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Abstract: Hyaluronic acid (HA) naturally occurs as a biopolymer in the human body, primarily in
connective tissues like joints and skin. Functioning as a vital element of synovial fluid, it lubricates
joints, facilitating fluid movement and diminishing bone friction to protect articular well-being. Its
distinctive attributes encompass notable viscosity and water retention capacities, ensuring flexibility
and absorbing shock during motion. Furthermore, HA has gained significant attention for its potential
benefits in various medical applications, including rehabilitation. Ongoing research explores its
properties and functions, especially its biomedical applications in several clinical trials, with a focus
on its role in improving rehabilitation outcomes. But the clinical and biochemical implications of HA
in musculoskeletal rehabilitation have yet to be fully explored. This review thoroughly investigates
the properties and functions of HA while highlighting its biomedical applications in different clinical
trials, with a special emphasis on its role in rehabilitation. The presented findings provide evidence
that HA, as a natural substance, enhances the outcomes of musculoskeletal rehabilitation through its
exceptional mechanical and biochemical effects.

Keywords: hyaluronic acid; active biomolecule; biomaterial; rehabilitation; HA injection; physical therapy

1. Introduction

Hyaluronic acid (HA) is a naturally occurring heteropolysaccharide with a high
molecular weight (MW), lacking protein and sulfated components. It has exceptional
biocompatibility, biodegradability, and nonimmunogenic properties, making it widely used
in therapeutic and cosmetic domains [1,2].

It plays a crucial role in various biological processes, including wound healing and
bone regeneration [3]. Additionally, HA acts as a regulator of fundamental cellular functions
such as adhesion, proliferation, and differentiation [3]. Functioning as a biomaterial,
it is actively produced by specific cell types like type B synoviocytes, fibroblasts, and
chondrocytes [4]. Its functions encompass improving tissue hydration and firmness, aiding
wound healing, controlling inflammation, and providing effective lubrication [1,2].
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The U.S. Food and Drug Administration (FDA) has recently proposed reclassifying
HA-based compounds, devices, products, and delivery systems as therapeutic drugs.
This reclassification is based on scientific evidence, particularly highlighting HA’s pain-
relieving properties, especially in cases of joint inflammation. This proposal stems from
HA’s demonstrated biochemical effects in living systems [5–7].

Due to its versatile properties, the global HA market is projected to reach approxi-
mately USD 15.4 billion by 2025. This growth is driven by factors like the increasing elderly
population and recognition of the natural substances’ benefits in various products [2,8].

HA-based dermal fillers lead the market, known for their antiaging and facial contour-
ing properties [9]. HA is also used in topical cosmetic formulations, offering substantial
advantages for skin hydration [10].

In the medical field, HA-based products have shown efficacy in treating severe condi-
tions like osteoarthritis (OA). High MW injectable HA is commonly used to alleviate pain
and enhance joint mobility, often in combination with other treatments [11–18].

HA significantly promotes joint health [19,20], reduces pain [21], aids in injury recov-
ery [22], and supports rehabilitation therapy [12]. In vitro studies reveal that HA effectively
enhances the mechanical properties of synovial fluid and biochemically regulates joint
tissues [20,23]. As a result, it is commonly used in local joint injections to reduce pain and
enhance functionality [19,24].

In addition, HA is used in several other fields, from drug delivery systems to infection
treatments [2]. In fact, it can also be combined with antibacterial treatments based on zinc,
zinc oxide, or silver and copper [25,26].

However, HA-based products encounter challenges due to high production costs.
HA can be derived from animal tissues or produced through bacterial synthesis. The
purification process is critical to eliminate contaminants like proteins and endotoxins
that can induce inflammatory responses even at low concentrations [27,28]. Furthermore,
the presence of other GAGs can present a notable challenge. This becomes particularly
evident when extracting HA from animal tissues, as the extraction process may lead to the
simultaneous extraction of additional GAGs, including chondroitin sulfate. Consequently,
ensuring the purity of the final product is imperative to attain HA of superior quality [29].
Unfortunately, the production expenses, ranging from $1000 to $2000 per kilogram for
cosmetic-grade HA and $40,000 to $60,000 per kilogram for medical-grade HA, make these
products inaccessible to some customers and patients [30].

Considering this, research is focused on optimizing HA production methods to obtain
a high-quality product at affordable costs [2].

The literature extensively explores the applications of HA, yet there exists persistent
confusion surrounding its clinical and biochemical functions, as well as its efficacy in
rehabilitating musculoskeletal pathologies. After providing an in-depth overview of HA’s
structure, functions, and properties, this review shifts its focus toward a detailed exami-
nation of its current applications. Notably, it underscores HA’s pivotal role as a bioactive
molecule in combination with rehabilitation for the treatment of musculoskeletal diseases.
The review meticulously analyzes both biochemical and clinical implications, investigating
advancements in this field over the past decade. This comprehensive approach aims to
bring clarity and organization to the abundant scientific evidence found in recent literature.

To achieve this goal, an extensive search was conducted on studies exploring the
current status and the role of HA as a therapeutic agent in combination with physical
and rehabilitative therapy for musculoskeletal pathologies. The electronic search engines
used were PubMed (https://pubmed.ncbi.nlm.nih.gov, accessed on 5 September 2023),
ScienceDirect (https://www.sciencedirect.com, accessed on 5 September 2023), Google
Scholar (https://scholar.google.com, accessed on 25 September 2023), and U.S. National
Library of Medicine (https://clinicaltrials.gov, accessed on 25 September 2023).

The keywords used were ‘hyaluronic acid’, ‘rehabilitation therapy’, and ‘therapeutic
molecule’. Several synonyms were searched for each keyword (i.e., hyaluronan, hyaluronate,
physical therapy, therapeutic exercise, physical therapy). The search included the recent
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updates (2013–2023) related to HA and rehabilitation (including clinical trials as well as
in vitro and in vivo studies) independently from their level of evidence (Figure 1).
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2. HA: Biochemical Structure, Functions, and Properties

Comprising a glycosaminoglycan (GAG), HA consists of a repetitive arrangement of
disaccharide units (n). These units are structured with β-1,4-glucuronic acid (GlcA) and
β-1,3-N-acetyl glucosamine (NAG), interconnected by means of β-1,3 and β-1,4 glycosidic
linkages (Figure 2) [1,2].
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At physiological pH, HA exists in anionic, ionized, or salt form, such as sodium
hyaluronate. In this condition, the molecule carries negative electrostatic charges due to the
presence of dissociated carboxylic groups on each monomer; hence, the molecule shows
anionic properties, making it very hydrophilic.

Indeed, these negative electrostatic charges play a significant role in its interactions
with both water and other molecules within the body. As a result, HA is renowned for its
remarkable ability to retain water, which contributes substantially to the maintenance of
skin elasticity and hydration [1,2].



J. Pers. Med. 2023, 13, 1647 4 of 23

Within biological systems, the mentioned repeating disaccharides have the potential to
combine into polymeric networks exceeding 10,000 units, resulting in high MW structures
surpassing 4 megadaltons (MDa) [1,31]. This characteristic mesh-like structure serves as a
hindrance to different external substances, such as bacteria and infectious agents, thereby
reducing their filtration capacity [32].

The scientific evidence from the literature suggests that the average length of individ-
ual disaccharides in the biopolymer HA is approximately 1 nm [33]. For instance, an HA
polymer with 10,000 repetitions could extend to around 10 µm. These HA chains within the
cellular matrix form a dense brush-like structure known as the pericellular matrix (PCM),
to which various proteoglycans attach and modify the structure of the HA chains. The
composition and dimensions of the PCM layer vary from tissue to tissue based on their
biological functionality [5].

It is important to highlight that the biological function of this polymer relies on its MW.
HA is most found in a high MW form, with sizes generally exceeding 1000 kDa. In this
state, it possesses biophysical qualities that serve as a lubricant. However, high MW HA
can be broken down in vivo by hyaluronidases, a group of enzymes that break its chains,
resulting in smaller (<250 kDa) and intermediate-sized (250–1000 kDa) fragments [34]. If the
processes of synthesis and degradation are not appropriately balanced, the biochemical and
rheological characteristics of the extracellular matrix, where HA is a primary component,
can be altered. This, in turn, can contribute to the development of various pathological
conditions [34].

Indeed, HA plays a crucial role in maintaining joint health by interacting with cartilage
components, particularly aggrecan [35]. Aggrecan, a proteoglycan of the articular carti-
lage’s extracellular matrix, provides resilience to compressive loads. Its dynamic structure
undergoes constant changes due to synthetic and degradative processes. Within the extra-
cellular matrix, aggrecan forms proteoglycan aggregates, contributing to the mechanical
properties of articular cartilage [35].

Structural changes in aggrecan during synthesis affect sulfate chain composition, while
degradative events, prevalent in OA cartilage, can lead to aggrecan depletion and cartilage
erosion. In early OA stages, the enhancement of aggrecan production and the inhibition of
its degradation may slow destructive processes, preserving cartilage integrity [35].

Aggrecan production is crucial in cartilage repair techniques involving stem cell or
chondrocyte implantation, aiming to promote the synthesis of aggrecan for the repair and
regeneration of damaged cartilage [35].

In summary, the interactions between HA and aggrecan are vital for joint maintenance.
While changes in aggrecan structure can contribute to articular cartilage demise, interven-
tions enhancing aggrecan production and inhibiting degradation may promote cartilage
survival, especially in OA and cartilage repair [35].

In addition to its chemical and mechanical characteristics, HA engages with various
receptors found on cell membranes and specific proteins called hyaladherins [31,36]. These
interactions trigger specific signal transduction responses.

The primary receptors responsible for interacting with HA are the cluster of differenti-
ation 44 receptor (CD44R) and the receptor for hyaluronan-mediated motility (RHAMM).
These receptors play vital roles in processes such as cellular adhesion, proliferation, and
migration [31,36,37]. RHAMM shares certain characteristics with CD44 and contributes to
cellular motility [38].

In contrast, lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) serves as
the receptor exclusively for the lymphatic system’s interactions with HA. Meanwhile, the
hyaluronan receptor for endocytosis (HARE) governs the endocytosis of HA. Notably,
studies have indicated that fragments of HA can activate Toll-like receptor 2 (TLR-2) and
Toll-like receptor 4 (TLR-4), resulting in an increased adhesion of monocytes and other
immune cells. This, in turn, influences the modulation of the inflammatory response [39].

In this way, HA participates in numerous biological and cellular processes (Figure 3).
Indeed, HA can envelop cells with a pericellular coat and bind to cell receptors, influenc-
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ing cell activities like proliferation, migration, and gene expression. Additionally, HA’s
anti-inflammatory effects hinder the movement of specific immune cells and reduce inflam-
mation, potentially aiding in managing knee pain after surgery [40]. Moreover, it possesses
the ability to impact various cellular processes, encompassing cell migration, proliferation,
and differentiation. This renders it significant in tissue development, restoration, and
overall tissue well-being [1,2].
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Furthermore, one of the most prevalent roles of HA is linked to skin hydration.
Due to its aptitude for retaining water, HA aids in maintaining the skin’s suppleness,
smoothness, and adequate hydration, which holds significance for a youthful and healthy
appearance [2,31].

Simultaneously, within joints, HA acts as a lubricant and shock absorber due to its sub-
stantial presence in synovial fluid. This function diminishes friction between joint surfaces
and provides a cushioning effect crucial for ensuring joint mobility and comfort [41]. In
particular, HA has multiple important functions concerning cartilage’s trophic status and
the intra-articular environment’s regulation [4,40,42]. Its distinct viscoelastic properties
grant synovial fluid exceptional shock absorption and lubrication abilities, and its large
size and hydrophilic nature retain fluid in the joint during movement [40].

Furthermore, it has been demonstrated that HA is beneficial in promoting the migra-
tion and proliferation of fibroblast cells. For these reasons, combining HA therapy with
rehabilitation could offer advantages for intra-articular conditions [40].

HA also contributes to the wound-healing process by aiding in the regulation of
inflammation and promoting the growth of new cells. This role is pivotal for the restoration
of damaged tissues, and HA additionally assists in the creation of a matrix that supports
tissue regeneration [43].

3. HA in the Rehabilitation of Musculoskeletal Diseases

The versatility of HA, its capacity to retain water, its compatibility with the human
body, and its natural biodegradability all contribute to its widespread appeal in numerous
therapeutic applications. These qualities continue to position HA as a highly effective ther-
apeutic compound for addressing various medical conditions, including musculoskeletal
diseases, and applications [44] (Figure 4). Consequently, a range of HA-based products
have been developed and are readily available in the market. Furthermore, HA is not only
employed on its own but also in conjunction with other bioproducts and therapies, further
expanding its utility.
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3.1. HA-Based Therapy in Osteoarthritis Treatment

As described above, HA is found in substantial amounts, particularly within cartilage
and synovial fluid. It holds a vital function in the natural biomechanics of synovial fluid,
governing tissue lubrication and elasticity [7,45].

The degradation of HA is a gradual process that can take place through enzymatic or
nonenzymatic reactions. When HA undergoes degradation or its synthesis slows down, it
leads to a decrease in its MW, which in turn affects various physical and chemical properties
such as tissue volume, viscosity, and elasticity. HA is a molecule that is abundant in the
knee joint, particularly in synovial fluid, but it is also present in articular cartilage [14].

It is crucial to emphasize that the decline in HA levels is not only linked to aging but
also correlates with the progression of specific conditions, such as OA [7,45]. In this case,
the viscoelastic properties of synovial fluid undergo substantial changes due to a reduction
in both HA concentration and MW within the synovial fluid [18].

The pathogenic processes of OA induce modifications in the metabolism of type B
synoviocytes, leading to the production of pathogenic HA [18,46]. This alteration in the
quality of HA contributes to heightened mechanical strains within the joint, resulting in
reduced lubrication capacity and, consequently, the stimulation of nociceptors that cause
pain [47–50].

Notably, there exists a significant connection between joint movements and the active
secretion of HA. The quantity of HA released appears to be influenced by both the frequency
and duration of joint movements. This discovery suggests a biochemical mechanism that
provides backing for the potential utilization of physical therapy in the management of
OA [51–53].

Specifically, KOA emerges as a prevalent global joint condition, and its occurrence
increases with age [13,54,55].

In particular, the knee joint presents a challenging biomechanical environment due to
its avascular, aneural, and alymphatic nature. In this context, synovial fluid plays a crucial
role as a lubricant with unique rheological properties [14]. Additionally, synovial fluid
possesses the capability to scavenge free radicals and regulate intracellular activity and pro-
tein binding. The progression of KOA is intimately linked to the deterioration of synovial
fluid’s lubricating function [14]. This deterioration results from the depolymerization of
endogenous HA with high MW (ranging from 6500 to 10,900 kDa), transforming it into low
MW HA (ranging from 2700 to 4500 kDa). HA with low MW leads to synovial fluid that
exhibits significantly reduced mechanical and viscoelastic properties [14].

Moreover, treatment strategies for OA encompass not only surgical interventions
but also efforts to reduce risk factors [56–58]. Additionally, they may involve partici-
pation in physical therapy and rehabilitation programs [12,59,60], as well as the use of
oral corticosteroids or nonsteroidal anti-inflammatory drugs (NSAIDs), the use of oral
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dietary supplements [61,62], intra-articular injections of corticosteroids, HA, or platelet-rich
concentrates [63–73].

Generally, the injection of high MW exogenous HA can be employed to mitigate the
loss of synovial fluid properties caused by the endogenous depolymerization of natural
HA. It is important to note that exogenous HA does not replace or restore the body’s own
HA, but its presence in the joint induces symptom improvement in KOA over several
months [74]. This improvement occurs because exogenous HA stimulates the synthesis
of glycosaminoglycan and/or proteoglycan, allowing the synovial fluid to maintain its
viscoelastic properties. Additionally, exogenous HA exhibits a significant anti-inflammatory
effect, which, through secondary mechanisms, helps reduce pain.

FDA-approved HA injection products come with various physicochemical characteris-
tics that can make one product more efficient or competitive than another. Among these
characteristics, MW is a key consideration for clinicians, with options ranging from 500 up
to 6000 kDa. Generally, the higher the MW, the longer the therapeutic efficacy [74].

Based on recent literature, exercise rehabilitation therapy continues to be a primary
option for OA treatment [68,75]. Its crucial role lies in restoring muscle balance and proper
load distribution, ultimately alleviating pain and enhancing function.

In particular, to assess pain in KOA, the most commonly used scales are the Visual
Analog Scale (VAS) and the Western Ontario and McMaster Universities Osteoarthritis In-
dex (WOMAC), in which the severity of pain is correlated with intra-articular changes. The
radiological score Kellgren-Lawrence (KL) is associated with the presence of osteophytes
and cartilage lesions and serves as an independent predictor for the VAS scale [76].

A recent meta-analysis of randomized controlled trials conducted by Liao et al. (2023)
widely investigated the impact of combining intra-articular injections with rehabilitation
therapy in patients suffering from KOA. Their specific emphasis was on assessing the
combined therapy’s influence on pain levels, overall functional improvement, and walking
capacity. Through this approach, they aimed to establish the most effective treatment
option by ranking the effectiveness of each combined therapy regimen and exploring any
factors that might influence treatment outcomes [77].

In the specific case of the combination of intra-articular injections of HA and physical
therapy, it was observed that this treatment appeared to be more effective in reducing pain
compared with physical therapy alone. Additionally, it allowed for better walking capacity
in the short term, both compared with physical therapy alone and in comparison with other
intra-articular injections [77].

In a blinded and randomized controlled study, Saccomanno et al. (2016) investigated
the effectiveness of combining HA injections with personalized rehabilitation programs
based on exercise-based rehabilitation (EBR) in patients with KOA [13]. A total of 165 par-
ticipants with KOA were randomly assigned to three treatment groups: the first group
received three intra-articular injections of high MW HA (Orthovisc 2 mL; 15 mg/mL; Anika
Therapeutics Inc., Bedford, MA, USA); the second group underwent only rehabilitative
exercises (detailed program of knee exercises); and the third group received both treatments,
combining HA injections with an EBR program [13].

The analysis of the data revealed that all three treatment groups experienced decreased
pain, improved flexibility, and enhanced functionality.

In particular, patients in group 1 showed the least pronounced treatment effect, which
remained consistent over time. In contrast, patients in group 2 experienced notable declines
in pain, stiffness, and functional results from the initial to the final follow-up. Finally,
analysis of the WOMAC pain subscale revealed that patients in group 3 exhibited the most
significant reduction in pain at the 1-month follow-up [13].

In a recent parallel randomized trial, Onu et al. (2022) conducted a study to evaluate
the effectiveness of a HA-based product when used in combination with physical therapy
for KOA treatment [15]. The research focused on a group of 52 patients who had been
diagnosed with stage 2 KOA according to the KL scale, as determined through radiological
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examination of anterior-posterior knee X-rays [15]. In KL stage 2, patients typically exhibit
osteophytes and narrowing of the joint space.

The patients were divided into two groups. The pilot group, consisting of 37 patients,
received intra-articular HA injections (3 mL of Kombihylan, Ropharm, Romania) in com-
bination with 10 consecutive sessions of physical therapy [15]. On the other hand, the
control group was treated only with HA injections. In this case, a high-molecular-weight
HA, 3 MDa, in the form of a viscoelastic solution obtained through bacterial fermentation
of a Streptococcus strain, was used [15].

In particular, the physiotherapy treatment, in this case, involved several components:
electrotherapy, specifically conventional transcutaneous electrical nerve stimulation (TENS)
electroanalgesia; low-level laser therapy (LLLT); ultrasound (US) therapy; and physical
therapeutic exercises (PTEs), which consisted of a 40 min session with moderate-intensity
exercises, including a 5 min warm-up on a stationary bike, static quads with a 7 s hold,
knee extensions over a roll with a 7 s hold, single-leg raises for 50 repetitions, step-ups for
50 repetitions, calf raises for three sets of 10–15 repetitions, and wall squats with a 5–10 s
hold [15]. Also, neuroproprioceptive facilitation (PNF) techniques were incorporated into
four movement patterns, and cryotherapy in the form of ice packs was applied at the
conclusion of the physiotherapy session to cool down the affected knee [15].

The study observed that the WOMAC score, which assesses osteoarthritis severity,
decreased for both groups of patients, but notably, the treated group showed significant
improvements at the 3-month mark. This led to the conclusion that physical therapy con-
sistently enhanced the quality of life for these patients. Additionally, it was demonstrated
that VAS pain scores decreased from 5.7 to 2 in the treated group. Furthermore, the treated
group experienced an increase in muscle strength [15].

Another multicenter study was conducted to assess the effectiveness of a comprehen-
sive approach for treating and rehabilitating KOA. This approach combined physical ther-
apy with HA injections, aiming to provide both clinical benefits and cost-effectiveness [78].
The rehabilitation program featured injectable HA and therapeutic physical exercises,
including muscle strengthening, flexibility routines, and proprioception training [78].

Specifically, the study involved 553 patients with symptomatic KOA who had previ-
ously undergone unsuccessful pharmacological treatments. These patients were monitored
over an 8-week period at 27 specialized centers across the USA. Guided by experienced
physiotherapists, they participated in physical therapy sessions two to three times per week.

The results were promising, showing a significant reduction in knee pain, with a
59% decrease in all patients. The WOMAC score improved by 44% to 51%. Even patients
with advanced stages of KOA (KL3–KL4) experienced a notable reduction in specific
symptoms [78].

Moreover, the combined therapy program proved to be cost-effective over a 2-year
monitoring period. It postponed the need for surgical knee treatments, underscoring the
potential of rehabilitation through physical therapy and HA injections to slow down KOA
progression while maintaining a favorable cost-effectiveness ratio [78].

Long-term outcomes measured included knee pain severity, medication use, knee
operations, and health utility scores. The results were promising, with a reduction in knee
pain severity during the 8-week program. At 1 and 2 years post-treatment, medication use
remained common, and the utilization rates for total knee arthroplasty were 10.4% and
18.0%, respectively. Additionally, health utility scores improved significantly. This study
demonstrated that the 8-week multimodal KOA treatment program provided meaningful
improvements in KOA symptoms, even in advanced cases, and was cost-effective over a
2-year follow-up period [78].

A recent postmarket, single-blind, multicenter randomized controlled clinical trial was
conducted to evaluate the treatment outcomes in a relatively young and active population
of individuals with patellofemoral OA and/or tibiofemoral OA (NCT03281837). The trial
aimed to compare the responses to two weekly intra-articular HA injections, administered
with a 1-week interval between injections, of HYMOVIS 24 mg/3 mL (Fidia Pharma USA
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Inc., Florham Park, NJ, USA) in combination with a physical exercise program versus a
physical exercise program alone (NCT03281837). In this study, 148 patients were divided
into three groups: the first group received one injection of Hymovis per week for two
consecutive weeks, along with at least 8 weeks of a physical exercise program; the second
group underwent treatment with only the physical therapy program, without any addi-
tional intervention, while the last group included patients who were randomized to receive
only the physical exercise program initially. If they did not respond to this intervention
after 3 months, they had the option to cross over and receive two intra-articular weekly
injections of Hymovis, with each injection given 1 week apart (NCT03281837). As of now,
the results of this study have not been published, but it is hypothesized that the combined
therapy approach, involving HA injections and physical exercise, will demonstrate its
effectiveness in managing patellofemoral and tibiofemoral osteoarthritis (NCT03281837).

A very recent study conducted by Ma et al. (2023) compared the effectiveness of two
treatment approaches for KOA, one involving leg swinging and quadriceps strengthening
exercises and the other involving a combination therapy of platelet-rich plasma (PRP) and
HA. This trial included 106 patients with KOA graded as I–III according to the KL scale,
who were divided into two groups [79].

The first group underwent a regimen of leg swinging exercises and quadriceps
strengthening exercises for a duration of 3 months. Specifically, the leg swinging ex-
ercise involved patients placing their unaffected leg either on the floor or the edge of a
platform, allowing the affected leg to swing freely in the air. To maintain balance and
prevent falls, patients were permitted to use one hand to support themselves against a wall
or railing. Patients were instructed to initially lift their leg to approximately 45◦ from the
vertical line and then gradually increase the range to around 60◦. Patients were encouraged
to perform approximately 500 leg swings daily [79].

For the quadriceps strengthening exercise, patients were directed to keep the ankle
joint of the affected leg in a neutral position with plantar flexion, extend the knee joint
to 0◦, and slowly raise the leg until the heel was 25 to 30 cm above the bed. They were
instructed to hold this position for 5 to 10 s and then gradually lower the leg to a supine
position. Patients were advised to repeat this exercise approximately 200 times per day.
These two physical exercises were to be alternated during the patient’s spare time, with
enrolled patients instructed to perform them daily at home for a period of 3 months [79].

The second group of patients received intra-articular injections of 2 mL each of PRP
and HA (Eufflexa, Ferring Pharmaceuticals, Saint-Prex, Suisse), with the HA having a
high MW ranging from 2.4 to 3.6 million Da. These injections were administered every
2 weeks [79].

It was demonstrated that both groups showed improvements in pain, quality of
life, balance ability, and functional activity [79]. However, the leg swing and quadriceps
strengthening exercise group exhibited more significant improvements compared with the
intra-articular PRP combined with HA injection group, and these benefits were sustained
even after 6 months [79].

In addition to KOA, HA has also demonstrated effectiveness in the treatment of
glenohumeral OA. This condition is characterized by degenerative changes in the cartilage,
synovial membrane, synovial fluid, and subchondral bone of the shoulder joint [80,81].
As a result, individuals with glenohumeral OA experience persistent shoulder pain and
a reduced range of motion (ROM) [80,81]. In this case as well, the therapeutic approach
involved intra-articular injections of HA or corticosteroids, physical therapy, and the use of
oral analgesics [82–86].

However, it is worth noting that the use of oral analgesics can lead to the occurrence
of side effects [87,88].

A randomized controlled prospective open-label monocentric study conducted by Di
Giacomo and De Gasperis (2017) demonstrated the effectiveness of intra-articular injections
of HA in combination with a specialized physiotherapy program for the treatment of
shoulder OA [89]. This study enrolled 78 patients who were affected by grade II and III OA,
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as well as grade IV shoulder OA, and were not candidates for surgical treatment due to
contraindications [89]. The patients were randomly divided into two groups. The treated
group received three intra-articular injections of high MW HA (>1500 MDa) (Hyalubrix,
30 mg/2 mL, Fidia Farmaceutici S.p.A., Abano Terme, Italy), with one injection adminis-
tered every 15 days. This was combined with a specific physiotherapy program. In contrast,
the control group received treatment solely through physical therapy [89].

The physiotherapy program had a duration of 3 months, with sessions conducted
3 days a week. It commenced for both groups the day following the initial medical examina-
tion. The program encompassed passive capsular stretching to restore the ROM, isometric
exercises targeting the deltoid, rotator cuff, and scapulothoracic muscles, isotonic exercises
for the scapulothoracic muscles (closed kinetic chain), and hydrokinesis therapy [89].

Results showed that patients who received the combined treatment experienced a
more significant reduction in pain compared with those who underwent only physical
therapy. Furthermore, the reduction in pain led to improvements in glenohumeral function
and the ability to carry out daily life activities [89].

In a 2015 open-label study conducted by Di Giacomo and De Gasperis, they examined
the impact of a treatment regimen that combined intra-articular HA injections with a
specific physical therapy program in 61 patients diagnosed with shoulder OA at stages I, II,
or III. The primary focus of this investigation was to evaluate the reduction in shoulder
pain and improvements in ROM [90]. All participants in the study experienced shoulder
pain with varying degrees of severity, ranging from mild to moderate and severe.

Similar to the earlier study, the patients in this trial were divided into two groups. The
first group received five intra-articular injections of Hyalgan (Fidia Farmaceutici, Abano
Terme, Italy), each containing 20 mg/2 mL (with a MW of 500–730 kDa). They also followed
a specific physiotherapy program. Conversely, the second group solely underwent physical
therapy [90].

The physiotherapy program, in this case, was supervised by a professional therapist
and had a duration of 3 months, with sessions held 3 days per week. The program included
passive capsular stretching to restore ROM, isometric exercises targeting the deltoid, rotator
cuff, and scapulothoracic muscles, isotonic exercises for the scapulothoracic muscles in a
closed kinetic chain, and hydrokinesis therapy [90].

The results of the study clearly indicated a significant reduction in shoulder pain in
both groups that received the two different treatments. Furthermore, it underscored a
substantial difference in the degree of shoulder pain between the two groups of patients.
These findings support the notion that patients treated with intra-articular HA injections
combined with physical therapy experience a more substantial and enduring positive effect
compared with those who solely receive physical therapy [90].

Similarly, the study revealed a significant enhancement in forward elevation in both
groups, with the improvement being notably more pronounced when comparing the two
groups. Once again, this underscores that patients who underwent intra-articular HA
injections and physical therapy derived greater benefits in terms of ROM improvement in
forward elevation. This improvement could be attributed to the significant reduction in
shoulder pain experienced by these patients [90].

In summary, this study provided compelling evidence that intra-articular HA injec-
tions were beneficial for treating patients with shoulder OA. These injections resulted in a
significant reduction in shoulder pain and a partial recovery of ROM, leading to improved
daily activities. This positive effect can be attributed to the specific properties of Hyalgan,
which has the capacity to restore synovial fluid properties in this disease [75,90–94].

HA-Based Therapy in Low Back Pain

It is important to note that OA can manifest various symptoms, including lower
back pain (LBP) [12], which is a highly prevalent issue. It is acknowledged that several
underlying factors can contribute to LBP, encompassing conditions such as tumors, in-
fections, fractures, and inflammatory disorders. Nonetheless, OA stands out as the most
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common cause. Additionally, mechanical and structural issues, such as lumbar spinal
stenosis, spondylolysis, spondylolisthesis, and congenital deformities like scoliosis or
hyperkyphosis, can contribute to LBP [12].

Current guidelines advocate exercise as the primary approach for addressing LBP [95,96].
Remarkably, rehabilitation utilizing the McKenzie method appears to yield superior short-term
pain reduction and disability management in both acute and chronic LBP when compared
with other physiotherapeutic approaches. A recent study demonstrated the effectiveness of
oral viscosupplementation, involving a blend based on Fortigel (Gelita, Eberbach, Germany),
including collagen peptides, Vitamin C, copper, manganese, and sodium hyaluronate, in
conjunction with the McKenzie method kinesitherapy, compared with kinesitherapy alone in
the treatment of chronic LBP due to osteoarthritis [12].

Specifically, in this randomized clinical trial, 60 patients were randomly allocated to
two groups. Both groups underwent physiatric evaluations, encompassing medical history,
physical exams, and imaging. Group A received a 3-week McKenzie rehabilitation program
consisting of nine sessions, while group B received the same program in addition to a daily
dietary supplement of Fortigel, which contains vitamin C (80 mg), sodium hyaluronate
(50 mg, with 46 mg as HA), manganese (1 mg), and copper (0.5 mg), throughout the
treatment period [12].

The findings indicated that both group A and group B experienced improvements in
pain and disability scores (VAS and Oswestry Disability Index, ODI). Particularly, group
B demonstrated a more significant reduction in VAS and ODI scores, and these scores
remained relatively stable. It was also observed that both groups experienced an increase
in the Short Form-12 (SF-12) physical dimension (PCS-12) score. However, even in this case,
group B’s score remained stable [12].

This suggests that a combined treatment approach involving McKenzie back rehabili-
tation and oral supplementation with collagen peptides, HA, vitamin C, manganese, and
copper can effectively reduce pain and motor disability and enhance the quality of life of
patients suffering from chronic LBP due to OA [12].

In conclusion, these studies collectively demonstrate the effectiveness of HA-based
products (injectables or oral-based formulations) when combined with physical and reha-
bilitative interventions in the treatment of OA and symptoms associated with it.

In this way, HA can alleviate pain and improve joint function, while physical therapy
and rehabilitative exercises can further augment their effectiveness by strengthening the
muscles around the affected joint, enhancing ROM, and supporting overall joint health
(Table 1).

Table 1. HA-based therapy in OA treatment.

Condition HA-Based
Product

HA Molecular
Weight Physical Therapy Method Result Follow-Up

Period Ref.

KOA

Orthovisc (Anika
Therapeutics Inc.,

Bedford,
MA, USA)

1.0–2.9 MDa

Detailed program
of knee exercises

for a total of
20 treatment
sessions in

a month

Blinded
prospective
randomized

controlled study

Improvements in
pain, stiffness,
and function

1 month [13]

KOA
Kombihylan
(Ropharm,
Romania)

3 MDa
Electrotherapy,

TENS, LLLT, US,
PTE, PNF

Monocentric
observational

study

Decrease in
WOMAC and

VAS scores,
increase in

muscle strength

12 months [15]

KOA Not described Not described

Muscle
strengthening,

proprioception,
and flexibility

exercises;
knee bracing

Multimodal
treatment
program

Reduction in
knee pain and

specific
symptoms

24 months [78]

Patellofemoral
OA and/or

tibiofemoral OA

HYMOVIS, (Fidia
Pharma USA Inc.,

Florham Park,
NJ, USA)

Crosslinked HA,
MW not

computable
Physical exercise

program

Postmarket,
single-blind,
multicenter
randomized

controlled trial

unposted 3 and 6 months [NCT03281837]
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Table 1. Cont.

Condition HA-Based
Product

HA Molecular
Weight Physical Therapy Method Result Follow-Up

Period Ref.

KOA
Eufflexa (Ferring
Pharmaceuticals,

Saint-Prex, Suisse)
2.4–3.6 MDa

Leg swinging and
quadriceps

strengthening
exercises

Retrospective
comparative

study

Improvements in
pain, QoL,

balance ability,
and func-

tional activity

12 months [79]

Shoulder OA

Hyalubrix (Fidia
Farmaceutici
S.p.A., Abano

Terme, Italy) and
Hyalgan (Fidia
Farmaceutici,

Abano
Terme, Italy)

1.5 MDa

Capsular
stretching,

strengthening the
deltoid, rotator

cuff, and
scapulothoracic

muscles with
isometric

exercises, isotonic
exercises for

scapulothoracic
muscles, and
hydrokinesis

therapy

Prospective
randomized study

Reduction in
pain,

improvements in
glomerular

functions, ROM,
and QoL

6 months and
18 months [89,90]

LBP caused
by OA

Fortigel (Gelita,
Eberbach,
Germany)

Not described McKenzie method
kinesitherapy

Randomized
clinical trial

Reduction in
VAS and

ODI scores
6 weeks [12]

3.2. HA-Based Therapy in Tendinopathies Treatment

Tendinopathies are a group of conditions that can affect tendons, and they can involve
various processes, including inflammation, degeneration, or lesions of the tendon [97].

Tendon disorders are very common, and they often have a negative impact on patients’
quality of life [11,97]. The etiology of these conditions involves a multitude of factors,
including mechanical overload, reduced blood flow, age, gender, and genetic, hormonal,
and metabolic components [98–101]. Tendinopathic tendons display widespread structural
alterations, such as increased tenocyte cell death, disruption of collagen fibers resulting in
reduced production of collagen type I, an abnormal surge in type III collagen production,
and ineffective formation of new blood vessels [98,102].

Patients commonly report pain localized at the affected tendon site, which intensifies
during physical activity and daily life [103]. Treatment approaches for tendinopathy are a
subject of ongoing debate; however, HA has been explored as a potential treatment option
for some tendinopathies, particularly those involving inflammation and pain, since it is
useful in tendon regeneration [104–106].

Specifically, tendon lesions are prevalent in sportsmen and physical workers [107], and
they can manifest as either complete or partial lesions. Notably, there has been emerging
research suggesting the potential of HA for treating such conditions attributed to its anti-
inflammatory and lubricating properties.

In a prospective, open-label, multicenter clinical study led by Frizziero et al. (2019),
35 patients with symptomatic Achilles or patellar midportion tendinopathy were enrolled
to assess the effectiveness of medium MW sodium hyaluronate (500–730 KDa) at a concen-
tration of 20 mg/mL (Hyalotend, Fidia Farmaceutici, Abano Terme, Italy) [108].

The treatment involved administering HA via peritendinous ultrasound-guided injec-
tions placed between the paratenon and the tendon. Over the course of three consecutive
weeks, each patient received a 2 mL injection weekly. The evaluation of outcomes occurred
at the 90-day follow-up [108].

To assess functional improvement, Italian versions of the Victorian Institute of Sports
Assessment-Achilles’ questionnaire (VISA-A) and the Victorian Institute of Sports Assessment-
Patellar (VISA-P) were employed. The mean change from baseline in the VISA-A and VISA-P
total scores was calculated, utilizing either the prevalence or the last observation carried
forward (LOCF) approach [108].

In addition to these assessments, the study examined changes in pain using the
Numeric Pain Rating Scale-11 (NRS-11), clinical parameters such as redness, warmth,
swelling, tenderness on palpation, crepitus on motion, and accumulation of tissue fluid, as
well as improvements in ultrasound parameters like the axial and sagittal thickness of the
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target tendon and neovascularization assessed via power Doppler using a 4-point scale.
Other evaluations included the Patient Global Assessment (PGA), Clinical Observer Global
Assessment (COGA), consumption of rescue medication (paracetamol), and assessment of
Health-related Quality of Life using the EuroQoL EQ-5D-5L questionnaire [108].

The study concluded that the treatment was generally well-tolerated, with only one
adverse event reported in the Achilles tendinopathy group, which was likely related to the
injection procedure [108].

Total tendon lesions, where the tendon is completely severed, often require more
invasive treatment compared with partial injuries, which is why HA is less commonly used
in these cases.

Indeed, HA has shown its effectiveness in addressing even the most severe tendon
disorders. A recent clinical trial, which has not yet published its results, aimed to compare
the effectiveness of steroid, HA, platelet-rich plasma PRP, and a placebo (normal saline) in
treating partial rotator cuff tears. This study also incorporated the same physical therapy
protocol after injection (NCT04681937).

The trial likely followed a randomized controlled design, where 80 participants were
divided into four groups: the first group received a subacromial injection of sodium
hyaluronate (4 mL), followed by the same physical therapy regimen applied to all groups
after injection; the second group received a subacromial injection of platelet-rich plasma
(PRP) (4 mL) and underwent the same physical therapy; the third group received subacro-
mial injections of methylprednisolone acetate (1 mL) along with the same physical therapy;
and the last group received a placebo injection and followed the same physical therapy
protocol (NCT04681937).

The objective of this study was to assess and compare several outcome measures,
including the American Shoulder and Elbow Surgeons Shoulder Score (ASES), the Constant–
Murley Shoulder Outcome Score (CMS), VAS for pain assessment, Subjective Shoulder
Value (SSV), and ROM (NCT04681937).

Another recent prospective nonrandomized comparative study conducted by Huang et al.
(2022) investigated the effectiveness of PRP and HA injections for the treatment of partial-
thickness rotator cuff tears. Specifically, the study aimed to compare the outcomes of ultrasound-
guided single PRP injection with three doses of HA injection (Hyruan Plus, LG Pharm Co., Ltd.,
Seoul, Korea), combined with postinjection rehabilitation, for managing partial-thickness rotator
cuff tears. The study enrolled 48 patients who were divided into two groups: 24 patients received
ultrasound-guided PRP intralesional and peritendinous injections along with rehabilitation
exercises, while the remaining 24 patients received three doses of HA subacromial injections in
addition to rehabilitation exercises [109].

In this case, therapeutic exercises included shoulder ROM exercises, flexibility exer-
cises, scapular stabilization exercises, and shoulder girdle strengthening exercises [109].

The study assessed outcomes using the Shoulder Pain and Disability Index (SPADI),
ROM measurements, VAS scores, and the Constant–Murley Shoulder Score (CMSS). These
measurements were taken before the injection and at 1 and 3 months after the injection [109].

The results indicated that in the PRP group, SPADI scores, VAS scores, and CMSS
showed significant improvements at both the 1-month and 3-month follow-ups. Further-
more, flexion and abduction ROM significantly increased at the 3-month follow-up. In
the HA group, SPADI scores, VAS scores during overhead activities, VAS night pain, and
CMSS also showed significant improvements at both the 1-month and 3-month follow-ups,
with flexion and active abduction ROM significantly increasing in the third month [109].

These findings suggest that both PRP and HA injections, when combined with reha-
bilitation exercises, can effectively improve outcomes for patients with partial-thickness
rotator cuff tears. However, the study emphasizes the need for further research to confirm
these results and explore the long-term effects of these treatments [109].

In a study conducted by Flores et al. (2017), the efficacy and safety of peritendinous
HA injections were investigated in patients with persistent supraspinatus tendinopathy.
This study employed a parallel-group randomized controlled trial design [110]. Specifically,
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the researchers aimed to compare the therapeutic outcomes of treatment with HA as
an adjuvant to physical therapy with those of physical therapy as the sole therapeutic
intervention [110].

A total of 84 patients were randomly assigned to two study groups: the HA group
received treatment with physical therapy in conjunction with a subacromial injection of
HA (40 mg sodium hyaluronate/2 mL, MW 1.6 MDa) using OSTENIL TENDON (TRB
CHEMEDICA AG, Feldkirchen/Munich, Germany), while the control group underwent
physical therapy alone [110].

To assess treatment efficacy, the researchers used a VAS for pain and an Activities of
Daily Living (ADL) scale. Other measures included the number of rehabilitation sessions
required and the days needed for recovery, the Tampa Scale for Kinesiophobia (TSK), and
the perception of efficacy and tolerability by both the physician and the patients. The
patients were followed up for 90 days [110].

Overall, both the VAS and ADL scores exhibited a progressive decrease during the
follow-up period, with no significant differences between the two groups. However, the
TSK score showed a significant decrease in the HA group compared with the control group.
Additionally, patients in the control group required more rehabilitation sessions and more
days to return to their preinjury activity levels. Both patients and investigators perceived
higher efficacy in the HA group than in the control group. Importantly, both treatments
were found to be safe and well-tolerated [110].

This study demonstrated that subacromial HA injections, when combined with phys-
ical therapy, had a high efficacy in the treatment of supraspinatus tendinopathy. This
approach led to an earlier return to preinjury activity levels and reduced the need for exten-
sive rehabilitation sessions, which could be beneficial both for patients and the healthcare
system [110].

In another preliminary open-label study, a total of 61 patients with varying tendon-
related conditions were enrolled, including 14 with patellar tendinopathy [111]. The aim
of the study was to demonstrate the effectiveness of high-molecular-weight HA (Suvenyl,
Chugai Pharmaceutical Co., Ltd., Tokyo, Japan) [111].

During the study, patients received a single injection of HA, with a maximum volume
of 2.5 mL, targeted at the attachment site of the affected tendon or ligament. In the case of
patellar tendinopathy, HA was precisely injected into the proximal interface between the
posterior surface of the patellar tendon and the infrapatellar fat pad [111]. This procedure
was performed with the patient’s knee extended, and the needle was carefully inserted to
reach the interface between the patellar tendon and the infrapatellar fat pad [111].

The outcomes of this trial revealed that a single HA injection had a significant positive
impact on patellar tendinopathy. Notably, 50% of the patients with patellar tendinopathy
experienced a substantial improvement of at least 50% in their VAS pain scores after
receiving the injection compared with their baseline scores. This promising result suggests
that HA could be a viable treatment option for individuals with patellar tendinopathy [111].

These recent trials have investigated the potential of HA as a viable treatment option
for tendinopathies, especially those connected with inflammation and pain. The combined
findings from these studies indicate that HA injections, whether administered on their
own or in conjunction with suitable rehabilitation approaches, hold promise as effective
treatment choices for a range of tendinopathies. In summary, HA appears to be a valuable
addition to existing treatments for tendinopathies, potentially leading to better outcomes
and an improved quality of life for individuals affected by these conditions (Table 2).
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Table 2. HA-based therapy in tendinopathies treatment.

Condition HA-Based Product HA Molecular
Weight Physical Therapy Method Result Follow-Up

Period Ref.

Achilles
tendinopathy

Hyalotend (Fidia
Farmaceutici,

Abano
Terme, Italy)

Medium MW
Prospective
multicentric
clinical trial

Reduction
in pain 90 days [108]

Rotator cuff tears Not described Not described
Physical therapy

procedure
after injection

Prospective
randomized

study
Unposted Not described NCT04681937

Partial-thickness
rotator cuff tears

Hyruan Plus (LG
Pharm Co., Ltd.,

Seoul, Korea)
3 MDa

Shoulder ROM,
flexibility, scapular

stabilization
exercise, and

shoulder girdle
strengthening

exercise

Prospective
nonrandomized

comparative
study

Improvements in
SPADI, VAS

during overhead
activities, VAS
night pain, and

CMSS scores

1 and 3 months [109]

Supraspinatus
tendinopathy

OSTENIL
TENDON (TRB

CHEMEDICA AG,
Feld-

kirchen/Munich,
Germany)

1.6 MDa

Pendulum exercise,
scapular retraction,
posterior capsule
stretch, trapezius
stretch, internal

and external
rotation, row,

lower trapezius

Multicenter
randomized

controlled trial

Decrease in VAS,
TSK, and ADL

scores
90 days [110]

Patellar
tendinopathy

Suvenyl (Chugai
Pharmaceutical

Co., Ltd.,
Tokyo, Japan)

2.7 MDa

Prospective
open-label

preliminary
study

Improvement in
VAS pain scores 1 week [111]

3.3. HA-Based Therapy in Meniscal Lesions

The meniscus is a fibrocartilaginous disk-like structure located within the knee joint.
An undamaged meniscus serves several crucial functions within the joint, including stabi-
lizing the joint, distributing the load across the joint surface, absorbing shocks, providing
lubrication, and facilitating nutrient supply [112,113].

Meniscal injuries, which are the second most common type of knee injury, carry a
significant risk due to their potential to cause joint instability and reduced impact resistance,
increasing the likelihood of developing degenerative osteoarthritis [114].

In particular, meniscal tears can be classified into two main types: traumatic and
degenerative. Traumatic tears typically result from acute injuries or trauma and are more
commonly observed in younger patients. In contrast, degenerative tears are more prevalent
among older patients and typically occur due to gradual intrasubstance degeneration
within the menisci over time [115]. Traditional treatments include physical therapy, phar-
macologic approaches (including paracetamol, nonsteroidal anti-inflammatory drugs, and
intra-articular corticosteroid injections) [116–120], and surgical interventions. However,
there is ongoing research exploring the potential therapeutic role of HA in managing
meniscal injuries [121].

A recent randomized clinical trial conducted by Başar et al. (2021) compared the
effectiveness of two treatment approaches for patients with symptomatic degenerative
meniscus tears: arthroscopic partial meniscectomy (APM) and physical therapy. The study
also investigated the impact of HA injections on the outcomes of these treatments [17].

The trial included a total of 192 patients, who were randomly assigned to one of four
groups. The first group received APM alone, the second group underwent APM followed
by HA injections, the third group received only physical therapy, and the fourth group
underwent physical therapy combined with HA injections. The physical therapy regimen
in this study involved the use of TENS and low-intensity pulsed ultrasound [17].

During the exercise therapy, a program consisting of 104 progressive neuromuscular
and strength exercises was administered. These exercises were conducted three times
a week for 4 weeks initially and then continued for an additional 8 weeks, also with a
frequency of three sessions per week. The exercise routine included single-leg strength
training for both the injured and uninjured sides, encompassing both concentric and
eccentric movements in positions with and without weight bearing. The program began
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with two sets of 15 repetitions and gradually progressed to three sets of 12 repetitions,
followed by three sets of 8 repetitions, and concluded with four sets of 6 repetitions [17].

Regarding the HA injection, high MW HA was used. In the second group, HA
injections were administered as a single injection 4 weeks after the APM procedure, while
in the fourth group, HA injections were given as a single injection before the commencement
of physical therapy [17].

At the end of this study, it was observed that both the WOMAC and VAS scores had
improved compared with pretreatment values at the end of the second and sixth months.
However, there were no significant differences in WOMAC and VAS scores between the
four treatment groups. Notably, the APM groups exhibited relatively worse results.

Additionally, APM combined with physical therapy yielded positive outcomes in
terms of pain relief and functional improvements, although there were limitations in ROM
following APM. Conversely, physical therapy led to an increase in ROM. Interestingly, the
presence of HA injections did not appear to significantly influence these results [17].

In contrast, in a recent noninterventional prospective multicenter study conducted by
Balius et al. (2023), 165 patients were included, with 58 of them suffering from degenerative
knee meniscal tear. These patients received two consecutive intra-articular injections of a
noncross-linked, partially hydrophobized derivative of HA (Hymovis, Fidia Farmaceutici
Abano Terme, Italy) at a 2-week interval [121].

The study revealed significant improvements in the patients’ overall quality of life
(QoL), which was assessed using various measures, including the Knee Injury and Os-
teoarthritis Outcome Score (KOOS), WOMAC score, Patient’s Global Improvement Im-
pression Scale (PGI-I), and a single question [121]. Specifically, improvements in physical
activity were assessed through activities of daily life and sports and recreation participation.

The results showed that 80% of patients reported a global improvement in their QoL
after the treatment, with only 6.8% indicating no change or impairment [121].

Furthermore, there were statistically significant improvements in all individual dimen-
sions of KOOS and WOMAC, with a substantial increase (28%) in activities of daily living.
A significant 95.6% of patients perceived significant improvement after the treatment, and
both VAS satisfaction and pain assessment improved [121].

Importantly, no serious adverse effects related to Hymovis or adverse reactions were
observed in the study.

The efficacy of Hymovis in treating degenerative meniscus lesions was also investi-
gated [122]. The trial included forty patients with degenerative meniscus lesions confirmed
via MRI. These patients received two injections of Hymovis (HYADD4, a noncrosslinked
HA alkylamide, 24 mg/3 mL), spaced 2 weeks apart [122]. The study revealed notable
improvements in both the WOMAC score and the physical function subscale following
the treatment. Furthermore, assessments such as PGA and CoGA showed consistent im-
provement over time. These findings collectively demonstrate the effectiveness of Hymovis
(Fidia Farmaceutici, Abano Terme, Italy) in promoting meniscus healing [122].

Therefore, these research findings emphasize the significance of exploring alternative
treatments such as HA injections as a viable option for managing meniscal injuries, offering
an alternative to surgical interventions. These insights offer valuable perspectives on
the changing field of meniscus injury care, underscoring the necessity for customized
approaches that cater to the unique requirements of patients dealing with meniscal lesions
(Table 3).
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Table 3. HA-based therapy in meniscal lesions treatment.

Condition HA-Based
Product HA MW Physical Therapy Method Result Follow-Up

Period Ref.

Degenerative
meniscus tears High MW HA Not described

TENS,
low-intensity

pulsed
ultrasound,
single-leg

strength training
(concentric and

eccentric
movements)

Randomized
clinical trial

Improvement in
WOMAC and VAS
scores (the presence
of HA seems to not

influence
these results)

5 years [17]

Degenerative
knee

meniscal tear

Hymovis (Fidia
Farmaceutici

Abano
Terme, Italy)

Crosslinked
HA, MW not
computable

Prospective,
noninterven-

tional,
post-marketing,
observational,

descriptive
multicenter

study

Improvements in
QoL, physical

activity, KOOS, and
WOMAC scores

7 months [121]

Degenerative
meniscus

lesions

Hymovis (Fidia
Farmaceutici

Abano
Terme, Italy)

Crosslinked
HA, MW not
computable

Open-label
prospective
pilot study

Improvements in
WOMAC score,

physical function,
PtGA, and CoGA

1 year [122]

4. Conclusions

HA stands out as an important biocompatible and biodegradable compound with
substantial potential as a bioactive molecule for addressing a wide spectrum of both
physiological and pathological conditions, with a particular focus on musculoskeletal re-
habilitation. Its significance stems from its abundance in connective tissues, particularly
within joints. In fact, within the synovial fluid, HA plays an essential role by lubricating
joints, effectively mitigating friction, and contributing significantly to overall joint health.
Additionally, HA’s distinctive attributes, including its viscosity and water retention capa-
bilities, make it an invaluable component for enhancing flexibility and absorbing shocks
during various types of movement.

This review article primarily provided an in-depth exploration of HA’s functions and
properties. It is evident that these properties collectively establish HA as an exceptionally
effective therapeutic compound for a wide range of medical conditions, especially those
related to musculoskeletal diseases, and as a senomorphic agent [123]. Consequently,
several HA-based products have been developed and are readily accessible in the market.

Furthermore, the article discussed the applications and effectiveness of HA, either on
its own or in combination with physical therapy, in the most common joint diseases, includ-
ing OA, tendinopathies, and meniscal injuries. The findings suggest that HA, whether used
alone or in conjunction with physical therapy, offers a functional approach. In this manner,
the synergy of HA can alleviate pain and improve joint functions in OA treatment, reduce
pain and inflammation in tendinopathies, and even facilitate the repair of meniscal lesions.
Contemporary applications of physical therapy and rehabilitative exercises further enhance
the effectiveness of these treatments by strengthening the muscles or the affected joint.

In conclusion, the advancement and application of innovative HA-based products
hold great significance as a promising avenue for addressing musculoskeletal disorders.
Additionally, it remains essential to persist in researching and evaluating the impact of
combined therapies involving HA and physical therapy. This ongoing exploration holds
the potential to further enhance our understanding and improve treatment outcomes for
individuals with musculoskeletal conditions.

This study offers a detailed and thorough examination of the most recent scientific
evidence regarding the biochemical and clinical dimensions of HA effectiveness in the
rehabilitation of musculoskeletal diseases. As outlined, these topics are too expansive to
be adequately covered in a single systematic review. Consequently, further studies are
needed to focus on a more targeted exploration of each theme, employing individualized
and specific systematic reviews and meta-analyses.
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