfies
all the requirements at the minimum cost. The costs of materials, manufacturing, testing,
installation, operation, and maintenance have to be included in the analysis.

3. Heat Exchanger Modelling Methods

An act to quantitatively characterize a natural phenomenon is known as a mathemati-
cal model [11]. There are many different ways that mathematical models can be expressed.
For example, they can be deterministic or stochastic, some can treat time as a discrete entity
while others do not, and some models seek to provide analytical correlations between
variables while others define how those variables change over time. Another classification
is possible by their scale approach: small, large, or multi-scale models (Figure 4). Typically,
small-scale models are numerical models built with the help of CFD techniques, i.e., a
set of techniques that, through the aid of computational systems, allow simulation of the
dynamics of fluids. Often these models are very accurate in their results as they study the
phenomena in detail of small-scale interactions. On the other hand, however, they are often
expensive in terms of time and therefore costs and, in most cases, they do not match with
the requests of the manufacturing companies that must respond more and more promptly
to market demands. On the contrary, large-scale approach models are simpler and faster
to apply and are very useful for manufacturing companies. Typically, these are analytical
models that often come from experimental tests. The disadvantage of these models lies in
the fact that the results can be slightly inaccurate. As a consequence, devices designed with
purely analytical models could be oversized and, therefore, result in a waste of money or
even undersized giving rise to malfunctions. Moreover, often a wrong design cannot be
detected before production and installation, generating an unnecessary and harmful waste
of resources.
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Still, in the category of large-scale models, those that come from pure experimental
tests are included. These are accurate in most cases but have the disadvantage of being
highly dependent on the device’s geometry, operating at boundary conditions of the specific
test. In other words, experimental tests often provide slightly flexible results, and therefore
are not adaptable to other working conditions.

Another category of models that combines the accuracy advantages of small-scale
models and the relative simplicity and speed of application of large-scale models are the
so-called “multi-scale” models.
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Therefore, each design method has advantages and disadvantages (see Table 1) and
currently the choice of the model to use by manufacturing companies is often guided by
time and cost issues, as well as the specific application of the device.

Table 1. Summary of design methods with the indication of advantages and disadvantages.

Models Advantages Disadvantages

CFD models Very accurate results Expensive in terms of time
and costs

Empirical models Accurate results
Results highly depending on

specific geometry and
boundary conditions

Analytical models Relatively easy and quick to apply Poor accuracy of the results

Multi-scale models Relatively easy and quick to apply
Very accurate/accurate results (*)

Not simple model
development. Further
research is needed in

the future
(*) Accuracy depends on the model used.

In this section, a complete overview of the methods for the modelling of plate-finned
tube heat exchangers is illustrated, resulting in a classification based on their scale ap-
proach together with an introduction of the main experimental correlations developed by
researchers for the calculation of the thermodynamic properties of the fluids.

3.1. Large Scale Models: Experimental Correlations for Fluid Properties Calculation

Over the past few decades there have been several experimental studies concerning
the heat transfer properties of plate-finned tube exchangers carried out by researchers. As a
result, many correlations regarding the characteristics of the fluids and the pressure drops
were developed and then used in different ways.

Colburn, who performed his first research studies in heat transfer in 1930, proposed
a method for the correlation of forced convection heat-transfer data coming from experi-
mental tests, by plotting a dimensionless group—which represents this dataset—against
the Reynolds number [12]. The method is particularly appreciable in the transition region
between laminar and turbulent flow inside the tubes, where the heat transfer factors can
show inflections. Rosman et al. [13] performed several tests to measure the overall heat
transfer coefficients for two-row tube and plate-fin exchangers. Results were combined
with measurements from the literature on one-row exchangers to shift from the local mass
transfer coefficient to the local heat transfer coefficient. Moreover, the same authors carried
out a numerical analysis to obtain the temperature distribution and fin efficiency. Dittus
and Boelter [14] conducted a substantial and systematic work measuring the film transfer
factors on the liquid side of a radiator, dividing the results by turbulent, viscous, and non-
turbulent flow and by the number of rows in the exchanger. Another type of tube shape
was studied by Merker [15], who carried out measurements of heat transfer and pressure
drop on elliptical tube banks with a staggered arrangement and different transversal and
longitudinal pitches. The results showed that exchangers with elliptical-shaped tubes have
a smaller front area on the shell side compared to those with a circular one. Wang et al. [16]
proposed a modification of the well-known Žukauskas correlation [17]—which worked
for multiple-row heat exchangers—extending its applicability for 1-row HX and Re < 1000.
Tests were performed on tube banks with a different row number (from one to six) and
results confirmed that heat transfer coefficients increase with the row number, while they
are comparable for 1-row and 2-row tube banks. Moreover, for 2-row HX the heat transfer
coefficients were found to be higher with smaller tube diameters, at the same transversal
pitch, while they are comparable for 1-row HX. Kim and Kim [18] experimentally investi-
gated HXs with large fin pitches by varying fin pitch, the number of tube rows, and tube
arrangement. Fin pitch was found to have less influence on the heat transfer coefficient
for 1-row exchangers with larger fin pitch, but it had more influence on multiple-row coils
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since the heat transfer coefficient increased as the fin pitch became higher. Moreover, results
showed that the heat transfer coefficient decreased as the number of tube rows increased in
all cases apart from the staggered arrangement with 4-rows, where the influence of row
number was found to be quite negligible. However, a staggered tube configuration showed
a heat transfer coefficient 10% higher compared to the in-line arrangement. Furthermore,
Khan et al. [19] carried out experimental tests on an array of 18 elliptical tubes both on
air cooling and heating using water as a working fluid. The heat transfer coefficient was
found to be higher in cooling than in the heating process and the results showed good ac-
cordance with the developed correlation. A good adherence between numerical study and
experimental tests was reached by Paeng et al. [20] who investigated the air-side forced con-
vective heat transfer of a geometrically defined staggered heat exchanger. Results showed
a discordance of less than 6% of the average Nusselt numbers between numerical and
experimental data, with Reynolds number between 1082 and 1649. In his work, Taler [21]
presented an experimental–numerical method for determining heat transfer correlations
for both fluids involved in cross-flow exchangers with extended surfaces. The method is
based on a non-linear regression technique that allows calculating of the coefficients in the
Nusselt number correlations by using high-quality experimental data.

Figure 5 shows a schematic representation of a typical experimental setup for tests
on HXs.
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Recent experimental studies focused on analyzing the influence of several geometric
features on the HX overall performance. Some important factors impacting a finned and
tube HX performance, including fin type (louvered and wavy), fin pitch, and the row
number, were experimentally evaluated by Okbaz et al. [22] in their work. Results show
that Colburn-j factor values of the louvered fin configuration are higher than those of
the wavy fin for all the considered cases at all Reynolds numbers. On the other hand,
the pressure drop associated with louvered fin HXs was higher if compared to wavy
fin HX. The number of tube rows and fin pitch were also investigated by Bozkula and
Demir [23], together with frontal air velocity, temperature, and relative humidity of nine
different exchangers under dry and wet conditions. Moreover, three different types of
correlations (multivariate first-order polynomial equations) are provided for the j factor and
f factor under dry and wet conditions, showing a good agreement with the experimental
data. Fin characteristics were found to have a great influence on HXs, especially under
frosting conditions, by Wu et al. [24]. Experimental tests were performed to compare the
performance of two evaporators with different fin features (corrugated and plain fins),
under different outdoor conditions such as air temperature, relative humidity, and wind
speed. Plain fin HX results in higher thermal performance compared to corrugated fin HX
under frosting conditions.

Tube arrangement (staggered vs. in-line) was investigated by Che and Elbel [25], who
carried out tests using a coating material with color change properties and a tracer gas to
measure the local mass transfer on the fin surfaces of two staggered/in-line tube HXs. Then,
local air-side heat transfer coefficients (HTCs) were calculated. Comparison between the
average HTCs for each row of the two exchangers suggests that the staggered configuration
suffers less deterioration of HTC than the HX with in-line tube arrangement. Moreover,
HTC decreasing through the rows is also influenced by the air velocity and the row number.

The coefficient of performance (COP) and the dimensionless heat transfer volumetric
density q̃ were used by Matos et al. [26] to experimentally compare the performance of two
split air conditioning systems, having evaporators with circular and elliptic tube shapes.
The conditioning unit with elliptic tube evaporators showed better performance than the
one with a circular tube shape.

Very interesting experimental studies were recently conducted by Sim et al. [27]
and Wang et al. [28] on finned-tube heat exchangers with reversely-variable circuitry to
improve performance. The conventional FTHXs have two-way fixed circuitry with the
same refrigerant flow path in the opposite direction both when the heat pump is used in
the heating and cooling process. Tests performed by Wang et al. [28] demonstrated that
the overall energy performance of a heat pump improved by giving a certain circuitry
arrangement flexibility to the exchanger when it worked as an evaporator or condenser.

In Table 2, some of the well-known correlations have been selected concerning their
application ranges and cataloged by subdividing them according to HX tube arrangement
and tube shape. The correlations are obtained through experimental investigations on
finned tubes, unfinned tubes, or tube banks, therefore they cannot be compared with each
other. The purpose of the table is to show that the correlations are strongly dependent not
only on the boundary conditions, but also on the specific geometric configuration of the
tested device and, therefore, it cannot be considered exhaustive.
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Table 2. Selected experimental correlations for plate-finned tube exchangers.

No. Tube Arrangement Tube Shape Experimental Correlation Range of
Application Ref.Staggered In-Lined Circular Elliptical

1 - - - - Nu = 0.33 × Re0.6Pr1/3 10 � Re � 4 × 104 [12]

2 x x Nu =[
3.58 + 8.46 × 10−4Re1.24]× Pr0.4 200 � Re � 1700 [13]

3 x - - Nu = 0.023 × Re0.8Pr0.3
Re ≥ 1 × 104

0.7 ≤ Pr ≤ 100
L/D ≥ 60

[14]

4 x x Sh = 1.181 × Re0.480 PL = 1.0 [15]
Sh = 1.212 × Re0.676 1.97 ≤ PT ≤ 3.16

5 x x Nu = 1.7 × Nuz (*) NR > 1; Re < 500; [16]Nu = 1.38 × Nuz (*) NR > 1; 500 < Re < 1000

6 x x j = 0.710 × ReDh × NR − 0.141pF0.384
600 � ReDh � 2000

7.5 � pF � 15
1 � NR � 4

[18]

7 x x Nu = 0.33 × Re0.64Pr1/3 1 × 104 � Re � 3.6 × 104 [19]

8 x x Nu = 0.049 × (ReD)
0.784

(
Pr f

)1/3 1082 � ReD � 1649 [20]

9 x x Nu = 0.085 × Re0.712Pr1/3 150 ≤ Re ≤ 350 [21]

(*) where Nuz = FCRem
D Prn

(
Pr

Prw

)0.25
where F is a correction factor for the number of tube rows, and C, m, n

depending on ReD . Prw valuated at wall temperature Tw.

3.2. Large Scale Models: Analytical and Semi-Analytical Studies

The modeling of tube and fin heat exchangers can be challenging due to their complex
geometry. In addition, when the HX works as an evaporator or condenser, due to the
presence of a two-phase flow, condensate mass transfer, and a heat transfer involving
humid air flow, it may be more and more difficult. In the last few years, considerable efforts
have been directed to develop analytical and semi-analytical models that can be roughly
classified into ε-NTU models and distributed models (tube-by-tube or control volume
approach models).

In 1955, Kays and London [29] developed the ε-NTU method with the aim to simplify
heat exchanger analysis by introducing the heat transfer effectiveness, ε, calculated as the
ratio of the actual heat transferred to the greatest amount of heat that may possibly be
transferred in an indefinitely long heat exchanger. The ε-NTU method was improved by
Browne and Bansal [30] using an elementary strategy. Their model makes it possible to
account for the various heat transfer coefficients present throughout the HXs, enhancing
the model’s physical realism and accuracy. However, in practice, the ε-NTU’s applicability
is severely constrained because an isothermal condition can exist only when the capacity
ratio is equal to zero [31].

In the distributed models, the HX is divided into multiple segments or control volumes
(cells) where one control volume’s outlet serves as the intake to another neighboring cell.
Compared with the ε-NTU models, the distributed models provide more accuracy in the
dynamic behavior of the exchanger.

A control volume approach was used by Corberán et al. [32,33] who developed a
distributed model for finned exchangers working as evaporators and condensers which
involves an iterative calculation to obtain the pressure and temperature characteristics both
on the air and the refrigerant side and including mass, energy, and momentum equations.

A general-purpose simulation and design tool (called CoilDesigner) using a “segment-
by-segment” technique for air-to-refrigerant heat exchangers was developed by Jiang
et al. [34]. The model can be applied to a generic finned tube coil (Figure 6) with an ar-
bitrary refrigerant circuitry layout, numerous working fluids, and no limitations on the
quantity and placement of the intake and outlet streams. The intersection where two tubes
are connected together is referred to as a junction, and a junction-tube connectivity matrix is
generated to represent the relationship between junctions and tubes (Figure 7). Each finned
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tube is divided into Nseg segments to account for non-uniform air distribution, heteroge-
neous characteristics, and heat transfer coefficients of the refrigerant (Figure 8). According
to the order in which the refrigerant flows through the tube, the segments are numbered
from 1 to Nseg. The authors validated the model by comparing the simulation results
data coming from experimental investigations carried out by McQuiston [35], showing an
overall agreement of 10%.
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A mathematical model using the segment-by-segment approach was implemented by
Tarrad and Al-Nadawi [36] with the aim to predict the performance of a louvered finned
tube evaporator working with pure and zeotropic refrigerants. A good match between
numerical results and data coming from experimental tests conducted on an air-conditioner
unit was shown.

Joppolo et al. [37] studied the influence of circuitry layout on the performance of a
plate-finned tube condenser by developing a numerical model based on the finite volume
approach by dividing each tube into volume cells and solving the equations iteratively by
following the flow path.

Another model based on a control volume approach suitable for finned tube evap-
orators in order to study the flow characteristics inside the tubes was implemented by
Tong et al. [38]. Results showed that the fluid follows an annular pattern. Moreover, an
experimental investigation was carried out obtaining good agreement with simulated data.

Domanski [39,40] proposed the EVAP-COND tool, which is based on the tube-by-tube
method and has a visual interface. This model enables the handling of complex refrigerant
circuitry layouts, modeling the fluid distribution between circuits, and accounting for
non-uniform air distribution. By combining the simulated performance of each tube, the
evaporator’s capacity is determined. Local parameters for each tube can then be obtained,
such as inlet and outlet temperatures for air and temperature, pressure drop, mass flow
rate, enthalpy, and inlet and outlet quality for the refrigerant. Model validation results
provided good confidence for the performance prediction.

A flexible model, based on the discretization technique for the calculation of finned
HX performance, was developed by Bensafi et al. [41]. Water, R134a, R22, and refrigerant
combinations based on R125, R32, and R134a can all be used in single-phase HX, evap-
orators and condensers. In addition, the model can manage different circuitry layouts,
non-uniform air distribution, plain, wavy, and louvered fins, and smooth and internally
finned tubes. Validation tests showed good accordance with experimental data of less
than 5% for the heat capacity. On the other hand, a high deviation of about 30% between
simulation and experimental data was found for pressure drops.

Furthermore, Liang et al.’s [42] distributed simulation model uses a control volume
approach with chosen governing equations to predict the performance of evaporators
with complex circuitry layouts. Utilizing refrigerant R134a, the model is validated by
matching experimental data with simulated values. Under various airflow conditions, the
simulated cooling loads produce results that are 5% different from the measured values.
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The refrigerant pressure drops calculated through the simulation model are within 25% of
the measured values.

An effort to give a better match with real performance was made by Ding et al. [43]
who developed an evaporator model combining the advantages of empirical and analytical
models. Process fundamental governing equations are formulated together with selecting
the input/output variables responsible for the system performance, which can be measured
and controlled. Variables that cannot be measured are represented as simple functions of
selected input/outputs or constraints, obtaining a single equation that can correlate system
input and outputs. Unknown parameters are identified by linear or nonlinear least-squares
methods. In order to validate the model, heat transfer rate simulated data were compared
with data coming from experimental tests and a deviation of 8% was found.

A model for simulating air-to-refrigerant heat exchangers that takes into consideration
conduction through the fins was proposed by Singh et al. [44]. This model was created
as a versatile and all-purpose simulation tool and is based on a segment-by-segment
methodology. The heat exchanger is spatially simulated on a Cartesian grid to account for
fin conduction, resulting in temperature distribution over the fin surface (Figure 9). The
model’s prediction results are checked against experimental data collected from literature
and experimental tests. Predicted temperatures on tube-bends agree within 3.9 ◦C and
overall heat load agrees within a maximum of 5% with respect to measured data.

Energies 2023, 16, x FOR PEER REVIEW 13 of 32 
 

 

 
Figure 9. Temperature distribution along the longitudinal section of the fin (a) and over the whole 
surface (b) for increasing air heat transfer coefficient from 10 W m-2 K-1 to 10.000 W m-2 K-1 from top 
to bottom and from left to right [44]. 

Based on graph theory, Liu et al. [46] created a universal steady-state model for a 
finned tube HX. Additionally, their model takes into account refrigerant distribution via 
complex circuitry layouts. The model starts with guessed wall temperatures as well as 
guessed outlet characteristics for air and refrigerant and applies conservation of energy 
to a specified control volume. Every control volume of the heat exchanger undergoes an 
iterative procedure to obtain the wall temperature, outlet refrigerant, and air parameters 
so that energy is conserved for each control volume. 

A serious problem that affects heat exchangers operating at low temperatures is 
frost formation. Under certain operating conditions, when the humid air meets the cold 
HX surface below 0 °C, the frost that forms drastically worsens the exchanger perfor-
mance by acting as a thermal resistance as well as reducing the air-flowing space, thus 
increasing the pressure drops. The first studies on frost growth were conducted by Nie-
derer [47] and Kondepudi and O’Neal [48–50] who experimentally investigated the effect 
of frost formation on the overall performance, concluding that the heat exchangers with 
closer fins suffered a strong deterioration in performance compared to exchangers with a 
wider pitch, under frosting condition. In addition, different fin configurations were an-
alyzed and compared. Other pure experimental studies were carried out by Seker et al. 
[51] and by Kim et al. [52] who investigated the thermal performance and frosting be-
havior accounting for different refrigerant flow arrangements (counter-flow and paral-
lel-flow) and fin surface treatments (bare, hydrophilic, hydrophobic, and hybrid). Yan et 
al. [53] carried out experimental tests showing the overall heat transfer coefficient, varia-
tion of the heat transfer rate over time, and the pressure drops of single and multiple-row 
finned tube HXs under frosting conditions. More recent tests were performed by Zhang 
et al. [54], Reichl et al. [55], and Wu et al. [25]. The effects of frosting conditions on frost 
distribution and growth characteristics of HXs with different fin pitches were investi-
gated by Zhang et al. [54], while Reichl et al. [55] compared hydrophobic nano-coated 
evaporators with uncoated ones with the use of a scale and image capturing techniques. 

The analytical study of frost formation is quite complex, as it is a dynamic phe-
nomenon that would require evaluation over time. Therefore, in most mathematical 
models the transient frost growth process is treated as a quasi-steady state phenomenon. 

Figure 9. Temperature distribution along the longitudinal section of the fin (a) and over the whole
surface (b) for increasing air heat transfer coefficient from 10 W m−2 K−1 to 10.000 W m−2 K−1 from
top to bottom and from left to right [44].

Oliet et al. [45] developed different models using different strategies for the simulation
of dehumidifying tube-and-fin heat exchangers. According to the treatment of the heat con-
duction through the fins, three models were described: advanced model (AdvancedCHESS)
of the multidimensional simulation, basic model (basicCHESS) based on the use of fin
efficiencies, and quickCHESS based on enthalpy difference method (ε-NTU based model).
AdvancedCHESS is a tube-by-tube model which allows determining of temperature fields
over a discretized two-dimensional fin surface, convective heat transfer to air, fin efficiency,
and liquid film formation and characteristics. These discretized quantities are then applied
to relevant equations at the level of the macro-volumes formed by fin-and-tube. Experi-
mental results from literature were used for a comparison of the simulation data with the
tested one, showing a good agreement.
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Based on graph theory, Liu et al. [46] created a universal steady-state model for a
finned tube HX. Additionally, their model takes into account refrigerant distribution via
complex circuitry layouts. The model starts with guessed wall temperatures as well as
guessed outlet characteristics for air and refrigerant and applies conservation of energy
to a specified control volume. Every control volume of the heat exchanger undergoes an
iterative procedure to obtain the wall temperature, outlet refrigerant, and air parameters so
that energy is conserved for each control volume.

A serious problem that affects heat exchangers operating at low temperatures is frost
formation. Under certain operating conditions, when the humid air meets the cold HX
surface below 0 ◦C, the frost that forms drastically worsens the exchanger performance by
acting as a thermal resistance as well as reducing the air-flowing space, thus increasing
the pressure drops. The first studies on frost growth were conducted by Niederer [47]
and Kondepudi and O’Neal [48–50] who experimentally investigated the effect of frost
formation on the overall performance, concluding that the heat exchangers with closer
fins suffered a strong deterioration in performance compared to exchangers with a wider
pitch, under frosting condition. In addition, different fin configurations were analyzed
and compared. Other pure experimental studies were carried out by Seker et al. [51]
and by Kim et al. [52] who investigated the thermal performance and frosting behavior
accounting for different refrigerant flow arrangements (counter-flow and parallel-flow)
and fin surface treatments (bare, hydrophilic, hydrophobic, and hybrid). Yan et al. [53]
carried out experimental tests showing the overall heat transfer coefficient, variation of
the heat transfer rate over time, and the pressure drops of single and multiple-row finned
tube HXs under frosting conditions. More recent tests were performed by Zhang et al. [54],
Reichl et al. [55], and Wu et al. [25]. The effects of frosting conditions on frost distribution
and growth characteristics of HXs with different fin pitches were investigated by Zhang
et al. [54], while Reichl et al. [55] compared hydrophobic nano-coated evaporators with
uncoated ones with the use of a scale and image capturing techniques.

The analytical study of frost formation is quite complex, as it is a dynamic phenomenon
that would require evaluation over time. Therefore, in most mathematical models the
transient frost growth process is treated as a quasi-steady state phenomenon.

In one of the earliest analytical investigations, Lee et al. [56] created a model of a
frost layer on a cold, flat surface by taking into account both heat production from the
sublimation of water vapor in the frost layer and the molecular diffusion of water. Tso
et al. [57,58], Yang et al. [59], and Padhmanabhan et al. [60] proposed valid models for HXs
under frosting conditions with the weakness that they did not take into account the airflow
reduction due to frost formation. On the other hand, the models by Ye and Lee [61], Silva
et al. [62], Chen et al. [63], and Hwang and Cho [64] consider reducing the air flowrate by
applying a pressure drop vs. volume flowrate curve. Hwang and Cho [64] proposed a
model capable of calculating the blockage ratio (BR), frost thicknesses, and both local and
total heat transfer rates by using a segment-by-segment method under both standard and
high frosting conditions.

3.3. Small-Scale and Dynamic Models

In this section numerical studies based on CFD techniques are selected and illustrated
as well as a brief description of some time-dependent models is reported.

CFD codes are often employed to investigate the influence of geometrical parame-
ters on the heat transfer and pressure drop characteristics of a chosen HX. A numerical
investigation on a four-row finned tube HX with staggered/in-line tube arrangement and
plain/wavy fins (Figures 10 and 11) was carried out by Bhuiyan and Islam [65] by using the
commercial CFD code, ANSYS CFX-11, for laminar and turbulent flows and the k-ω turbu-
lence model for transitional flow. Results showed that higher heat transfer performance
could be achieved with wavy fins, if compared to plain fins (Figure 12). However, wavy
fin configuration results in lower pressure drops (Figure 13). The model was validated by
comparing the simulated case’s friction factor, f, and Colburn factor, j, to experimental data
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from literature [66,67], achieving maximum deviations of 10.22% and 11.25% for friction
factor and Colburn factor, respectively.
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Recent works using CFD techniques mainly concern compound geometries or different
fin profiles [68–70]. Lee et al. [68] performed an experimental and numerical analysis
on wavy fin-and-tube heat exchangers with elliptic tubes and large waffle heights. The
influence of different waffle heights, fin pitches, wave lengths, and inlet air velocities on
thermo-fluid characteristics was analyzed with the use of CFD techniques and the model
was then experimentally validated. In order to assess the effects of both the size and the
form of fin perforations on heat transfer capabilities, Rauber et al. [69] computationally
and experimentally evaluated heat exchangers with various fin patterns, i.e., rectangular
with no insert and rectangular with diamond and circular perforations. According to the
results, greater fin perforations—whether circular or diamond-shaped—improve both the
PEC (performance evaluation criteria) parameter and the HX’s thermal efficiency.

Additionally, Li et al. [70] concentrated on the impact of various geometric combi-
nations (circle tube, ellipse tube, hexagon tube, rhombic tube, and fusiform tube). The
hexagon tube had the best performance, according to the results, which also demonstrated
that the wake region has a negative impact on heat transfer performance.

Fin efficiency was also studied by Lindqvist et al. [71] who performed numerical
simulations to calculate correlations for pressure drops and air-side heat transfer for a wide
variety of HX geometries. Different array angles and transverse tube array pitches were
studied with the result that fin efficiency can be enhanced by minimizing the array angle.

Another recent study conducted by Taler et al. [72] aimed to develop a new method
for determining the correlation for the Nusselt number on each pipe row in plate-finned
tube HXs s using CFD modelling. The average heat transfer coefficient for each pipe row
was calculated based on the comparison of the mass average air temperature increase,
determined through CFD modelling and obtained by analytical correlation. The CFD
technique was also employed to obtain correlations for the air-side Nusselt number. The
same method was used by Taler et al. [73] to model a plate-finned tube heat exchanger
under transient conditions.

CFD simulations were recently used to model frost formation and growth processes
by Zhao et al. [74] who employed the impingement model to evaluate droplet formation
based on Popovac et al.’s [75] work and by using an enthalpy porosity approach in order to
describe the solidification problem. Results show that the frost growth process is highly
influenced by the formation of droplets before nucleation and cannot be neglected in a
model describing HXs’ performance under frosting conditions.

Currently, there are few 3D numerical studies that have been conducted on finned
tube HX, due to the complexity of the flow structure between the fins.
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A study on 3D laminar and turbulent flows around tube banks was conducted by
Zdravistch et al. [76]. Simulations for heat transfer predictions were performed on a tube
bank without fins. Romero-Méndez et al. [77] performed a numerical investigation on the
influence of fin spacing on heat transfer simulating a 3D 1-row plate-fin HX with Reynolds
number in the range between 260 and 1640. Furthermore, Tutar et al. [78] studied the effect
of fin spacing performing a three-dimensional numerical investigation over a single row
tube domain, for a Reynolds number range between 1200 and 2000.

Other authors focused on the study of transient phenomena related to heat exchange
by developing time-dependent models. Zhang and Zhang [79] described the transient
behavior of dry-expansion evaporators through a moving boundary approach with a time-
variant mean void fraction—instead of constant—in order to improve the robustness of
the traditional moving-boundary models. With the aim to obtain the mean properties
in the two-phase region and the superheated zone, numerical integration was also used.
Furthermore, Willatzen and Pettit [80,81] proposed a mathematical model to describe
the transient phenomena of two-phase flow heat exchangers. The three zones (liquid,
two-phase, and vapor) present in the HX are integrated separately to generate a series of
ordinary-differential equations that make up the model.

Shao and Zhang [82] focused on the dynamic variation of the number of zones of an
evaporator or condenser (Figure 14), due to disturbance or oscillation in operating condi-
tions. For instance, the superheated region in the evaporator can shorten or eventually van-
ish with the increase in the mass flow rate. Therefore, they developed a logic-unconstrained
multi-zone model to describe the zone’s variation, where the traditional constraints were
removed and substituted with continuously differentiable equations.
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Recently, Illàn-Gmez et al. [83] developed a model based on the exchanger’s one-
dimensional discretization that enables the solution of the heat transfer balance equations
using an iterative process based on the heat transfer area converging criterion. The numeri-
cal method has been proven to be reliable and has been applied to forecast the evaporator’s
performance in transient operating conditions, with a high degree of accuracy.

3.4. Multi-Scale Models

Multi-scale models require a good knowledge of all modeling methods previously
described. Generally, they are very flexible and suitable for different HX geometries and
working conditions because they integrate analytical methods’ benefits with more precise
numerical approaches.
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The hybrid method is an alternative design procedure developed by Starace et al. [84]
and based on an algorithm that uses a multi-scale method, based on data from either
analytical, numerical, or experimental investigations. The hybrid approach was originally
used on compact cross-flow HXs, where the entire geometry was split into a number of
control volumes, each of which had a warm side and a cold side. Through the application
of a regression technique, Carluccio et al.’s [85] thermo-fluid dynamics simulation findings
on the two finned surfaces of the HXs were used to develop the prediction functions of
heat transfer, extending the local results over the whole geometry of the HX.

By starting with small-scale experimental tests, Fiorentino and Starace [86] developed
another application of the hybrid technique for countercurrent evaporative condensers to
assess their performance. Results indicate that, when compared to experimental tests, the
method is accurate and can determine the air temperature and relative humidity at the
output with errors of 2.5% and 4%, respectively.

Then, Starace et al. [87] employed this technique on a plate-finned evaporator with
a basic refrigerant circuit configuration, using the control volume approach (Figure 15).
The heat transfer rate decreases from a maximum of 0.88 W in the first row to 0.38 W in
the last row, where the refrigerant does not achieve evaporation as in the first row. Wall
temperature distribution through the evaporator was also obtained as a result (Figure 16).
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Starace et al. [88] achieved progress in the development of the hybrid technique by
using it on evaporators with complex circuit layouts (Figure 17) to assess the impact of
circuitry configuration on overall performance in terms of heat transfer rate and refrigerant
pressure drops. Also in this study, the whole HX’s geometry was schematized through a
three-dimensional matrix with the position of each cell identified by the indices i, j and
k (Figure 18). According to the results, the heat transfer rate and pressure drops reduce
significantly as the number of circuits rises; as a result, installation costs will rise and
operation costs will decrease.
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Then, additional tests were conducted while taking into account various refrigerants
and changing the fluid conditions at the input [89]. The findings demonstrate that all
investigated refrigerants (R134a, R410a, R507a, R32, R404a, R1234ze, and R1234yf) act
similarly when the number of circuits is varied.

Other investigations using R134a on various circuitry configurations revealed that
an eight-circuit layout can be used to lower the refrigerant pressure drop of 45.3% and
consequently operating costs by increasing the refrigerant flowrate of 314% while keeping
the same performance in terms of heat transfer rate. More research performed on several
circuitry layouts revealed that the air inlet side has no discernible impact on the heat
transfer rate performance of the HX [89]. Other studies also showed that it is possible
to optimize the refrigerant path while maintaining the same number of circuits, but the
advantage in terms of improved performance is minimal [89].

The hybrid approach algorithm underwent additional modifications to make it even
more adaptable and compatible with predictions of the performance of real heat exchang-
ers [90].

Other tests were conducted by adjusting the operating conditions, such as the temper-
ature gradient between refrigerant and air at the inlet and the air relative humidity. Part
of the algorithm code was so altered in order to broaden the model’s application range.
According to the results, a larger value of air relative humidity at the intake can improve
performance in terms of heat transfer rate as well as an increase in refrigerant pressure
drops. Additionally, raising the temperature difference between the working fluids can
enhance the heat transfer rate but degrade refrigerant pressure drop performance. More-
over, the simulation results revealed that at higher relative humidity, one additional degree
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of temperature difference at the intake had a bigger impact on both the heat transfer rate
and pressure drops. Comparing the tests, higher air temperature yields better performance
than lower refrigerant temperature at the same temperature difference because there are
less refrigerant pressure drops at the same heat transfer rate.

A selection of the reviewed models can be found in Table 3.

Table 3. A selection of finned tube modelling methods.

Author HX Configuration and Features Simulation Tool/
Method Approach

Deviation between Simulated
and Experimental Data Ref.

Corberan et al. - Finned tube evaporator/condenser Control volume approach

+3.5%; −3% for evap. capacity
−5.5% for cond. capacity
12%; −8.5% for degree

of superheat
−3% for degree of subcooling

15% evaporator pressure drops

[32,33]

Jiang et al.

- Air-to-refrigerant HX
- Complex circuitry configuration
- Multiple refrigerants
- Non-uniform air distribution

CoilDesigner
Segment-by-segment approach

±10% (comparing with exp. data
from [35]) [34]

Tarrad and Al-Nadawi - Louvered finned tube evaporator
- Pure and zeotropic blend refrigerants Tube-by-tube approach

−7%; +1% for heat duty
−25%; +12% for outlet

air temperature
[36]

Joppolo et al. - Finned tube condenser
- Complex circuitry configuration Control volume approach

±5% for heat transfer rate
±21% for refrigerant

pressure drop
[37]

Tong et al. - Finned tube evaporator Control volume approach
±3% for cooling capacity
±0.2% for refrigerant

evaporation temperature
[38]

Domanski
- Finned tube evaporator
- Complex circuitry configuration
- Non-uniform air distribution

Tube-by-tube approach Percentage data not available [39,40]

Bensafi et al.

- Single-phase
HX/evaporator/condenser
-Water, R22, R134a and mixtures based
on R32, R125, and R134a
- Complex circuitry configuration
-Plain/wavy/louvered fins
- Smooth and internally finned tubes

CYRANO
Control volume approach

±5% for heat duty
±30% for pressure drops [41]

Liang et al. - Evaporator
- Complex circuitry layout Control volume approach ±5% for heat duty

±25% for pressure drops [42]

Ding et al. - Evaporator analytical-experimental
approach ±8% for heat transfer rate [43]

Singh et al. - Air-to-refrigerant HX
- Temperature distribution on fin surface Segment-by-segment approach

±3%–±5% for overall heat load
±3.9 ◦C for tube-bend

temperatures
[44]

Oliet et al. - Dehumidifying finned tube HX

- QuickCHESS (ε-NTU
method)

- BasicCHESS
- AdvancedCHESS (control

volume approach)

±10% for cooling capacity
±10% for water

vapor condensate
±25% for air pressure drop

±25% for liquid pressure drop

[45]

Liu et al. - Finned tube HX
- Complex circuitry layout Control volume approach ±10% for heat transfer rate

±20% for pressure drop [46]

Bhuiyan and Islam
- Staggered/in-lined
- wavy/plain fins
- one-phase flow

ANSYS CFX-11, k-ω model for
transitional flows

Comparing with exp. data
from [66,67]:

+10.22% for friction factor
+11.25% for Colburn factor

[65]

Zdravistch et al. - Tube banks without fins 3D simulation (laminar and
turbulent flow) - [76]

Romero-Méndez et al. - 1-row plate-finned tube HX
- Different fin space

3D simulation
(260 ≤ Re ≤ 1640) - [77]

Tutar et al. - 1-rowplate-fin HX
- Different fin space

3D simulation
(1200 ≤ Re ≤ 2000) - [78]

Zhang and Zhang - Evaporator Transient simulation
Moving boundary approach - [79]

Willatzen et al.
Pettit et al. - Evaporator/condenser Transient simulation - [80,81]

Shao and Zhang - Evaporator/condenser
Transient simulation Logic

unconstrained
multi-zone model

- [82]

Illan-Gomez et al. - Evaporator Transient simulation
segment-by-segment approach

±10% for heat transfer rate
±10% for refrigerant

inlet pressure
±2 ◦C for refrigerant

inlet temperature
±1 ◦C for refrigerant
outlet temperature

[83]

Starace et al.
Fiorentino et al.

- Evaporator/condenser/crossflow
compact HX
- Complex circuitry layout

Control volume approach
Multi-scale model

±3% for outlet temperature
±4% for outlet relative humidity [84,86–90]



Energies 2023, 16, 1948 21 of 30

4. Heat Exchanger Optimization Methods

The optimization process of a finned tube HX can be very complex, due to the high
number of design variables. Optimizing the refrigerant path by modifying circuit arrange-
ment is the best method for cost saving, compared with other optimization procedures,
such as change of fin or tube geometry or the overall dimensions, as discussed by Yun
and Lee [91] and Matos et al. [92], due to constraints that often occur in small installation
spaces or dealing with manufacturing issues. For instance, distributing the refrigerant flow
across multiple circuits can be a good way to reduce refrigerant pressure drops and thus
optimizing the design.

Some authors studied the influence of the refrigerant circuit layout by performing
tests with different circuitry arrangements, such as Joppolo et al. [37] who carried out a
numerical analysis on a fin and tube condenser, calculating the heat transfer rate between
air and refrigerant with the ε-NTU method for each element which the condenser geometry
was divided into.

Starace et al. [88,89] ran different simulation tests on an evaporator, on some sets of
circuitry layouts, considering the heat transfer rate and refrigerant pressure drop, and
then building trade-off curves to help designers to choose the best circuit configuration
(Figure 19).
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Figure 19. Impact of number of circuits on UA factor and refrigerant pressure drop for refrigerants
R507a, R404a, R1234yf, and R1234ze [89]. The gray lines represent the junctions between points with
the same number of circuits.

Another research that accounted for refrigerant pressure drop in order to optimize the
circuitry arrangement was carried out by Wang et al. [93], who conducted an experimental
study on different circuitry configurations on wavy fin condensers. The counter-cross
arrangement obtained the best performance. Similar studies were then performed by Ding
et al. [94] for condensers and Liang et al. [42] for evaporators. Ding et al. [94] performed
simulations on a condenser, where the refrigerant flow is divided into four branches at
the entrance, and the four branches are then combined to form one main channel to the
exit (Figure 20). Different branches are identified by blue/red colors in Figure 21, which
displays the simulation results in terms of refrigerant pressure drop and tube heat transfer
capacity. It is easy to see how the main channel and branches perform differently. The four
branches are expected to have similar refrigerant flowing conditions, because they all have
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the same number of tubes and equivalent paths, as shown by the nearly identical pressure
drop distribution in Figure 21a. Reasonable outcomes for the heat transfer aspect are also
displayed in Figure 21b where the main differences in performance are due to the specific
location of the tubes with respect to the air flows.
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Figure 21. Results for the simulated condenser in terms of pressure drop (a) and heat capacity (b) [94].

Through a segment-by-segment model validated through experimental tests, Saleem
et al. [95] investigated how refrigerant circuitry can affect cross-fin conduction in evapora-
tors with multiple circuits. Results demonstrated that the influence of cross-fin conduction
on coil capacity is increased in HX with interleaved circuitry operating at partial loads as
opposed to being minor when all refrigerant circuits are active or some are blocked. Bach
et al. [96] focused instead on optimization methods for the mitigation of air maldistribution,
showing how interleaved circuitry can reduce the effects of air maldistribution if paired
circuits are chosen properly.
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An attempt to optimize the circuit layout was made by Cen et al. [97] who developed
a simple method to automatically generate different refrigerant circuitry arrangements for
finned-tube HXs, based on an iterative procedure. Then, a simulation for HX performance
prediction calculates the heat transfer rate that allows the designer to choose among the
tested layouts. However, since the model states that a tube is only linked to those in its
neighborhood, only part of the potential arrangement options are taken into account, so
there is no guarantee that the found layout represents the global optimal solution.

Other authors, instead, focused on researching intelligent systems for circuit optimiza-
tion, developing genetic algorithms or simulation tools considering the maximum value
of heat exchanger capacity [98–102], the minimum value of heat transfer surface with the
same heat transfer rate [101,102], or the minimum generation of entropy [103,104]. The
missing information from these studies is the influence of circuitry layout on the pressure
drop, which is useful for reducing operating costs.

Finding an optimization technique becomes a problem of great important since there
are an increasingly huge number of circuit designs that can be made with a given number
of tubes. The standard genetic algorithms (GA) consider the initial set of possible solutions
as a population of individuals with different genetic features (i.e., strings of instructions
that encode a possible solution to the problem). With appropriate methods of crossing
and replication, these individuals generate other solutions; a mechanism of mutation and
natural selection ensures that the best solutions prevail in the reproductive process and
ultimately determine the success of the species in solving the given problem.

These algorithms are relatively easy to apply [105] but need to be improved, due to
the complicated nature of circuitry layout optimization. An improved genetic algorithm
(IGA) together with a knowledge-based evolution method (KBEM) was developed by
Wu et al. [101,102]. Additionally, the inclusion of correction operators allowed for the
avoidance of impractical solutions without reducing the search space, and the introduction
of a novel refrigerant circuit representation allowed for the reduction of both computer
memory usage and decoding time. The authors ran some case studies showing that KBEM
with IGA can generate circuitry layouts more efficiently than only IGA by reducing the
search space, according to the domain knowledge.

An integer permutation-based genetic algorithm (IPGA) was created by Li et al. [106]
for optimizing circuitry under manufacturability and operating restrictions. All of the
chromosomes produced by IPGA can be sorted using the genetic operators in a valid circuit
layout (Figure 22). As a consequence, this method can efficiently search the solution space
compared to traditional GA (Figure 23. Manufacturability constraints are managed in the
fitness assignment step using a constraint-dominated sorting technique (Figure 24).
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A genetic algorithm was also used by Gholap and Khan [107] to solve the multi-
objective optimization of an HX for refrigerators, accounting for different design variables
(Figure 25). Two objectives were considered for the analysis: minimization of energy
consumption and material cost. Since these objectives are conflicting, no single design
was found to satisfy both criteria simultaneously. Therefore, a set of multiple optimum
solutions, called ‘Pareto optimal solutions’, were given as the output of the study.

Ploskas et al. [108] applied a group of five derivative-free optimization (DFO) algo-
rithms to search for the optimal or near-optimal solution of the HX circuitry arrangement.
By treating the refrigerant circuitry design process as a constrained binary optimization
problem, they presented a novel formulation for the process. Results of using DFO solvers
on 17 heat exchangers demonstrated that the suggested techniques produce optimal or
nearly optimal circuit designs without necessitating in-depth domain knowledge.
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A more recent optimization study, carried out by Ishaque and Kim [109], involves
a dual-mode algorithm for searching the refrigerant circuitry optimal solution. A first
knowledge-based computational module (KBCM) establishes the optimal number of cir-
cuits also accounting for non-uniformity air distribution at the inlet, while the output of the
permutation-based computational module (PBCM) determines the optimal tube sequence
that allows the maximization of the exchanger heat capacity. A multi-objective optimization
was performed by Dehaj and Hajabdollahi [110], who modeled and optimized a fin and
tube heat exchanger, in order to increase effectiveness while minimizing the total annual
cost (TAC) by modifying eight design variables for each section. Furthermore, in this case,
a genetic algorithm was implemented to find the optimal Pareto front.

A very recent study on an exchanger with improved fin geometry (vortex generators)
was performed by Xie et al. [111] using the response surface methodology (RSM) and
artificial neural network (ANN), in order to improve flow and heat transfer characteristics
(Nusselt number and friction factor). First, a numerical model that took into account the
vortex generator’s length, arc angle, and attack angle, was created. Then, two RSM models
and two ANN models were trained to individually estimate the Nusselt number and
friction factor for each of the 15 design configurations, chosen with the help of a central
composite design approach (CCD).

5. Conclusions, Future Trends and Recommendations

In this paper, the modeling methods for calculating the performance of plate-finned
tube heat exchangers have been selected and reviewed in order to propose a classification
by scale of approach and to help designers to choose the most suitable design method
compatible with market demands in terms of performance and costs. Furthermore, sev-
eral optimization methods have been described, with a focus on the refrigerant circuitry
configurations, being one of the most important factors affecting the performance of the
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exchangers. Below some considerations that followed from the study of the models are
reported, together with some suggestions for future research:

• In the last couple of years, research has focused above all on the study of the fluid-
dynamic and thermal characteristics of the exchangers through the use of CFD tech-
niques [68–73]. Several experimental tests were also carried out for the same pur-
pose [22–28], but in order to save time and resources, it is recommended that research
goes even deeper into cost-saving methods—without loss of accuracy—such as multi-
scale models for the prediction of performance.

• Greater accuracy in predicting pressure drops would be appreciable in future research.
Most of the analytical models analyzed here showed a good agreement of the simulated
data with the experimental tests in terms of heat capacity, but failed to predict pressure
losses as effectively (deviation was found between 15% and 30%).

• A good design is often penalized by unexpected working conditions, such as non-
uniform air distribution at the inlet or refrigerant maldistribution, due to blocked or
partially clogged tubes, which significantly degrade performance. Some studies were
performed in the past to predict the exchanger behavior in real operating conditions,
but further investigation needs to be carried out in the future.

• Future research studies should also include the superheat region for evaporators and
subcooling for condensers as these operating zones often occur in practice.

• Performance prediction of HXs under frosting conditions is very complex as it is a
dynamic phenomenon that leads to a drastic worsening of performance. In order
to develop more accurate frosting analytical models, it is recommended that future
studies will focus on this research area.

• A research path that has been developing in recent years concerns the modeling of heat
exchangers with improved and compound fin geometries, such as fins with diamond
or circular perforations and vortex generators as well as new tube shapes (rhombic,
hexagon, etc.). Further developments in this research area are desirable since the
results obtained in terms of performance improvement are encouraging.

• Recently, very interesting experimental studies [27,28] showed that the performance of
a reversible heat pump can be enhanced by means of different circuitry arrangements
for the exchanger whether it is used as an evaporator or condenser. These studies
can be the basis to make progress in developing new computational and optimization
models for heat exchangers with reversely-variable circuitry.
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Nomenclature

D tube diameter (m) Abbreviations
Dh hydraulic diameter (m) ANN artificial neural network
f friction factor CCD central composite design method
J Colburn factor CFD computational fluid dynamics
L tube length (m) CHX compact heat exchanger
NR number of tube rows COP coefficient of performance
Nu Nusselt number DFO derivate-free optimization
Nu average Nusselt number FTHX finned tube heat exchanger
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Nuz
Nusselt number by
Zukauskas correlation

GA genetic algorithm

PF fin pitch (m) HTC heat transfer coefficient
PL longitudinal pitch (m) HX heat exchanger
Pr Prandtl number IGA improved genetic algorithm
PT transverse pitch (m) IPGA integer permutation-based genetic algorithm
Re Reynolds number KBCM knowledge-based computational module
Sh Sherwood number KBEM knowledge-based evolution method
Greek symbols NTU number of transfer units
ε heat transfer effectiveness PBCM permutation-based computational module

RSM response surface method
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