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The Asymmetric Relationship between Conventional/Shale Rig 
Counts and WTI Oil Prices
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abstract

This work analyses the asymmetric response of conventional and shale oil rig 
counts to WTI oil price returns. Our analysis shows that the rig count time series 
exhibited a structural change after the oil glut of 2014. All series are non-station-
ary in each sub-period but not cointegrated. Therefore, after controlling for pos-
sible confounding factors, a vector auto regressive (VAR) model is set up. Our 
specification accounts for the possible role of oil production and distinguishes 
between positive and negative oil price changes. It is shown that shale and con-
ventional rig counts reacted differently in each subperiod to signed changes in oil 
price. Subsequently, by evaluating the response of rig counts to oil price shocks, 
their intensity and duration over time, we observe that the shale oil rig count reacts 
more intensively to positive than to negative oil price changes. On the contrary, the 
conventional rig count exhibits a modest reaction only to positive price changes. 
Finally, we robustify our findings by focusing on the data of the Permian basin, on 
the one hand, and the Anadarko, Bakken, Eagle Ford and Niobrara, on the other 
hand, which are characterized by different patterns in the number of Drilled but 
not Completed wells. 
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1. INTRODUCTION

A drilling rig is a machine that creates holes in the earth subsurface to drill a new well to 
explore for, develop and produce oil. The number of active rigs has been fluctuating over the time. In 
the US, in the last decade, it has ranged from 818 in week 5 of 2011 (the first available observation 
in our dataset) up to 1,609 in week 41 of 2014, before falling to 316 in week 23 of 2016 and jumping 
back to 677 in week 52 of 2019, and then reaching a minimum of 172 in week 33 of year 2020 
during the COVID-19 pandemic. The rig count can be related to changes in the price of crude oil, 
which has plummeted in the same period from a peak of $112/bbl in April 2011 (weekly Cushing 
WTI spot price; EIA) to a low of $28.1/bbl in February 2016, before reaching a record minimum of 
$3.3/bbl in April 2020 during the first wave of COVID-19. The oil price can relate to the rig counts 
in several ways. The first obvious relationship refers to the link between rig counts, oil supply and oil 
price. A rise in the number of rigs can increase the supply of oil and thus affect the equilibrium price, 
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even though the causality ordering can work also in the other direction. Changes in oil price can also 
affect the profitability of the investments in the industry, which in turn can affect decision-making 
to explore new fields, cultivate existing and prospective basins, and maintain, complete or suspend 
the production of existing wells. Thus, it is interesting and important for the understanding of the 
industry to assess, from a quantitative perspective, the relationship between rig counts, oil price and 
oil production. However, such a relationship cannot be established without taking into account the 
evolution of the oil industry over the last decade. Technical innovation of oil cultivation, namely, 
horizontal drilling and fracking, has allowed extracting oil entrapped in shale rock formations, 
named shale oil.1 More precisely, shale oil is produced from shale wells undergoing first horizontal 
drilling and then a completion stage in which hydraulic fracturing, or fracking, is performed by 
means of a collection of equipment (such as high-pressure pumps, blenders and storage facilities) 
known as frac spread. In the US, shale oil has become the largest contributor to total oil production 
and has greatly increased the US oil supply. The US total crude oil production increased from 5,392 
thousand barrels per day in February 2011 to 13,100 thousand barrels per day in march 2020 (then 
falling during the COVID-19 pandemic down to 9,700 in August 2020 and back to 11,500 one year 
later), mostly due to rise in shale oil production which reached a 67% share of total US crude oil 
production in 2019 (and 65% in 2020).

The variation in US oil prices and of the number of active oil rigs can be affected by the 
evolution over time of the US oil production due to structural changes in the industry, which witnessed 
the booming of shale production. This is what we consider here, testing whether the oil rig count/oil 
price nexus is affected by the nature of the oil extraction, distinguishing between conventional and 
shale oil rigs. We also investigate if an asymmetry exists in the relationship between oil rigs count 
and oil price when considering positive and negative oil prices and if such a relationship differs 
across types of rig counts, namely, conventional and shale oil rig counts. We do so by estimating and 
testing the difference in the delayed response of oil rig counts to the increase and fall of oil prices, 
distinguishing between the two types of oil rigs. We also consider the possibility that from the shale 
boom onward, the underlying relationship between oil rig counts and prices (considering both shale 
and conventional production and distinguishing between positive and negative changes) may have 
undergone a structural change. Indeed, from 2011 onward, on the one hand, the oil price series has 
experienced relevant drops throughout the period; on the other hand, the shale industry has seen a 
relevant reduction in its costs since its inception which has clearly affected the profitability of drilling 
new shale rigs. Thus, we test for the existence of structural changes in the long-run oil price/oil rigs 
relationship, as shown by breaks in the rig counts-oil price nexus, which highlight the existence 
and relevance of asymmetric impacts of oil price variations on rig count changes. In particular, the 
breaks accounts for structural changes in the oil industry, which witness relevant differences in the 
information transmission from market prices to production-related variables. Thus, if breaks would 
not be included in the analysis, the estimated economic links will be biased. Finally, we consider 
that the number of shale oil rigs can be influenced by oil price change, although also the opposite 
effect can occur, since oil rig counts affect oil supply and thus could impact on oil prices. Thus, we 
also study the reverse causality and feedback hypotheses of the oil price/oil rig nexus, testing for 
the impact on oil prices and oil production of rigs counts, distinguishing between conventional and 
shale oil.

1. It is common in the US terminology to refer to tight oil rather than shale oil, since the former is a more encompassing 
term with respect to the different geological formations producing oil from any particular well. In this article, for the sake of 
simplicity we shall refer to shale oil and use both terms as synonyms.
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We show that the rig counts series exhibit two structural changes: the first after the oil 
glut of 2014, the second after the spread-out of COVID pandemic. This splits the analyses into 
three subperiods. In the first subperiod, from 2011 to the break date, oil price changes have hardly 
any impact on rig counts. In the second subperiod, from 2015 to 2019, the shale rigs show a higher 
response to oil price changes than the conventional ones. More precisely, by looking at the Impulse 
Response Functions (IRF) and Accumulated IRF originated from a Vector Auto Regressive (VAR) 
model, we show that the conventional rig counts respond only to positive changes in WTI returns, 
yet smaller than those for the shale oil rigs. The latter also respond reducing the number of rigs 
as the oil price return falls, but less so than the response to the positive ones. Production does not 
exhibit any feedback effect on prices. Lastly, the third subperiod, which is still ongoing, confirms 
the asymmetric response of shale versus conventional industry to oil price shocks; however, the 
evidence is less clear and still reflects the changing environment due to the ongoing pandemic. 
The findings of the second and third period highlight the importance of the structural changes that 
occurred over time in the oil industry, in particular in the shale one. The evolution of the production 
costs in shale industry, and its increasing relevance in the overall oil supply have affected the timing 
of oil supply response to price signals; this has a systematic and permanent effect in the industry 
that will also impact the future dynamic of the oil market. Finally, we check whether the difference 
between the drilling and the completion activities of the wells, which has risen in particular in the 
Permian basin, have influenced our findings. We show that the Drilled but Uncompleted (DUC) 
wells’ dynamics has no relevant impact on our findings.

The paper is structured as follows. In the next section, we review the related literature, 
highlighting how the present paper extends and differentiates itself from the existing studies. Section 
3 presents the data and includes preliminary analyses that justify the methodology introduced in 
Section 4. Section 5 includes and discusses the empirical results. Section 6 presents a robustness 
check, in which we split data across production regions and selected analyses are replicated. 
Conclusions and references close the paper. An Appendix includes a number of additional graphs.

2. BACKGROUND LITERATURE

There exists a vast literature that focuses on the oil industry from several perspectives, 
including the evaluation of the determinants of oil prices. However, far fewer analyses have focused 
on a quantitative assessment of the rig counts—oil price relationship. Kellogg (2014) sets up a real 
option model and empirically shows that drilling activity in Texas decreases as price uncertainty 
rises. Toews and Naumov (2015) consider the structure of the worldwide upstream sector of both 
oil and gas, studying the causal identification of shocks distinguishing between demand shocks, 
drilling activity shocks and drilling cost ones and showing that a rise in price shocks has a positive 
yet delayed effect on drilling activity and cost. Chen and Linn (2017) show that drilling rig use of 
oil and gas fields respond positively to oil and gas prices and that results hold also when controlling 
for changes in rig productivity. Anderson et al. (2018) show that Texas oil production does not react 
to change in price while drilling activity does, and formalize an Hotelling rule for drilling revenues 
that account for it. Ringlund et al. (2008) find a positive relationship between oil rig activity and the 
crude oil price. Newell and Prest (2019) investigate the price responsiveness of unconventional and 
conventional oil drilling in the United States, taking into account changes in wells productivity as 
well. Walls and Zheng (2022) econometrically estimate the oil supply of fracking and non-fracking 
production regions in the US. Iliescu (2018) finds that WTI oil prices and rig counts are cointegrated 
and identifies a bidirectional causality ordering. Ojukwu et al. (2020) consider the relationship 
between rig counts and Brent prices in Nigeria, showing a 3–4 month delay between Nigerian rig 
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counts and oil prices. Espinasa et al. (2017) study the supply and demand drivers of oil prices in 
several countries, exploring the relationships between oil prices, rig count, oil production and world 
economic activity.

In a cointegration analysis, Zhang et al. (2018) evaluate the contribution of the US rig count, 
together with other explanatory variables, to Brent prices. Umekwe and Baek (2017) investigate the 
effects of oil prices and rig count on oil production in several US oil plays. Taneri et al. (2021) 
focus on the dynamics of the frac spread, showing that it is correlated to several variables, such 
as financial variables, oil stocks and rig count. However, rig count is less volatile than frac spread 
count. Apergis et al. (2016) analyse the long-term relationship between oil production, rig count 
and crude oil prices of six major oil producing regions in the US, while Apergis et al. (2017) focus 
on the relationship between well service rigs, operating rigs and oil and gas prices. Khalifa et al. 
(2017) quantitatively examine the oil price/rig count nexus, showing a delayed and nonlinear impact 
of changes in oil prices on rig count. However, the authors do not consider the causality of the oil 
latter is a key point of Apergis et al. (2021), which studies the relationship between rig count, oil 
price and oil supply in the US, distinguishing rigs based on their direction and considering positive 
and negative variations in prices, yet without testing for possible structural changes in the time series 
and for cointegration in each subsample, nor calculating the Impulse Response Functions in each 
subperiod. Other scholars have focused on drilling for shale gas wells. Mason and Roberts (2018) 
consider three margins on which natural gas producers may react to changes in natural gas prices: 
intra-well production rates, initial-production rate and well-drilling rates, showing that the decline 
rates of shale wells in Wyoming can be explained by pattern of falling natural gas prices. Ikonnikova 
and Gulen (2015) look at shale gas productivity changes, focusing on the relationship between 
gas prices and the completion practices of the industry (namely, the activities necessary for gas to 
flow after the drilling of a well). Scholars have also noted the dynamics of the DUC wells, which 
has been rising till spring 2020 then reducing again, investigating their impact on the supply and 
casting doubt on the drilling-production relationship. Mugabe et al. (2021) in particular2 show that 
an increase in the number of DUCs plays a significant role in natural gas supply, and that the number 
of DUCs depends on drilling rig activity and futures prices of oil and natural gas.

In our work, we extend the existing literature focusing on the rig count oil price dynamics. 
We first identify three regimes associated with the breaks occurring in oil prices, shale rig counts, and 
conventional rig counts. Then, following the bound testing approach of Pesaran et al. (2001) adapted 
to the nonlinear auto regressive distributed lag (NARDL) model of Shin et al. (2014), we show that 
cointegration is not present at the subsample level. This induces us to model the first differences of 
the variables with a vector auto regressive (VAR) model accounting for the possible asymmetric 
impact of oil price and oil production changes, controlling for the impact of control variables, and 
analysing the impulse response functions (IRF). The IRFs allow us to assess the overall relationship 
between oil price and shale and conventional oil rig counts when the full system receives a shock to 
prices. Finally, we perform a robustness check taking into account the possible role played by the 
DUCs in the oil price-rig count relationship, focusing on the data of specific regions characterized 
by different DUCs dynamics and shale oil production, namely, the Permian, on the one hand, and the 
Anadarko, Bakken, Eagle Ford and Niobrara, on the other hand. Our results extend and differ from 
those in Apergis et al. (2021) for two different reasons. First of all, the results in Apergis et al. (2021) 
are unreliable and the evidence much weaker, as shown in Ewing et al. (2022); this supports our 
methodological choices. Second, by allowing for breaks, we account for the existence of structural 
changes in the relation between rig counts and oil prices. In fact, the asymmetric reaction of rig 

2. See also the references reported in that paper about the impact of DUCs on the wells’ completion activities.
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counts to oil price variations emerges in a strong way only when removing a first period, up to 2014, 
characterized by a sharp increase in shale oil supply, and also removing the COVID-19 period, with 
drop in oil demand and high uncertainty, partly due to COVID-related policies.

3. DATA AND PRELIMINARY ANALYSIS

3.1 Data sources and data description

The main variables we adopt are the weekly West Texas Intermediate (WTI) crude spot oil 
prices,3 the onshore crude oil field production, and the weekly observations of the oil rig count. WTI 
oil prices have been recovered from the Federal Reserve Bank of St. Louis database (FRED),4 oil 
production data come from the US Energy Information Administration (EIA),5 while the rig count 
series is provided by Baker Hughes’ weekly reports6 on US drilling activities. The Baker Hughes 
report contains the time series of rigs counts for each basin in the US, providing detailed data on the 
oil rigs, classifying them into oil, gas, and miscellaneous; moreover, the reports also classify the rig 
counts according to their trajectories, dividing them into vertical, directional and horizontal.

Given the purpose of the present study, we aggregate the rigs into two categories using 
the rig trajectory: vertical and directional7 are considered conventional oil drilling, which we 
term as conventional oil rigs, and horizontal rigs are considered as related to nonconventional oil 
drilling techniques, which we call shale oil rigs. This classification is justified by the different 
drilling techniques adopted to extract oil. The conventional drilling technique, widely adopted in 
the industry, involves the use of a vertical well that aims directly at a target beneath it. In contrast, 
horizontal drilling followed by hydraulic fracturing has allowed the extraction of oil from layers of 
sedimentary rock characterised by low permeability, expanding the ability of producers to profitably 
recover oil from low-permeability geologic plays, mostly shale. The entire sample considered in 
this paper starts on 4th February 2011 and ends on 21st January 2022, yielding a total of 573 
observations.

3.2 Descriptive analysis

Figures 1 and 2 report the evolution of variables’ levels and differences (or relative changes), 
respectively. Looking at the WTI oil prices, we observed a drop during the last semester of 2014. 

3. Wellhead prices can diverge from WTI because of mid-stream constraints (Agerton and Upton (2019), Walls and 
Zheng (2020), McRae (2017)). Even if the wellhead price might more accurately reflect the flow of revenues accruing from 
each shale well, we cannot rely on such a data for our analyses since it is available only on a monthly basis and is not 
aggregated per basin. Nevertheless, we point out that wellhead oil prices display little dispersion (Agerton et al. (2021)) and 
mostly referring to the first subperiod. For this reason, we believe that this should not affect the results of our analyses, in 
particular for the second and third subperiods.

4. https://fred.stlouisfed.org
5. https:/www.eia.gov
6. https://rigcount.bakerhughes.com/na-rig-count/
7. Directional drilling is mostly used to avoid underground obstacles or for environmental reasons; it could be regarded as 

a mixture of vertical and horizontal drilling, even though it was traditionally associated with vertical drilling. It is disputable 
whether data on directional drilling should be taken as a proxy of conventional or unconventional wells. The latter approach 
has been followed for instance in Apergis et al. (2021) and in Newell et al. (2019), who focus on unconventional wells in 
Texas. We follow here Newell and Prest (2019), who classify directionally-drilled wells as conventional, considering a larger 
sample of wells in five US states (Texas, North Dakota, Oklahoma, Colorado, California). Note, however, that the number of 
directional rigs is very limited and therefore the classification does not influence the results of our analyses.
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This drop, commonly called oil glut, was mainly driven by the explosion of shale oil production that 
has sensibly increased the supply, coupled with the OPEC decision to maintain stable production 
levels rather than decrease them. Both the shale and conventional rigs are characterized by a drop 
in the same period, even if this lagged by a few weeks. Specifically, the WTI dropped from a peak 
level of 105.23 USD registered in the last week of July 2014; this was followed by a drop in the 
conventional rigs six weeks later on 5th September 2014 and a drop in the shale rigs only 18 weeks 
after the WTI oil price drop in the last week of November. This event can be considered a regime 
shift for both the oil price and for the rig counts towards new, lower levels. In particular, while the 
conventional rigs maintained a more stable pattern, with no tendency to revert toward the pre-oil 
glut level, the shale rigs saw a subsequent increasing trend from 2016 to the last quarter of 2018. Oil 
production is characterized by an increasing trend, except for a local contraction between mid-2015 
and mid-2016. In 2020, COVID-19 severely impacted the oil sector, with a contraction in active 
rigs, particularly evident for shale rigs. In addition, oil production drops by more than 20%, and 
only in the second half of 2021 does it appears to be on the rise. Lower production levels in 2021 

Figure 1: Plots of the variables in level

Figure 2: Plots of the variables in first difference
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compared to the pre-COVID-19 period, combined with problems in the distribution chain, affected 
the evolution of the oil price. In fact, from the minimum of about 15 USD observed in March 2020, 
the price increased up to the end of our sample, reaching above 90 USD, the maximum level since 
the end of 2014.

Moving to the variables in the first difference, it can be observed that the two types of 
rigs reacted differently to the 2014 negative oil shock. While the number of shale oil rigs is more 
sensitive, with a more pronounced drop, the conventional ones are more volatile and require a longer 
period to revert to the unconditional mean. A similar behavior appears after the COVID-19 outbreak, 
with a striking impact on the changes in the number of shale rigs.

To proceed with the analyses, it is fundamental to determine whether the series of interest 
are stationary or characterised by a unit root. Table 1 reports a selection of tests for all variables 
of interest. In the first three lines, we focus on standard tests for unit roots: the Dickey-Fuller, 
Phillips-Perron and KPSS tests. The three tests are consistent for almost all variables in identifying 
the presence of a unit root. The only exception is the KPSS test in the case of shale rigs which is 
stationary but only if we use the 5% confidence level (at the 1% confidence level, all variables 
are characterised by a unit root). However, the graphical analyses of the levels (Figure 1) suggest 
that the series, at least those of the rig counts, could be characterised by structural breaks in the 
deterministic components. Therefore, we proceed with the analyses of stationarity by means of tests 
robust to the presence of breaks in the trend and/or intercept. We first consider the test proposed by 
Perron (1989) that allows for a single break in both the trend and the intercept and originates from 
an innovation outlier (so the break is not instantaneous). Furthermore, we endogenously determine 
the break date by focusing on the minimum value of the Dickey-Fuller test statistic; see Perron and 
Vogelsang (1992). Again, we find evidence of heterogeneity across series, as the oil log-prices, the 
oil log-production and the shale rig counts seem to be nonstationary, while the conventional rig 
counts are stationary. Additionally, the break date for all series is located in the last quarter of 2014; 
the break date occurs during the oil glut period, coherently with the graphical analysis (see Figures 
1 and 2). The existence of the COVID-19 pandemic, which had a relevant impact on the oil market, 

Table 1: The table reports results for several unit root tests. 

  Δlog WTI  Δlog Oil Prod.  Δ Shale rigs  Δ Conventional rigs

ADF (p-value)  0.282  0.434  0.251  0.160
PP (p-value)  0.181  0.494  0.439  0.140
KPSS (test)  0.304  0.371  0.180  0.433
Breakpoint (p-value)  0.498  0.839  0.731  <0.01
Date  31/10/2014  07/09/2012  28/11/2014  05/12/2014
Two-break (test)  –30.656  –45.902  –2.132  –11.208
Date-1  12/12/2014  10/07/2015  20/02/2015  16/01/2015
Date-2  26/08/2016  09/11/2018  15/06/2018  26/08/2016

In detail, we include the following cases: row ADF reports the p-values of the Dickey-Fuller test, with automatic selection 
of the number of lags using BIC and deterministic components included only if statistically significant; in row PP, we 
provide the p-value for the Phillips-Perron unit root test with Bartlett kernel and Newey-West bandwidth, and deterministic 
components are included only if they are statistically significant; KPSS includes the KPSS test statistic computed with 
Bartlett kernel and Newey-West bandwidth, and deterministic components are included only if statistically significant—the 
critical values for the null of stationarity are equal to 0.216 at the 1% confidence level and 0.146 at the 5% confidence level; 
Breakpoint and Date refer to the Perron test for unit root in the presence of a break in the deterministic components (both 
trend and intercept)—we report the p-value associated with endogenous detection of the break date using the minimum of 
the Dickey-Fuller statistic, as well as the identified break date; Two-break, Date-1 and Date-2 refer to the Lee-Strazicich 
unit root test with two breaks in the deterministic components (both trend and intercept) and endogenous selection of 
the break dates by the minimisation of the Dickey-Fuller statistic—we report the ρ test statistics as well as the identified 
break dates—critical values are equal to –52.550 at the 1% level and –45.531 at the 5% level. In all tests adopting lags, we 
identify the optimal lag by the BIC criterion using a maximum lag equal to 13 (that is, one quarter) in line with the findings 
in Khalifa et al. (2017).
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suggests that two breaks could be present: the first during the oil glut and the second in the first 
phase of COVID-19 diffusion. Thus, we employ the Lee and Strazicich (2003) unit root test, which 
allows for the existence of two breaks. Again, the break affects both the trend and the intercept, and 
we endogenously identify the break dates by minimising the Dickey-Fuller statistic. We also impose 
that the subsamples identified by the break dates have a minimum length equal to 10% of the data 
(i.e., 57 observations). The test outcomes shown in Table 1 suggest that oil log prices and both rig 
count time series are nonstationary, while the oil log production is stationary at the 5% confidence 
level but not at the 1% level. Finally, some heterogeneity is apparent in the identified break dates, 
similar to the test with a single break; nonetheless, in three out of four cases, the breaks are identified 
between the end of 2014 and the first months of 2015, just after the oil glut. Summarising our 
findings, we assume the existence of a unit root in all series, together with the presence of at least 
one structural break. To identify the break dates, we analyze the Lee and Strazicich (2003) test 
statistics computed across all possible break date pairs (these data are a by-product of the Lee and 
Strazicich procedure). Out of all possible cases (that is, pairs of possible break dates), we focus on 
the 1% of cases with the highest negative values of the test, computing frequency histograms of 
the associated break dates; see Figure 3. In particular, all series show a spike during or after the oil 
glut, while less homogeneity is visible for the occurrence of the second break date. While rig counts 
seem unaffected by the COVID-19 period, the oil price and oil production are more sensitive to the 
pandemic, especially the oil price, which has a second spike in March 2020.

Figure 3: Frequency of possible break dates under the Lee-Strazicich unit root test. 

The first break dates are in green, and the second break dates are in brown.

Based on the evidence shown, in the next section we model the long-term relationship 
between variables characterised by unit roots and breaks using two break dates, occurring in the 
fourth quarter of 2014 and in the first quarter of 2020, which span the oil glut and the COVID-19 
outbreak. We prefer not to report a precise break date due to the heterogeneity across the analyzed 
series. Our final objective is to verify whether the interdependence among variables has changed 
during the sub-periods. Note that, given the uncertainty in the break date identification, as shown in 
the previous analyses, and given the heterogeneous behavior of the series around break dates, we 
will apply both rolling approaches as well a subsample analysis in which the observations in the 
break dates periods will be excluded from the estimation sample. This last case allows to concentrate 
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on the interdependence between variables, excluding periods of transition between two different 
states of interdependence.

Before this, we provide descriptive statistics for the first difference or relative changes; 
see Table 2. All variables show evidence of clear deviation from normality. Furthermore, additional 
analyses8 show evidence of serial correlations in all variables (differences or logarithmic differences). 
For rig counts, this evidence is consistent with the findings of Khalifa et al. (2017), which document 
the impact of lagged values for rig counts up to 13 weeks (i.e., roughly one quarter).

Table 2: Descriptive statistics of the variables. 

  Δlog WTI  Δlog Oil Prod.  Δ Shale rigs  Δ Conventional rigs

Mean  <0.000  0.001  0.135  –0.705
Median  0.001  <0.001  1.000  <0.001
Min  –0.212  –0.061  –79.000  –33.000
Max  0.263  0.055  34.000  19.000
St.Dev.  0.026  0.009  11.803  6.801
Skew.  0.538  –0.537  –2.077  –1.030
Kurt.  26.605  19.807  9.254  3.445

The table refers to the four variables of interest, WTI prices, oil production and shale and conventional 
rigs, expressed in their log-difference or first difference as reported in the first row, over the full sample.

3.3 Control Variables

We introduce in our analyses a set of economic and financial variables with the aim of 
removing the possible presence of common factors that could impact the relationship between rig 
counts, oil price and oil production. A similar approach has been used, for example, in Khalifa et 
al. (2015, 2017), among others. Three types of variables have been considered: economic variables, 
indicators of financial stress and variables related to the bond/credit market.

Within the first category, we include the Trade-Weighted US Dollar Index Advanced 
Foreign Economies (TRADE) and the S&P 500 Index (GSPC). The former allows monitoring of 
the effect of the reference currency (dollar) used in pricing the oil relative to other currencies. The 
latter contains 500 of the largest stocks traded on the New York Stock Exchange and NASDAQ and 
is generally used to monitor financial market evolution.

Moving to the indicators of financial stress, we consider the St. Louis Fed Financial Stress 
Index (STLFSI2), the CBOE Volatility Index (VIX) and the National Financial Conditions Index 
(NFCI). The first measures the degree of financial stress in markets and is provided by the Federal 
Reserve Bank of St. Louis. The average value of the index is designed to be zero whenever the 
financial market conditions are normal, while a value below zero represents a financial market stress 
and vice versa. The VIX, instead, is a market index that represents the market’s expectations for 
volatility over the next 30 days, providing a measure of market risk and investor sentiment. Finally, 
the Chicago Fedâ€™s National Financial Conditions Index provides a comprehensive weekly 
update on US financial conditions in money markets, debt and equity markets, and traditional and 
shadow banking systems.

The variables related to the bond/credit market are the Effective Federal Funds rate 
(EFFR), the 10-year Treasury Constant maturity rate (DGS10) and the TED spread (TEDRATE). 
The EFFR consists of domestic unsecured borrowing in US dollars by depository institutions. The 

8. Additional descriptive analyses are available upon request.
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DGS10 represents the annual average of the interest rate on 10-year Treasury bonds. The TED 
spread is defined as the difference between the interest rates on interbank loans and on short-term 
US government debt, the so-called T-bills.

All data were collected from the Federal Reserve Bank of St. Louis database, in the same 
sample adopted for oil price, oil production and rig counts.9

4. MODELING STRATEGY

4.1 Bound testing for cointegration

Our objective is to identify the asymmetric impact of oil price and oil production on the 
evolution of rig counts and to analyse the interdependence between these variables over different 
market phases. We first adopt the modeling strategy of Apergis et al. (2021). Therefore, we introduce, 
for both conventional and shale rigs, a NARDL specification (see Shin et al. (2014) for additional 
details on the model) and test for cointegration within this model. Let us define the variable of 
interest as yt; in our case, it is either the number of shale rigs or conventional ones. Moreover, let 
us denote by pt and qt the oil log prices and the log production, respectively. In the model, we also 
include the covariates, which are transformed, when needed, to make them stationary. We denote 
by xl,t the l-th covariate that enters the equation lagged (and xl,t is stationary). The NARDL model 
reads as follows:

1 , 1 , 1 , 1 , 1=t S t p t p t q t q ty t y p p q qµ α ρ β β δ δ− + − +
− − − + − − − + −∆ + + + + + +

1, 2, 3,
=1 =0 =0

m m m

j t j j t j j t j
j j j

y p pγ γ γ− +
− − −+ ∆ + ∆ + ∆∑ ∑ ∑

4, 5, , 1
=0 =0 =1

¨

j t j j t j l l t t
j j l

q q xγ γ θ ε− +
ℵ+ ∆ + ∆ +∑ ∑ ∑  (1)

where Δ denotes the difference operator (i.e., 1=t t tp p p −∆ − ), ( )= max 0,t tp p+∆ ∆  with Δpt being the 
change in target variable, ( )= min 0,t tp p−∆ ∆ , and where 

=1
=

t

t ii
p p+ +∆∑  and 

=1
=

t

t ii
p p− −∆∑  are the 

cumulated signed components. The equations include both an intercept and a trend that enter the 
cointegration (long-run or level) equation. With respect to the lag structure, that is, the choice of m, 
based on the evidence in Khalifa et al. (2017) that suggests the relevance of a quarterly lag when 
modeling the rig number, and to reduce the number of parameters, we proceed as follows: first, 
we fix m = 13, thus including the data covering roughly one quarter; then, we adopt the following 
restricted specification (displayed for the case of negative oil price returns—for other cases, the 
structure is equivalent):

4 13

2, 2,0 2,1 1 2, 2,
=0 =1 =1

ˆ ˆ= ,
m

j t j t t M t j Q t j
j j j

p p p p pγ γ γ γ γ− − − − −
− − − −∆ ∆ + ∆ + ∆ + ∆∑ ∑ ∑  (2)

where we have specific parameters associated with the contemporaneous impact, the lagged weekly 
impact, the monthly impact (proxied by the last four weeks) and the quarterly impact; similar 
parametrisations are used for all components (summations) appearing in the model in equation (1). 
In unreported results (available on request), we verified the significance of the NARDL parameters 
referring to the monthly and quarterly lags. Joint Wald tests for parameter significance reject the 

9. Descriptive statistics and figures for control variables are available upon request.
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null hypothesis of zero coefficients in the equations for conventional and shale rig counts, thus 
supporting the introduction of lags up to 13 weeks.

In the NARDL setting, Shin et al. (2014) suggest testing the hypothesis of cointegration 
following the proposal of Pesaran et al. (2001), that is, the bound testing approach. Such a choice 
provides flexibility to the testing framework as it is viable even in situations where not all series are 
characterised by clear evidences of unit roots, exactly the situation that occurs in our case. We also 
note that the same modeling and testing strategy was adopted by Apergis et al. (2021), leading in 
their case to the identification of the presence of cointegration. We reconsider their analyses and first 
test for cointegration at the full sample level.

We report in Table 3 the results of bound testing for cointegration in the NARDL model: the 
existence of cointegration is associated with the specific outcomes of a joint test on the parameters 
of the level variables (an F-test) and of a test on the parameter of the lagged level of the dependent 
variable (a t-test). The table reports the test statistics and the bounds. A value of the F-test statistic on 
the left of the lower bound excludes the possible existence of cointegration, while a value between 
the bounds is inconclusive. In contrast, a value on the right of the upper bound is coherent with the 
possible existence of cointegration, but this needs to be accompanied by a verification via the t-test. 
For the latter, again a value between bounds is inconclusive, and a decision can be made when the 
test statistic falls outside the bounds. Following Pesaran et al. (2001), we report the test for different 
specifications of the model, that is, with unrestricted intercept and no trend (case III in the cited paper), 
restricted trend and unrestricted intercept (case IV) and unrestricted trend and intercept (case V).

We first focus on the conventional rig series. The F-test for cointegration suggests absence 
of cointegration if we consider the 1% confidence level, while it is inconclusive when using the 5% or 
10% confidence levels. This finding is not affected by the specification adopted for the deterministic 
components. Consequently, the evaluation of the t-test becomes irrelevant. When considering the 
shale rigs, the evidence is clearly in favour of cointegration among variables, irrespective of the 
specification adopted for the deterministic terms. Our results are clearly in contrast with those of 
Apergis et al. (2021), although they did not include covariates in the model and focused on a shorter 
sample. Table 3 also reports the bound tests evaluated with the same sample adopted by Apergis et 
al. (2021), with and without the inclusion of covariates (to be fully consistent with the paper cited). 
Results on data excluding most of 2019 and the COVID-19 period are more heterogeneous across 
model specifications for the conventional rig time series, while the evidence is stronger in favour 
of cointegration for the shale rig time series. Notably, the introduction of covariates does not alter 
the finding.10 Beside the simple evaluation of bound testing on the full sample, we also focus on 
a subsample evaluation of the cointegration. Such a choice is coherent with the evidence of the 
stationarity tests that suggested the possible presence of breaks in the series, due either to the oil 
glut or to the pandemic. We opt here for a rolling bound testing analysis of cointegration given the 
uncertainty about the break date. In Figure 4, we report the F-statistic for the bound testing in case 
V, and with an evaluation window of 104 observations (about 2 years). Case V is the most flexible 
as it allows for unrestricted trend and intercept. Notably, few periods support the possible presence 

10. Our results differ from those reported in Apergis et al. (2021) and this may depend on a number of reasons (the impact 
of covariates excluded given the results reported in Table 3): first of all, we used a log-transformation for the oil prices and oil 
production but not for the rig counts, while Apergis et al. (2021) transform all variables into natural logarithms; second, the 
estimates in Table 4 of Apergis et al. (2021) used to build the bound tests report, coherently with equations 1–6–7–8 of Apergis 
et al. (2021), the presence of both lagged levels and the error correction term; third, they use a single while we include lags 
up to one quarter.
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of cointegration, while longer time spans suggest the absence of cointegration. Similar outcomes are 
obtained by considering different window sizes and different test cases.11 

The rolling approach provides interesting evidence suggesting that interdependence 
between variables is, most of the time, not associated with the existence of cointegration. As a 
final check, we follow the approach of Carrion-i Silvestre and Sanso (2006), which introduces a 
cointegration test consistent with the possible presence of a break that impacts both the deterministic 
components and the cointegration coefficients. The break date is endogenously identified, setting the 
minimum subsample length (either before or after the break) equal to 104 observations (2 years), 
using the most flexible parameterisation, that is, Model E of Carrion-i Silvestre and Sanso (2006), 
where a trend is included and the break impacts on the cointegration coefficients, and evaluating 
the test under the assumption that regressors are not strictly exogenous (see Carrion-i Silvestre and 

11. Results are available on request.

Table 3: Bound testing approach for cointegration. 

  F-test  T-test  F-test  T-test

 Conventional  Shale

 Full sample

Case III  2.977  –3.388  5.735  –5.132
Case IV  2.973  –3.779  5.775  –5.566
Case V  3.521  –3.779  6.882  –5.566

 up to 22/03/2019

Case III  3.689  –3.989  4.132  –4.227
Case IV  3.292  –4.012  4.046  –4.601
Case V  3.819  –4.012  4.827  –4.601

 up to 22/03/2019 without xl,t

Case III  3.890  –3.833  4.692  –4.368
Case IV  3.450  –3.838  4.440  –4.696
Case V  4.129  –3.838  5.295  –4.696

 10%  5%  1%

Critical values  I(0)  I(1)  I(0)  I(1)  I(0)  I(1)

F-test k=4 Case III  2.45  3.52  2.86  4.01  3.74  5.06
T-test k=4 Case III  –2.57  –3.66  –2.86  –3.99  –3.43  –4.37
F-test k=4 Case IV  2.68  3.53  3.05  3.97  3.81  4.92
F-test k=4 Case V  3.03  4.06  3.47  4.57  4.40  5.72
T-test k=4 Case V  –3.13  –4.04  –3.41  –4.36  –3.96  –4.96

The upper panels report the two tests for cointegration following Pesaran et al. (2001): namely, an 
F-test to evaluate the null hypothesis that all coefficients appearing in the level relationship included 
in equation (1) are jointly null, and then a t-test to verify the significance of the coefficient for the 
lagged level of the dependent variable. The table reports the test statistics for three cases (III, IV and 
V) for both the conventional and shale rigs: case III includes an unrestricted intercept and no trend, 
case IV a restricted trend and an unrestricted intercept, and case V unrestricted trend and intercept. 
Furthermore, we focus on two different periods: the full sample available to us and the sample con-
sidered in Apergis et al. (2021); for the latter, we also report results with and without the inclusion 
of covariates. The lower panel reports the critical values for the bound test for different confidence 
levels. Cases IV and V for the t-test are equivalent. If the test statistic is to the left of the lower 
bound, we reject the null and there is no cointegration among the variables. If the test is above the 
upper bound, we are in favour of cointegration. When the test statistic is within the two bounds, the 
test is inconclusive, and further evaluation of the cointegration of the variables (excluding the depen-
dent one) should be made. If the F-test leads to a rejection of the null, there is no need to verify the 
outcome of the t-test. The latter is relevant only if the first test suggests the presence of cointegration, 
which has then to be validated by the second test. If the t-test rejects the null, there is no cointegra-
tion even if the F-test goes in that direction; see Pesaran et al. (2001) for additional details.
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Sanso (2006) for details). Table 4 reports the results, which clearly reject the null hypothesis of 
cointegration for both the conventional and shale rig counts.

Table 4:  Test of Carrion-i Silvestre and Sanso (2006) for 
cointegration in the presence of a break in the 
cointegration coefficients. 

  Conventional Rigs  Shale Rigs 

Test-statistic  0.388  5.117
Break date  16/01/2015  30/01/2015
C.V. λ = 0.3  1%—0.0393  5%—0.0570
C.V. λ = 0.4  1%—0.0329  5%—0.0454

Constant and trend included. Minimum subsample length: 104 observa-
tions. λ is the fraction of observations before the break date. For the break 
dates reported, λ ≈ 0.36. The break date has been determined endoge-
nously. The critical values reported allow for the evaluation of the null 
hypothesis of cointegration. Large values of the test statistic suggest the 
absence of cointegration.

In particular, the break date was identified at the beginning of 2015, just after the oil glut. 
When combining all the evidence collected, we can conclude that no cointegration is evident among 
the modeled variables. Consequently, we focus on dynamic models built on the first difference of 
the variables. In addition, due to the presence of structural breaks in the variables of interest, we 
proceed with the analysis of subsamples. We separate the first part of our data up to the oil glut from 
the subsequent period. Then, we also account for the impact of the pandemic and consider three 
subsamples. Furthermore, given the relevant changes and the instability observed in the variables 
of interest, as well as the associated heterogeneity in the identification of the break data, in order 
to focus on the variables’ interdependence outside the break period, the subsamples we consider 

Figure 4:  Bound testing approach for cointegration: F-statistic computed over a rolling 
window of 104 observations (2 years) under case V (unrestricted trend and 
intercept) for both the conventional (continuous black line) and shale (dashed blue 
line) rigs. 

The two straight dashed lines are the bounds for cointegration: a statistic below the lower bound indicates absence of 
cointegration, while a statistic above the upper bound is in favour of cointegration; values between the bounds are inconclu-
sive.
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are not contiguous. This strategy allows the detection of structural changes in the interdependence 
and at the same time limits the possibility that the instability around break dates impacts on the 
parameter estimation. The specific periods considered are detailed further below in the empirical 
analysis section.

Note that implementing such a modeling strategy gives rise, in each subsample, to a system 
of equations wherein, besides the changes in the shale and in the conventional rigs, the changes in 
the log levels of both the oil price and oil production are also included. The system of equations is 
similar to a structural vector auto regressive (SVAR) model with the exception that the explanatory 
variables for the oil price and production are decomposed into their signed counterparts, as explained 
in the subsection below.

4.2 A VAR-type model

In each subsample, in the absence of cointegration, the NARDL model in equation 
(1) collapses to a linear model across stationary variables (changes and returns), including 
contemporaneous relations. Therefore, the system including the rig counts change (conventional 
and shale), as well as the oil price returns and the relative changes in oil production, becomes similar 
to a structural VAR. We concentrate on the reduced form representation focusing on the dynamic 
interdependence between variables and on the role of lagged signed oil price changes on the changes 
in rig counts. In order to measure the different reactions of oil rigs to increasing and falling oil 
prices, we first filter out the common factors impact from our variables of interest, as proxied by the 
set control variables defined in Section 3.3 using the following linear model:

1= ,t t t−+ +y F yµ β  (3)

where: yt is the four-dimensional vector containing the change in conventional rig counts  
( , =Co t ty ConventionalRigs∆ ), the change in shale rigs ( , =S t ty ShaleRigs∆ ), the change in oil log-
prices ( , = logO t ty WTI∆ ) and the change in oil log-production ( , = logP t ty OilProd∆ ); µ  is a vector 
of intercepts; Ft is the K-dimensional vector including the K control variables; β  is the 4 × K matrix 
of coefficients monitoring the impact of control variables on the variables included in yt; ty  is the 
vector of the variables of interest filtered from the impact of control variables and with zero mean. 
The specification above differs from those in the previous sections. We follow this strategy to 
simplify the subsequent evaluation of IRFs which are based on a simulation approach, as we shall 
discuss below. Filtering out control variables at this stage also corresponds to a removal from the 
target variables of the predictable component associated with exogenous regressors, a procedure that 
allows one to focus on the unpredictable movements of rig count changes.

In the second step of our analysis, we model the filtered variables in ty  by using a specific 
VAR-like specification. Let us start by introducing a standard VAR model with p lags:

1 1 2 2= ,t t t p t p t− − −+ +y y y y   
 εΦ Φ Φ  (4)

where lΦ  with = 1,2,l p  are square matrices of coefficients, and tε  is the innovation vector. We 
note that the model may include a large number of parameters, which may make the interpretation 
difficult; similarly to the NARDL case, we focus attention on a restricted parameterisation of the 
VAR(p) model:

1 1 1| 4 1| 13= ,t t M t t Q t t t− − − − −+ + +y y y y   Φ Φ Φ ε  (5)
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where 1
1| =1

=
m

t t m t jm j− − −∑y y  . This specification allows one to account for impacts from the previous 
week, from the previous month (i.e., the last four weeks) and from the previous quarter (i.e., the last 
thirteen weeks), mimicking the structure proposed by Corsi (2009) for modelling realised variance 
sequences, the heterogeneous auto regressive (HAR) model; consequently, we name the model in 
(5) as the VAR-HAR model.

This specification does not consider the possible different impact that positive and negative 
movements in oil prices and oil production have on the dynamic of changes in rig counts. To do so, 
we set up an extension of the VAR-HAR model accounting for the potentially different role exerted 
by price increases and price decreases, as well as by signed movements of oil production. Therefore, 
and consistent with the univariate NARDL model previously considered, we collect the changes of 
the filtered rig into the vector , ,=R

t NS t S ty y ′  y    and decompose the changes of the filtered oil price 
and oil production according to their sign, collecting them into the vector
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where ( )I a  is an indicator function that takes the value 1 when the condition a is true and 0 otherwise. 
We then combine these two vectors into = R C

t t t
 ′ ′
 

X y y . By using this last vector, we redefine the 
VAR model as follows:

1 1 1| 4 1| 13= ,t t M t t Q t t t− − − − −+ + +y X X X  

 εΦ Φ Φ  (7)

where 1
1| =1

=
m

t t m t jm j− − −∑X X  and the parameter matrices have dimension 4 × 6. This new 
parameterisation includes an asymmetric impact of oil price and quantity changes, since negative 
movements will have a potentially different impact compared to positive ones. The specification 
adopted is also similar to a threshold VAR, where the threshold is set at zero; it focuses on the 
changes of oil price and oil quantity, and it impacts only on the coefficients associated with these 
two variables. Further, our model is also a special case of a seemingly unrelated regression equations 
(SURE) model, where the explanatory variables include signed lagged components of a subset of 
the modeled variables. Thus, without introducing new acronyms, we refer to our specification of 
equation (7) as the SURE specification.

For the latter, parameter estimation is performed by resorting to ordinary least squares on 
an equation-by-equation basis, with standard inferential procedures. Furthermore, building on the 
estimated parameters, and taking advantage of the VAR-like structure of our model, we also proceed 
to the construction of the IRFs. Note that the variable ordering in the SURE model assumes that, 
when decomposing the innovations’ covariance by means of the Cholesky approach, shocks to the 
conventional rigs could impact on the shale rigs, and shocks to the oil price and oil production could 
impact on both rig counts time series; the variable ordering we consider is thus: oil price returns; 
oil production returns; changes in conventional rigs; changes in shale rigs. Of course, different 
orderings of variables may be adopted. However, given the purpose of our paper, which is to evaluate 
the asymmetric impact of oil price and oil production on the shale and conventional rig movements, 
we investigate the possibility that oil price and production shocks impact on rig counts. The chosen 
ordering is coherent with such a purpose.
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When computing the IRF, the different impacts of positive versus negative shocks on the 
oil price must be taken into account. Therefore, the IRF cannot be computed using the standard 
approach adopted for VAR models and must instead be based on specific recursions. Let us denote 
by Σ the variance-covariance matrix of tε , with L the Cholesky decomposition of the covariance 
matrix such that =′ ΣLL , and by 1=t t

−Lη ε  the orthogonalised innovations. Let the vector e identify 
the impulse hitting the system at time 0, and 0 =y Le  the contemporaneous reaction of the variables 
of interest. Note that the shock is a 4-variate vector whose elements are all equal to zero, except one 
element that takes a value equal to 1 or –1, corresponding to a positive or negative shock. Given 0y ,  
the construction of the impulse responses proceeds by iterating over the following two steps (and 
under the assumption that the system was in a steady state before the shock, that is, the past values 
of ty  were all equal to 0, and that the system receives a unique impulse at time 0):

1)  given the values of ty  from time 0 to time t, calculate the components of Xt, | 3t t−X , and 

| 12t t−X ; 
2)  retrieve the reaction of the system variables at time 1t+y  using the recursion in equation 

(7).

Steps 1) and 2) are iterated until the desired horizon for the IRFs is reached, which is equal 
to t j+y  for = 1,2,j h . Note that, given the specific lag structure we consider, we report the IRFs for 
h = 52 lags, corresponding to one year. Finally, the confidence intervals for the IRFs are recovered 
by resorting to bootstrap approaches. In detail, we resort to a residual bootstrap: 

1) generate a sequence of innovations by sampling from the model residuals; 
2) generate a simulated path of the variables of interest using the estimated parameters; 
3) estimate the model in the simulated series; 
4) with the parameters estimated in Step 3, recompute the IRF and store them. 

We iterate steps 1–4 5,000 times using sample-specific coefficients, residuals and simulated 
series length. We report confidence intervals computed using the cross-section of the simulated IRF. 
In addition to simple IRF (i.e., t j+y  for = 1,2,j h ) we also report cumulated IRFs, 

=1
=

j

t i t ii+ +∑Y y

  for 
= 1,2,i h , which allow the measurement of the long-term impact of an oil shock on the rig counts.

5. EMPIRICAL EVIDENCE

As mentioned in previous sections, we analyse three subsamples. These are defined 
coherently with the presence of a break in the series and separated by certain observations to improve 
the parameter estimation, excluding periods characterised by transition through interdependence 
phases. The periods are defined as follows: the first period covers up to 26th of September 2014; the 
second period starts from 9th January 2015 and goes up to 27th December 2019; the third period 
starts on 3rd April 2020 and goes until the end of the sample. On the one hand, the first and second 
subsamples end before the drop in oil price due to the oil glut and the pandemic. On the other hand, 
the periods between the first and second samples, and between the second and third samples, are not 
completely excluded from the analysis, as they will be incorporated within the lags in the VAR and 
SURE models. This is consistent with the interest in detecting the relation between rig counts and 
oil prices, since rig counts tend to react with some delay to oil price movements.

To evaluate the relationship between oil prices and rig counts, we first analyse the estimated 
coefficients of the VAR-HAR and SURE models on the two samples, which we identify by means 
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of the analyses reported in Section 3.12 The first sample goes from February 2011 to the end of 
September 2014, while the second sample starts in January 2015 and ends in December 2019. We 
report in Tables 5 and 6 the estimated coefficients for the first and second subsamples, respectively.

In the first period (2011–2014, Table 5), we see that only a few coefficients are statistically 
significant, with a slightly higher number in the case of the SURE specification. Let us start by 
considering oil price and production as dependent variables. In the VAR-HAR model, the oil price 
returns are unrelated to their lags and are negatively impacted by the previous week’s oil production 
changes. For the SURE specification, we observe a significant impact of the negative returns 
observed in the last quarter; however, the impact is limited to –0.1, indicating a mild mean-reversion 
behavior. Looking at the oil production returns, we note that in the VAR-HAR model, weekly lagged 
production changes have a positive impact on current production changes with a small coefficient 
of 0.06. In the SURE case, the monthly and quarterly impacts are present, and are associated with 
negative oil production returns, with coefficients of equal size but opposite sign. For both models, 
neither oil price returns nor production changes are influenced by shale or conventional rig changes 
with a significant impact. Consider now the rig changes as dependent variables. For both the VAR-
HAR and SURE specifications, the changes to the conventional rig counts seem to be characterised 
by a short-term mean reversion, as the one-week lag is statistically significant and negative, with a 
coefficient equal to –0.15, while the shale rigs show evidence of mild quarterly persistence, with a 
coefficient around 0.08; in absolute terms, the role of the lagged values is limited.

Let us now focus on the impact of oil price and oil production changes on rig count changes. 
In the VAR-HAR case, the shale rig count reacted quickly to a change in oil price. A 1% increase in 
oil price during the previous week leads to a decrease of 0.4 in the shale rig count differences, while 
conventional oil rigs do not react to price changes. Such a result can be explained by noting that the 
oil prices were mostly falling during the first observation period, thus, a negative change in oil price 
drop (i.e., an increase in absolute value) would determine a rise in the shale rig count. The SURE 
model partially confirms this finding. Shale rig changes react only to negative changes in oil prices, 
yet with a negative sign, showing that when oil price reduction decreased (i.e., less reduction), the 
shale rig changes rose. However, note that such an interpretation warrants some caveats: first, the 
relationship is only mildly significant (10% significance level). Moreover, both models include a 
limited R-squared in all the single equations of the model (see the last line of the table’s panel), 
which denotes, for the rig count changes, that the activation of rigs is not necessarily associated with 
a movement in the oil price (and this is consistent with the limited number of statistically significant 
coefficients). Finally, we see a moderate positive reaction of the changes in the conventional rig 
counts to the changes of oil production, which occurs only due to positive changes, yet this is 
significant only at the 5% confidence interval.

In the second sample, as reported in Table 6, we observe a greater interdependence among 
the variables. The oil price returns are affected only by their own lagged effects, only accruing 
from positive changes (as shown by the SURE model). The significance of the weekly lagged shale 
rig changes is coupled with an almost null coefficient. The same can be said for oil production 
changes, which are influenced only by their own lagged values when they are negative and there 
is an irrelevant impact of shale rig changes. In both cases, the series exhibits a return to the mean 
behavior.

Looking at the rig count changes as the dependent variables, we first note a sensible 
increase in the R-squared. For both models, the conventional rig changes show a limited reaction 

12. Estimated coefficients from the regression of observed series on control variables based on equation (3) are not 
reported here but are available from the authors upon request.
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to the previous week shale and the previous week and quarter own changes. The changes in the 
shale rig count react to those in the previous week and to the changes in the conventional rig count 
in the previous month. Focusing on the role exerted by oil price movements on the change in rigs, 
for the VAR-HAR model, we note that the previous quarter’s rate of change in oil price impacts 
both conventional and shale rig count variations. The impact is much greater for the shale rigs: 11.3 
compared to 4.9 for the conventional rigs. In other words, a 1% increase in oil price returns implies 
0.1 more shale oil rigs and just 0.04 more conventional rigs.

The SURE model provides richer evidence about the interdependence of variables. The 
quarterly lagged oil price returns no longer explain the conventional rig count changes (the negative 
one is significant only at the 10% level), while a quicker time reaction emerges. Conventional rig 
count changes respond to the negative and positive oil price changes of the previous week, with a 
negative sign for the first and a positive sign for the second. This may be explained given the stability 
of the conventional rig count time series in the second subsample, which seems to show a high return 
to the mean behavior, at a very limited level. In contrast, shale oil rig changes react to the positive oil 
price return variation with a quarter’s delay. A 5% increase in oil price returns increases the weekly 
variation of shale rigs by about one unit.

Finally, turning to the COVID-19 period (see Table 7), we again note that the SURE model 
provides a richer view compared to the VAR-HAR specification. This is evident in the oil return 
estimates. The SURE model has an R-squared more than double that of the VAR-HAR case, thanks 
to a much stronger and relevant impact of positive versus negative weekly, monthly and quarterly oil 
price returns. Oil production and rigs have a negligible impact on oil price returns. For oil production, 
both the VAR-HAR and the SURE specifications show that only past oil production changes are 
relevant and that the weekly and monthly impact emerge only when we condition on their sign. 
Moving to the conventional rig count changes, we note that in the VAR-HAR only the quarterly oil 
price changes have a significant and positive impact. When conditioning on oil price returns sign, 
the quarterly impact disappears, and a stronger weekly impact associated with oil price decreases 
emerges. For the shale rig counts, we have a similar and even stronger effect, given that a 2% price 
decrease in one week leads to a unit decrease in the shale rigs. Moreover, also a monthly effect is 
also present, again focused on decreases in the oil prices. The SURE model also shows evidence of 
an impact coming from oil production. Finally, we note that the R-squared is now extremely high, 
reaching 0.82 for the SURE specification.

The dynamic interdependence across all variables at all lags included in the SURE 
specification can be analysed through the IRF, computed following the procedure previously 
described. This allows us to show the asymmetric responses of conventional and shale oil rigs to 
shocks that hit the oil price. More precisely, the IRFs are distinguished according to the sign of 
shocks hitting the oil price returns. We report the response of the shale and conventional rig changes 
for the three samples.

Looking at Figures 5 and 6, note that all the reported IRFs are characterised by a convergent 
behavior, as expected in a stable model with stationary variables: the impulse impact tends to 
vanish over time. We further note that, after a shock to the oil price, a significant behavior response 
is present for both the conventional and shale rig counts during the second sample. In the first 
subperiod, hardly any significant response is seen from both conventional and shale oil rigs to an 
impulse (either positive or negative) on the oil price returns. Looking at the second subperiod, for 
conventional oil rigs, we see a very limited, slightly significant and moderate response to positive 
price changes. Conventional rig count first rises (after a week), then reduces over time to half its 
value for roughly eight weeks, and then returns to the long-run mean value. Even if the moderate 
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reaction of conventional oil rigs is more immediate than that of the shale rigs, the latter respond 
more widely and for a longer period. In particular, the shale oil rigs’ response to a positive oil price 
impulse reaches its maximum after eight weeks (two months) and maintains this level, at around 
1.75, for up to 14 weeks. Interestingly enough, the reaction of shale oil rigs is 75% higher than that 
of conventional oil rigs. When looking at the response after a negative oil price shock, a similar 
behavior appears, with a stronger response from the shale rigs compared to the conventional ones 
(which are also not significant). Again, the negative peak for conventional rigs (around –0.5) is 
reached after eight weeks, while the equivalent for the shale rigs is observed after 14 weeks (with a 
value of –1.6); furthermore, the effect of a negative shock is more prolonged than that of a positive 
shock on the oil price. Overall, the IRFs for the conventional and shale rig changes show a clear 
asymmetric behavior when comparing the reaction with positive versus negative oil price return 
shocks. In addition, and even more interestingly, the reaction of the shale rigs is stronger and more 
persistent than the response of the conventional rigs. The shocks on the oil production are much less 
interesting and do not provide evidence of a significant impact in the first and second periods (see 
Appendix). Despite the results for the conventional rigs seem somewhat counter-intuitive, looking 
at them together with the existence of breaks, they signal a changing reaction in the response to oil 
price changes when controlling for the market state and confounding factors. In addition, we stress 
that the most relevant finding is the accumulated reaction, showing, coherently with the expectations, 
a stronger reaction of shale rigs compared to conventional rigs.

During the Covid-19 period (Figure 6), we see a significant effect of oil price shocks on 
shale rigs, but no significant effect on conventional rigs. The shocks accruing from production are 
never significant for any type of rigs (plots are reported in the Appendix). Interestingly, the IRFs 

Figure 6:  IRFs of the conventional rig count difference (first row) and shale rig count 
difference (second row) with respect to a shock on the oil price return (columns 
1 and 2) or oil production return (columns 3 and 4) during the third sample (the 
Covid-19 period). 

Columns 1 and 3 (2 and 4) refer to a unitary positive (negative) structural shock. Confidence intervals (80% coverage) for 
the IRFs are obtained using a bootstrap approach adopting 5,000 replications.
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show that the number of shale rigs is reduced regardless of the sign of the shocks. Such an effect is 
counter-intuitive; we suspect that this may be due to some further factors that may have impacted 
both the shale industry and the oil prices. A natural candidate would be the pandemic itself and the 
different policy measures implemented worldwide and across the US over time to reduce its spread 
and tackle its consequences. This may have played a role in affecting industry expectations, and 
given the quicker reaction time of shale over conventional, it may explain why only the shale rigs 
are affected. A different explanation refers to the mobility of human capital and goods to which the 
shale industry has been reacting more quickly than the conventional one. Nevertheless, we admit 
that these aspects deserve further analyses.

A clearer picture of the striking difference between the reaction of conventional and shale 
rig counts to a shock on oil prices emerges when we look at the accumulated IRFs, reported in 
Figures 7 and 8. Focusing on the 2015–2019 period (the most interesting), after a 1% positive shock 
to the oil price returns, both conventional and shale rig counts’ accumulated response stabilizes 
after about 30 weeks.13 However, while the conventional rigs increase by about 9.5 units, the shale 
rig increase reaches a value of 26, about three times the conventional rig increase. A much stronger 
reaction of shale rigs is also observed in response to a negative oil price return shock. In fact, again 
looking at the stable value observed after about 40 weeks, we note that a 1% drop in oil prices leads 
to a contraction of conventional rigs by 7.8 (note, however, that the confidence interval is at the edge 
of significance, as it is for the IRF), while the shale rigs reduce by 23. In the first and second period, 
the cumulated IRFs after a positive and negative shock on the oil production show no significant 
responses after a shock; see the Appendix for corresponding figures. For the COVID-19 period, 
price shocks’ cumulated IRF suggest a significant negative long-run impact for shale rigs only, a 
counter-intuitive reaction but coherent with the IRF, as discussed above. A similar incoherence is 
observed for the cumulated IRF after a production shock. Again, we stress that the ongoing effect 
of the pandemic is, in our opinion, highly impactful on the results and requires additional future 
analyses.

6. ROBUSTNESS CHECK

As discussed before, it has been argued in the literature that the shale rigs count—oil 
and gas price relationship has been influenced by the change in the number of the Developed but 
Uncompleted wells (DUCs). The EIA’s Drilling Productivity Reports provide data on DUCs across 
seven shale areas: Anadarko, Appalachia, Bakken, Eagle Ford, Haynesville, Niobara, Permian.14 
Unfortunately, data of DUCs is provided on a monthly basis only. Moreover, the data does not 
distinguish between shale and oil DUCs. This does not allow us to use this variable as a control in 
our empirical analysis.15 However, data analysis shows that from 2013 onward the overall number of 
DUCs has been rising up to spring 2020, where a contraction phase started. Focusing on the specific 
regions, and excluding from the sample the Applachian and Haynesville basins which are mostly gas 
areas, we see that the dynamics crucially depends on the variation in the Permian basin, while for the 
other four areas the number of DUCs is small, relative to Permian, and has remained substantially 
stable throughout the period. See Figure 9.

13. It should be noted that the IRF and cumulated IRF represent the reaction to a single impulse, while in reality, 
sequences of shocks are observed; this would induce a complex set of reactions that may overlap or cancel out each other 
depending on their signs and intensity.

14. Source: https://www.eia.gov/petroleum/drilling/
15. Our analyses are all developed at the weekly frequency.
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Figure 8:  Accumulated IRFs of the conventional rig count difference (first row) and shale 
rig count difference (second row) with respect to a shock on the oil price return 
(columns 1 and 2) or oil production return (columns 3 and 4) during the third 
sample (the Covid-19 period). 

Columns 1 and 3 (2 and 4) refer to a unitary positive (negative) structural shock. Confidence intervals (80% coverage) for 
the IRFs are obtained using a bootstrap approach adopting 5,000 replications.

Figure 9:  Drilled but Uncompleted (DUC) inventory: upper panel, total number; lower panel, 
specific basins.

This allows us to perform an indirect robustness test, by focusing on two sub-samples 
of our rig count data, namely, the Permian basin on the one hand and the remaining four areas, 
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Anadarko, Bakken, Eagle Ford, Niobrara (ABEN), on the other.16 They have been grouped together, 
given the similarity in their patterns. To determine if the DUCs have an impact on our results, we 
focus on model (7) and we estimate it on the Permian data as well as on the ABEN data. For the sake 
of brevity, we do not replicate the whole analyses, and just focus on the IRFs. The comparison of the 
result across regions Permian vs ABEN and with respect to the full sample will allow us to verify if 
DUCs, which have been changing mostly in the Permian basin, have influenced the impact that oil 
price has on the rig count.

Figure 10 reports the accumulated IRFs obtained by estimating the VAR model in equation 
(7) on the data for the Permian basin (left plots) and the ABEN basins (right plots) for the time range 
2015–2019 and after a shock on oil prices. We focus on this subperiod since it is the one that provides 
the most interesting findings for our analyses; the complete set of plots, for other sub-periods, for 
both price and production shocks, and including both IRFs and accumulated IRFs, is available in 
the paper’s Appendix. When comparing the Permian basin to ABEN basins’ accumulated IRFs we 
first note they have very similar patterns. However, when considering the size and the significance, 
differences emerge. In particular, for the conventional rigs, we note that the response to price 
shocks is significant in the Permian basin case only, and slightly larger after a positive price shock. 
Differently, in the ABEN case, the response is not statistically significant. If we consider the shale 
rigs, both Permian and ABEN basis show significant reactions to price shocks, with comparable 
patterns, but with cumulated reaction larger after positive shocks for the Permian case and after 
negative shocks in the ABEN case. Comparing Figure 10 plots with those in Figures 7 and 8 we note 
that the full sample pattern are closer to the Permian ones. Nevertheless, the differences between 
the latter basin, which has the largest DUCs’ fraction and the other ones are limited, suggesting that 
our results is only marginally impacted by the presence of DUCs. However, we cannot exclude that 
other structural factors, not included in those accounted for in our analyses, might be responsible of 
the observed heterogeneity.17

Similar evidence, showing the comparability between full sample analyses and the analyses 
made at the basin’s level, are observed also across periods and when considering productivity shocks 
(see the Appendix).

7. CONCLUSION

In this work, we have studied the relationship between shale and conventional oil rig counts 
in the United States and WTI prices, controlling for economic and financial confounding factors 
and studying both the asymmetry of the responses and the causality ordering between variables. We 
first showed the existence of two structural breaks in the oil price-rig count relationship for both 
conventional and shale rigs. The breaks divide the analysis into three subperiods, from the beginning 
of the series up to the major oil price drop of 2014, from the price recovery up to the outbreak of 
COVID-19, and from then onward. The first period is characterised by a considerable increase in 
shale oil supply. The rig count analysis shows that only the shale rig count responded to positive 
variation in the oil price returns. The second subperiod analysis shows that shale rig counts react 
more heavily to oil price changes, while conventional ones exhibit a more stable behavior. However, 
the shale counts react with a higher time delay, that is, after a quarter. The timing of this reaction can 

16. As we argument before, we exclude the Applachian and Haynesville basins as they are producing mostly gas. 
Moreover, we exclude the other basins where we do not have data on the DUCs.

17. We stress that a detailed analysis of the structural causes that lead to the different results between the Permian and 
ABEN basins is beyond the scope of the present work.
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be explained by considering the timing of the production activity of shale fields. After rigging, the 
completion phase usually takes between three to five months.18 Finally, the evidence for the COVID 
period is less clear. It is confirmed that the shale rig counts react more than the conventional ones 
to oil price shock; however, this reaction does not depend on the sign of the price shocks. Such a 
behavior could be due to the existence of some heterogeneous factor, such as the COVID-related 
policy measures implemented, or also due to limited observation. In any case, further analysis is 
needed with longer time series and after the end of a pandemic, which, at the time of the completion 
of this article, is still ongoing.

Nevertheless, the analyses of the first two subperiods, before the outbreak of COVID-19, 
performed through the IRFs confirm the asymmetric response of shale and conventional oil rigs to 
changes in WTI prices. First, it is confirmed that the causality runs from WTI prices to changes in 
the number of shale and conventional oil rigs, as no impulse from any other variable has a significant 
impact on the number of rigs. The only significant response is the negative (positive) change in 
shale oil rig counts due to a fall (rise) in oil price returns, and the rise of conventional oil rigs as a 
consequence of a positive increase in oil price returns. For the latter, the impact is smaller and lasts 
shorter than for the shale rigs. The rise in shale oil rigs following an oil price return increase has 
a higher intensity and a more prolonged impact over time, even if this is more limited at the very 
beginning than in the case of conventional rigs. The impact is slightly smaller for negative oil price 
returns, yet it lasts longer than for positive ones. In summary, the shale industry responds to oil price 
returns such that, from 2015 onwards, a positive 1% WTI price increase (decrease) would induce an 
overall effect after 30 weeks, which increases by 25 units (reduces by 20 units) the shale rig count. 
The response of the conventional industry is quicker, ends up in about 20 weeks, yet it is much 
smaller: a positive (negative) 1% shock induces an accumulated effect of 8.8 (6.7) conventional oil 
rigs.

The different dynamics of rig counts in each period can depend on several factors. A natural 
candidate would be the oil price volatility, which has risen in the second period. Our result thus 
would complement the findings of Newell and Prest (2019), who estimate a 13-fold larger supply 
response due to shale shale activity. With regards to this study, we show that such a response is 
indeed asymmetric with respect to the sign of the oil price change. Other factors that might explain 
the different rig count response due to the structural change, before and after the oil glut, could be 
the change in the structure of the oil supply coupled with the drop in conventional oil production 
induced by the expansion of fracking activity in the second period. Such an interpretation would be 
coherent with the findings of Walls and Zheng (2022), who show an asymmetric response to rise and 
fall of oil price. In any case, regardless of the identification of the specific factors, our analysis show 
that structural brakes exist and play a major role in the assessment of the rig—count shale oil price 
relationship; neglecting them would lead to an incorrect evaluation of the statistical properties of the 
time series relationships and to erroneous quantitative assessments.

These findings can be of interest to the oil industry in terms of performing more accurate 
estimates of drilling rig counts and the need for frac counts while considering WTI prices. The 
financial industry could also benefit by the information about the relationship between financial and 
economic variables, oil price and industry reaction. More broadly, the study offers valuable insights 
to all those interested in identifying and quantifying the determinants of conventional and shale oil 
rig count changes. Finally, as pointed out in the literature section, the asymmetric rig count reaction 
to oil price changes between conventional and shale rigs can help to shed light on the potential of 
the US shale industry to cope with price variation and clarify to what extent the US shale supply has 

18. See, for instance, www.ukoog.org.uk/onshore-extraction/drilling-process.
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impacted OPEC’s ability to influence world oil price (Walls and Zheng, 2022). About this aspect, 
our results help clarify the causality of the rig count—oil price relationship and quantify both the 
magnitude and the timing of such a relationship, information that can be of utmost importance for 
the whole world oil market.
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Figure 12:  Impulse Response Functions (IRF) of the conventional rig count difference (first 
row) and shale rig count difference (second row) with respect to an impulse on the 
oil production return during the third sample (the Covid-19 period). 

Column 1 (2) refers to a unitary positive (negative) structural shock. Confidence intervals (80% coverage) for the IRF are 
obtained with a bootstrap approach adopting 5,000 replications.
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Figure 14:  Accumulated Impulse Response Functions (IRF) of the conventional rig count 
difference (first row) and shale rig count difference (second row) with respect to 
an impulse on the oil production return during the third sample (the Covid-19 
period). 

Column 1 (2) refers to a unitary positive (negative) structural shock. Confidence intervals (80% coverage) for the IRF are 
obtained with a bootstrap approach adopting 5,000 replications.
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Figure 15:  Permian basin Impulse Response Functions (IRF) of the conventional rig count 
difference (first row) and shale rig count difference (second row) with respect to an 
impulse on the oil production return. 

Columns 1 and 2 report the IRF for the first sample, 2011–2014, after a unitary positive (col. 1) or negative (col. 2) struc-
tural shock on the oil production returns; columns 3 and 4 report the IRF for the second sample, 2015–2019, after a unitary 
positive (col. 3) or negative (col. 4) structural shock on the oil production returns. Confidence intervals (80% coverage) for 
the IRF are obtained with a bootstrap approach adopting 5,000 replications.
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Figure 16:  Permian basin Impulse Response Functions (IRF) of the conventional rig count 
difference (first row) and shale rig count difference (second row) with respect to an 
impulse on the oil price return. 

Columns 1 and 2 report the IRF for the first sample, 2011–2014, after a unitary positive (col. 1) or negative (col. 2) 
structural shock on the oil price returns; columns 3 and 4 report the IRF for the second sample, 2015–2019, after a unitary 
positive (col. 3) or negative (col. 4) structural shock on the oil price returns. Confidence intervals (80% coverage) for the 
IRF are obtained with a bootstrap approach adopting 5,000 replications.
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Figure 17:  ABEN basins Impulse Response Functions (IRF) of the conventional rig count 
difference (first row) and shale rig count difference (second row) with respect to an 
impulse on the oil production return. 

Columns 1 and 2 report the IRF for the first sample, 2011–2014, after a unitary positive (col. 1) or negative (col. 2) struc-
tural shock on the oil production returns; columns 3 and 4 report the IRF for the second sample, 2015–2019, after a unitary 
positive (col. 3) or negative (col. 4) structural shock on the oil production returns. Confidence intervals (80% coverage) for 
the IRF are obtained with a bootstrap approach adopting 5,000 replications.
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Figure 18:  ABEN basins Impulse Response Functions (IRF) of the conventional rig count 
difference (first row) and shale rig count difference (second row) with respect to an 
impulse on the oil price return. 

Columns 1 and 2 report the IRF for the first sample, 2011–2014, after a unitary positive (col. 1) or negative (col. 2) 
structural shock on the oil price returns; columns 3 and 4 report the IRF for the second sample, 2015–2019, after a unitary 
positive (col. 3) or negative (col. 4) structural shock on the oil price returns. Confidence intervals (80% coverage) for the 
IRF are obtained with a bootstrap approach adopting 5,000 replications.
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Figure 19:  Permian basin Accumulated Impulse Response Functions (IRF) of the 
conventional rig count difference (first row) and shale rig count difference (second 
row) with respect to an impulse on the oil production return. 

Columns 1 and 2 report the IRF for the first sample, 2011–2014, after a unitary positive (col. 1) or negative (col. 2) struc-
tural shock on the oil production returns; columns 3 and 4 report the IRF for the second sample, 2015–2019, after a unitary 
positive (col. 3) or negative (col. 4) structural shock on the oil production returns. Confidence intervals (80% coverage) for 
the IRF are obtained with a bootstrap approach adopting 5,000 replications.
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Figure 20:  Accumulated Permian basin Impulse Response Functions (IRF) of the 
conventional rig count difference (first row) and shale rig count difference (second 
row) with respect to an impulse on the oil price return. 

Columns 1 and 2 report the IRF for the first sample, 2011–2014, after a unitary positive (col. 1) or negative (col. 2) 
structural shock on the oil price returns; columns 3 and 4 report the IRF for the second sample, 2015–2019, after a unitary 
positive (col. 3) or negative (col. 4) structural shock on the oil price returns. Confidence intervals (80% coverage) for the 
IRF are obtained with a bootstrap approach adopting 5,000 replications.
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Figure 21:  ABEN basins Accumulated Impulse Response Functions (IRF) of the conventional 
rig count difference (first row) and shale rig count difference (second row) with 
respect to an impulse on the oil production return. 

Columns 1 and 2 report the IRF for the first sample, 2011–2014, after a unitary positive (col. 1) or negative (col. 2) struc-
tural shock on the oil production returns; columns 3 and 4 report the IRF for the second sample, 2015–2019, after a unitary 
positive (col. 3) or negative (col. 4) structural shock on the oil production returns. Confidence intervals (80% coverage) for 
the IRF are obtained with a bootstrap approach adopting 5,000 replications.
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Figure 22:  ABEN basins Accumulated Impulse Response Functions (IRF) of the conventional 
rig count difference (first row) and shale rig count difference (second row) with 
respect to an impulse on the oil price return. 

Columns 1 and 2 report the IRF for the first sample, 2011–2014, after a unitary positive (col. 1) or negative (col. 2) 
structural shock on the oil price returns; columns 3 and 4 report the IRF for the second sample, 2015–2019, after a unitary 
positive (col. 3) or negative (col. 4) structural shock on the oil price returns. Confidence intervals (80% coverage) for the 
IRF are obtained with a bootstrap approach adopting 5,000 replications.
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Figure 23:  Permian basin Impulse Response Functions (IRF) of the conventional rig count 
difference (first row) and shale rig count difference (second row) with respect to 
an impulse on the oil production return during the third sample (the Covid-19 
period). 

Column 1 (2) refers to a unitary positive (negative) structural shock. Confidence intervals (80% coverage) for the IRF are 
obtained with a bootstrap approach adopting 5,000 replications.



The Asymmetric Relationship between Conventional/Shale Rig Counts and WTI Oil Prices / 181

Copyright © 2024 by the IAEE.  All rights reserved.

Figure 24:  Permian basin Impulse Response Functions (IRF) of the conventional rig count 
difference (first row) and shale rig count difference (second row) with respect to an 
impulse on the oil price return during the third sample (the Covid-19 period). 

Column 1 (2) refers to a unitary positive (negative) structural shock. Confidence intervals (80% coverage) for the IRF are 
obtained with a bootstrap approach adopting 5,000 replications.
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Figure 25:  ABEN basins Impulse Response Functions (IRF) of the conventional rig count 
difference (first row) and shale rig count difference (second row) with respect to 
an impulse on the oil production return during the third sample (the Covid-19 
period). 

Column 1 (2) refers to a unitary positive (negative) structural shock. Confidence intervals (80% coverage) for the IRF are 
obtained with a bootstrap approach adopting 5,000 replications.
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Figure 26:  ABEN basins Impulse Response Functions (IRF) of the conventional rig count 
difference (first row) and shale rig count difference (second row) with respect to an 
impulse on the oil price return during the third sample (the Covid-19 period). 

Column 1 (2) refers to a unitary positive (negative) structural shock. Confidence intervals (80% coverage) for the IRF are 
obtained with a bootstrap approach adopting 5,000 replications.
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Figure 27:  Permian basin Accumulated Impulse Response Functions (IRF) of the 
conventional rig count difference (first row) and shale rig count difference (second 
row) with respect to an impulse on the oil production return during the third 
sample (the Covid-19 period). 

Column 1 (2) refers to a unitary positive (negative) structural shock. Confidence intervals (80% coverage) for the IRF are 
obtained with a bootstrap approach adopting 5,000 replications.
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Figure 28:  Permian basin Accumulated Impulse Response Functions (IRF) of the 
conventional rig count difference (first row) and shale rig count difference (second 
row) with respect to an impulse on the oil price return during the third sample (the 
Covid-19 period). 

Column 1 (2) refers to a unitary positive (negative) structural shock. Confidence intervals (80% coverage) for the IRF are 
obtained with a bootstrap approach adopting 5,000 replications.
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Figure 29:  ABEN basins Accumulated Impulse Response Functions (IRF) of the conventional 
rig count difference (first row) and shale rig count difference (second row) with 
respect to an impulse on the oil production return during the third sample (the 
Covid-19 period). 

Column 1 (2) refers to a unitary positive (negative) structural shock. Confidence intervals (80% coverage) for the IRF are 
obtained with a bootstrap approach adopting 5,000 replications.
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Figure30:  ABEN basins Accumulated Impulse Response Functions (IRF) of the conventional 
rig count difference (first row) and shale rig count difference (second row) with 
respect to an impulse on the oil price return during the third sample (the Covid-19 
period). 

Column 1 (2) refers to a unitary positive (negative) structural shock. Confidence intervals (80% coverage) for the IRF are 
obtained with a bootstrap approach adopting 5,000 replications.




