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respectively. For 15 min cold weld sample, few Al2O3 nanoplatelets are 
located inside the grains as shown in Fig. 7(a), and, hence, the ΔσOR can 
be neglected. According to Jiang’s study [55], the in-situ formed Al2O3 
nanoplatelets between two lamellar grains was 10 nm thick, so the total 
volume fraction of the Al/Al2O3 composites should be 2.8 % ([14/500]×
100) (7 nm thick Al2O3 film on the top and bottom of the 500 nm thick Al 
flake). The Al2O3 introduced during cold welding process is assumed to 
be little, since the Al flakes were well protected under argon atmosphere 
in the jars. ΔσCTE

GND and ΔσEM
GND can be calculated using the equations in 

[58,59]. The calculated strengthening contributions are listed in the 
Table. 2. 

The load transfer contributions,ΔσL− T
Al2O3

, is drawn back form the 
equation: 

ΔσL− T
Al2O3

= σy − σym = σy −
(

σ0 +ΔσH− P +Δσdis
Al2O3

)
(13) 

The strengthening efficiency R: 

R =
(

Δσ(L− T)
(Al2O3)

)/
(VRym) × 100 (14) 

The data in Table 2 show that the increase in the relative yield 
strength of the 1 h and 2 h cold weld samples is primarily due to grain 
refinement. On the other hand, the 15-min cold weld sample shows the 
highest strength efficiency of Al2O3, which is due to the presence of well- 
aligned Al2O3 nanoplatelets along the boundaries of the lamellar 
structures. This result is consistent with the finding that the alignment of 
reinforcing elements with a significant aspect ratio can increase their 
strength efficiency. As the duration of cold-welding increases, the 
strengthening efficiency of Al2O3 gradually decreases, reaching values 
of 19.83 and 18.68 for the 1 h and 2 h cold welded specimens, respec
tively. The severe plastic deformation that occurs during cold welding 
significantly disturbs the arrangement of the Al2O3 nanoplatelets, 
leading to disordered alignment and consequently reducing the 
strengthening efficiency. The significant lack of differences in the 
‘strengthening contributions’ between the three samples listed in 
Table 2 can be explained by looking at the individual reinforcement 
contributions. Indeed, the influence of grain refinement on the 
strengthening process had the greatest impact and clearly showed how 
variations in cold welding times affected the grain structure and 
consequently the mechanical properties. Furthermore, the effectiveness 
of the Al2O3 nanoplatelets in the consolidation process was highlighted 

Fig. 7. Combined TEM images and EDS maps of (a) 15 min cold welding, (b) 1 h cold weld and (c) 2 h cold welding; (d-f) STEM images of the 15 min cold welded 
sample; (d) bright field TEM image, (e) HRTEM showing the structure of γ- Al2O3, (f) EDS oxygen map of (d). The white and green arrows show Al2O3 nanoplatelets in 
the grain interior and the ED, respectively. The dash-cube included in Fig. 7(e) demonstrates a cubic lattice structure. 

Fig. 8. XRD patterns of the extruded sample with different cold-welding time.  
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by emphasizing their orientation along lamellar structures and 
explaining how this orientation affected the overall mechanical perfor
mance of the composite. In addition to the higher strengthening effi
ciency, the 15 min cold weld sample with nanolaminate architecture 
also presents much enhanced ductility. The uniform elongation data 
shown in Table. 1 was measured according to the Conside’re criterion 
[60]: 

σ ≥

(
∂σ
∂ε

)

ε̇
(15)  

where σ and ε are the true stress and the true strain respectively. The 4.3 
% uniform elongation of the 15 min cold weld sample is much improved 
in comparison with the 3.3 % of 2 h cold weld sample. To further 
investigate the deformation behavior of the samples, the strain hard
ening rate curves of the three samples were plotted in Fig. 7(b). The 2-h 
cold weld sample has a curve that points to the bottom left compared to 
the curves of the 1 h and 2 h cold weld samples. This indicates that the 2 
h cold weld sample cannot be consolidated and experiences plastic 
instability earlier, resulting in limited uniform elongation. This obser
vation is consistent with the uniform strain data. Typically, weak in
terfaces between reinforcements and the matrix in MMC act as sites of 
crack initiation and propagation and often do not allow load sharing 
between reinforcements [61–63]. It appears that the sample with a 
nanolaminate structure has better ductility. However, further experi
ments are required to confirm the positive influence of the nanolaminate 
structure on tensile ductility, especially considering that the mean grain 
size of the 2 h cold weld sample (340 nm) is significantly finer than that 

of the 15 min cold weld sample (480 nm). 
To investigate the influence of the grain size difference on ductility, a 

nanolaminated Al/Al2O3 composite with a grain size of 320 nm was 
produced using the 0-h cold welding process. In this process, spherical Al 
powder with 1 wt% stearic acid was milled at 450 rpm and room tem
perature for only 1 h, resulting in Al powder flakes with a thickness of 
several hundred nanometers (~500 nm). The flake powders were then 
aligned under a pressure of 500 MPa by compaction in a column (Φ 40 ×
30 mm). Sintering in a flowing Ar atmosphere at 550 ◦C for 2 h and 
subsequent hot extrusion at 500 ◦C with an extrusion ratio of 20:1 and a 
ram speed of 0.5 mm/min consolidated the flake powders. 

The tensile stress-strain curves and the strain hardening rate curves 
are also plotted in Fig. 10. Fig. 8(a) shows that the 0 h cold weld sample 
(320 nm) has almost similar 0.2,σ-YS. (~ 311Mpa) and,σ-UTS. (395 
MPa) compared to the 2 h cold sweat sample. However, the,-t. Of 12.82 
% and the,-u. Of 6.5 % for the 0 h cold weld sample (320 nm) are 
significantly increased compared to the values of 6.7 % and 3.3 % for the 
2 h cold weld sample. In addition, the strain hardening rate curves in 
Fig. 8(b) show a similar result that the 0 h cold welding sample (320 nm) 
with nanolaminate structure has better strain hardening ability. It can be 
concluded that the Al/Al2O3 composite with nanolaminate structure has 
more balanced tensile strength and ductility than the random structure 
with homogeneously distributed Al2O3 nanoplatelets and equiaxed 
grains. 

Fig. 11(a) illustrates the stress distribution at the contact surface 
between the two flakes. As expected, the highest stress concentration is 
observed at this interface, indicating the region where sintering is most 
likely to occur. This high stress concentration results from the 
compressive forces acting during the collision between the flakes. In 
addition, the solid mechanics simulation provides valuable parameters 
for the phase field simulation equations. These parameters include: a) 
Maximum Stress at Contact Interface (Ωij,max): This parameter represents 
the peak stress experienced at the interface between the flakes. It serves 
as a measure of the driving force for sintering initiation. b) Stress at 
Flake’s Center (σ0): This parameter reflects the internal stress distribu
tion within the flakes. It influences the sintering behavior and the evo
lution of the microstructure. 

Fig. 11(b) demonstrates the displacement of the upper flake 

Fig. 9. (a) Tensile stress-strain curves of the samples with different architectures. (b) Strain hardening rate curves of the samples with different architectures.  

Table 1 
Detailed data of the tensile stress-strain curves.  

Cold weld 
time 

Yield 
Strength 
0.2σYS 

(MPa) 

Ultimate 
Strength 
σUTS (Mpa) 

Total 
Elongation 
εt (%) 

Uniform 
Elongation 
εu (%) 

15 min 283±4 356±11 13.3 ± 0.5 4.3 ± 0.2 
1h 302±6 379±9 11.7 ± 0.6 5.1 ± 0.3 
2h 315±7 390±14 6.7 ± 0.4 3.3 ± 0.6  

Table 2 
Strengthening contributions calculated using analytical model.  

Cold weld sample ΔσH− P, MPa ΔσOR,MPa ΔσCTE
GND,MPa ΔσEM

GND,MPa Δσdis
Al2O3

,MPa σym,MPa ΔσL− T
Al2O3

,MPa R,% 

15 min 115 0 75 42 86 177 78 22.67 
1 h 130 48 75 42 98 187 74 19.83 
2 h 141 48 75 42 98 198 74 18.68  
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compared to the lower flake. The displacement of the lower flake is 
restricted due to the fixed boundary condition imposed upon it. This 
observation suggests that flakes fixed in place during the sintering 
process will experience reduced displacement. 

The initial arrangement of the flakes, as shown in Fig. 12, represents 
a disordered configuration with random alignments and spacing be
tween the individual flakes. As the simulation of Fig. 12 progressed over 
1000 to 20,000 steps, the flakes exhibited a remarkable necking due to 
non-uniform deformation. The driving force behind necking is the 
reduction in surface energy, which favors the coalescence of adjacent 
flakes to minimize the overall energy of the system. With continued 
sintering, the necking process led to the formation of distinct grain 
boundaries between the flakes. These grain boundaries represent the 
interfaces at which the individual flakes merge to form a cohesive solid 
structure. At the same time, the porosity or void spaces, between the 
flakes gradually decreased, contributing to the development of a denser 
and more compact structure. A notable observation during the sintering 
process was the overall shrinkage of the flake structure. This shrinkage is 
attributed to the rearrangement and compaction of the flakes as they 
grow together and form a denser arrangement. The microstructural 

evolution of the flakes from an initially disordered state to a cohesive 
and dense structure is evidence of the transformative power of the sin
tering process. 

Fig. 13 illustrates a finer-grained structure with increasing grain 
boundary formation over time. In contrast to larger flakes, finer flakes 
have a higher residual porosity after sintering. This is due to the larger 
number of triple points in finer-grained samples, where porosity tends to 
persist, making it more difficult to remove within the same sintering 
time as larger flakes. Fig. 13 shows that fine-grained samples exhibit a 
more pronounced polygonization after sintering, with the grains taking 
on a hexagonal shape due to the higher number of neighboring grains. 
This is in contrast to the coarse-grained samples, where a limited 
number of neighbors leads to fewer facets and more irregular grain 
shapes. Increased polygonization in fine-grained structures leads to 
more stable, hexagonally shaped grains that grow more slowly, which 
has an effect on material properties such as strength, ductility and 
conductivity. 

Ultrafine-grained metals often exhibit less strain hardening, which is 
attributed to improved dynamic recovery and limited dislocation in
teractions [3,8,14,64-66]. However, studies [16,67-69] have found that 

Fig. 10. (a)Tensile stress-strain curves of the 0 h cold weld (320 nm) sample and the 2 h cold weld (340 nm) sample. The schematic diagrams of the material 
architecture are shown next to the corresponding curves. Numbers in the brackets are the mean grain sizes. (b)Strain hardening rate curves of the 0 h cold weld (320 
nm) sample and the 2 h cold weld (340 nm) sample. 

Fig. 11. The results of the simulation of solid mechanics on two flake particles in collision, (a) distribution of von Mises stresses and (b) distribution of displacement.  
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the dispersion of nanoscale Al2O3 particles into an Al matrix can pro
mote the accumulation of dislocations, which improves strain hardening 
and elongation. In contrast to these findings, our study shows that the 2 
h cold-welded Al/ Al2O3 nanocomposites with their larger and randomly 

dispersed nanoplatelets hinder dislocation movement, in contrast to the 
0 h sample where finer nanoplatelets at the grain boundaries allow more 
dislocation activity, which is reflected in a higher dislocation density 
after the test (1.1 × 1014 m-2 to 5.6 × 1014 m-2). The 1 h specimen with a 

Fig. 12. The result of simulating the sintering of larger size flakes during the process over time.  

Fig. 13. The result of simulating the sintering of smaller size flakes during the process over time.  
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semi-ordered structure also shows similar strain and strain hardening, 
indicating that the microstructural arrangement allows sufficient 
dislocation movement [3,8,14,64-66]. The 0 h specimen’s resistance to 
defect propagation [16,67-69] is likely due to its nanolaminate archi
tecture, which favours mechanisms such as interlayer delamination and 
crack deflection, which is also observed to a lesser extent in the 1 h 
specimen. Our results, supported by experimental and simulation data, 
highlight the crucial role of flaky Al particles and the cold welding 
process in developing the microstructure of Al/Al2O3 nanocomposites 
for improved mechanical properties, taking advantage of the strain 
hardening capacity and reinforcement efficiency of Al2O3. 

5. Conclusions 

The present study focused on the designability of the microstructural 
design of Al/Al2O3 nanocomposites by a combination of cold welding of 
flaky particles and pressure-assisted sintering and verified by experi
ment and discrete element method simulation. The findings are given as 
follows:  

1. The BM process successfully converted spherical Al powders into 
flaky particles, which, after 3 h of milling, achieved optimal di
mensions for use as building blocks in Al/ Al2O3 composites. The 
process of cold-welding during BM was instrumental in creating 
HAGBs and enhancing interfacial bonding by integrating Al2O3 
particles into the Al matrix. 

2. Variations in cold welding times led to distinct microstructural ar
chitectures: a laminated structure after 15 min, a lamellar particle 
shape after 2 h, and a mixed structure after 1 h of welding. These 
structures were confirmed by TEM analysis, which also showed how 
the distribution of Al2O3 nanoplatelets was affected by the welding 
duration, impacting the grain morphology and size.  

3. Mechanical testing revealed a direct correlation between cold 
welding time, grain structure, and mechanical properties. Higher 
UTS was observed in the 2 h cold-welded specimens with lower 
ductility, while the 15 min cold-welded specimens showed a good 
balance of UTS and ductility. The distribution and orientation of 
Al2O3 platelets were crucial, with platelets within the grain interior 
enhancing strength via the Orowan mechanism but reducing 
ductility, and those on the lamellar boundaries providing a balance 
between strength and ductility. Grain refinement was identified as a 
significant contributor to the material’s strength, particularly in the 
15-min cold-welded samples where aligned nanoplatelets facilitated 
improved strain hardening and deformation behavior. 

4. Simulation and experimental data consistently show that the sin
tering process drives the transition from disordered to ordered mi
crostructures, with the formation of necking, the development of 
grain boundaries and a reduction in porosity due to densification 
contributing to the mechanical strength and ductility of Al/ Al2O3 
nanocomposites. 

5. Fine-grained simulations show increased porosity and polygoniza
tion and reflect the experimental evidence that the presence of finely 
dispersed Al2O3 nanoplatelets in the aluminum matrix is crucial for 
strain hardening and ensuring grain stability, which improves the 
mechanical properties of the composite. 

6. The simulations confirm the experimental observations by empha
sizing the importance of the stress concentration at the flake in
terfaces. This stress is crucial for triggering sintering-induced 
transformations such as necking and grain boundary formation, 
which are essential for optimizing the mechanical behavior of Al/ 
Al2O3 nanocomposites. 
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