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Abstract: Additive Manufacturing Electronics (AME) is a promising method that has the potential
to directly embed piezoelectric micromachined ultrasonic transducer (PMUT) probes into conven-
tional electronic circuits and boards. It enables fast customized prototyping, three-dimensional
circuit boards, and small-series production. In this study, annular probes composed of circular
suspended Aluminum Nitride (AlN)-based PMUT membranes, addressed in 2-dimensional arrays,
were designed, fabricated, and encapsulated using AME technology.
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1. Introduction

Medical imaging applications frequently involve scanning human body tissues using
high-frequency ultrasonic transducers (2–15 MHz). Micromachined ultrasonic transducers
(MUTs) have replaced traditional piezo-ceramic devices [1] in high-resolution imaging be-
cause of their small size, the low cost during production, and integration with conventional
circuitry and CMOS technology. They enable a higher level of sensing capability and allow
an overall decrease in device dimensions, thus becoming extremely attractive for mass
manufacturing. Flexural membranes with circular, annular, or dome shapes can be used
to develop MUTs, which can be activated using various transduction methods. Among
them, capacitive (CMUT) [2,3] and piezoelectric (PMUT) [4–7] arrays have been extensively
studied. In particular, PMUT probes have evolved significantly in recent years due to the
substantial improvements in piezoelectric thin-film technology and miniaturization. The
main advantages of PMUTs include higher sensitivity, faster response times, and greater
design flexibility. Nevertheless, encapsulating small-size PMUTs is still subject to several
constraints. In this regard, Additive Manufacturing Electronics (AME) is a promising
method that has the potential to directly combine PMUTs into conventional electronic
circuits [8–13]. It would enable fast customized prototyping, three-dimensional circuit
boards, and small-series production.

2. Materials and Methods

In this study, annular 2D arrays composed of circular suspended Aluminum Nitride
(AlN)-based PMUT membranes were designed and fabricated. Silicon was used as the
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structural substrate. The thickness of the suspended membranes (tm = 25 µm, including the
AlN film and structural silicon) and their radii (rm = 100 µm) were accurately engineered
to operate at a central frequency of 6 MHz (Figure 1). The AlN-based disks (1µm thick),
embedded between two molybdenum electrodes (300 nm thick), were organized in annular
arrays (as shown in Figure 1a). The final size of the probe was 6 mm, including up to
72 micro-membranes.
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Figure 1. (a) Annular probe with AlN membranes arranged along five circular rings; (b) 3D design
of package with final probe encapsulation and transmission measurement in time domain for 1st
resonance mode in liquid (Ring 1 is the outer and most populated ring, and Ring 5 is the inner and
less populated one).

The PMUT arrays were directly packaged and electrically connected using AME
technology. The packaging was printed using Nano Dimension’s DragonFly IV® system,
whose manufacturing protocol was adequately optimized. AME technology enabled
automated probe alignment with a very thin packaging board (500 µm thick) and a direct
electrical connection to signal PADs, preventing standard wire bonding (Figure 1b(i)).
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3. Results and Discussion

A pulser/receiver and a commercial immersion transducer (1 MHz bandwidth and
5 MHz nominal frequency) were used to analyze the transmitted ultrasound. Negative
driving pulses (400 V amplitude, 1 kHz repetition frequency, 30 ns pulse duration) were
used to drive each ring separately, while the probe, entirely isolated by a parylene C
covering, was immersed in liquid. Figure 1b(ii) shows the emitted signals at a distance of
1 cm from each ring of the annular array (the upper and lower envelopes—red and green
traces, respectively—are also reported).

These preliminary results show that the integration of high-frequency PMUT probes
and miniaturized architecture using additive manufacturing technology is a promising
approach to develop advanced sensors for various ultrasound applications.
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