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A B S T R A C T

In multi-risk assessment frameworks involving road infrastructures, measures of exposure to 
natural hazards include traffic volumes. However, traffic counts are usually collected through 
traffic counter/radar stations which only cover a small part of the road network. In this study, 
country-wide Annual Average Daily Traffic (AADT) prediction models based on Italian data were 
developed to provide direct risk exposure measures both in terms of traffic volumes (continuous 
variable) and traffic volume discrete classes, using province-/municipality-related geographic, 
socio-economic and road-related variables as predictors. To ease transferability and applicability 
of the models, only publicly available predictors were selected. Traditional statistical techniques 
(generalized linear models for predicting traffic values and ordered logistic models for traffic 
classes) and Machine Learning (ML) approaches (XGBoost for both regression and classification 
problems) were used. Both the direct estimation of traffic volumes and the classification into 
traffic ranges provided satisfactory results in terms of goodness-of-fit and predictive accuracy 
metrics. Results show that population, occupation, tourism, density, number of lanes, urban 
environment, complex intersections and ring roads were generally related to an increase in traffic 
volumes. Distance from large cities and accessibility metrics are inversely related to traffic 
instead. The application of the XGBoost ML approach proved to be more accurate than traditional 
approaches only for heavy vehicles. It was discussed how the obtained models can be used as 
input modules for overall multi-risk assessment frameworks involving road infrastructures.

1. Introduction

Transport infrastructures are critical systems in modern society and their loss of functionality may lead to major consequences on 
the local economy and general population wellness, in terms of fatalities or injuries, economic loss and impact on public confidence (as 
stated by e.g., Ref. [1]). The high vulnerability of transport infrastructures to natural hazards was evidenced in recent studies [2]. 
Among possible causes of their high vulnerability can be included the broad extensiveness, the high density and the fast expansion of 
such networks requiring the realization of specific assets (tunnels, bridges, etc.) that might significantly affect the risk related to 
natural hazards if not adequately designed. Simplified risk assessment procedures mainly consider the convolution of three main 
features, namely hazard, exposure and vulnerability [3]. The definition and computation of such features varies depending on the 
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specific risk considered, although they are generally assumed as the probability of occurrence of a hazardous event, the value of the 
asset affected and its resilience to the event [4–6].

The management of a great number of infrastructures in their multiple operational and environmental conditions requires a multi- 
hazard approach [7], to analyze not only individual risks but also their interactions and concomitance, as also emphasized by in-
ternational risk reduction frameworks [8]. In fact, considering tropical cyclones, earthquakes and flooding, Koks et al. [9] estimated 
that almost one third of worldwide transport infrastructure assets are exposed to at least one hazard. An overview of the state-of-the art 
on multi-risk assessment frameworks related to road infrastructures is presented as follows. After that, the attention is particularly 
focused on how exposure to risks can be defined and measured at different scales in such frameworks, discussing the relevance of 
estimating traffic volumes on road infrastructure networks and the related scientific background specific to the problem. In fact, it is 
here anticipated that the main motivation of this study is to fill a research gap in terms of modelling road traffic volumes in the specific 
context of multi-risk assessment frameworks. The specific contributions of this study will be further specified at the end of this section.

1.1. Background on multi-risk assessment related to road infrastructures

Multi-risk methodologies accounting together for different hazards, either account for the mutual influence of all hazards in a 
considered area or consider simultaneously each single hazard and its cascading events [10]. Hence, the “chain of events” can be 
defined as a direct or indirect result of an initial event [11]. The triggering event considered may change depending on the typical 
hazard of the region examined, such as cyclones in tropical zones [12–14], or avalanches in colder countries [15,16]. One of the most 
common cascading events are earthquake-induced landslides. The peculiarity of these events is their dependence on both the trig-
gering event and geological, geomorphological, hydrological, environmental conditions of the affected region [17].

The adoption and the study of multi-risk approaches were increasingly encouraged during the last two decades by critical in-
frastructures stakeholders. This is due to several reasons, such as the increasing interconnection of society or the higher frequency of 
extreme events/disasters related to climate change [18]. In particular, among infrastructures, particular attention was paid to road 
networks. In fact, the most relevant road infrastructures in an area (i.e., at the regional, state or continental level) are critical assets, 
especially when particularly exposed to natural hazards [19]. Some multi-risk assessments related to road infrastructures were 
described in previous literature (e.g., Ref. [20–22]). In Clarke and O’Brien [23], earthquakes, landslides and floods, alongside their 
interaction and cascading events, were considered to perform stress tests on the European infrastructure network. A spatio-temporal 
database was also developed including steady geographic information and the event time-variable data.

A typical interaction that should be taken into account in multi-risk assessment frameworks is the one between road networks and 
structures which are directly part of them (such as bridges) or closely located (like buildings on the roadside). For example, Argyroudis 
et al. [24] implemented the European Commission’s SYNER-G methodology to englobe the hazard uncertainty, fragility models of road 
system assets, alongside interdependencies such the collapsed building debris disposition into a single probabilistic systemic risk 
analysis framework. The methodology was applied to several case studies, showing high frequency of road service loss due to debris 
blockage in historic city centers, where buildings have higher seismic vulnerability. One of the main causes of service interruption is 
bridge structural damage or collapse [25]. The behavior of bridges under a single risk is usually studied using fragility curves, which 
express the probability of damage as event intensity increases. The fragility functions, defined for different damage states and several 
hazards, are combined to propose multi-risk fragility surfaces [26–28]. Other multi-risk assessment frameworks for bridges have also 
been proposed in previous research (e.g., Ref. [29]). The bridge damage or collapse events cause direct economic losses, and indirect 
losses related to road closure [30]. This latter effect is important on main roads, mainly because of the travel delay. According to 
Abarca et al. [31], considering both direct and indirect costs in Average Annual Losses allows a more effective prioritization of retrofit 
interventions.

Another peculiar interaction pertains to road infrastructures in coastal areas. This interaction is crucial given that sea level rise 
driven by climate change poses a significant threat to coastal regions around the world (e.g., Ref. [32]), causing increased flooding, 
erosion, and habitat loss. As sea levels continue to rise, the risk for road infrastructures in coastal areas becomes more pronounced, 
being exposed to frequent flooding and structural damage (e.g., Ref. [33]). Adaptation measures to deal with sea level rise are crucial 
to the resilience of coastal infrastructures. These measures include (i) planned retreat of structures and infrastructures, (ii) accom-
modating natural system effects by adjusting land use of the coastal zone, crop types, and flood resilience measures, (iii) protecting the 
zone with soft or hard barriers such as nourished beaches, dunes, or seawalls, and (iv) attacking by building seaward and upwards to 
claim new land for economic development [34]. In the context of planned retreat, relocation of road infrastructures to less exposed 
areas plays a crucial role. Strategic road setback can mitigate the risk of traffic disruptions due to flooding, erosion damage and ground 
failure due to liquefaction (see e.g., Ref. [24]) by ensuring the proper functioning of the road system in the coastal environment. In 
addition, relocating roads that are currently in high-risk coastal areas and have significant traffic volume can reduce maintenance costs 
and extend the service life of the infrastructure.

1.2. Exposure to risks and road infrastructures

Regardless of the particular natural hazard considered or the assessment framework, the estimation of exposure to risk is crucial. 
Exposure is generally defined [35] as “the presence of people, livelihoods, species or ecosystems, environmental functions, services, and 
resources, infrastructure, or economic, social, or cultural assets in places and settings that could be adversely affected.” Hence, in case of risk 
assessments, especially in case of natural disasters which may potentially endanger large areas, different measures of exposure to risks 
can be considered, also depending on the scale of the problem. Nevertheless, when assessments are conducted at a vast scale, exposure 
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can be measured through general variables. For example, Satta et al. [36] evaluated the exposure to coastal risk of the whole Med-
iterranean coastal area based only on population density and land cover type, thus only indirectly capturing the presence of 
infrastructures.

However, as already anticipated, there is also a consistent body of research on risk analysis procedures specifically dedicated to 
transport infrastructures in a given area, considering single or multiple hazards (see e.g., Ref. [9,19,37]). In case of multi-risk 
assessment frameworks involving road infrastructures, it is crucial to consider, among other variables, traffic volumes (see e.g., 
Ref. [15,31,38]). In this context, traffic volumes can be used as a direct measure of exposure to calculate the fatality risk on a given 
road section (see e.g. Ref. [15], in case of avalanches) or to estimate loss metrics in the overall risk assessment, i.e. economic losses 
derived from increased travel times for changes in the travel path due to a link with damaged structures [31,38].

Elaborating more on the cited studies, traffic volumes are intended as an indicator of the importance of the considered road 
segments within the infrastructural system. The disruption of a segment with high traffic volume related to natural hazard-induced 
damage leads to major consequences on several social assets, such as freight distribution, connection to and between strategic fa-
cilities and so on. Additionally, since these consequences do not only involve individuals living or interacting with disaster-affected 
area whatsoever (which is a likely scenario in case of main roads with heavy traffic), also non-direct economic losses are obtained 
from a disruptive event. The disruption of a main road carrying high traffic volumes causes a re-distribution of traffic among un- 
damaged roads, increasing their congestion and slowing down services which may be fundamental, particularly in case of emer-
gency. Concluding, a combination of the natural hazard, the vulnerability of the road network (e.g. due to the presence of a high 
number of old bridges) and the possible direct and non-direct economic losses, represent a reliable mean for disaster risk assessment of 
a specific area. In this scenario, the traffic volume alone may not be a comprehensive indicator of the exposure; however, it surely 
represents a feature expressing the amount of goods and services under threat in case of a disruptive event (e.g. [39]). Consequently, 
amplification factors depending on traffic volumes on specific roads may be applied to single-hazard derived risk indexes in multi-risk 
frameworks.

Apart from being used in risk assessment frameworks including different types of hazards, traffic volumes are also related to 
intrinsic road-related risks. In this sense, traffic crashes are a major contributing factor to deaths worldwide, especially among young 
people [40]. While they may depend on a wide range of possible causes and being related to several concurring factors, crashes can be 
generally modelled as a function of traffic volume, a typical measure of the users’ exposure to road-related risk [41]. However, natural 
disasters may alter the normal operating conditions of road infrastructures, especially in case of evacuating population [42–45]. 
Drivers are directly affected by damage or functionality disruption due to hazardous events. For example, in case of wildfires, drivers’ 
speeds can be influenced by the produced smoke [46]. These effects, combined with the variations in the traffic volumes in the 
network, may increase the probability of incidents [47–49]. It is evident that, in these scenarios, road users are exposed to other risks, 
in addition to the intrinsic road-related risks.

1.3. Background on traffic volume predictions

Traffic data are usually collected through monitoring stations and are used to compute synthetic indicators such as the Annual 
Average Daily Traffic (AADT), hourly peak volumes or the percentage of heavy vehicles. Traffic prediction models (i.e., typically AADT 
prediction models) can be obtained through linear regressions (see e.g., Ref. [50–55]), spatial models (see e.g., Ref. [56–60]) and/or 
Machine Learning (ML) techniques (see e.g., Ref. [61–64]).

Traditional regression-based models (e.g., the ordinary least-square linear regression – OLS –), associate multiple independent 
variables, such as road classes or number of lanes, to the AADT (e.g., [60,64]). Besides these models which are widely used, other 
authors employed spatial models such as Geographically Weighted Regression or kriging, in which the relation among variables take 
different weights according to their distance from the studied case ([56,58]; [60]; [65]). Several types of ML techniques have also been 
experimented for predicting traffic volumes (e.g., Random Forest and the Support Vector Regressions by Ref. [64]; or decision rules in 
Ref. [63]). In some cases, ML approaches for data extraction are also coupled with the availability of aerial images to estimate AADT 
[62,66]. Regardless of the specific modelling approach, most of the previous studies used geographic and socio-economic factors such 
as distance from cities/urban areas, land use, accessibility, population, density, occupation and income. Road-related variables are 
usually limited to road type, speed limits and the number of lanes, while the intersection types or the presence of alternative routes are 
not explicitly modelled. Moreover, in none of the reviewed studies, land use includes information about being in the coastal area or 
not.

It is important to note that, in all the reviewed studies except for Song et al. [59] and Sfyridis and Agnolucci [67], the composition 
of the traffic flow (i.e., the percentage of heavy vehicles) is disregarded in the predictions. However, apart from the usual importance of 
this information for road pavement management, the heavy vehicle volume can be important for fatigue life predictions of bridges [68,
69], which is not negligible in the context of multi-risk assessments. Structural vulnerability assessment of bridges is indeed a key 
aspect for the evaluation of network resilience [30,70]. Several approaches were adopted in last years for structural health monitoring 
of bridges, based on satellite data [71] or operational modal analysis [72,73]. In most cases, the accuracy in predicting traffic loads is 
fundamental when performing structural vulnerability assessment, particularly for road bridges subjected to degradation, as evidenced 
in the literature (e.g. Ref. [74,75]). Moreover, the distinction between light and heavy vehicle volumes can be important as well to 
determine indirect economic losses within risk assessments, such as in the framework proposed by Ishibashi et al. [38].

Moreover, several studies in previous research have focused on low-volume/minor roads in the network [51,53,54,56,57,60,63], 
given that traffic counts are usually sparser on them than on major roads. However, given the aims of this study, a comprehensive 
prediction including major road classes is sought here. This prediction is intended to be integrated into overall multi-risk assessment 
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frameworks, which would be applicable universally and encompass all relevant major arterials. For the same reason, this study also 
investigates the possibility of directly predicting traffic classes (e.g., from low to high; such approach was only found in Ref. [53], 
based on logistic models), to be integrated with index-based risk models.

1.4. Objectives of the study

Road traffic volumes are a key input for multi-risk assessment frameworks that include road infrastructures. However, the number 
of traffic count stations is not comparable to the number of roads in a network. To address the problem of unavailability of traffic 
volumes for all the roads in a network, models to predict both light and heavy annual average daily traffic volumes, which could be 
integrated into multi-risk assessment frameworks, are developed in this study. Models are based on the Italian publicly available traffic 
volume dataset related to State roads. Both a traditional regression model and a ML approach were used to predict traffic volumes, by 
using geographic, socio-economic and detailed road-related factors as independent variables.

The work discussed herein is part of a multi-disciplinary research project aimed at developing a multi-risk assessment framework 
combining traffic-related risks to seismic and coastal flood hazards for road infrastructures. While the interaction between roads and 
the seismic/coastal hazards could be relevant worldwide, this research project addresses the Italian territory, where a very dense road 
network (168.129 km -[76]-) is placed in context with high seismic hazard and an extensive coastal development (length >8,000 km), 
causing high road network exposure to several natural hazard-related risks (e.g., Ref. [77]).

Given the considered context, the main contributions to the state of the art of this article are reported as follows: 

• enlarging the body of knowledge on the relationships between traffic volumes and socio-economic/road-based predictors, inves-
tigating their geographic variability;

• specifically exploring the above-reported relationships for heavy vehicle traffic volumes, which were mostly disregarded in pre-
vious studies;

• developing predictive models representing a trade-off between rigorousness and flexibility, i.e., 
o by including detailed geographic, socio-economic and road-related variables (trying to enlarge the set of potential predictors 

with respect to previous literature), which however can be easily collected by other researchers and practitioners and potentially 
transferred to other contexts;

o by using both ML techniques (the eXtreme Gradient Boosting technique, never used in previous research for this particular scope) 
and traditional regression approaches which can be easily implemented in overall multi-risk assessment frameworks;

o by modelling the dependent variables both as quantitative measures (AADT traffic volumes) and as traffic classes (i.e., low to 
high), which again can be easily integrated in multi-risk assessments.

Hence, this study wants to enlarge the pool of available traffic prediction models, developing a tool calibrated for the European 
context (almost all the previous studies were based on other areas and the geographic variability can be particularly relevant for the 
problem at hand) and, in particular, for Italy. However, this study is specifically dedicated to developing traffic prediction models 
which can be integrated into general multi-risk assessment frameworks by: separately predicting light and heavy vehicle volumes, 
introducing class-based dependent variables, referring to a country-wide major road network and accurately selecting easily 
collectable and potentially transferrable dependent variables, including some potential predictors relevant for multi-risk assessments 
usually not considered in previous research (e.g., coastal zone, presence of alternatives, accessibility and tourism indexes).

The methods used in this research are described in Section 2. Results from prediction models are then presented in Section 3 and 
discussed in Section 4. Finally, Section 5 draws the conclusions.

2. Methods

In this section, the set of independent variables which will be used to predict traffic volumes is presented, together with the relative 
data collection methods and characteristics. Traditional statistical methods and Machine Learning -ML- approaches used for prediction 
purposes are then described.

2.1. Traffic volume dataset

The dataset of traffic volumes used in this study is the publicly available Average Annual Daily Traffic (AADT) dataset published 
online by the Italian National Road Agency (ANAS),1 which manages the network of nationally relevant roads (“State roads”) and some 
motorways in Italy.

Published data regard 1268 traffic counter stations spread across all Italian regions, excluding only Trentino-Alto Adige, in a 10- 
year period from 2013 to 2022. Annual average volumes are separately reported for heavy vehicles (vehicles having size corresponding 
to payloads of 3500 kg, trucks and buses) and light vehicles (all other vehicles). The geographic localization of these stations is 
presented in Fig. 1.

1 https://www.stradeanas.it/it/le-strade/osservatorio-del-traffico/dati-traffico-medio-giornaliero-annuale. Lastly accessed on December 15th, 
2023.
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2.1.1. Data treatment
As declared in the explanatory note to the dataset, the AADT of both light and heavy vehicles is computed as follows: 

AADTk =

∑d

j=1

∑p

i=1
(V5)i,j,k

d
[1] 

where:
AADTk = bi-directional Annual Average Daily Traffic related to the k-component of traffic, that is light vehicles (k = l → AADTl) or 

heavy vehicles (k = h → AADTh);
(V5)i,j,k = recorded traffic volume of the k-component in the valid i-th 5-min period of the valid j-th day of the year;
p = number of valid 5-min period in each day of the year (“valid” means that data were correctly recorded within the time period), 

if all 5-min periods are valid: p = 288;
d = number of valid days during the year (“valid” indicates days for which p is at least 282, that means at least 98 % valid 5-min 

periods); if d < 365/2 ~ 183, AADTk is considered a missing data for that year.

Fig. 1. Position of all Italian ANAS traffic counter stations in the dataset on OpenStreetMap base map.
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The mean AADTk over the entire dataset of available traffic stations was computed for each year from 2013 to 2022. The variation 
of the mean AADTk over the years is reported in Fig. 2.

For what concerns light vehicles, different phases can be noted: 1) a first steep 2013–2014 increase, 2) a soft and almost uniform 
increase in the 2014–2017 period, 3) a sort of plateau in the 2017–2019 period, 4) an evident drop in 2020 due to the Covid-19 
pandemics (see also [78]) and 5) a subsequent increase up to 2022, to values comparable with 2019. On average, heavy vehicles 
were less variable in the 2013–2019 period (even if a 2013–2014 increase and a 2018–2019 decrease can be noted). Differently than 
light vehicles, the heavy vehicles drop due to the pandemics continued up to 2022.

Given the high time variability of traffic volumes, which may highly depend on the socio-economic conditions [79], it was decided 
to exclude the 2020–2021 period from the analysis. Given the relatively stable tendency during years before 2020 and in order to 
include the most extended and recent available period, a 5-year period was thus selected for further analyses: 2015–2019. Hence, the 
dataset was filtered to include traffic stations for which at least one yearly traffic count was available over the time span 2015–2019. 
Out of the initial 1268 stations, 281 were removed (because they only included counts since 2020), to form the final sample of 987 
traffic stations. Only 37 % of stations have valid data for each year in the period and thus, for the remaining stations, discontinued data 
is available (among the total dataset of 987 stations x 5 years = 4935 counts, about 27 % yearly traffic counts are missing).

Given that macro-level issues due to the temporal variability were already addressed by removing the 2020–2021 period and that 
the remaining 2015–2019 period is relatively stable, the average traffic volume over the considered period (2015–2019) was calcu-
lated. This was deemed as acceptable given that: a) the aim of this study is not directed towards catching the yearly variability but in 
providing reliable estimates to be used in overall risk assessment frameworks, b) post-pandemic trends are still to be established to 
extrapolate reliable future yearly variation tendencies (after 2022).

However, to compute the average yearly volume, the micro-level yearly variability in the considered period should be considered as 
well. In fact, if missing data had been retained, the average volume could have been underestimated/overestimated depending on the 
specific year in which data were missing. For example, by looking at Fig. 2, if only 2015 and 2016 data were available for a given 
station, it is likely that the average traffic count would have been underestimated because traffic volumes increased, on average, in the 
next three years. Thus, average yearly growth rates were computed for each 1-year time interval in the period (i.e., 2015–2016, 
2016–2017, etc.), based on the available data. Those rates were used to replace yearly missing counts starting from the available data. 
For example, if the 2016 count was missing, it was estimated by applying the calculated 2015–2016 increasing rate to the 2015 
available count.

The above-explained process of data treatment, repeated for both light and heavy vehicles, led to estimate average light and heavy 
yearly volumes in the 2015–2019 period for each of the 987 traffic count stations in the dataset. Boxplots of light and heavy AADTk 
volumes (namely, AADTl: mean 11871, st. dev.: 16578 vehicles/day; and AADTh: mean 749, st. dev.: 1049 vehicles/day) are reported 
in Fig. 3. It is possible to note how traffic data are not normally distributed: they are skewed towards zero (especially heavy vehicle 
volumes). This can be explained by the presence of a small portion of high-volume roads in the sample, with respect to most road 
sections (by looking at boxplots, 75 % of AADTl are widely below 20000 vehicles/day, while 75 % of AADTh are below 1000 vehicles/ 
day).

2.1.2. Additional pre-processing stage: traffic volume classes
Depending on the specific multi-risk assessment strategy, two alternative measures of risk exposure may be needed, i.e.: 

• a specific traffic volume measure or, alternatively,
• a traffic exposure class, i.e., a range of traffic volumes.

Hence, given that this study wants to provide tools which could be generally applied within different possible risk assessment 
frameworks, both options were considered here. While traffic volume measures obtained from traffic counts (sub-section 2.1.1) can be 
directly used, a definition of traffic volume classes is needed.

Since the dataset includes traffic volume counts for all the major Italian highway classes (two-way two-lane road arterials and 
multi-lane divided or undivided highways, including freeways, spanning from 4 to 6 lanes), the sample of traffic counts can be 
regarded as a representative sample of the major road network. For this reason, instead of using a-priori traffic classification into 
ranges, a one-dimensional clustering algorithm was used to identify traffic classes, namely, the k-means algorithm.

The k-means algorithm is an unsupervised ML technique which shards a dataset composed of n observations into m clusters, by 
minimizing the variance (with respect to the cluster mean) within each cluster (see e.g., Ref. [80]). While it is not ensured to reach the 
global optimum, the algorithm easily finds convergence to a local optimum by using different possible heuristics. The procedure 
proposed by Hartigan and Wong [81] is used here. The cluster library, based on Kaufman and Rousseeuw [82], was used to run the 
k-means algorithm in R environment. The k-means algorithm can be repeated for different possible numbers of clusters. In this study, 
three methods are screened to find the optimal number of clusters: the elbow method, the silhouette and the gap statistic. For both 
cases of light and heavy vehicles, after having compared the results obtained from the three above-reported methods, the selected 
optimal number of clusters is three. Results from cluster analysis are reported in Fig. 4, where boxplots of the three clusters of both light 
and heavy traffic volumes are represented; and Table 1, where the main descriptive statistics are reported for each cluster.

2.2. Collected variables

The set of independent variables which will be used to predict traffic volumes is presented, together with the relative data collection 
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methods and features. Three groups of variables were considered: province-, municipality- and road-related, with respect to the traffic 
count station location. The main descriptive statistics regarding these variables are reported in Table 2, alongside those related to light 
and heavy vehicle volumes (dependent variables).

For province- and municipality- related variables, the relevant information was retrieved from the Italian National Institute of 

Fig. 2. Mean of the average daily traffic volumes over the 10-year period for both light vehicles (left) and heavy vehicles (right) across all available 
traffic counter stations in the dataset (y-axis graphical scale of the AADTh is multiplied by a factor of 10 in order to appreciate yearly variations 
of AADTh).

Fig. 3. Boxplots of average daily traffic volumes over the 2015–2019 period for both light vehicles (left) and heavy vehicles (right) across all 
available traffic counter stations in the dataset (y-axis graphical scale of the AADTh is multiplied by a factor of 10 in order to appreciate the dis-
tribution of AADTh).

Fig. 4. Boxplots of the three clusters representing traffic volume ranges for both light (left) and heavy (right) AADT volumes (y-axis graphical scale 
of the AADTh is multiplied by a factor of 10 in order to appreciate the distribution of AADTh boxplots).
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Statistics (ISTAT) online data2 for the investigated period, or the most recent applicable period when not available. Population density 
data were obtained from the baseline population and area width data. The accessibility index measures the average travel time (in 
minutes) required to reach urban or logistic nodes (in particular, to reach the three closest infrastructures among ports, airports, 
railway stations and freeway interchanges from municipality centroids in free-flow conditions). The air traffic index measures the 
number of landed and boarded passengers per 100 inhabitants. The occupation index indicates the percentage of working people in the 
age 15–64. The tourism index indicates the number of days of residential tourism per inhabitant per year. The municipality elevation 
zone is based on the average elevation of the municipality area, initially divided by ISTAT into 8 classes: 0–299 m, 300–599 m, 
600–899 m, 900–1199 m, 1200–1499 m, 1500–1999 m, 2000–2499 m, 2500+ m. A more parsimonious classification is used here, 
namely the “0 – low” zone (0–299 m), “1 - medium” zone (300–899 m), “2 - high” zone (900+ m). The alongshore and the coastal zones 
identified with the “1” code indicate, namely, municipalities which are directly on the seaside or at <10 km from the seaside. The 
urbanization index developed by ISTAT is an overall indication, based on both population and area, of the degree of urbanization of the 
municipality (0 – “high”, 1 – “medium”, 2 – “low”). Finally, the “distance from large city” variable indicates the distance (in km) 
between the municipality and the closest large city (having 100,000+ inhabitants) and it was calculated in a GIS environment.

Road-related variables include detailed information about the road section on which the count station is located. All information 
were retrieved by visually inspecting road sections by means of online tools. The road-related variables are: the number of lanes (“0”: 
two lanes, “1”: four lanes, “2”: six lanes); the road environment (“0”: rural, “2”: urban, “1”: sub-urban, that is a mostly rural envi-
ronment with significant urban settlements); the particular function with respect to large urban settlements (“1”: ring road of a region/ 
province capital city, “0” if otherwise); presence of physical medians to separate carriageways (“1”: yes, “0”: no); intersection types 
along the road section (“0”: at-grade intersections, “1”: mix of at-grade and grade-separated intersections, “2”: grade-separated in-
tersections/junctions, “3”: freeway junctions); presence of possible higher-level alternatives to the road section (“0”: no comparable 
alternatives, “1”: presence of neighboring/parallel alternative roads having similar road functions, “2”: presence of alternative roads 
having similar road functions).

2.3. Data analysis

Traditional regression models (generalized linear models) and machine learning -ML- (eXtreme Gradient Boosting -XGBoost- 
technique) were used to predict traffic volumes and traffic volume ranges, as explained in the following. The choice of both approaches 
was based on previous research in which they were generally used alternatively to predict traffic volumes. In particular, ML ap-
proaches are increasingly used for traffic prediction purposes [83] and their outputs are comparable with other traditionally used tools, 
in the context of simulations [84]. Given this background and, to increase the flexibility of using different outputs from this study for 
multi-risk assessments depending on the particular application, traditional statistics and ML were both used, and their outputs 
compared.

The overall data analysis procedure is summarized in next Fig. 5.

2.3.1. Traditional regression models
Generalized linear models were first used to predict both traffic volume values and classes (ranges). In particular: 

• linear regression to predict traffic volumes;
• ordered logistic regression to predict traffic volume ranges.

2.3.1.1. Theoretical background. The linear regression model is expressed as follows [85]: 

(AADTk)i = β0 +
∑n

j=1
βjXi,j + εi [2] 

where:
(AADTk)i is the i-th traffic volume observation in the dataset;
βj is the j-th model coefficient to be estimated (β0 is the intercept, set to 0 to avoid considering negative volumes);

Table 1 
Descriptive statistics of the three clusters representing traffic volume ranges for both light and heavy AADT volumes.

Class AADTl (vehicles/day) AADTh (vehicles/day)

Mean St. Dev. Min. Max. Mean St. Dev. Min. Max.

Low (0) 5924 4190 72 15718 288 256 1 1026
Medium (1) 25607 9106 15899 53260 1775 553 1034 2962
High (2) 100804 23236 65053 137375 4387 1216 3128 7284

2 http://dati.istat.it/. Lastly accessed on January 15th, 2024.
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Xi,j is the i-th observation of the j-th predictor (up to n predictors included in the model);
εi is the i-th value of normally distributed errors;
k subscript indicates the type of modelled traffic volumes (two separate models are estimated for light vehicles, k = l, and for heavy 

vehicles, k = h).

Table 2 
Descriptive statistics of the collected variables.

Variable Mean St. dev. Max. Min. Count Percent (%)

Traffic volume AADTl (vehicles/day) 11871 16578 137375 72 – –
AADTh (vehicles/day) 749 1049 7284 1 – –

Province-related Population (inhabitants)a 657775 692787 4258886 84441 – –
Area (km2)a 3716 1902 7692 213 – –
Density (inh./km2) 222 321 2589 37 – –
Accessibility index (minutes) 56 14 101 27 – –
Air traffic index (pax/100 inh.) 162 291 1231 0 – –
Occupation index (− ) 52 11 73 37 – –
Tourism index (days/inh.) 6 6 47 0 – –

Municipality-related Population (inhabitants) 73342 347992 2749031 78 – –
Area (km2) 135 188 1287 2 – –
Density (inh./km2) 338 546 3957 1 – –
Elevation zone – 0 (low) – – – – 195 20
Elevation zone – 1 (med.) – – – – 330 33
Elevation zone – 2 (high) – – – – 462 47
Elevation (m) 322 286 1684 0 – –
Alongshore zone – 0 (no) – – – – 661 67
Alongshore zone – 1 (yes) – – – – 326 33
Coastal zone – 0 (no) – – – – 611 62
Coastal zone – 1 (yes) – – – – 376 38
Urbanization index – 0 (high) – – – – 141 14
Urbanization index – 1 (med.) – – – – 460 47
Urbanization index – 2 (low) – – – – 386 39
Distance from large city (km) 55 35 164 2 – –

Road section-related Number of lanes – 0 (2 lanes) – – – – 744 75
Number of lanes – 1 (4 lanes) – – – – 224 23
Number of lanes – 2 (6 lanes) – – – – 19 2
Environment – 0 (rural) – – – – 777 79
Environment – 1 (suburban) – – – – 59 6
Environment – 2 (urban) – – – – 151 15
Ring road – 0 (no) – – – – 876 89
Ring road – 1 (yes) – – – – 111 11
Median – 0 (no) – – – – 756 77
Median – 1 (yes) – – – – 231 23
Intersection type – 0 (at-grade) – – – – 555 56
Intersection type – 1 (mix) – – – – 131 13
Intersection type – 2 (grade-sep.) – – – – 225 23
Intersection type – 3 (freeway) – – – – 76 8
Higher-level alternative – 0 (no) – – – – 754 76
Higher-level alternative – 1 (yes, parallel) – – – – 162 16
Higher-level alternative – 2 (yes) – – – – 71 7

a Million inhabitants and thousands km2 are considered for data analysis.

Fig. 5. Framework of the proposed data analysis procedure.
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The ordered logistic regression model, in the proportional odds variant, is expressed as follows [86]: 

logit{P[(AADTk)C ≤ c]}= log
P[(AADTk)C ≤ c]
P[(AADTk)C > c]

= β0,c −
∑n

j=1
ηjXi,j [3] 

where:
(AADTk)C is the m-th traffic volume class c, ordered from the lowest to the highest volume class;
β0,c is the model intercept referred to the m-th class c;
ηj is the j-th model coefficient estimate;
Xi,j is the i-th observation of the j-th predictor (up to n predictors included in the model);
k subscript indicates the type of modelled traffic volumes (two separate models are estimated for light vehicles, k = l, and for heavy 

vehicles, k = h).
The estimated coefficients in Eq. (3) (ηj) can be exponentiated to obtain odds ratios. In this case, they can be interpreted as the odds 

of being in a class greater than c versus lower or equal classes for a one-unit change in the continuous predictor (or a shift from 0 to 1 in 
the binary categorical predictor), with all other conditions being equal. Given the proportional odds model assumption, the odds ratios 
are the same across categories. Note that an ordered logistic model was preferred over a standard (unordered) multinomial regression, 
given that traffic volume ranges can be ordered from the lowest volume to the highest volume class.

2.3.1.2. Model training and evaluation. Before fitting both categories of models, a preliminary screening was run on the dataset to 
identify multi-collinearity among potential predictors. After this stage, some of the variables included in Table 1 were omitted 
(province population density, municipality population, elevation, alongshore zone, urbanization index and road median). For the same 
reason, after having dummy-coded all the categorical variables, the “0” category was excluded from further analyses. The final dataset 
on which models are built is composed of 987 items (rows) and 24 variables (columns): 4 independent variables (light and heavy 
AADT, both in form of numerical values and traffic classes), 9 continuous predictor variables and 11 dummy-coded categorical pre-
dictor variables.

After, the initial dataset was randomly split into a training (75 % of the initial dataset) and a test dataset (remaining 25 %), in which 
all outcome classes were adequately represented. Models were fitted to the training dataset. To compare potential candidate alter-
native models (for both linear and ordered logistic models), likelihood ratio tests (LRTs) were used to evaluate the improvements 
provided by additional predictors at the 5 % significance level.

The same LRTs were used to compare the final fitted models with the corresponding null models. Moreover, for linear models, the 
R2 is computed to assess the goodness-of-fit. To assess in-sample predictions for ordered logistic models, accuracy and Cohen’s K are 
computed. They are defined as follows: 

Accuracy (ACC)=
Correct predictions

All predictions
(%) [4] 

Cohenʹs K=
ACC − pe

1 − pe
[5] 

where pe is the expected probability of agreement by chance (by using the confusion matrix for the random classification). Cohen’s K is 
included between − 1 and 1 (where 1 indicates perfect agreement). The accuracy is also tested against the No-Information Rate (NIR, 
largest proportion of observed classes) to assess its significance.

For linear models, the evaluation of out-of-sample predictions was based on the metrics defined as follows: root mean square error 
(RMSE) and related coefficient of variation (CV-RMSE), computed over the test dataset. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

[
(AADTk)predicted − (AADTk)observed,test dataset

]2

i
n

√
√
√
√
√

[6] 

CV − RMSE=
RMSE

∑n

i=1
[(AADTk)observed,test dataset]i

n

[7] 

For the evaluation of ordered logistic models, several metrics are obtained starting from the confusion matrix. First, the overall 
accuracy is computed, for the test dataset (Eq. (4)). Moreover, the following additional predictive accuracy metrics are computed for 
each traffic class: balanced accuracy, sensitivity, specificity, precision, recall and F1 score. They are defined as follows. 

Precisionc =
TPc

TPc + FPc
(%) [8] 

Recallc =
TPc

TPc + FNc
(%) [9] 
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Specificityc =
TNc

TNc + FPc
(%) [10] 

Balanced accuracyc =
Recallc + Specificityc

2
(%) [11] 

F1c =2
Precisionc*Recallc

Precisionc + Recallc
(%) [12] 

where:
TPc, FPc,TNc, FNc are, namely, the number of true positive, false positive, true negative and false negative predictions related to the 

m-th class c.
Models were estimated in R environment as well as the related metrics. The MASS library [87] was used to perform ordered logistic 

regressions.

2.3.2. Machine learning approach
A parallel ML approach was used to predict traffic volumes and traffic volume ranges. In particular, the XGBoost (eXtreme Gradient 

Boosting) algorithm, a scalable ML framework belonging to the family of gradient tree boosting algorithms. It was selected for this 
study because it can be applied for both regression and classification problems and it was previously successfully used in other traffic 
engineering problems, with particular regard to traffic safety (see e.g., Refs. [88–90]). However, its specific application to traffic 
volume predictions is explored in this study for the first time, to the best of the authors’ knowledge.

2.3.2.1. Theoretical background. A brief description of the XGBoost technique is reported as follows (see Ref. [91], for more details). As 
a gradient tree boosting algorithm, a tree ensemble model is used to predict the output variable by means of additive functions in the 
space of Classification and regression trees (CARTs), each function f characterized by a number of leaves N and a weight score w on 
each leaf l. The goal is to minimize the particular objective function O used in the XGBoost algorithm, reported as follows: 

O=
∑

i
L(ŷi , yi) +

∑

k
Ω(fk) [13] 

where L
(
ŷi , yi

)
is a loss function depending on the difference between the prediction ŷi and the target variable yi, while the function Ω 

is a regularization term which helps in penalizing complex models, defined as follows: 

Ω(f)= γN +
1
2

λ
∑N

l=1

w2
l [14] 

The model is additively trained by iteratively adding the function which provides the best improvement according to the previous 
objective function. By operating some simplifications useful to quicken the optimization process, including a second-order approxi-
mation, the following score can be computed for a tree structure s obtained in each iteration t: 

Ot(s)= −
1
2
∑N

l=1

(
∑

i∈Il
gi

)2

∑

i∈Il
hi + λ

+ γN [15] 

where gi and hi are, respectively, the first and second order gradient statistics on the loss function L and Il is the set of instances for the 
leaf l.

Given that it is usually impossible to generate all the possible tree structures, the algorithm works starting by a single leaf and 
iteratively adding branches to the tree by selecting the best split (i.e., dividing the set of instances I into a left IL and right IR set) 
according to the following variant of the objective function: 

Osplit =
1
2

⎡

⎢
⎣

(
∑

i∈IL
gi

)2

∑

i∈IL
hi + λ

+

(
∑

i∈IR
gi

)2

∑

i∈IR
hi + λ

+

(
∑

i∈I
gi

)2

∑

i∈I
hi + λ

⎤

⎥
⎦ − γ [16] 

The choice of the loss function is fundamental to characterize the problem. Given the statistical methods used and described in the 
previous section, two different loss functions were used for both light and heavy vehicles: 

• the squared error for regression, in case of traffic volumes, and
• the softmax function for multi-classification, in case of traffic volume ranges.

Model performance is influenced by the set of hyperparameters used, which should be tuned by trading-off between improving 
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predictive accuracy and preventing overfitting. The hyperparameters are: learning rate (η, a shrinkage scale factor of weights, used to 
reduce the influence of each individual tree, with discrete values chosen in a range between 0.01 and 0.30), minimum split loss (γ, 
minimum loss reduction required to furthers shards a leaf node, with discrete values chosen in a range between 0 and 2), maximum 
tree depth (maximum number of allowed splits, with discrete values chosen in a range between 1 and 15), subsample column ratio 
(defines the subsample of columns selected for each tree, with discrete values chosen in a range between 0.10 and 1.00), minimum 
child weight (minimum sum of instance weights required to further partitioning the tree, with discrete values chosen in a range be-
tween 1 and 10), subsample ratio (defines the subsample instances at each iteration, with discrete values chosen in a range between 
0.10 and 1.00), maximum iterations (maximum number of trees fitted in the model, with discrete values chosen in a range between 100 
and 500).

2.3.2.2. Model training and evaluation. To ensure comparability between model outputs obtained from traditional regression and ML, 
the same datasets were used to fit XGBoost models (both in terms of observations, variables and training/test split). Model hyper-
parameters were tuned by means of a grid search algorithm and a 5-fold cross-validation. Once tuned, the XGBoost model is retrained 
on the training dataset (75 %) and tested on the remaining 25 %.

The same applicable evaluation metrics used for traditional regression models are also computed for the obtained XGBoost models. 
Moreover, to support model interpretation and comparison with the previously fitted regression model coefficients, the following two 
complementary approaches are used: 

• rank the variables based on the average information gain (or simply “gain”) that the variable obtains in all the trees (see e.g., 
Ref. [89]): the top 10 variables showing the highest gain are reported.

• The SHAP (SHapley Additive exPlanations) values [92] were computed (see e.g., the application made by Ref. [88]), used to define 
a linear model g able to explain the original ML model, defined as follows:

g(ź )=ϕ0 +
∑N

i=1
ϕi źi [17] 

where ź  is the i-th simplified input binary variable (up to N) and ϕi is the effect attributed to each variable, set equal to Shapley values 
[93]: weighted average of all possible differences between predictions obtained from models f(x) trained on a subset of variables S 
including the i-th variable and models trained without it: 

ϕi =
∑

S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|!

[f(xS
⋃

{i}) − f(xS)] [18] 

Table 3 
Results from linear regression models.

Predictor Outcome variable: AADTl Outcome variable: AADTh

Estimate Std. Error t value p-value Estimate Std. Error t value p-value

Province-related
Population 3869.180 530.707 7.291 <0.001 – – – –
Area − 706.343 148.053 − 4.771 <0.001 – – – –
Accessibility index – – – – − 5.694 1.545 − 3.687 <0.001
Occupation index 86.980 14.871 5.849 <0.001 12.082 1.378 8.768 <0.001
Tourism index 91.833 47.938 1.916 0.056 – – – –
Municipality-related
Area 8.986 1.946 4.736 <0.001 – – – –
Density 6.145 0.682 9.005 <0.001 0.267 0.048 5.519 <0.001
Distance from large city − 28.084 7.851 − 3.577 <0.001 − 1.823 0.789 − 2.311 0.021
Road-related
Lanes – 4 (1) 9472.225 982.430 9.642 <0.001 832.071 84.910 9.799 <0.001
Lanes – 6 (2) 56368.724 2998.387 18.800 <0.001 3112.434 222.010 14.147 <0.001
Environment - Suburban (1) 3594.056 1185.792 3.031 0.003 – – – –
Environment - Urban (2) 1597.232 806.002 1.982 0.048 – – – –
Ring road – Yes (1) 4487.250 1030.272 4.355 <0.001 – – – –
Intersections - Mixed (1) 1485.147 878.534 1.690 0.091 266.683 71.756 3.717 <0.001
Intersections - Grade-separated (2) 3289.687 906.831 3.628 <0.001 487.849 77.811 6.270 <0.001
Intersections – Freeway (3) 3587.573 1498.922 2.393 0.017 744.889 125.634 5.929 <0.001

Goodness-of-fit measures
Likelihood Ratio Test (vs. null model) χ2 (15) = 1492.7, p-value <0.001 χ2 (9) = 1095.9, p-value <0.001
R2 0.797 0.653

Predictive accuracy metrics
Root mean square error (RMSE) 6383 566
CV-RMSE 0.51 0.84
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XGBoost models were estimated in R environment as well as the related metrics. In particular, the xgboost and shapviz library were 
used.

3. Results

Results from data analysis with both traditional regression analyses and ML are reported as follows. First, the results regarding 
traffic volume values are presented, then the results regarding traffic classes are reported.

3.1. Results: traffic volume predictions

Results from linear regression and XGBoost models for traffic volumes are reported, namely, in Tables 3 and 4.
Province population, occupation and tourism indexes, municipality area and density, the increase in the number of lanes, the 

urban/sub-urban area (in particular sub-urban), ring roads, intersections different than at-grade intersections on the road are related to 
an increase in light traffic volumes. Province area, distance from large city are related to a decrease in light traffic volumes instead.

Most of the above reported effects can be easily retrieved also in SHAP plots obtained after the XGBoost models (Fig. 6). Some of 
these factors are also the ones contributing the most to the model, such as roads with 4 or 6 lanes, municipality area and density, 
province population and occupation index, distance from large city.

Province occupation index, municipality density, the increasing number of lanes, intersections different than at-grade intersections 
on the road increase the heavy traffic volumes. Province accessibility index and distance from large city lead to a decrease in heavy 
traffic volumes. For heavy vehicle volumes as well, the same effects are visible from the SHAP plots and from the calculated importance 
gain of individual predictors.

Goodness-of-fit of the XGBoost models based on the R2 calculation are considerably higher than the corresponding linear models, 
both for light and heavy vehicles (0.928 vs. 0.797 and 0.816 vs. 0.653, respectively). However, when considering metrics obtained 
from generalizing the models for other sample datasets (RMSE and CV-RMSE), the performance of linear and XGBoost models is 

Table 4 
Results from the XGBoost regression models.

Outcome variable: AADTl Outcome variable: AADTh

Feature Gain Feature Gain

Category Predictor Category Predictor

Road Lanes – 6 (2) 0.243 Road Lanes – 4 (1) 0.304
Municipality Area 0.191 Road Lanes – 6 (2) 0.255
Municipality Density 0.187 Municipality Distance from large city 0.175
Road Lanes – 4 (1) 0.100 Province Occupation index 0.051
Province Population 0.095 Municipality Density 0.048
Municipality Distance from large city 0.054 Road Intersections – Freeway (3) 0.033
Province Occupation index 0.023 Province Accessibility index 0.032
Province Accessibility index 0.019 Road Intersections - Grade-separated (2) 0.025
Province Area 0.018 Municipality Area 0.024
Road Intersections - Grade-separated (2) 0.014 Province Population 0.014

Hyperparameters
300 Maximum iterations

100
6 Maximum tree depth

3
0.01 Learning rate (η)

0.01
0 Minimum split loss (γ)

2
0.75 Subsample column ratio

0.5
1 Minimum child weight

10
0.5 Subsample ratio

0.75

Goodness-of-fit measures
0.928 R2

0.816

Predictive accuracy metrics
6801 RMSE

525
0.54 CV-RMSE

0.78
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Fig. 6. SHAP values for light and heavy AADT volumes (the color scale goes from yellow to violet, following the low to high contribution provided 
by each individual predictor, for which the mean SHAP value is also reported; note for variables: [P] = Province-related, [M] = Municipality- 
related, [R] = Road-related).

Table 5 
Results from the ordinal logistic regression models (for both light and heavy vehicle classes, 0 = low, 1 = medium, 2 = high).

Predictor Outcome variable: AADTl class Outcome variable: AADTh class

Estimate St.Err. t value p-value Estimate St.Err. t value p-value

Coefficient (low|medium) 7.690 1.023 7.520 <0.001 5.709 0.994 5.741 <0.001
Coefficient (medium|high) 14.290 1.429 10.001 <0.001 9.379 1.063 8.825 <0.001
Province-related
Population 0.552 0.199 2.779 0.005 0.314 0.180 1.744 0.081
Area − 0.168 0.081 − 2.063 0.039 – – – –
Accessibility index – – – – − 0.027 0.010 − 2.819 0.005
Occupation index 0.070 0.014 5.134 <0.001 0.057 0.012 4.984 <0.001
Tourism index 0.042 0.021 2.053 0.040 – – – –
Municipality-related
Density 0.001 0.000 4.878 <0.001 0.001 0.000 2.438 0.015
Distance from large city − 0.012 0.004 − 2.670 0.008 – – – –
Road-related
Lanes – 4 (1) 2.271 0.394 5.758 <0.001 2.632 0.348 7.564 <0.001
Lanes – 6 (2) 4.266 1.151 3.708 <0.001 3.990 1.018 3.918 <0.001
Environment - Suburban (1) 2.177 0.541 4.025 <0.001 – – – –
Environment - Urban (2) 1.817 0.446 4.071 <0.001 1.143 0.401 2.853 0.004
Ring road – Yes (1) 0.955 0.373 2.562 0.010 – – – –
Intersections - Mixed (1) 1.056 0.486 2.174 0.030 1.338 0.408 3.279 0.001
Intersections - Grade-separated (2) 2.145 0.485 4.423 <0.001 2.269 0.419 5.411 <0.001
Intersections – Freeway (3) 2.641 0.624 4.229 <0.001 2.752 0.541 5.086 <0.001

Goodness-of-fit measures/In-sample accuracy metrics
Likelihood Ratio Test (vs. null model) χ2 (14) = 466.23, p-value <0.001 χ2 (10) = 466.16, p-value <0.001
Accuracy (%) (vs NIR %) 88.4 (88.4 > NIR = 77.2, p-value <0.001) 86.6 (86.6 > NIR = 75.5, p-value <0.001)
Cohen’s Kappa 0.66 0.64

Predictive accuracy metrics
Overall accuracy (%) 89.9 85.4
Precision (by class) (%) 94 (0), 69 (1), 100 (2) 91 (0), 58 (1), 100 (2)
Recall (by class) (%) 93 (0), 71 (1), 100 (2) 93 (0), 56 (1), 60 (2)
Specificity (by class) (%) 76 (0), 94 (1), 100 (2) 63 (0), 92 (1), 100 (2)
Balanced accuracy (by class) (%) 85 (0), 82 (1), 100 (2) 78 (0), 74 (1), 80 (2)
F1 (by class) (%) 94 (0), 70 (1), 100 (2) 92 (0), 57 (1), 75 (2)
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comparable. There is a slight improvement in the XGBoost model for heavy vehicles and a slight worsening for light vehicles compared 
to the corresponding linear models. Hence, in this case, while a trade-off between the 20 % of unexplained variance (R2 = 0.797) and 
the higher generalization (both lower RMSE and CV-RMSE values) can be acceptable for the simple linear model for light vehicles, the 
XGBoost model should be clearly preferred for heavy vehicle predictions.

3.2. Results: traffic class predictions

Results from logistic regression and XGBoost models for traffic classes are reported, namely, in Tables 5 and 6.
Most of the predictors included in the ordered logistic regression models, as well as the sign of the related coefficients estimates, are 

similar to those in the corresponding linear models. For what concerns light vehicles, the only difference is in the missing traffic 
increasing effect (here in terms of higher traffic classes) provided by an increasing municipality area. For heavy vehicles, a higher 
likelihood of having high volume classes can be related to an increase in population province and urban roads, while the distance from 
large city predictor was not included in the model.

Also in this case, most of the above reported effects can be easily retrieved in the SHAP plots referred to the three traffic classes 
obtained after training the XGBoost models (Figs. 7 and 8). Analyzing the factors contributing the most to the model, SHAP values 
confirm that higher values of municipality density correspond to a shift towards higher traffic classes (especially for light vehicles). 
Roads with 4 lanes are related to an increase in the traffic classes for both light and heavy vehicles, evidently associated to the Medium 
class. High values of the distance from large cities are particularly associated with the low traffic class (both for light and heavy 
vehicles, even if this variable was not included in the ordinal logistic model for heavy vehicles).

The accuracy of the XGBoost models (based on both the accuracy and Cohen’s Kappa metrics) is considerably higher than the 
ordered logistic models, both for light and heavy vehicles. However, also in this case, while considering predictive accuracy metrics 
obtained from generalizing the models for other sample datasets (overall accuracy and metrics disaggregated by traffic classes), 
performances of ordered logistic and XGBoost models are comparable, noting a slight improvement for the XGBoost model for heavy 
vehicles and a slight worsening for the XGBoost model for light vehicles, compared to the corresponding ordered logistic models. In 
detail, in the light volume class prediction, the overall accuracies are almost equal between the ordered logistic and the XGBoost 
models (namely, 89.9 % vs. 89.1 %). The only minor difference seems to be provided by the slightly higher capability of the ordered 
logistic regression model to identify the High class (even if based on a small number of observations in the test dataset).

Table 6 
Results from the XGBoost classification models (for both light and heavy vehicle classes, 0 = low, 1 = medium, 2 = high).

Outcome variable: AADTl class Outcome variable: AADTh class

Feature Gain Feature Gain

Category Predictor Category Predictor

Municipality Density 0.273 Road Lanes – 4 (1) 0.308
Road Lanes – 4 (1) 0.196 Municipality Distance from large city 0.111
Municipality Distance from large city 0.104 Municipality Density 0.092
Province Occupation index 0.083 Municipality Area 0.077
Municipality Area 0.070 Province Occupation index 0.063
Road Intersections - Grade-separated (2) 0.040 Province Population 0.056
Road Lanes – 6 (2) 0.038 Province Area 0.050
Road Ring road – Yes (1) 0.034 Province Accessibility index 0.047
Province Population 0.028 Province Tourism index 0.033
Road Intersections – Freeway (3) 0.026 Road Intersections - Grade-separated (2) 0.031

Hyperparameters
200 Maximum iterations 200
3 Maximum tree depth 6
0.025 Learning rate (η) 0.01
0 Minimum split loss (γ) 0
0.50 Subsample column ratio 0.75
1 Minimum child weight 1
1 Subsample ratio 0.5

Goodness-of-fit/In-sample accuracy metrics
93.4 (93.4 > NIR = 77.2, p-value <0.001) Accuracy (%) (vs NIR%) 93.1 (93.1 > NIR = 75.5, p-value <0.001)
0.81 Cohen’s Kappa 0.82

Predictive accuracy metrics
89.1 Overall accuracy (%) 86.2

93 (0), 68 (1), 100 (2) Precision (by class) (%) 90 (0), 61 (1), 100 (2)
94 (0), 66 (1), 88 (2) Recall (by class) (%) 95 (0), 54 (1), 50 (2)

71 (0), 94 (1), 100 (2) Specificity (by class) (%) 61 (0), 93 (1), 100 (2)
83 (0), 80 (1), 94 (2) Bal. accuracy (by class) (%) 78 (0), 73 (1), 75 (2)
93 (0), 67 (1), 93 (2) F1 (by class) (%) 93 (0), 57 (1), 67 (2)
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4. Discussion

Results are discussed as follows, based on the peculiar objectives of this study. First, the factors influencing light and heavy traffic 
volumes are discussed in light of previous research. Then, the feasibility of integrating such traffic prediction models in overall multi- 
risk frameworks is argued and demonstrated.

4.1. Factors influencing traffic volumes

All the relationships that emerged between predictors and traffic volumes (both light and heavy) seem logical and in accordance 
with previous research. Note however that, as previously stated, most previous studies predicted the overall traffic volume without 
making differences between light and heavy vehicles. Given that, usually, the traffic volume is dominated by light vehicles, the 
comparison of results for light vehicles from this study are compared with previous findings for overall volumes.

Fig. 7. SHAP values for light vehicle volume classes (the color scale goes from yellow to violet, following the low to high contribution provided by 
each individual predictor; note for variables: [P] = Province-related, [M] = Municipality-related, [R] = Road-related).

Fig. 8. SHAP values for heavy vehicle volume classes (the color scale goes from yellow to violet, following the low to high contribution provided by 
each individual predictor; note for variables: [P] = Province-related, [M] = Municipality-related, [R] = Road-related).
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With regards to geographic and socio-economic variables, population was related to an increase in light traffic volumes, coherently 
with findings from previous studies [50,53,55,58]. Similarly, the increase in AADT with the studied area and related population 
density was also found by, namely, Caceres et al. [55]; Xia et al. [51] and Das & Tsapakis [63]. Note however that, in this study, the 
effect of the area of the municipality in which the traffic count is included is related to an increase in the light vehicle volume (except 
for the logistic regression model), while the province area is related to its decrease. The traffic increasing effect induced by an increase 
in the occupation index is similar to other effects found for other variables related to economic activities and occupation ([54,55,58,
63]; effect specifically related to income by Ref. [57]). To the authors’ knowledge, the specific effect of tourism on traffic was first 
revealed in this study. However, this effect may be someway included in the general effects of economic activities, previously dis-
cussed. The increase in distance from large cities was related to a decrease in light volumes, similarly to Caceres et al. [55], who used 
the distance from mean center of population as specific variable. Land use is here studied through the effect of urban/sub-urban 
environments, which are related to increasing traffic with respect to the rural environment. This tendency was also revealed by 
Eom et al. [57]; Pulugurtha & Kusam [94], Apronti et al. [53]. Duddu & Pulugurtha [61] found more complex relationships, depending 
on the detailed land use classification considered in their study.

Significant effects of road-related variables were mostly noted for the number of lanes and the intersection types. The logical 
tendency for light traffic volume to increase with the number of lanes was also found in several previous studies [51,52,54,55,57,94]. 
The presence of intersections other than at-grade intersections was also related to an increase in light traffic volumes. The importance 
of this detailed variable was first revealed in this study, to the authors’ knowledge. However, it is strictly related to other road 
characteristics such as the road functional classification and the speed limit, discussed in other studies. In fact, it is most likely to find 
grade-separated intersections on high-level/high-speed roads. The increase in road importance was related to an increase in traffic 
volumes in other studies [51,52,54,57,58], as well as the increase in speeds [57,58,94]. However, the use of the number of lanes and 
the intersection type can be more easily transferable than the road functional classification (depending on specific country/regional 
standards) or the speed limit (an information which is not always easy to collect). Finally, the ring road is associated with the traffic 
increasing, as also noted by Sfyridis and Agnolucci [64].

The effects found for heavy vehicles are similar to those already discussed for light vehicles (related to occupation, density, number 
of lanes, and intersection types), with some notable exceptions. Specifically, the accessibility index, which relates to the presence of 
infrastructures other than roads, is clearly inversely related to heavy vehicle traffic volume, whereas it was not relevant to light vehicle 
volumes. Hence, this study suggests that the presence of other infrastructures in the studied area should be considered when predicting 
heavy vehicle traffic volumes. Moreover, the distance from large cities was not included in the logistic regression model for heavy 
vehicles. This may be because high heavy-volume roads are mostly major roads in the network, where heavy vehicle transit is not 
particularly influenced by local conditions and often serves long intercity travel distances.

It is important to note that this study used all traffic counts available for the national (Italian) road network to build traffic pre-
diction models. While tendencies revealed in this study were found to be generally coherent with previous research, most of previous 
studies used data from low-volume/local roads ([53,54,60,63]), non-state roads [51], non-freeway/expressway facilities [56,57]. 
Moreover, except for the study by Caceres et al. [55], which used Spanish traffic counts and by Fu et al. [62], which used Irish data 
(even if based on a spatial approach different than the one used in this study), AADT prediction studies were mostly conducted outside 
of Europe, typically in the United States. Hence, on one hand, it appears that general relationships between traffic volumes and the 
main predictors are independent of the geographic context; on the other hand, the definition of variables typically depends on local 
factors (e.g., administrative units such as municipalities, counties, provinces etc., or the different road functional classification).

4.2. Integration with multi-risk assessment frameworks

4.2.1. Discussion of results in the context of multi-risk assessment
Factors which were revealed as predictors are easily collectable by other researchers and practitioners such as population, density 

and area. Other indexes such as the occupation (percentage of working people in the age 15–64) and the tourism (number of days of 
residential tourism per inhabitant per year) can be retrieved from local statistics. The accessibility index, which mostly influences the 
heavy vehicle volumes, even if not immediately available, can be determined as previously indicated in Section 2.2, starting from 
travel time estimations on the network. Additionally, all the road-related information included in the models, such as the number of 
lanes, intersection types, road environment, ring road, can be easily found from online data sources. Hence, while models developed in 
this study are based on Italian data, the modeling approach could be ideally transferred anywhere.

The integration of traffic prediction models in multi-risk assessment frameworks depends on the particular framework used. In fact, 
multi-risk methodologies are mainly based on analytical/quantitative and on classification/qualitative approaches, which have 
different details of data needed. Such approaches can be applied to all the components of the overall risk estimation: hazard, exposure 
and vulnerability. It is not rare that both approaches are used simultaneously to describe different factors into the same methodology: 
in this case, quantitative estimates are used for variables for which more detailed data are available [5].

In the case of the numerical approach, variables are directly transformed from continuous data (possibly normalized) to establish 
various indices and define the risk parameters calculation or to develop data regression models [28,95,96]. The outputs can be 
economic losses, fragility curves, and resilience indices (see e.g., Ref. [26,38]). Using such approach, traffic volumes can be directly 
used (eventually normalized or weighted) as an input variable in calculating the risk exposure and quantifying damages to the road 
network after critical events (see e.g., Ref. [15,97]). Both the models developed here for light and heavy vehicles could provide traffic 
volume predictions to integrated risk assessments frameworks. Specifically, the generalized linear models can be more easily inte-
grated in other frameworks, especially those related to light vehicles, which proved to be more reliable than those for heavy vehicles, 
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when compared to the corresponding XGBoost models.
Nevertheless, risk assessment frameworks using qualitative approaches are usually based on categorical variables (sometimes 

discretized from continuous values) and their interaction through matrices and simple logical operations (typically product or 
weighted mean). In this case, outputs are often warning indices or simplified risk maps, which may easily support decision-makers. 
Classifications may involve hazard parameters such as hazard zone classification, vulnerability parameters such as soil or shoreline 
type classes and exposure factors (see e.g., Ref. [5,14,31]). The models developed here for predicting light and heavy vehicle traffic 
volume classes can be easily integrated in such frameworks. In this case, depending on the overall framework structure, the traffic 
input “module” which only provides a class number (in this case from one to three) can be integrated regardless of the particular 
approach used (ordered logistic model or ML approach).

The integration of traffic predictions into multi-risk assessment frameworks will be demonstrated through the following two 
practical examples.

4.2.2. Example application #1: Vulnerability of coastal roads to erosion and flooding
This example application is based on the study by Drejza et al. [33], in which the vulnerability of coastal roads to erosion and 

flooding is measured through a proposed index (CREFVI -Coastal Road Erosion and Flooding Vulnerability Index-), obtained as the 
average between two sub-indexes related to erosion and flooding: 

CREFVI=
EV + FV

2
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[19] 

where: EV = Erosion Vulnerability, FV = Flooding Vulnerability, ei = each of the 10 parameters related to erosion, variable on a 5- 
points scale, fi = each of the 10 parameters related to flooding, variable on a 5-points scale (most of them, including traffic, are the 
same ei parameters). CREFVI = 0 implies no intervention, 0<CREFVI <10 indicates low vulnerability rank (monitoring and long-term 
intervention planning), 10≤CREFVI<25 indicates medium vulnerability rank (medium-term or case-by-case intervention planning), 
25≤CREFVI<50 indicates high vulnerability rank (necessary intervention), CREFVI≥50 indicates critical vulnerability (immediate 
intervention).

Considering that the 5-points scale traffic index based on AADT ranges is included in the list of both ei and fi parameters, the 
previous equation can be rewritten, for the particular scope of this example, as follows: 

CREFVI=
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where the index based on the AADT was isolated from the calculation of the two sub-indexes (the list of ei and fi is then limited to 9 out 
of 10 parameters) to determine the contribution of traffic volume to the overall vulnerability index. Based on the previous equation, it 
is possible to quantify the impact on the overall index deriving from considering different traffic classes (other conditions being equal), 
based on the following ratio: 

CREFVIAADT index=i

CREFVIAADT index=j
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
AADT index = i

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
AADT index = j

√ [21] 

Results from this calculation are shown in next Table 7 for all the possible combinations of traffic indexes.
It is immediately visible how the traffic volume may significantly influence the vulnerability index. As a direct consequence, a 

wrong specification of the traffic class may lead to errors in the rank classification and, consequently, in the definition of intervention 
priorities. This is particularly relevant in cases in which coastal vulnerability should be assessed for roads which are not provided with 
traffic data. For example, if, in case of missing data, a traffic class equal to 1 (AADT <1000) is assigned, while the real traffic volume 
should be instead assigned to the 4th class (4000 ≤ AADT ≤5999); this would result in underestimating the CREFVI by 50 %. Clearly, if 
the opposite occurs, overestimations are possible as well. Such errors may result in not assigning the correct vulnerability rank to the 
coastal road for mitigation interventions against erosion and flooding.

4.2.3. Example application #2: Economic assessments of post-earthquake scenarios
The second example application is based on the study by Ishibashi et al. [38], in which indirect losses due to changes in the travel 

path are computed based on functionality loss of bridges in the area of interest due to post-earthquake damage. This scenario may 
cause unavailability of links and, consequently, detours. Hence, both the increased travel times and distances generate indirect costs 
which should be summed up to direct recovery costs.

The two basic indirect costs (cost due to increased distance Cd and cost due to increased travel time Ct) which, summed up, generate 
the total indirect cost C(I), are reported as follows from the cited study: 
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Cd =

∫ to+Δ

to

{[
cd,lv*(1 − %hv)+ cd,hv*(%hv)

]
*(Ldet − L)*qʹ

det(t)
}

dt [22] 

Ct =

∫ to+Δ

to

{[
ct,lv*(1 − %hv)+ ct,hv*(%hv)

]
*
[
qʹ

det(t)*
(
Tʹ

det(t) − T
)
+ qʹ(t)*(Tʹ(t) − T)

]}
dt [23] 

where cd and ct are the unitary costs per, respectively, travelled km and minute spent for the travel, both differentiated for light (lv) and 
heavy vehicles (hv); %hv is the average percentage of heavy vehicles in the flow; L and Ldet are, respectively, the length of the link and 
the detour link; qʹ and q́det are, respectively, the post-disaster link flow and portion of original link flow q which uses the detour, Tʹ and 
Tʹ

det are, respectively, the post-disaster link and detour travel times; T is the original travel time on the link in normal conditions; to is 
the disaster time instant and Δ is a generic time interval (to get the overall cost it depends on the post-disaster recovery time). Readers 
are referred to Ishibashi et al. [38] for details about the theoretical background and the calculation of each of the reported variables.

Assuming, for the sake of the example application, a simple scenario formed by a 10-km long road link with limited functionality 
after a given disaster (which reduced free flow speed and capacity by 25 %) and a detour which is 50 % longer, it is possible to compute 
the total indirect costs C(I) due to increased distance and travel times. The computed indirect costs for a 1 h time interval are reported 
in the following diagrams as a function of the original AADT on the link in normal conditions (assuming %hv = 0.05), in the two 
following scenarios: 

• detour from a two-way two-lane road link to another similar link (Fig. 9a);
• detour from a four-lane divided road link to a two-way two-lane road link (Fig. 9b).

Previous diagrams evidently show how indirect costs are more than linearly dependent on the AADT, especially when the detour 
involves a road with lower features than the damaged road link. The simple numerical example shown demonstrates how correctly 
specifying the AADT may help estimating post-disaster indirect costs on a road network. Moreover, it sheds some light on how those 
indirect costs may be significantly variable depending on the AADT, especially for high-level roads, again demonstrating the 
importance of this source of information (including the percentage of heavy vehicles) for multi-risk assessments.

5. Conclusions

Measures of traffic volumes are often based on sparse traffic counter stations which are mainly located on rural arterials belonging 
to the main road network. Defining traffic volumes for each road section in a road network is almost always impossible regardless of 
the specific country or region. Hence, traffic volume prediction models can be useful for addressing this gap, regardless of the specific 
application for which they are required. This study was focused on developing prediction models for both traffic volume values and 
classes, to be used in the context of a multi-disciplinary research project focused on the multi-risk assessment of critical infrastructures.

Province- and municipality-related geographic and socio-economic variables (such as population, occupation, tourism, population 
density, urban environment, distance from large cities, accessibility index) coupled with road-related variables (such as number of 

Table 7 
Ratios between the calculated CREFVI index considering a given traffic class and the same index considering another traffic class (among the 5 classes 
defined in the study by Ref. [33]).

AADT index 1 (AADT <1000) 2 (1000 ≤ AADT ≤1999) 3 (2000 ≤ AADT ≤3999) 4 (4000 ≤ AADT ≤5999) 5 (AADT ≥6000)

1 (AADT <1000) 1.00 1.41 1.73 2.00 2.24
2 (1000 ≤ AADT ≤1999) 0.71 1.00 1.22 1.41 1.58
3 (2000 ≤ AADT ≤3999) 0.58 0.82 1.00 1.15 1.29
4 (4000 ≤ AADT ≤5999) 0.50 0.71 0.87 1.00 1.12
5 (AADT ≥6000) 0.45 0.63 0.77 0.89 1.00

Fig. 9. Computed indirect costs in the example application of 50 % longer detour from a damaged 10-km long link in a 1 h post-disaster time 
interval (a, on the left: detour from a two-way two-lane road to a similar road; b, on the right: detour from a four-lane divided road to a two-way 
two-lane road).
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lanes, intersection types, ring roads) were used to satisfactorily predict both traffic volume values and classes (volume ranges from low 
to high). Two classes of models were developed for both light and heavy vehicle traffic volumes, using traditional statistical techniques 
(generalized linear model for predicting traffic values and ordered logistic models for predicting traffic classes) and ML approach 
(XGBoost technique for both the regression and classification problems). The latter proved to be more effective than traditional ap-
proaches for the estimation of heavy vehicles, while it provided comparable results for light vehicles.

Results obtained from this study can stimulate further research on this topic. In fact, the presented flexible framework, considering 
both regression and classification problems, and the use of both traditional statistical approaches and ML techniques can pave the way 
for exploring the integration of a traffic prediction module into other risk models focused on natural hazards (see e.g., the coastal 
vulnerability index proposed by Ref. [98]), which usually neglect users’ exposure on road infrastructures. Conversely, the importance 
of accurately predicting traffic volumes for risk assessments related to different types of disasters was shown in the previous section, 
through two application examples based on previous research.

Findings of this study can be useful in different applications, ranging from basic traffic engineering purposes to the broad context of 
multi-risk assessment of critical infrastructures, in which this study was conceived. In particular: 

• traffic volume prediction models can be used by traffic engineers (i.e., for safety assessments, pavement management and main-
tenance, design applications), in case of unavailable traffic counts;

• the estimated traffic volume values can be used as input for analytical risk assessment approaches, while traffic classes can be 
directly used for simplified assessments in which the drivers’ level of exposure to risk on the road network is of interest. Specifically, 
the estimated traffic volume values could be subsequently rearranged as well into classes, depending on the application and traffic 
range definition;

• heavy vehicle traffic volume predictions can be specifically used for multi-risk assessments of critical infrastructures such as 
bridges;

• the use of integrated frameworks including traffic volume predictions can be useful for public administrations and decision-makers 
to define risk management and intervention strategies.

For what concerns the mentioned applications, it is worth noting that road agencies which manage different levels of networks may 
consider implementing new traffic counter stations in locations particularly exposed to external hazards, in the optic of a multi-risk 
assessment (see also [37]). In this way, prediction errors could be minimized at those locations where the exposure levels should 
be estimated with the greatest level of accuracy. In cases where this implementation is not feasible, models such as those presented in 
this study can be used to supply traffic volume data and update them in real-time. In this case, road agencies should store and update 
the necessary input data in order to feed prediction models relevant to the particular road network under investigation.

This study is not without limitations. In particular, some assumptions were made while defining the methodological framework. 
First, a k-means algorithm was used to define both the number and the range of variability of traffic classes, while generally those labels 
are set a-priori, depending on expert judgement and/or context-based evaluation. However, this was done to make the approach more 
scalable and applicable to various contexts. To limit this threat to the validity of results, we set up the k-means algorithm to find only 
the main 3 classes (i.e., from low to high), hence minimizing the probability of error, while checking on a sample basis the output of the 
k-means algorithm. Moreover, some predictors that are not easily retrievable from national/local statistics and online sources may 
have improved the model prediction (e.g., other road-related specific variables). Further research could be dedicated to specifically 
improving prediction models, with particular regard to heavy vehicles. However, the selection of variables was guided by the search 
for a trade-off between model accuracy and flexibility, by prioritizing easily collectable and generalizable variables, for the sake of 
broader applicability and transferability. In fact, while both the approaches and variables used can be transferred anywhere, the 
presented models are based on Italian data, used as testbed given its proneness to the combined seismic and coastal hazard, alongside 
the high road network density. Hence, caution should be taken while using these models for predictions outside of the study context, 
without preliminary calibrations. Finally, the temporal variability of traffic volumes should be monitored, and modeling approaches 
should consider this aspect, if relevant.
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S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to 

P. Intini et al.                                                                                                                                                                                                           International Journal of Disaster Risk Reduction 117 (2025) 105139 

21 

http://refhub.elsevier.com/S2212-4209(24)00901-4/sref1
http://refhub.elsevier.com/S2212-4209(24)00901-4/sref1
https://doi.org/10.1016/j.scs.2022.103963
https://doi.org/10.1007/s11069-012-0092-x
http://refhub.elsevier.com/S2212-4209(24)00901-4/sref3
https://doi.org/10.1016/j.envsci.2014.10.013
http://refhub.elsevier.com/S2212-4209(24)00901-4/sref5
https://doi.org/10.1016/j.ssci.2021.105587
http://refhub.elsevier.com/S2212-4209(24)00901-4/sref7
http://refhub.elsevier.com/S2212-4209(24)00901-4/sref8
http://refhub.elsevier.com/S2212-4209(24)00901-4/sref8
https://doi.org/10.1007/s11069-012-0294-2
https://doi.org/10.1007/s11069-012-0294-2
https://doi.org/10.1016/j.ijdrr.2018.04.019
https://doi.org/10.1016/j.ijdrr.2018.04.019
https://doi.org/10.1007/s00704-010-0386-4
https://doi.org/10.1007/s12524-011-0198-8
https://doi.org/10.1007/s12524-011-0198-8
https://doi.org/10.3390/rs15030795
https://doi.org/10.5194/nhess-5-821-2005
https://doi.org/10.1080/15732479.2015.1020495
https://doi.org/10.1016/j.nhres.2022.03.002
https://doi.org/10.1016/j.nhres.2022.03.002
https://doi.org/10.1016/j.jenvman.2015.11.011
http://refhub.elsevier.com/S2212-4209(24)00901-4/sref18
http://refhub.elsevier.com/S2212-4209(24)00901-4/sref18
http://refhub.elsevier.com/S2212-4209(24)00901-4/sref19
http://refhub.elsevier.com/S2212-4209(24)00901-4/sref19
http://refhub.elsevier.com/S2212-4209(24)00901-4/sref20
http://refhub.elsevier.com/S2212-4209(24)00901-4/sref20
http://refhub.elsevier.com/S2212-4209(24)00901-4/sref21
https://doi.org/10.1016/j.trpro.2016.05.208
https://doi.org/10.1111/mice.12136
https://doi.org/10.1016/j.trpro.2016.05.206
https://doi.org/10.1016/j.engstruct.2016.04.038
https://doi.org/10.1080/13632469.2013.771593
https://doi.org/10.1080/13632469.2013.771593
https://doi.org/10.1016/j.ress.2021.107564
https://doi.org/10.1016/j.ssci.2015.11.001
https://doi.org/10.1016/j.ssci.2015.11.001
https://doi.org/10.1016/j.ijdrr.2022.102948
https://doi.org/10.1080/15732479.2023.2187424
https://doi.org/10.1080/15732479.2023.2187424
https://doi.org/10.2112/07A-0010.1
https://doi.org/10.1016/j.ocecoaman.2019.104894
https://doi.org/10.1016/B978-0-12-811891-7.00002-5


the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. Cambridge University Press, Cambridge, UK and 
New York, NY, USA, 2022, p. 3056, https://doi.org/10.1017/9781009325844.

[36] A. Satta, M. Puddu, S. Venturini, C. Giupponi, Assessment of coastal risks to climate change related impacts at the regional scale: The case of the Mediterranean 
region, Int. J. Disaster Risk Reduct. 24 (2017) 284–296.

[37] M. Gazzea, A. Miraki, O. Alisan, M.M. Kuglitsch, I. Pelivan, E.E. Ozguven, R. Arghandeh, Traffic monitoring system design considering multi-hazard disaster 
risks, Sci. Rep. 13 (1) (2023) 4883, https://doi.org/10.1038/s41598-023-32086-6.

[38] H. Ishibashi, M. Akiyama, D.M. Frangopol, S. Koshimura, T. Kojima, K. Nanami, Framework for estimating the risk and resilience of road networks with bridges 
and embankments under both seismic and tsunami hazards, Struct. Infrastruct. Eng. 17 (4) (2020) 494–514, https://doi.org/10.1080/15732479.2020.1843503.

[39] Ministero delle Infrastrutture e dei Trasporti, Consiglio Superiore dei Lavori Pubblici (in English: Italian Ministry of Infrastructures and Transport, High Council 
of Public Works). Linee Guida per la Classificazione e Gestione del Rischio, la Valutazione della Sicurezza ed il Monitoraggio dei Ponti Esistenti (in English: 
Guidelines for Classifying and Managing Risk, Assessing Safety and Monitoring of Existing Bridges), 2020.

[40] G.C. Patton, C. Coffey, S.M. Sawyer, R.M. Viner, D.M. Haller, K. Bose, C.D. Mathers, Global patterns of mortality in young people: a systematic analysis of 
population health data, Lancet 374 (9693) (2009) 881–892, https://doi.org/10.1016/S0140-6736(09)60741-8.

[41] R. Elvik, T. Bjørnskau, Safety-in-numbers: a systematic review and meta-analysis of evidence, Saf. Sci. 92 (2017) 274–282, https://doi.org/10.1016/j. 
ssci.2015.07.017.

[42] P. Murray-Tuite, B. Wolshon, Evacuation transportation modeling: an overview of research, development, and practice, Transport. Res. C Emerg. Technol. 27 
(2013) 25–45, https://doi.org/10.1016/j.trc.2012.11.005.

[43] K. Kim, P. Pant, E. Yamashita, Integrating travel demand modeling and flood hazard risk analysis for evacuation and sheltering, Int. J. Disaster Risk Reduc. 31 
(2018) 1177–1186, https://doi.org/10.1016/j.ijdrr.2017.10.025.

[44] E. Ronchi, S.M. Gwynne, G. Rein, P. Intini, R. Wadhwani, An open multi-physics framework for modelling wildland-urban interface fire evacuations, Saf. Sci. 
118 (2019) 868–880, https://doi.org/10.1016/j.ssci.2019.06.009.

[45] P. Intini, E. Ronchi, S. Gwynne, A. Pel, Traffic modeling for wildland–urban interface fire evacuation, J. Transport. Eng., Part A: Systems 145 (3) (2019) 
04019002, https://doi.org/10.1061/JTEPBS.0000221.

[46] P. Intini, J. Wahlqvist, N. Wetterberg, E. Ronchi, Modelling the impact of wildfire smoke on driving speed, Int. J. Disaster Risk Reduc. 80 (2022) 103211, 
https://doi.org/10.1016/j.ijdrr.2022.103211.

[47] A. Khattak, X. Wang, H. Zhang, Are incident durations and secondary incidents interdependent? Transport. Res. Rec. 2099 (1) (2009) 39–49, https://doi.org/ 
10.3141/2099-05.

[48] E.I. Vlahogianni, M.G. Karlaftis, F.P. Orfanou, Modeling the effects of weather and traffic on the risk of secondary incidents, J. Intell. Transport. Syst. 16 (3) 
(2012) 109–117, https://doi.org/10.1080/15472450.2012.688384.

[49] R.M. Robinson, A.J. Collins, C.A. Jordan, P. Foytik, A.J. Khattak, Modeling the impact of traffic incidents during hurricane evacuations using a large scale 
microsimulation, Int. J. Disaster Risk Reduc. 31 (2018) 1159–1165, https://doi.org/10.1016/j.ijdrr.2017.09.013.

[50] D. Mohamad, K.C. Sinha, T. Kuczek, C.F. Scholer, Annual average daily traffic prediction model for county roads, Transport. Res. Rec. 1617 (1) (1998) 69–77, 
https://doi.org/10.3141/1617-10.

[51] Q. Xia, F. Zhao, Z. Chen, L.D. Shen, D. Ospina, Estimation of annual average daily traffic for nonstate roads in a Florida county, Transport. Res. Rec. 1660 (1) 
(1999) 32–40, https://doi.org/10.3141/1660-05.

[52] F. Zhao, S. Chung, Contributing factors of annual average daily traffic in a Florida county: exploration with geographic information system and regression 
models, Transport. Res. Rec. 1769 (1) (2001) 113–122, https://doi.org/10.3141/1769-14.

[53] D. Apronti, K. Ksaibati, K. Gerow, J.J. Hepner, Estimating traffic volume on Wyoming low volume roads using linear and logistic regression methods, J. Traffic 
Transport. Eng. 3 (6) (2016) 493–506.

[54] M. Shojaeshafiei, M. Doustmohammadi, S. Subedi, M. Anderson, Comparison of estimation methodologies for daily traffic count prediction in small and medium 
sized communities, Int. J. Traffic Transport. Eng. 6 (4) (2017) 71–75, https://doi.org/10.5923/j.ijtte.20170604.01.

[55] N. Caceres, L.M. Romero, F.J. Morales, A. Reyes, F.G. Benitez, Estimating traffic volumes on intercity road locations using roadway attributes, socioeconomic 
features and other work-related activity characteristics, Transportation 45 (2018) 1449–1473, https://doi.org/10.1007/s11116-017-9771-5.

[56] F. Zhao, N. Park, Using geographically weighted regression models to estimate annual average daily traffic, Transport. Res. Rec. 1879 (1) (2004) 99–107, 
https://doi.org/10.3141/1879-12.

[57] J.K. Eom, M.S. Park, T.Y. Heo, L.F. Huntsinger, Improving the prediction of annual average daily traffic for nonfreeway facilities by applying a spatial statistical 
method, Transport. Res. Rec. 1968 (1) (2006) 20–29, https://doi.org/10.1177/0361198106196800103.

[58] B. Selby, K.M. Kockelman, Spatial prediction of traffic levels in unmeasured locations: applications of universal kriging and geographically weighted regression, 
J. Transport Geogr. 29 (2013) 24–32, https://doi.org/10.1016/j.jtrangeo.2012.12.009.

[59] Y. Song, X. Wang, G. Wright, D. Thatcher, P. Wu, P. Felix, Traffic volume prediction with segment-based regression kriging and its implementation in assessing 
the impact of heavy vehicles, IEEE Trans. Intell. Transport. Syst. 20 (1) (2018) 232–243, https://doi.org/10.1109/TITS.2018.2805817.

[60] S.S. Pulugurtha, S. Mathew, Modeling AADT on local functionally classified roads using land use, road density, and nearest nonlocal road data, J. Transport 
Geogr. 93 (2021) 103071, https://doi.org/10.1016/j.jtrangeo.2021.103071.

[61] V.R. Duddu, S.S. Pulugurtha, Principle of demographic gravitation to estimate annual average daily traffic: comparison of statistical and neural network models, 
J. Transport. Eng. 139 (6) (2013) 585–595, https://doi.org/10.1061/(ASCE)TE.1943-5436.0000537.

[62] M. Fu, J.A. Kelly, J.P. Clinch, Estimating annual average daily traffic and transport emissions for a national road network: a bottom-up methodology for both 
nationally-aggregated and spatially-disaggregated results, J. Transport Geogr. 58 (2017) 186–195, https://doi.org/10.1016/j.jtrangeo.2016.12.002.

[63] S. Das, I. Tsapakis, Interpretable machine learning approach in estimating traffic volume on low-volume roadways, Int. J. Transport. Sci. Technol. 9 (1) (2020) 
76–88, https://doi.org/10.1016/j.ijtst.2019.09.004.

[64] A. Sfyridis, P. Agnolucci, Annual average daily traffic estimation in England and Wales: an application of clustering and regression modelling, J. Transport 
Geogr. 83 (2020) 102658, https://doi.org/10.1016/j.jtrangeo.2020.102658.

[65] B. Shamo, E. Asa, J. Membah, Linear spatial interpolation and analysis of annual average daily traffic data, J. Comput. Civ. Eng. 29 (1) (2015) 04014022, 
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000281.

[66] A. Ganji, M. Zhang, M. Hatzopoulou, Traffic volume prediction using aerial imagery and sparse data from road counts, Transport. Res. C Emerg. Technol. 141 
(2022) 103739, https://doi.org/10.1016/j.trc.2022.103739.

[67] A. Sfyridis, P. Agnolucci, Factors affecting road traffic: identifying drivers of annual average daily traffic using least absolute shrinkage and selection operator 
regression, Transp. Res. Rec. 2677 (5) (2023) 1178–1192.

[68] T.L. Wang, C. Liu, D. Huang, M. Shahawy, Truck loading and fatigue damage analysis for girder bridges based on weigh-in-motion data, J. Bridge Eng. 10 (1) 
(2005) 12–20, https://doi.org/10.1061/(ASCE)1084-0702(2005)10:1(12).

[69] P. Chotickai, M.D. Bowman, Truck models for improved fatigue life predictions of steel bridges, J. Bridge Eng. 11 (1) (2006) 71–80, https://doi.org/10.1061/ 
(ASCE)1084-0702(2006)11:1(71).

[70] A. Miano, M. Civera, F. Aloschi, A. Mele, V. De Biagi, B. Chiaia, A. Prota, A framework for the assessment of road network resilience: application to a densely 
populated urban context, Procedia Struct. Integr. 64 (2024) 311–318, https://doi.org/10.1016/j.prostr.2024.09.253.
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