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Abstract: Electrical engines are becoming more common than thermal ones. Therefore, there is an
increasing interest in the characterization of batteries and in measuring their state of charge, as an
overestimation would cause the vehicle to run out of energy and an underestimation means that the
vehicle is running in suboptimal conditions. This is of paramount importance for flying vehicles, as
their endurance decreases with the increase in weight. This work aims at finding a novel empirical
model for the discharge curve of an arbitrary number of battery pack cells, that uses as few tunable
parameters as possible and hence is easy to adapt for every single battery pack needed by the operator.
A suitable measurement setup for battery tests, which includes voltage and current sensors, has
been developed and described. Tests are performed on both constant and variable power loads to
investigate different real-world scenarios that are easy to reproduce. The main achievement of this
novel model is indeed the ability to predict discharges at variable power based on a preliminary
characterization performed at constant power. This leads to the possibility of rapidly tuning the
model for each battery with promising accuracy. The results will show that the predicted discharged
capacities of the model have a normalized error below 0.7%.
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1. Introduction

Electrical propulsion is becoming more important. Internal combustion motors are
usually bulky and heavy when compared to electric ones since they show low efficiency
due to thermal losses that need to be addressed, for example, with specific combustion
patterns [1]. Other important aspects when comparing combustion engines and electric
engines are the pollutant emissions, lower for electric vehicles [2], and the noise of the
engine itself [3]. Moreover, there is the need for external systems, such as injectors or com-
pressors, and internal combustion motors require monitoring of fuel and oil parameters,
e.g., level, quality, and contamination [4–8]. Thanks to the improvement of DC and AC
motor performance, innovative and more efficient power management and storage tech-
niques, and increase in power and energy density of battery packs [9–12], many different
classes of ground, aerial and underwater vehicles are being designed with a fully electrical
powertrain, such as Unmanned Aerial Vehicles (UAV)s [13–16], cars [17–20], mobile robots
in diverse industrial applications [21–24] and even short-range aircraft [25]. Moreover,
the extensive use of distributed sensors allows for unprecedented levels of autonomy in
mission management and totally novel (and sometimes disruptive) human–machine inter-
faces. In most cases, batteries still pose the most relevant technological bottleneck for the
full-scale development of these classes of electrically powered vehicles. Hence, there is an
increasing interest not only in battery performance but also in their correct characterization.

When powertrains based on thermal engines are considered, it is easy to predict and
measure almost exactly fuel flow, overall fuel consumption, and residual fuel level in the
tanks of the vehicle (as an example, the fuel required for a given flight distance at a given
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cruise speed). When electric engines are adopted, estimating the actual effective capacity
and state of charge of batteries is far from easy due to many factors, such as the effect of the
electric load, operational conditions, and aging. On one side, the qualitative features of the
discharge process are well known: for a given battery pack with a nominal capacity, higher
discharge currents result in a reduction in the effective charge; battery voltage decreases
almost linearly with time, for a constant current discharge process, with a sudden decrease
when the battery is close to fully discharged; the effective battery capacity is also reduced
by an aging process, after several charge/discharge cycles; environmental conditions (such
as temperature) may also affect the effective charge available from a battery. All these
phenomena become even less predictable when variable electrical loads and/or incomplete
charge/discharge processes are considered.

Nonetheless, it is clear that the safe use of an electrically powered vehicles clearly
requires that the amount of energy stored in the battery pack is sufficient at every time
instant for completing the expected task, possibly with an adequate power reserve in case
of emergencies or unexpected changes in mission requirements. If the state of charge of
the battery is overestimated during a mission, the risk of running out of energy before
the mission is complete poses a serious risk. However, similarly, if the state of charge is
underestimated, the use of the vehicle may become largely suboptimal. The estimate of the
effective capacity of batteries during vehicle operations is also relevant for the design phase.
The sizing of the vehicle, and within this procedure sizing of the battery pack, clearly relies
on an estimate of the discharge process during the sizing mission. This aspect is important
for all vehicles, but it is particularly relevant for electrically powered rotary-wing aircraft,
where the power required at hovering and at low speed grows superlinearly with weight,
which implies that, beyond a certain fraction of total takeoff weight, increasing battery
weight would cause endurance to decrease [26].

Even other small integrated devices can benefit from a reliable estimate of the battery
state of charge. Examples are implantable medical devices and equipment used for health
monitoring of a patient’s heartbeat and pressure throughout the day, where the capability of
exactly estimating battery duration would allow for the use of standalone devices [27–30].
Hence, the definition of a reliable discharge model with the objective of estimating the
residual battery charge represents a result relevant in applicative fields well beyond those
represented by ground and aerial vehicles.

The focus of the research is on Lithium-Polymer (LiPo from now on) battery packs,
which are the most used batteries in electrically powered vehicle applications. Various
operational conditions are considered. As a contribution with respect to previous works,
where mathematical models and the corresponding set of parameters were determined
for standalone LiPo battery cells [31–33], this paper presents a novel approach to finding a
model suitable for LiPo battery packs composed by an arbitrary number of cells in series.
More in detail, the objective of the paper is twofold. An experimental setup is presented
first, which can reproduce arbitrary load cycles, for diverse applications and/or missions
of electrically powered vehicles. A test campaign is then performed, which is aimed at
testing an existing empirical discharge model [34] and extending its validity.

In this respect, the type of electrical load is relevant. In many applications of interest,
a constant power discharge process is representative of the actual battery load, such as
during the cruise of a fixed-wing aircraft or a hover condition of a multirotor vehicle
or electrically powered helicopter. In such a case, an optimized design strategy based
on an empirical discharge model was proposed in [34]. In the present study, not only
constant power but also two power step tests were performed experimentally for verifying
the model. Then, with the aim of generalizing that model for more complex discharge
processes, a variable power consumption was considered, performing tests with power
profiles described by Amplitude Modulated Pseudo-Random Bit Sequences (APRBS). A
comparison of all the tests with different parameters was carried out. The main used metric
was the RMSE between the measured discharged capacity and the one predicted by the
model. An evaluation of the final error at the end of discharge was also calculated. The
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fitted model proved to be reliable, with little error with respect to the sampled values.
The experiments are easy to reproduce so that multiple commercially available batteries
can be tested. It is noteworthy that the extension to variable loads allows for the use of
the considered battery discharge model in a much wider range of applications, including
autonomous cars and/or rovers, which often work with a highly variable electrical load,
due to different operational and environmental constraints.

The novel model presented in this work could complement many others that recently
appeared in the literature. For instance, many researchers are working on estimating the
State of Health (SOH) of Li-Ion batteries. This application usually relies on Long-Short
Term Memory Neural Networks (LSTM) [35,36] that require lots of data for training and
will not estimate the discharge during the operation. Combining both methods can lead
to the evaluation of both the life span of the battery and its usage during the operation.
Similar research is being carried out for different battery technologies and chemistry and
using different techniques, such as the ones presented in [37,38] for Li-S and Zn Hybrid-
Ion batteries.

This paper is structured as follows. A concise summary of the theoretical models
on the basis of the definition of the electrical load will be given in Section 2, to provide
some understanding of how the model could be used for estimating battery duration in
a realistic operational scenario for aerial vehicles. In Section 3, experimental setup and
methods are presented, including preliminary operations for finding internal resistance
and the discharge procedure using a programmable electronic load. The definition of test
conditions and model parameter estimation are reported in Section 4. Experimental results
and conclusions are reported in the last sections of the paper.

2. Theoretical Models of Power Requirement

For any electrically powered vehicle, the battery must supply a total power equal to

Ptot = PS + PR, (1)

where PS is the power required by on-board systems (including the payload, if not equipped
with an independent power source), and PR is the power required for motion. Different
expressions can be derived for PR in the case of fixed-wing aircraft, rotary-wing aircraft,
and ground vehicles. Due to the variety of applications and power requirements, from
almost stationary to rapidly changing, it will be clear that the discharge model should be
tested against different power profiles.

2.1. Fixed-Wing Aircraft

In this case, PR is the power required for flight, which can be divided into three con-
tributions,

PR = DV + W
.
h +

W
g

V
.

V, (2)

which represent, respectively, the power dissipated by drag D, the power required to climb
at a climb rate

.
h, and power used for accelerating the aircraft, for which the weight is W.

When flying at velocity V and at an altitude h, where the air density is ρ, airplane drag is
equal to [39]

D = 1/2 ρV2S CD, (3)

where S is the reference wing planform area. The drag coefficient CD can be modeled by
means of a parabolic drag polar,

CD = CD0 + K C2
L, (4)
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where the parasite drag coefficient CD0 and the induced drag factor K are constant when fly-
ing at subsonic speed, as is the case for all electrically powered airplanes. Upon substitution
of the lift coefficient

CL =
W

1
2 ρV2S

, (5)

into the expression of the drag polar, the expression for PR achieves the form

PR = AV3 +
B
V

+ W
.
h, (6)

with A = 1/2 ρ S CD0 and B = 2 K W2/(ρ S), where the contribution due to acceleration
is dropped assuming that the duration of acceleration transients is short compared to
mission time, thus making its contribution negligible within the overall energy balance of a
whole mission.

2.2. Rotary-Wing Aircraft

In the case of rotary-wing aircraft, the lifting force is obtained by the rotation of one
large rotor, in the case of a conventional single-main rotor helicopter configuration, or the
rotation of pairs of counter-rotating rotors in the case of multirotor configurations, as in
the case of the widely used adopter quad-rotor configuration, typical of many electrically
powered small-size drones. This means that also the lifting force is obtained at the expense
of shaft power, delivered by the vehicle engine(s).

For a conventional helicopter configuration, the contributions to the required power
PR are given by the sum of power dissipated by the fuselage, power required by main and
tail rotors, and power required to climb, that is,

PR = D f usV + PMR + PTR + W
.
h, (7)

where power associated with the variation of vehicle kinetic energy is again neglected, as
in the case of fixed-wing aircraft.

Equation (4) can be simplified for a multirotor, i.e., a quadcopter, moving in a straight
line at a slow speed:

PR = D f usV + PS + Ph + W
.
h ≈ Ph + W

.
h, (8)

where D f usV and the power for the on-board systems PS are negligible with respect to the
power requested by the motors for holding the altitude (Ph) and the power required to
climb (W

.
h), for what concerns this research.

The mechanical power requested by the motors can be expressed at first by a suffi-
ciently reliable model based upon the disk actuator theory, momentum balance, and blade
elementary theory [40] as:

PR = CPρΩ3D5, (9)

where Ω is the rotation speed expressed as revolutions per second and D is the propeller
diameter. The same applies to the thrust produced by the spinning propeller:

T = CTρΩ2D4. (10)

The power and thrust coefficient CP and CT , respectively, are given by the pro-
peller manufacturer.

3. Experimental Setup and Methods

The target of the work is to accomplish different tests to estimate the discharged
battery capacity and compare it to the reference values calculated by numerical integration
of the sampled current over time.
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3.1. Preliminary Operations: Internal Resistance Measurements

The internal resistance is an important parameter for monitoring battery discharge
since it allows the estimation of the open circuit voltage of the battery and safely stops
discharge when its value drops below a safety threshold. For this reason, resistance is the
first parameter that was evaluated on the battery pack used throughout the tests.

Among the various methods available for estimating the battery’s internal resistance,
one of the most used procedures is the VDA Current Step Method. With this method,
the battery is stimulated with a discharge current pulse at 20 C current (equal to 20 times
the current that discharges the nominal capacity in one hour) for 18 s and the internal
discharging resistance value is evaluated at 2 s, 10 s, and 18 s since the discharge pulse is
applied. It is also possible to estimate the internal charging resistance by applying a charge
current pulse in a similar way.

Due to the limitation of the instrumentation used in the laboratory, the above-mentioned
procedure was amended to satisfy the constraints of the equipment. In particular, the cur-
rent was limited up to 8 A, the discharge pulse had a duration of 100 s and the charge pulse
had a duration of 50 s. The applied method is graphically described in Figure 1.
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Figure 1. Measurement of internal resistance according to amended VDA test procedure (example at
8 A charge/discharge current). Positive current is discharge current.

The experimental setup used to evaluate internal resistance consisted of two multime-
ters, a signal generator, and a power amplifier connected as shown in Figure 2.
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Figure 2. Setup for measurement of internal resistance.

The Keysight DSOX1204G oscilloscope with a built-in signal generator was used to
generate the discharge and charge control signal to be input to the Toellner TOE 7621
four-quadrant power amplifier.

To evaluate the internal resistance of the battery, several experiments were performed
by applying discharge and charge currents of 2 A, 4 A, 6 A, and 8 A. The details of the test
are shown in Table 1.
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Table 1. Current values used for the amended VDA test procedure.

Duration
(s) Applied Current Phase

100 0 Relaxation
400 I Discharge
200 0 Relaxation
350 −I Charge
100 0 Relaxation

The VDA procedure calculates the battery’s internal resistance as the ratio between the
voltage variation and the current variation at the instant of interruption of the discharge
pulse. In other words, it is possible to calculate the internal resistance as the ratio between
the amplitude of the voltage drop and the amplitude of the current pulse at the end of
the discharge:

Rint =
∆V
∆I

∣∣∣∣
to f f

. (11)

The internal resistance values calculated from the tests are reported in Table 2. Given
that the internal resistance values obtained for the various discharge currents differ from
each other by less than 1 mΩ, the hypothesis of a constant resistance model for different test
currents is considered. The constant value calculated by the model, that is the mean value,
is equal to 20.68 mΩ with a 95% confidence interval between 20.07 mΩ and 21.29 mΩ under
the Gaussian distribution hypothesis. The root mean square error is equal to 0.38 mΩ. The
plot in Figure 3 shows the distribution of the calculated resistances and the fitted model.

Table 2. Calculated resistances from current-off tests.

Test Current (A) Resistance (mΩ)

2 20.48
4 21.24
6 20.46
8 20.51
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Figure 3. Calculated internal resistances.

3.2. Discharge Tests Setup and Procedure

To evaluate the battery State of Charge (SOC) and characteristic parameters, the
measurement setup and the instruments described below are used. Furthermore, the circuit
diagram is schematized in the following Figure 4.



Sensors 2023, 23, 6937 7 of 18

Sensors 2023, 23, x FOR PEER REVIEW 7 of 19 
 

 

3.2. Discharge Tests Setup and Procedure 

To evaluate the battery State of Charge (SOC) and characteristic parameters, the 

measurement setup and the instruments described below are used. Furthermore, the cir-

cuit diagram is schematized in the following Figure 4. 

 

Figure 4. Setup for discharge test. 

The lithium polymer battery under test is a Multistar 10.0 with a nominal capacity of 

10 Ah and a nominal constant discharge rate of 𝐶𝑟𝑎𝑡𝑖𝑛𝑔 = 10 h−1, so that the battery can 

output nominally: 

𝐼𝑚𝑎𝑥 = 10 Ah ∙ 𝐶𝑟𝑎𝑡𝑖𝑛𝑔 = 100 𝐴. (12) 

It is a battery pack made of 4 Li-Po cells put in series (4S1P), hence its nominal voltage 

is 14.8 V. 

An ammeter for current measurement is connected in series to this battery and a mul-

timeter for voltage measurement is connected through the use of a different wiring, with 

the aim of avoiding the well-known potential drop at the passage of the high currents, 

which changes due to the increasing resistance with the heating of the cables. 

For this application, two GW Instek GDM-8351 multimeters are used, configured 

with a range of 100 V for voltage measurements and 10 A for current measurements, re-

spectively.  

The ZS506-4 programmable electronic load is used to discharge the battery. To per-

form the power control the two multimeters are setup in a four-wire configuration for the 

measurement of voltage and current. 

The experimental setup is showed in Figure 5. 

 

Figure 5. Instruments used in the setup for the discharge tests. 

The automatic control of the instruments and measurements acquisition is carried 

out using the VISA library; for the synchronization of the measurements operations, suit-

able timers are used, which allows us to acquire voltage and current measurement at a 

Figure 4. Setup for discharge test.

The lithium polymer battery under test is a Multistar 10.0 with a nominal capacity of
10 Ah and a nominal constant discharge rate of Crating = 10 h−1, so that the battery can
output nominally:

Imax = 10 Ah·Crating = 100 A. (12)

It is a battery pack made of 4 Li-Po cells put in series (4S1P), hence its nominal voltage
is 14.8 V.

An ammeter for current measurement is connected in series to this battery and a
multimeter for voltage measurement is connected through the use of a different wiring,
with the aim of avoiding the well-known potential drop at the passage of the high currents,
which changes due to the increasing resistance with the heating of the cables.

For this application, two GW Instek GDM-8351 multimeters are used, configured with
a range of 100 V for voltage measurements and 10 A for current measurements, respectively.

The ZS506-4 programmable electronic load is used to discharge the battery. To perform
the power control the two multimeters are setup in a four-wire configuration for the
measurement of voltage and current.

The experimental setup is showed in Figure 5.
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Figure 5. Instruments used in the setup for the discharge tests.

The automatic control of the instruments and measurements acquisition is carried out
using the VISA library; for the synchronization of the measurements operations, suitable
timers are used, which allows us to acquire voltage and current measurement at a reading
rate of 1 sample/s, associating a time value to each pair of measurements from which it is
possible to carry out the post-processing described below.

Before activating the electronic load and proceeding with the battery discharge,
100 samples are acquired by means of multimeters, in order to measure the initial voltage
and evaluate the current offset error.

Experiments described in the following subsection have been designed by assuming a
capacity C0 corresponding to a safety depth of discharge at the end of the experiment of
about 55% of 10 Ah nominal capacity, after a preliminary assessment of battery behavior
in which the minimum voltage of 3.5 V/cell was reached in some experiments. Indeed,
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in each test, the discharge process was monitored and then interrupted early in case the
measured voltage, added to the voltage drop due to the internal resistance, becomes equal
to or lower than the nominal discharged-state voltage of the battery to avoid its damage.
The internal resistance values are evaluated before carrying out the tests, as explained in
Section 3.1.

3.3. Model Estimation

The discharged capacity up to time t starting from time zero is denoted as C and is
defined by:

C(t) =
∫ t

0
I(t)·dt, (13)

where I is the measured current. As well known in the literature, the voltage of the battery
decreases during usage, hence the current increments during this time in order to make
constant P = V·I.

An estimation Ĉ(t) of the discharged capacity C(t) is given by the empirical model
found in [34], which was formulated by relating capacity and time in experiments where
the discharge power P was hold constant:

t = δ(N)·Pε(N)· Ĉ(t)β, (14)

where N is the number of cells in a series of the battery pack, while β > 0, δ > 0 and
ε < 0 are battery-dependent parameters to be determined experimentally. That model is
appealing since it does not require knowledge of voltage variations during the discharge.

A more generalized form for (11) is used in this paper for variable power, that is:

Ĉ(t)β =
∫ t

0

1
δP(t)ε dt. (15)

Clearly, (11) and (12) coincide when P is constant. It can be observed that, for any time
interval in which P is constant, the discharged capacity C is linear with respect to time
when it is raised to the power of β, so that all the results are presented by considering C(t)β.
Moreover, several experimental tests to identify β showed that this parameter has small
variations with the variation of the power. Given this small variation (σβ = 53.4 × 10−3),
one can assume β = 0.9648 as a constant value equal to the mean of the evaluated β from
the tests and focus on fitting the model on parameters δ and ε.

Initial guesses for parameters δ and ε, denoted as δ0 and ε0, were found in the litera-
ture [34] as follows:

δ0(N) = −0.1067·N3 + 0.8960·N2 + 2.488·N + 0.6299 = 18.089
s1−β

WεAβ
, (16)

and

ε0(N) = 2.917·10−4·N3 − 1.375·10−3·N2 + 3.083·10−3·N − 1.041 = −1.032, (17)

assuming that the number of cells is N = 4. Measurement unit of δ0 is almost volt if ε0 ≈ −1
and β ≈ 1.

Parameters estimation is performed with nonlinear curve-fitting using the least-
squares method. We denote with index j the j-th experiment, which is a collection of
measurements performed at instants tj,i, where i is the i-th time sample, starting from
time zero for each experiment. Measurements of current, power, and discharged capacity
are denoted as Ij,i, Pj,i, and Cj,i, respectively. Cj,i is calculated at instants tj,i by numeric
integration of (10) using global adaptive quadrature, i.e., the ‘integral’ function in MATLAB,
and it is predicted by model (12), which gives estimates Ĉj,i. Experiments (and their indexes
j) have been divided into two subsets of train T and validation V .
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Parameters δ and ε are then obtained by solving:

min
δ, ε

∑j∈T ∑i

(
Ĉβ

j,i − Cβ
j,i

)2
. (18)

To make a comparison of results obtained with different tests, residuals are calculated
as follows:

rj,i = Cj,i − Ĉj,i. (19)

The residual can be interpreted as a time error if a conventional current of 1 A is
assumed. If the time error is given in seconds and the residual in milliampere·hour, it is
obtained as follows:

∆tj,i

s
= 3.6×

rj,i

mA · h. (20)

4. Definition of Real-World Test Cases

To evaluate the limits and performance of the model described above, different experi-
mental tests are performed by taking into account different operating conditions. To identify
realistic power levels for testing the model, test cases related to fixed- and rotary-wing
aircraft have been considered.

Let us consider some real-world cases, in particular, a radio-controlled glider will be
considered as a fixed-wing aircraft and a 7 inch quadcopter will be examined as rotary-
wing aircraft.

Starting from the fixed-wing aircraft, the examined glider is the Phoenix S by Volantex
RC [41], a 1.6 m wingspan glider. The measured battery power at the bench is 35 W at
cruising speed (60 km/h) and 124 W when climbing at a rate of 8 m/s. The wing planform
is 0.295 m2 and the mass is 0.98 kg. Plugging the values in Equation (3) the mechanical
powers for climbing, that is the power at the takeoff of the aircraft, and the mechanical
power for cruising, that is the power required by the aircraft to fly in a straight line holding
the altitude, are 54.8 W and 16.4 W, respectively. These mechanical powers translate to the
power requested by the battery by the total efficiency factor ηtot, which is assumed to be
equal to 0.5, so:

Pbatt = PR/ηtot, (21)

hence the power requested by the battery at the take-off is 109.6 W and the power requested
by the battery for cruising is 32.8 W. The fixed-wing aircraft can be reproduced in a
laboratory by a test using two powers, to simulate the take-off at high power and a flight at
cruising speed.

As for the multirotor, let us consider a typical amateur 7 inch quadcopter with a
mass m = 0.6 kg that flies in a straight line at constant power and increases the power
to climb and decreases the power to lose altitude. Moreover, let us consider a 7 × 3 × 2
(7 inch diameter, 3 inch pitch, bi-blade) propeller by APC [42] for which all the parameters
that fully characterize the propeller are given. For what is the aim of this work, one can
consider, the given thrust and power coefficients to be constant and equal to CT ≈ 0.0823
and CP ≈ 0.0315 without loss of accuracy, as long as the propeller speed does not change
much, e.g., we will be considering speeds between 100 rev/s and 150 rev/s.

As for the simplified model (5), the total mechanical power required to hold the
quadcopter at a fixed altitude can be found by looking for the thrust that equals its weight.
Assuming that all four motors produce the same power so that the weight is equally
distributed, one can isolate the required propeller speed from (7):

Ωh =

√
Th
4

/
CTρD4 =

√
mg
4

/
CTρD4 = 122 rev/s. (22)

Hence, plugging (19) into (6), the required power for a single motor is 12.2 W. Therefore,
considering the typical efficiency of a small electric BLDC motor for quadcopters of 0.9, the
total efficiency needed to convert the mechanical power into the electrical power requested
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from the battery is η = 0.65. Then, accounting for the total power required by the battery
to cruise at slow speed, i.e., to hold the altitude:

Pbatt,h = 4·
Pmotor,h

η
= 75.2 W, (23)

where the constant 4 is required as at first a quarter of the mass of the quadcopter
was considered.

It is then easy to calculate the power needed for the quadcopter to change altitude.
Consider the case of the quadcopter climbing at a rate

.
h = 3 m/s, the contribution

W
.
h = mg

.
h = 17.7 W must be added to the requested power. The total power required by

the battery will then be:

Pbatt,climb 3 m/s =
4·Pmotor,h + W

.
h

η
= 102.4 W. (24)

Similarly, to climb at a speed of 6 m/s, the total power will be Pbatt,climb 6 m/s = 129.5 W.

In the case of the quadcopter descending at a ratio of
.
h = −3 m/s, the total power should

be reduced to Pbatt,descend 3 m/s = 48.0 W.
The scenario of a multirotor can be reproduced in the laboratory using four levels of

power applied for randomized times.

5. Discharge Tests

To simulate realistic cases, the following experimental tests have been performed.

5.1. Constant Power Test

The first tests are performed at constant power for the estimation of a discharge pattern
of the batteries. Four different tests were carried out, at powers of 50 W, 75 W, 100 W, and
125 W.

5.2. Two-Step Power Test

Once the behavior of the discharge formula at constant power has been described,
the next step is to evaluate the discharge model by considering two different power levels
as shown in Figure 6, that would approximate the behavior of a fixed-wing aircraft, as
explained above.
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Figure 6. Two-step power test example.

The discharge can be modeled by applying (11) twice on constant power time intervals
of duration t1 and t2, which are properly designed as follows.
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Considering (11), one can find the discharge time tD obtained when a constant power
P1 is applied:

tD = δ Pε
1 Cβ

0 . (25)

After t1, the residual capacity C1 can be calculated from:

tD − t1 = δ Pε
1 Cβ

1 . (26)

When a different power value P2 is applied at t1, it is assumed that the residual time
to discharge can be calculated by using (11) again on the residual capacity, i.e., t2 = δPε

2 ·C
β
1 ,

and substituting (22) and (23), the following is obtained:

t2 = δ Pε
2 Cβ

0 −
(

P2

P1

)ε

·t1. (27)

Experiments can be designed by calculating, for any chosen P1 and P2, durations t1
and t2 that discharge the battery capacity C0. By letting, without loss of generality t2 = k·t1,
it follows that the total discharge time is ttest = t1 + k · t1 and

t1 =
δ Pε

2 C0
b

k +
(

P2
P1

)ε . (28)

The tests were performed at 75 W and 100 W, as these are the power levels used in the
previous constant power tests. Furthermore, the tests were carried out first using P1 = 75 W
and P2 = 100 W, then another set of tests was performed swapping P1 and P2 values. Three
different values of k were chosen, corresponding to different ratios between duration at P1
and P2, hence a total of six tests were performed, each one characterized by different times
and power levels. The values of k were:

• k = 1: durations at ending and starting power are equal;
• k = 2: duration at final power is twice the duration at starting power;
• k = 0.5: duration at final power is half the duration at starting power.

The list of two-step experiments and their duration is shown in Table 3.

Table 3. Two-step power tests.

nr. k P1 (W) P2 (W) t1 (s) t2 (s) ttest (s)

1 1 75 100 1708.5 1708.5 3417.0
2 1 100 75 1708.5 1708.5 3417.0
3 2 75 100 1086.7 2173.5 3260.2
4 2 100 75 1196.5 2393.1 3589.6
5 0.5 75 100 2393.1 1196.5 3589.6
6 0.5 100 75 2173.5 1086.8 3260.3

5.3. Test with Amplitude-Modulated Pseudo Random Binary Signal (APRBS)

In order to model a more complex battery usage scenario, the model used is the more
general one, that is the one described by (12).

To validate this model, it has been decided to perform a series of tests using pseudo-
random signals. In this way, the model can be validated on a larger set of power levels,
each of them applied at a random time. Four different power levels are applied to the
battery for a quadcopter holding its altitude or climbing or descending at a constant rate,
as was described in Section 4.
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Each power level of the test sequence was chosen randomly among the same values
used in previous tests, i.e., 50 W, 75 W, 100 W, and 125 W. Each power was kept constant
for a randomly selected time duration with uniform distribution over the interval [30, 300]
s. The minimum total duration of the discharge test was set to 3500 s. Four tests were
performed, resulting in mean time-averaged powers of 89.4 W, 97.3 W, 95.7 W, and 93.9 W.
The signals used for the experiments are showed in Figure 7.
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Figure 7. APRBS signals used for the tests.

6. Results and Discussion

Table 4 indicates the training and validation sets used for the three different kinds of
experiments. For the constant power tests, the highest and the lowest powers are used for
the training in order to predict the behavior at intermediate powers. The same is carried
out for the APRBS tests: the experiments that presented the maximum and the minimum
mean power are used for the training. For the two-step tests, one test for each k-value is
used for the training.

Table 4. Training and validation sets.

Experiment Type Training Validation

Constant 50 W and 125 W 75 W and 100 W

2-step
k = 0.5, 75 W to 100 W
k = 1, 100 W to 75 W
k = 2, 100 W to 75 W

k = 0.5, 100 W to 75 W
k = 1, 75 W to 100 W
k = 2, 75 W to 100 W

APRBS Signal 1 and signal 2 Signal 3 and signal 4

Training has provided the model coefficients listed in Table 5 that are used to evaluate
the performance of discharge estimation for different tests. For reference purposes, the
coefficients calculated in the literature (Equations (7) and (8) of [34]) are reported too.

Table 5. Models estimated for different training experiments.

Test Model Name δ ε β

Literature mliterature 18.0891 −1.0320 0.9664
Constant mconst 23.6482 −1.0209 0.9648

2-step m2−step 20.3266 −0.9886 0.9648
APRBS mAPRBS 23.4535 −1.0192 0.9648



Sensors 2023, 23, 6937 13 of 18

For each test, the discharged capacity prediction is obtained by using (12), the mea-
sured power, and the different estimated models. As an example, the outputs of the models
considered for validation of APBRS discharges are provided in Figure 8. To better represent
model (12), measured capacities (Csampled) and predicted ones (Ĉ) are raised to the power
of β. It can be clearly seen that all the models fitted in this work overlap with the sampled
data; obviously, the model based on the literature parameters produces different results
since it was obtained for different battery models. In the following, only the novel fitted
parameters will be considered.
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6.1. Qualitative Evaluation of Prediction Errors

The prediction errors for the validation experiments, calculated by (16), are shown
in Figures 9–11, where the different estimated models are compared. It can be observed
that, for the constant power tests, errors in model mconst are bounded by the other two
models. This happens also for the two-step tests and, to a lesser degree, for the APRBS
tests. In many tests, model mAPRBS appears to diverge faster than the others, giving larger
errors at the end of the experiment; it performs worst especially in the two-step test, with
an error that increases monotonically. To better compare the performance of the models
and discriminate between the behavior of mconst and m2−step, further analysis is carried out
using Root Mean Square Error (RMSE) and final error.
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Figure 11. Prediction error of the three estimated models for APRBS power validation experiments
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6.2. Comparison of RMSE and Final Error

To carry out a comparison the RMSE is calculated for all samples Nj for each experi-
ment j:

RMSEj =

√√√√∑
Nj
i=0

(
rj,i
)2

Nj
. (29)

The bar plot in Figure 12 shows three different series, grouped by estimated model.
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Let us consider the first series, that is, all the predictions of the model mconst. It can be
seen that fitting the parameters on the constant power experiments provides a model that
is as good, or even better, also when two-step and APRBS discharges are to be predicted
since the RMSE over the tests can be lower. This is indeed good news for the methodology:
performing constant power tests for the characterization of the battery is easier and does
not need a complex signal such as the ones used in the APRBS tests, so there is less chance
of errors during the procedure.

Surprisingly, when considering the last series, that is, the one related to model mAPRBS,
it happens that predictions are better overall, in terms of RMSE, when constant power
discharges are to be predicted. However, that prediction case is not really useful. Since it
is a real-world scenario, the demand for power of an electrical brushless motor on a UAV
is not really constant but has several different variations. Therefore, the characterization
of the battery pack by estimating mAPRBS, would be more difficult without gaining any
advantage with respect to the easier test at constant power.

The second series, that is, the one that uses model m2−steps, performs better for APRBS
tests with respect to constant power tests, similar to model mconst shown in the first series
but, in comparison to mconst, it has a worse RMSE overall. Hence, model mconst is preferable
to model m2−steps.

If the results of Figure 12 are grouped by discharge type of the validation experiment,
it is found that two-step and APRBS discharges are better predicted by model mconst
compared to the other models. Instead, constant discharges are better predicted by mAPRBS;
however, this case is of lesser significance, as already mentioned.

Finally, the capacity prediction error at the end of different discharges is compared.
For that purpose, it is useful to normalize this feature on the full scale of the test:

Rj, f inal =
rj, f inal

Cj, f inal
× 100%, (30)

and the results can be represented in a bar plot as shown in Figure 13.
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The results are very similar to the ones already described for the RMSE: both mconst
and m2−step perform better than mAPRBS set.

It can be concluded that the non-optimal results obtained by using model parameters
fitted on APRBS tests suggest that increasing the number of power level shifts does not
necessarily lead to a better model. Hence, it is convenient to use constant power tests to
characterize the battery pack.

7. Conclusions

In this paper, the author presented a methodology for evaluating the discharged
capacity of a Li-Po battery that would complement other studies on the evaluation of
the SOH of the same battery. This methodology is investigated in such a way that users
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could perform easy experiments on their own batteries. In particular, it has put a heavy
focus on looking for a methodology that would use simple signals for the characterization
of a battery pack. Moreover, the model used for identification is required to be simple
and not computation-heavy. The resulting one is an integral model with only three easy-
tunable parameters.

The results show that performing experiments using constant power levels corre-
sponding to the expected maximum and minimum powers provides enough data to fit the
parameters of the proposed model, supporting interpolation for all the other power levels.
These parameters allow any user to reconstruct the discharge curve of a battery using a
model that requires supplied power as the only input.

Performing tests at constant powers not only provides data for predictions relevant to
that kind of discharge, but power can follow ideally other time dependencies, as shown
in the APRBS validation experiments. Indeed, results in terms of RMSE and residual at
the end of the test showed that, for time-varying discharge powers, models estimated at
constant power may actually outperform models estimated with APRBS tests.

Using this methodology, the final user can accurately choose the battery for the task,
minimizing any risk of miscalculating the energy required for the task itself, which would
lead to mission failure or inefficiency.

However, the technique used does not take into account changes in the operating
temperature of the battery or its aging, nor the room temperature. It is well known in the
literature that these variables affect the performance of a LiPo battery, but the proposed
methodology is aimed at finding an easy-to-use model, with few parameters without high
computational cost. Nevertheless, these effects will be further analyzed and techniques of
compensation for these factors will be considered in an upcoming work.
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