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Abstract
Spin-glasses constitute a well-grounded framework for evolutionary models.
Of particular interest for (some of) these models is the lack of self-averaging
of their order parameters (e.g. the Hamming distance between the genomes of
two individuals), even in asymptotic limits, much as like what happens to the
overlap between the configurations of two replica in mean-field spin-glasses.
In the latter, this lack of self-averaging is related to a peculiar behavior of the
overlap fluctuations, as described by the Ghirlanda–Guerra identities and by
the Aizenman–Contucci polynomials, that cover a pivotal role in describing
the ultrametric structure of the spin-glass landscape. As for evolutionary mod-
els, such identities may therefore be related to a taxonomic classification of
individuals, yet a full investigation on their validity is missing. In this paper,
we study ultrametric identities in simple cases where solely random mutations
take place, while selective pressure is absent, namely in flat landscapemodels.
In particular, we study three paradigmatic models in this setting: the one parent
model (which, by construction, is ultrametric at the level of single individu-
als), the homogeneous population model (which is replica symmetric), and
the species formation model (where a broken-replica scenario emerges at the
level of species). We find analytical and numerical evidence that in the first and
in the third model nor the Ghirlanda–Guerra neither the Aizenman–Contucci
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constraints hold, rather a new class of ultrametric identities is satisfied; in
the second model all these constraints hold trivially. Very preliminary results
on a real biological human genome derived by The 1000 Genome Project
Consortium and on two artificial human genomes (generated by two different
types neural networks) seem in better agreement with these new identities
rather than the classic ones.

Keywords: glassy evolutionary models, ultrametric identities,
flat and rugged landscapes

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. The evolutionary interpretation of spin glasses

This special issue of the Journal of Physics A, dedicated to Random landscapes and dynamics
in evolution, ecology and beyond to celebrate the Nobel Prize awarded to Giorgio Parisi in
2021, highlights the widespread applications of spin glasses. Indeed, spin glasses constitute
a paradigmatic example of complex system [1–3] and their peculiar behavior is often evoked
when describing some non-trivial phenomenologies occurring in disparate areas of Science,
from several branches of Biology (e.g. neurology [4–6], genomics [7, 8], immunology [9–
11], ecology [12–14]) to Sociology [15, 16], Economics [17, 18], Computer Science [19, 20]
and more. In particular, quoting a sentence of Parisi’s Nobel Lecture ‘Multiple Equilibria’:
Ultrametricity and taxonomy are essentially related: a standard taxonomy, i.e. a hierarchical
classification, is possible only if the relevant properties have an ultrametric structure. In the
standard taxonomic classification of living beings, the distance is related to the history of
evolution. In spin glasses, the taxonomy is intrinsic to the static equilibrium properties of the
system and it is not related to evolution in time.

In this paper, we just focus on the framework provided by spin-glass theory to Natural
Evolution, which has attracted much interest in the past decades and nowadays represents an
insightful and solid branch of modern disordered statistical mechanics; specifically, we will
deepen the relation between taxonomic classification and spin glasses.

In the picture of Evolutionary Biology, genomic randomness plays a crucial role; take
for instance the adaptive walks approach, where Natural Evolution is modeled as a two-step
stochastic process: i. the genotype of a species undergoes random mutations, ii. its newborns
with higher fitness are preserved (see e.g. [21]). Then, as pointed out by Eigen, the compromise
between replication efficiency and frequency of mutations in evolutionary dynamics is con-
ceptually close to the compromise between energy minimization and entropy maximization in
statistical mechanics, moreover, the error threshold in the mutation rate in the former mimics
the thermal noise of the latter [22, 23]. Also, to quantify the genetic variability within a pop-
ulation, we can introduce a proximity measure q between pairs of individuals that plays like
an order parameter (mirroring the replica overlap) and, just like in disordered systems, two
distinct averages can be implemented, namely the population average (mirroring the thermal
average) and the process average (mirroring the quenched average) [24]. Therefore, one can
consider the population-average of q, which in general depends on time, and inspect whether
its average over a long time stretch exhibits vanishing fluctuations. If this is the case we have
a self-averaging structure of the model (in such a way that its main features could be captured
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by the quasi-species5 limiting description), and, if not, we have a non-self-averaging structure,
that is a hallmark of complex systems.

In this context it is also worth recalling Wright’s Adaptive Landscape (see e.g. [30]),
Fisher’s Fundamental Theorem of Natural Selection, Kimura’s Neutral Theory [31], and
Felsenstein’s statistical methods to reconstruct evolutionary trees [32, 33], which constitute
fundamental steps [34]. Along these lines, the development of a disordered statistical mech-
anical theory for Natural Evolution was started by Leuthäusser [35] and Tarazona [23] and
a spin-glass setting was pursued by Derrida, Higgs, Franz, Peliti, Sellitto, and Serva, just to
name a few (see e.g. [22, 24, 36–39] and references therein). More specifically, we recognize
two classes of models: those where both randommutations and selective pressure are involved
(also referred to as rugged landscapemodels) and those where evolution is driven only by ran-
dom mutations (also referred to as flat landscape models). Reference models for the former
are the P-spin-glass [21], the random energy model (REM) [22] and the Hopfield model [23],
while for the latter wemention the one parent model (OPM) [24], the homogeneous population
model (HPM) [38], and the species formation model (SFM) [36, 37]. The OPM is asexuated
and its order parameter lacks self-averaging, while its sexuated counterpart, the HPM, is self-
averaging, unless a threshold in the similarity between the two genomes that are matching to
reproduce is introduced and this case corresponds to the SFM. Notably, in the latter, the pres-
ence of a similarity threshold yields a persistent, spontaneous formation and extinction process
at the level of species with consequent breakdown of self-averaging.

The behavior of the order-parameter fluctuations in spin-glass models has been extensively
studied, starting from the fully-connected Sherrington–Kirkpatrick (SK) model [40–42], to
its generalizations (see e.g. [43–60] and section 1.2 for more details), including the rugged
landscape models mentioned above (where both random mutations and selective pressure are
at work). There, the order parameters are proved to be non-self-averaging and their momenta
satisfy a class of non-trivial identities known as Ghirlanda–Guerra and Aizenman–Contucci
(the latter are actually a family of identities that is a subset of the Ghirlanda–Guerra ones).
We recall that Ghirlanda–Guerra identities played a pivotal role in Panchenko’s proof of Parisi
ultrametricity in the SKmodel [61–63] and ultrametricity, in turns, covers a key role in Natural
Evolution (think for instance at the taxonomic classification in Biology).
In the context of Natural Evolution, the presence of both random mutation and selective pres-
sure seems thus to be associated to the break-down of self-averaging with the momenta of the
order parameter obeying some constraints. However, the validity of such constraints in the case
of flat landscape models is still an open question that deserves attention. In this work we prove
analytically for the OPM the validity of a new class of identities and find numerical evidence
for their validity also for the SFM for which, instead, classic identities seem to be violated.
Further, as a proof of concept, we test the standard constraints (both Ghirlanda–Guerra and
Aizenman–Contucci) as well as our new identities, on a biological dataset (the 1000 human
genome project [64] as well as on synthetic datasets generated by two different neural networks
(a Generative Adversarial Network, GAN [65], and a Restricted Boltzmann Machine, RBM
[66]) obtaining in all these cases that the new identities are satisfied while the standard ones
are mildly violated.

5 Eigen’s quasi species approach (see e.g. [25, 26]) neglects, by definition, fluctuations and evolution is ruled by
deterministic equations reminiscent of reaction kinetics; see also [27–29] for a systematic formalization of reaction
kinetics via statistical mechanics.
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1.2. The harmonic oscillator of spin glasses: SK model

The SK model [1, 2, 67, 68] is defined in terms of the pairwise Hamiltonian

HN(S|J) =
1√
N

N,N∑
i<j

JijSi Sj, (1.1)

where the symmetric couplings J= {Jij}N,Ni<j are N(N− 1)/2 i.i.d. random variables sampled
from P(Jij) =N (0,1)6 and the interacting units are N Ising spins S= {S1, . . .,SN} ∈
{−1,+1}N.

For a given inverse temperature β ∈ R+ and for a quenched coupling setting J, we introduce
the Boltzmann-Gibbs measure PN,β(S|J), the partition function ZN,β(J), and the quenched
free-energy FN,β that read as

PN,β(S|J) =
exp(−βHN(S|J))

ZN,β(J)
, (1.2)

ZN,β(J) =
2N∑
{S}

exp(−βHN(S|J)) , (1.3)

FN,β =
1
N
E lnZN,β(J), (1.4)

where the expectationE is over the possibile realizations of J drawn from P. Next, for a generic
observable O(S), we define the following averages

ωN,β,J(O) :=
2N∑
{S}

O(S)PN,β(S|J) (1.5)

⟨O⟩N,β := E[ωN,β,J(O)]. (1.6)

Due to frustration among the spins in the network, once the temperature is lowered beyond
a critical one 1/βc, the free-energy landscape of this system gets spontaneously rugged and
minima hierarchically split one into another recursively; consequently, spins tend to freeze in
configurations displaying no long-range ferromagnetic-like order. Then, a natural measure of
(any) internal organization of the system is a similarity measure between the spin configura-
tions obtained for two replicas of the system characterized by the same realization of disorder
J, namely two configurations sampled from the same distribution PN,β(S|J). In particular, the
(simplest) order parameter is the two-replica overlap

qab :=
1
N

∑
i

Sai S
b
i , (1.7)

that is nothing but the normalized scalar product between the configurations, corresponding to
two replicas labeled as a, b, and denoted as Sa and Sb. In the high-temperature region, spins
behave independently of each other, replica configurations are uncorrelated and the overlap
distribution is a Dirac delta peaked at zero, however, beyond βc and in the thermodynamic
limit N→∞, there emerge non-zero values for qab, such that the overlap distribution is a

6 Beyond sampling from standard Gaussians, the couplings can be drawn with Rademacher entries and the same
picture would be the same.
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(possibly infinite) sum of Dirac’s deltas at these values (the so-called Parisi plateau), and the
whole distribution Pβ(q) is retained as order parameter.

Thus, as ergodicity breaks down, thismodel breaks also the permutational invariance among
its replicas giving rise to the well-known phenomenon of replica symmetry breaking (RSB):
this was suggested as an ansatz by Giorgio Parisi in the eighties [1, 2] and then mathematic-
ally proved twenty years laters by Francesco Guerra [69] and Michel Talagrand [70] as for the
expression of free energy and by Dmitry Panchenko [61–63] as for the hierarchical organiza-
tion of its valleys (i.e. ultrametricity). Remarkably, Panchenko’s proof is significantly based on
the peculiar fluctuations of the overlap as summarized by the Ghirlanda-Guerra identities [42],
vide infra. Indeed, among the most striking features of the emergent order of the SK model
at low temperature lies the spontaneous ultrametric organization of its pure states, resembling
taxonomic ordering in Natural Evolution, as for instance captured by the 3-replicas and 4-
replicas overlap joint distributions Pβ(q12,q13) and Pβ(q12,q34) that read as

Pβ(q12,q13) =
1
2
Pβ(q12)Pβ(q13)+

1
2
Pβ(q12)δ (q12 − q13) , (1.8)

Pβ(q12,q34) =
2
3
Pβ(q12)Pβ(q34)+

1
3
Pβ(q12)δ (q12 − q34) . (1.9)

The first expression highlights that, when considering three replicas of the system, it turns out
that either two of their overlaps are independent, or they are identical and these two outcomes
happen with the same probability; the second expression confirms that, even when looking
at overlaps between two distinct couples of replicas, hence considering four replicas, such a
correlation persists although resized. Ultimately, this can be seen as a straight consequence of
Parisi distribution for 3-replica overlaps that reads as

Pβ(q1,q2,q3) =
1
2
Pβ(q1)x(q1)δ(q1 − q2)δ(q1 − q3)

+ [Pβ(q1)Pβ(q2)θ(q1 − q2)δ(q2 − q3)+ perm.], (1.10)

where θ is the Heaviside function and x(q) is the Parisi order parameter—for instance, if one
marginalizes over q3, gets Pβ(q1,q2) = 1

2Pβ(q1)δ(q1 − q2)+ 1
2Pβ(q1)Pβ(q2), hence recov-

ering (1.8) [71].
As a consequence of ultrametricity, along the past two decades a number of constraints

on overlap fluctuations in the low temperature regime of spin glasses have been obtained in a
mathematically controllable settings and, among these ensembles of families, the most famous
ones are certainly the Ghirlanda–Guerra identities [42], whose simplest expressions read as

⟨q412⟩− 2⟨q212q213⟩+ ⟨q212⟩2 = 0, (1.11)

⟨q412⟩− 3⟨q212q234⟩+ 2⟨q212⟩2 = 0, (1.12)

as well as their linear counterpart (where we get rid of ⟨q212⟩2 by substitution in the two
equations above), obtained independently by Aizenman and Contucci [40] via stochastic sta-
bility (and later with several other techniques [41, 58, 59, 72]), whence the first identity of the
family reads as

⟨q412⟩− 4⟨q212q223⟩+ 3⟨q212q234⟩= 0. (1.13)

Although the SK model remains the archetype of spin glasses, several variations on theme
have appeared in the Literature, possibly relaxing its mean-field fully-connected nature. For
instance, its version on random graphs (known as Viana–Bray model [43–45, 73]) was studied
finding ultrametric fluctuations that naturally generalize Ghirlanda–Guerra and Aizenman–
Contucci identities (and reduce to the latter whenever the coordination number of the graph
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approaches the network size). The same holds for models with higher-order interactions
(known as P-spin models [46–48]), even in the diverging number of interactions (known as
random energy model, REM [47]), up to extensions as neural networks (e.g. the Hopfield
model) [52], and beyond [55–60, 74]. Further, more abstract representations of the SK model,
as for instance the Random Overlap Structures introduced by Aizenman, Sims and Starr [49,
50] and its diluted RaMOSt counterpart, also exhibit Ghirlanda–Guerra fluctuations [51]. It
is thus rather natural to further inspect the validity of these ultrametric constraints in glassy
models of Natural Evolution, particularly focusing on flat landscapes.

2. Ultrametric fluctuations in glassy evolutionary models without selective
pressure

Models such as Gardner’s P-spin glass [75], Derrida’s REM [76] or Hopfield’s associative
memory [23] have been shown to be plausible models for Natural Evolution under the pres-
ence of both random mutations and selective pressure (see e.g. [21, 22, 77]), also, they are
well-known to exhibit overlap fluctuations that respect both the Ghirlanda–Guerra and the
Aizenman–Contucci identities. However, moving to models of Natural Evolution taking place
in flat landscapes nothing has been said so far on the validity of these ultrametric constraints.
A possible difficulty in answering this question possibly lays in the absence of an Hamiltonian
representation for these models. In the following we inspect the three best-known models in
this context, that is the OPM (that is a model for asexual reproduction exhibiting, by con-
struction, RSB on the scale of single progenies), the HPM (that is a basic model for sexual
reproduction, where reproduction may involve two parents regardless their genetic distance
and it is thus replica-symmetric) and the species formation model (SFM, that generalizes the
previous model by requiring a threshold in string similarity for dating and this crucially turns
the evolution of the model to be RSB at the level of species rather than single genomes).

We will show that, for the OPM, both the Ghirlanda-Guerra and the Aizenman-Contucci
identities are violated and we prove the existence of another family of identities that is instead
respected. Extending the same analysis on the HPM returns a rather simple scenario where
all the identities are trivially respected (as anticipated since the model is replica-symmetric).
Next, we tested (numerically) all the three families of ultrametric constraints on the SFM: a
finite-size-scaling analysis suggests that they are expected to hold in the suitable limits (i.e. the
infinite genome limit and large population limit), with the new class of identities being the ones
minimally violated by the finite size effects. Driven by this last finding, we close this study by
inspecting whether these constraints are fulfilled on actual genomes, focusing on a sample of
the biological human genome and two artificial genomes and we find that the scenario depicted
for the SFM is preserved also in these realistic settings.

The simplifying assumptions that we preserve along the paper are those of the original
manuscripts (see e.g. [24]), namely

• while Evolution takes place, the population size is preserved and set equal to M;
• each individual a ∈ {1, . . .,M} is represented by a string of N bits {Sa1, Sa2, . . .,SaN}, with
N constant during the evolutionary process, which can be interpreted as the genome of the
individual a7;

7 Actually, using a generic N-bits vectors allows us to map the string from a binary alphabet to the natural one for the
problem under study (e.g. a quaternary one when dealing with the four DNA bases adenine (A), cytosine (C), guanine
(G), and thymine (T)) such that, in general, the sequences {Sai (t)}Ni=1 can represent bases of a nucleic acid sequence,
amino acids in a protein, alleles in a genome, etc.
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• the genome is subjected to mutations and we focus on point-mutations8 that happen at con-
stant mutation rate (along different generations) and independently of a given locus (i.e. the
unit of the genome that mutates): we thus associate one-to-one to each genotype a pheno-
type9.

• the dynamics is parallel: at each iteration all the individuals in the populations are removed
and replaced by their offsprings.

With these simplifications the state of the population at a given time t can be described by spe-
cifying the genome of all the individuals {Sa(t)}Ma=1. The natural measure of genetic distance
between two individuals a and b is the Hamming distance

dab =
1
2

N∑
i=1

|Sai − Sbi |=
N
2
(1− qab), (2.1)

where qab is the overlap between the genomes of the individuals a and b andmirrors the overlap
between the spin configurations of two replicas. Analogously, the M×M matrix q evaluated
at a given time t provides a snapshot of the population structure at that time. Interestingly, it
can be proved that, in the N→∞ limit, the three flat landscape models under consideration
can be simulated by directly looking at the evolution of q rather than dealing with the set of
genomic sequences [36, 37].

2.1. The OPM

In the OPM studied by Derrida and Peliti [24] we consider a population Ω, made up of a
fixed number, M, of individuals reproducing synchronously and asexually, whose genome at
generation t is encoded by a N-bits vector Sa(t) ∈ {−1,+1}N for a= 1, . . .,M. At each gen-
eration t, all the individuals are removed, and a new generation is formed by offsprings of the
previous individuals. More precisely, each individual a ∈ Ω is randomly associated to a par-
ent G(a) ∈ Ω and the genome Sa(t) is taken identical to that of its parent SG(a)(t− 1) at the
previous generation t− 1 except for random mutations, as specified by

P1[S
a
i (t) =±SG(a)i (t− 1)] =

1
2
(1± e−2µ), (2.2)

where µ ∈ R+ tunes the mutation probability; the subscript ‘1’ highlights that we are compar-
ing individuals separated by one generation and, in the following, the expectation related to
P1 shall be referred to as E1. As for the mapping a→ G(a), it is assumed that G(a) is chosen
independently and uniformly in Ω for each individual and at each generation. Therefore, for
any individual a ∈ Ω, its ancestors over the previous t generations are given by the sequence
{G(a),G2(a), . . .,Gt(a)}= Γt(a).

As remarked in section 1, analogously to spin glasses, we have two averages: at each genera-
tion twe can take the average of any quantity involving the individuals of the whole population

8 While real world mutation can include insertion and deletions [11] and more complex randomness, the theoretical
advantage of single mutations is that a Markov process in the genome space driven by these mutation has symmetric
transitions rates as if -say- genotype A is one-step away from genotype B, then also genotype B is one-step away from
genotype A. Further, by the empirical counterpart there is a confirm [64] that the bulk of mutations in human genomes
is point-like.
9 In models with selective pressure the latter is used to evaluate the fitness of a given genotype such that the higher
its fitness the larger the number of its offsprings, but this does not happen in flat landscapes.

7



J. Phys. A: Math. Theor. 56 (2023) 385001 E Agliari et al

Ω (population average ⟨·⟩) but, as this quantity may fluctuate even for an infinitely large pop-
ulationΩ according to the particular mapping sequence (Γt)which has taken place, we should
consider also the average of these quantities taken over all possible realizations of the reproduc-
tion process (process average · ). Crucially, the process average can be obtained by averaging
over the temporal unfolding of the process for a sufficiently-long time stretch. In fact, as shown
in the next subsection, the typical overlap between the genomes of two individuals separated
by∆t generations decays exponentially as exp(−∆t/const), with const∝M. Thus, by taking
a relatively-long time-span (we choose 102 ×M), the time average is ensured to include a large
sample of independent realizations.

Specifically, at generation t, the population average of the overlap, that we denote with ⟨q⟩t,
can be obtained by means of the following

⟨q⟩t =
ˆ
qP(q, t)dq, (2.3)

where

P(q, t) =
1(M
2

)∑
a<b

δ(qab(t)− q). (2.4)

Thus, ⟨q⟩t fluctuates in time about a mean value that we denote with ⟨q⟩ and which can be
expressed as

⟨q⟩=
ˆ
qP̄(q)dq, (2.5)

where P̄ is the overlap distribution averaged over time. It can be proven [24] that, in the limit
N≫ 1, the time-averaged overlap distribution depends only on the parameter λ := 1

4Mµ and it
is

P̄(q) =

{
λqλ−1 0< q⩽ 1

0 otherwise
(2.6)

such that

⟨q⟩=
ˆ
qP̄(q)dq=

λ

λ+ 1
. (2.7)

Notice that for λ< 1 the distribution is peaked at q= 0, for λ= 1 the distribution is uniform
in the interval 0< q⩽ 1, and as λ exceeds 1 the peaks is at q= 1. As shown in figure 1, the
agreement between theoretical predictions and simulation outcomes is pretty good already for
relatively small sizes and it gets better and better as N is made larger. Remarkably, the broad
distribution of the overlap q highlights the non-self-averaging nature of the order parameter in
the OPM. Indeed, even in the infinite genome-size limit, one has [24]

⟨q⟩2 −⟨q⟩
2
̸= 0. (2.8)

2.1.1. Exponential decay of correlations for efficient sampling. If we let the system evolve for
a time t≫ 1, the last generation will be made up of individuals with a unique common ancestor
with probability one in the asymptotic limit [24], hence it is possible to find an expression
for the decay of genome-correlations between individuals at a given time and their common
ancestor, as a function of time. Let us start evaluating the expectation value of the overlap
between a parent SG(a)(t) and the corresponding offspring at t+ 1:

8
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Figure 1. Numerical estimate for the overlap probability density function P̄(q) for a
population of M= 50 individuals averaged over 105 generations. Several genome sizes
are tested and depicted in different colors as explained in the legend, while the dashed
curve corresponds to the theoretical probability distribution given by (2.6). As expected,
if λ< 1 mutations are likely and the overlap concentrates on values q≈ 0, if λ> 1 muta-
tions are rare and the overlap concentrates on values q≈ 1, while if λ= 1 the probability
distribution becomes uniform.

q∆t=1 = E1

[
SG(a)(t) ·Sa(t+ 1)

N

]
=

1
N

N∑
i=1

E1[S
G(a)
i (t)Sai (t+ 1)] (2.9)

=
1
N

N∑
i=1

{1− 2P1[S
a
i (t+ 1) =−SG(a)i (t)]} (2.10)

= 1− 2P1[S
a
i (t+ 1) =−SG(a)i (t)] = e−2µ, (2.11)

where in the last line we exploited the fact that loci are independent. We can demonstrate that
the expectation value of the overlap between a parent and the corresponding offspring at t+∆t
is

q∆t = E∆t

[
SG

∆t(a)(t) · Sa(t+∆t)
N

]
= e−2µ∆t, (2.12)

where the average E∆t is performed over the distribution P∆t which generalizes (2.2). We
prove this by induction: first we observe that q∆t=1 = e−2µ is true, next we assume that q∆t =
e−2µ∆t is true for any ∆t and we check that this is sufficient to ensure that also q∆t+1 =
e−2µ(∆t+1) is true. In the following, in order to lighten the notation, we shall set t= 0 without
loss of generality and we shall drop the superscript labeling the individual without any loss of
information: the individual we are referring to is a or its ancestor at the generation specified
by time dependence of S.

Let use observe that q∆t can be written as

q∆t =
1
N

∑
i=1

{1− 2P∆t[Si(∆t) =−Si(0)]} (2.13)

and, analogously, q∆t+1 can be written as

q∆t+1 =
1
N

∑
i=1

{1− 2P∆t+1[Si(∆t+ 1) =−Si(0)]} . (2.14)

9
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By the law of total probability we can write

P∆t+1[Si(∆t+ 1) =−Si(0)] = P∆t[Si(∆t) = Si(0)] P1[Si(∆t+ 1) =−Si(∆t)]
+P∆t[Si(∆t) =−Si(0)]P1[Si(∆t+ 1) = Si(∆t)]. (2.15)

Recalling that

P1[Si(∆t+ 1) =−Si(∆t)] =
1− e−2µ

2
(2.16)

we reach

P∆t+1[Si(∆t+ 1) =−Si(0)] =
1− e−2µ

2
+ e−2µP∆t[Si(∆t) =−Si(0)]. (2.17)

By direct substitution of the last equation into (2.14) we get

q∆t+1 =
e−2µ

N

∑
i=1

{1− 2P∆t[Si(∆t) =−Si(0)]} (2.18)

and, recalling the definition of q∆t given in (2.13), the last equation gets

q∆t+1 =
e−2µ

N

∑
i=1

[1− 2P∆t(Si(∆t) =−Si(0))] = e−2µq∆t = e−2µ(∆t+1). (2.19)

In figure 2, the exponential decay of the overlap between the ancestor and its offsprings as a
function of time is shown along with the related family tree.

2.1.2. A new class of ultrametric identities with three replicas. As stressed in section 2.1,

in the OPM the genome overlap is non self-averaging and ⟨q2⟩− ⟨q⟩
2
̸= 0. Following spin-

glass theory, one may wonder whether the overlap momenta are related by some non-trivial
identities. As recalled in section 1.2, in the SK andmany variations of its, theGhirlanda–Guerra
and Aizenman–Contucci identities are preserved under replica-symmetry-breaking. Here, to
inspect the validity of these identities we study numerically the following quantities

εGG = ⟨q412⟩− 2⟨(q12q13)2⟩+ ⟨q212⟩2 (2.20)

εAC = ⟨q412⟩− 4⟨(q12q13)2⟩+ 3⟨q212q234⟩ (2.21)

εSA = ⟨q412⟩− ⟨q212⟩2, (2.22)

where εGG,AC,SA are interpreted as a measure of possible violation. Remarkably, since our
inspection is only based on numerics, at finite population size and along a finite time-span,
in order to verify if non-null values of εGG,AC,SA are intrinsic or, rather, stem from finite-size
effects, we will perform a finite-size-scaling: if the extent of ε is non-decreasing by increasing
the system size, we will have a signature for the breakdown of the related identity.

Beyond these quantities, we can inspect the time-averaged joint probability density
P̄(q12,q23,q13) of the 3-replica overlaps, in the infinite genome limit N→∞, that is known
[24] and reads as,{
P̄(q12,q23,q13) = λ2

2 θ(q23 − q12)δ(q12 − q13)q
λ−1
12 q2λ−1

23 + Perm(1,2,3) q12,q13,q23 ∈ (0,1]

0 otherwise

(2.23)

looking for possible relations among overlap momenta involving three replicas.

10
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Figure 2. Upper panel: number of individuals generated by the ancestor as a function of
the generation; in this particular evolution, all the individuals present at time t= 13 turn
out to stem from the same common ancestor and other branches that have not survived
are omitted in this plot. The colormap highlights the overlap between the various indi-
viduals and the ancestor. Lower panel: time decay of the overlap between the ancestor
and its offsprings; the numerical estimate (solid line) is consistent with the theoretical
estimate e−2µt (dashed line) obtained in (2.19); the shadow represents three standard
deviations evaluated by repeating the process 100 times.

We stress that, at difference with the distribution provided in equation (1.10), in this scen-
ario the replica symmetric solution (i.e. the first term in the r.h.s. in equation (1.10)) is never
allowed: this behavioral difference between Parisi ultrametricity and the one pertaining to the
OPM is expected to riverberate in slightly different ultrametric constraints as we deepen later.
In particular, we find that in the thermodynamic limit N→∞

⟨qK12⟩=
⟨q12⟩

K+ ⟨q12⟩(1−K)
=

λ

λ+K
, ∀K ∈ N, (2.24)

which generalizes (2.7) and, by a direct calculation, we also find

⟨qα12qα13⟩=
λ2

(
5α2 + 8αλ+ 3λ2

)
(α+λ)2(2α+λ)(2α+ 3λ)

, ∀α ∈ R+. (2.25)

Now, by merging (2.24) and (2.25), we obtain the following relation, that plays as a new gen-
erator of overlap constraints for this model

⟨q2α12 ⟩+β⟨qα12qα13⟩− (1+β)
⟨qα12⟩⟨q2α12 ⟩⟨q

2α/3
12 ⟩〈

q
α
6

(
5+

√
25β+1
β+1

)
12

〉〈
q

α
6

(
5−

√
25β+1
β+1

)
12

〉 = 0.(2.26)

11
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Figure 3. Errors measured for the various ultrametric identities (depicted in different
colors, as explained by the legend on the left) as a function of the mean overlap eval-
uated for the OPM and for different values of M (depicted in different line styles, as
explained by the legend on the right); the process average is taken over a run of 102 ×M
generations. Note that, as M (and the time span, accordingly) grows, the error on self-
averaging (εSA), on Ghirlanda-Guerra identities (εGG) and on Aizenman-Contucci poly-
nomials (εAC) does not decrease, while the errors ε1, ε2, ε3 are robustly vanishing.

Indeed, the above equation constitutes an infinite family of relations which hold for the OPM.
In particular, due to the non-integrability of the overlap momenta with negative power, we

must have β ⩾−1/25 and α⩾ 0 which fulfills the condition 5−
√

25β+1
β+1 ⩾ 0 ensuring that

the moments of the overlap are well defined.
As an example, if we set α= 2 and β = 1/7 in equation (2.26) we get

⟨q412⟩+
1
7
⟨q212q213⟩−

8
7
⟨q212⟩⟨q412⟩⟨q

4/3
12 ⟩

⟨q7/312 ⟩⟨q12⟩
=: ε1, (2.27)

then, if we set α= 2 and β = 1/2 in equation (2.26), we get

⟨q412⟩+
1
2
⟨q212q213⟩−

3
2
⟨q212⟩⟨q412⟩⟨q

4/3
12 ⟩

⟨q8/312 ⟩⟨q
2
3
12⟩

=: ε2 (2.28)

where we introduced ε1 and ε2 to measure possible failures of these relations in analogy
to (2.20)–(2.22). As shown in figure 3, both ε1 and ε2 are numerically found to vanish for the
OPM. However, we stress that equations (2.27) and (2.28) are just two examples of equalities
since there is an infinite family of relationships which are satisfied by the OPM and that can
be obtained by varying α ∈ [0,+∞) and β ∈ [−1/25,+∞) in equation (2.26). In figure 3 we
also show numerical evidence that self-averaging is broken (as expected by construction) and
that nor the Ghirlanda–Guerra identities neither the Aizenman–Contucci polynomials seem to
hold.

12
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Figure 4. Diagrammatic representation of the only possible genealogy with three indi-
viduals with one common ancestor.

2.1.3. A new class of ultrametric identities with four replicas. In order to derive the equivalent
information provided by the Ghirlanda–Guerra identities (see equations (1.11) and (1.13)) we
need to account for four replicas.

Taken two individuals, labeled as a and b, we denote by τ ab their relatedness, that is the
rescaled number (rescaled w.r.t.M) of generations which we have to reckon back to find their
latest common ancestor. Before evaluating the distribution of the relatedness between four
different individuals let us introduce, following [24], the probability of a genealogy: given n
individuals, the probability Gn{τn−1, . . . , τ1} of a genealogy with one common ancestor and
with branching times (rescaled by M) τn−1, . . . , τ1 is

Gn{τn−1, . . . , τ1}=
n∏
l=1

exp

[
− l(l− 1)

2
(τl− τl+1)

]
(2.29)

with τn = 0 and where l identifies the number of different lineages in the generations immedi-
ately following τ l.

If n= 3 there is only one possible genealogy (see figure 4) with probability

G3{τ1, τ2}= exp(−τ1 − 2τ2) . (2.30)

Then the probability that the individuals have relatedness P̄(τab, τad, τbd) can be constructed by
steps: at first we have to multiply G3{τ1, τ2} by the Heaviside step function to fix the temporal
order of the branching times, that is

θ(τ1 − τ2)exp(−τ1 − 2τ2) , (2.31)

then by the delta function stemming from the fact that the relatedness of the individuals is set
at the branching times (e.g. τ1 = τac = τbc and τ2 = τab), hence finally we get

P̄(τab, τad, τbd) =
1
2
δ(τac− τbc)exp(−τac− 2τab)θ(τac− τab)+ Perm(a,b,c), (2.32)

where 1/2 is a normalization factor. By making the change of variable q= e−τ/λ we get the
overlap probability

P̄(qab,qad,qbd) =
λ2

2
δ(qac− qbc)exp(−qac− 2qab)θ(qab− qac)+ Perm(a,b,c). (2.33)

Now, in order to evaluate the probability of the relatedness values between four individuals
let us observe that there are three different ways in which we can add another individual to
the three-individuals genealogy G3{τ1, τ2} and they are represented by the dotted red lines in
figure 5. The genealogies II and III are topologically equivalent, therefore the diagram II has
multiplicity 2, ultimately providing

13
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Figure 5. Genealogical trees obtained by adding to the genealogical tree with three indi-
viduals (upper side) another line accounting for the fourth individual.

G4{τ1, . . . , τ3}=
1
3
G4(I)+

2
3
G4(II), (2.34)

where

G4(I) =
3
4
θ(τdc− τab)θ(τad− τdc)exp(−τad− 2τdc− 3τab)

× δ (τad− τac)δ (τac− τbd)δ (τbd− τbc) (2.35)

G4(II) =
3
4
θ(τac− τad)θ(τad− τab)exp(−τac− 2τad− 3τab)

× δ (τad− τbd)δ (τac− τbc)δ (τbc− τdc) (2.36)

and 3/4 plays as a normalization factor. Then,

P̄(τab, . . . , τbd) =
1
2
δ(τad− τbd)δ(τbc− τdc)δ(τac− τbc)θ(τad− τab)θ(τac− τad)

× exp(−3τab− 2τad− τac)+
1
4
δ(τad− τac)δ(τac− τbd)

× δ(τbd− τbc)θ(τad− τcd)θ(τdc− τab)

× exp(−2τdc− 3τab− τad)+ Perm(a,b,c,d) (2.37)

By making the change of variable q= e−τ/λ we get

P̄(qab, . . . ,qbd) =
1
2
λ3δ(qad− qbd)δ(qbc− qdc)δ(qac− qbc)

× θ(qab− qad)θ(qad− qac)q
3λ−1
ab q2λ−1

ad qλ−1
ac

+
1
4
λ3δ(qad− qac)δ(qac− qbd)δ(qbd− qbc)

× θ(qcd− qad)θ(qab− qdc)q
2λ−1
dc q3λ−1

ab qλ−1
ad +Perm(a,b,c,d).

(2.38)
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By exploiting the above overlap distribution it is possibile to evaluate overlap correlation func-
tions involving four replicas as, e.g.

⟨qα12qα34⟩=
λ2

(
4α2 + 18αλ+ 9λ2

)
(α+λ)(2α+λ)(α+ 3λ)(2α+ 3λ)

=

〈
q

α
3 (3+

√
5)

12

〉〈
q

α
3 (3−

√
5)

12

〉
⟨qα12⟩

〈
q2α12

〉〈
q

α
3
12

〉〈
q

2α
3

12

〉 . (2.39)

With some algebra, it has be proven that the following identity holds

〈
q2α12

〉
+β⟨qα12qα23⟩− (1+β)⟨qα12qα34⟩

〈
q

α
3 (3+

√
5)

12

〉〈
q

α
3 (3−

√
5)

12

〉
〈
q

α
6 (5+

√
25β+1
β+1 )

12

〉〈
q

α
6 (5−

√
25β+1
β+1 )

12

〉〈
q

α
3
12

〉 = 0,

∀β ⩾− 1
25

,α⩾ 0, (2.40)

providing the equivalent information in this new series of ultrametric constraints of the iden-
tity (1.12).

We can thus test the validity of these new constraints, considering also the possible violation
of the above equation (that we evaluate for the case α= 2,β = 1/7) introducing

〈
q412

〉
+

1
7

〈
q212q

2
23

〉
− 8

7

〈
q212q

2
34

〉
〈
q

2
3 (3+

√
5)

12

〉〈
q

2
3 (3−

√
5)

12

〉
〈
q

1
3 (5+

√
25/7+1

8
7

)

12

〉〈
q

1
3 (5−

√
25/7+1

8
7

)

12

〉〈
q

2
3
12

〉 =: ε3. (2.41)

As shown in figure 3, ε3 is numerically vanishing, similarly to what found previously for ε1
and ε2.

2.2. The HPM

Serva and Peliti [38] investigated a natural extension of the OPM, namely a two-parents model
where parents can mate regardless their genome proximity; as a result of this feature, the long-
time limit population is homogeneous (whence the name given to model) and, consequently,
the model exhibits replica-symmetry in such a way that all the ultrametric constraints become
trivial identities.

In the HPM, at each generation t, each individual a has two distinct parentsG1(a) andG2(a)
chosen at random from the previous generation. Each spin Sai is inherited from either G1(a)
or G2(a) with equal probability, and probability of faithful copy or mutation as is the same as
in equation (2.2). In the OPM model if the overlap between the parents G(a) and G(b) of two
individuals, a and b, is qG(a)G(b) then the expectation value of the overlap of a and b is

qab = e−4µqG(a)G(b). (2.42)

If N is infinite this becomes a deterministic rule for updating the overlap matrix. There is an
equivalent rule for updating the overlap matrix for the HPM in the limit N→∞. The pair of
spins Sai S

b
i is inherited from one of the four combinations of parents of the two individuals with

equal probability, therefore
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Figure 6. Distribution of the overlap P(q, t) of the HPM at λ= 1.0 and for different val-
ues ofM as shown in the legend (the thinner the line, the largest the size). AsM is made
larger and larger P(q, t) gets monomodal and peaked at ⟨q⟩t = 1/2, thus highlighting a
replica symmetric behavior of the specie evolution in the HPM.

qab =
e−4µ

4

[
qG1(a)G1(b) + qG2(a)G1(b) + qG1(a)G2(b) + qG2(a)G2(b)

]
(2.43)

with qaa = 1 always. It can be proven that the variance of ⟨q⟩t vanishes in the limit M→∞,
thus ⟨q⟩t is self-averaging in the HPM, in particular limM→∞ ⟨q⟩= λ

1+λ .
Figure 6 shows results about the overlap distribution for long simulations of the HPMmodel

with λ= 1 and, accordingly, limM→∞ ⟨q⟩= 1/2: the various rows show the overlap distribu-
tion P(q, t) sampled at different times and by inspecting its variance as a function ofM it can be
shown that it scales as 1/M hence it is expected to disappear for large population sizeM such
that P(q, t) gets concentrated around q= 1/2, showing that self-averaging of the overlap is
respected hence proving that the model behaves in a replica symmetric manner. Consistently,
in figure 7 we show that the errors on the ultrametric identities (trivially) approach zero as M
is made larger and larger.

2.3. The SFM

The SFM introduced by Higgs and Derrida [36, 37] is nothing but the two-parents model
of Serva and Peliti with a threshold for mating qmin. Specifically, it is defined in the same
way as the HPM addressed in section 2.2, except that the first parent G1(a) of individual a
is chosen randomly from the previous generation whereas the second G2(a) is chosen only
from those individuals of the previous generation that display an overlap qG1(a)G2(a) greater

16



J. Phys. A: Math. Theor. 56 (2023) 385001 E Agliari et al

Figure 7. Errors measured for the various ultrametric identities as a function of the mean
overlap for the HPM and for different values ofM; the process average is taken over a run
of 102 ×M generations Note that, as M grows, all the errors depicted tend to approach
the horizontal axes as expected since the overlap is self-averaging in this model.

than a threshold value qmin
10. In the absence of a threshold, thus in the case of the HPM, there

is a natural mean value of the overlap ⟨q⟩= λ/(1+λ), in such a way that, if we now set
qmin > λ/(1+λ), the system is highly perturbed by the introduction of the threshold and it
may never reach its natural equilibrium state: πάντα ρ̀ει̃ as in the low-temperature regime of
spin glasses.

A corroboration of this picture appears in figure 8 where we show the distribution of the
overlap P(q, t) at different times: the peaks appearing above the threshold qmin > 0.65 cor-
respond to the overlaps of the new species that have formed (and their disappearance to the
species extinction), while the large peak below the threshold exponentially collapses toward
zero (since such values of the overlap are lower than qmin no interbreeding is possibile between
the related genomes and, consequently, the peak must be vanishing).

2.3.1. Numerical inspection of ultrametric constraints in the SFM. Wenow study numerically
the validity of all the ultrametric identities as well as of the self-averaging, by measuring the
related errors ε. Specifically, we set λ= 1 in such a way that the expected value in the HPM is
⟨q⟩= 1

2 and we vary qmin ∈ [0,1]. We simulate the evolution over a population of sizeM and a
time span 102 ×M, and we collect data for ε1, ε2, ε3, εGG, εSA, εAC that are plotted in figure 9
versus qmin. As expected, when qmin <

1
2 , the threshold does not involve significant effects with

respect to the HPM and a replica-symmetric scenario is recovered with all the errors ε close to
zero. Conversely, the region qmin >

1
2 is non-trivial and there emerge differences between the

10 If no such a second parent is available then a new first parent is randomly selected.
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Figure 8. Distribution of the overlap P(q, t) of the SFM for λ= 1.0,qmin = 0.65,M=
2000. Note that, unlike the previous replica-symmetric HPM, here there actually are new
specie formation and extinction as the presence of several peaks in the P(q, t) evidences.
Further, beyond the big one on the left (that is exponentially collapsing toward zero as
time goes on), the erratic presence of these small peaks confirms that the SFM gives
rise to an evolutive scenario strongly resembling the replica-symmetry-breaking of the
low-temperature spin-glasses.

errors. As for the classical identities and for the variance (i.e. the self-averaging), the related
errors (εGG,AC,SA) are non-vanishing, actually their values grow with qmin without any robust
trend with respect to the size M; as for the new identities, the related errors (ε1,2,3) remain
close to zero.

2.3.2. Numerical inspection of ultrametric constraints in biological and artificial human gen-
omes. In this section we look for any evidence of the ultrametric relations discussed before
in experimental genomic datasets. To this aim we tested all the ultrametric identities and the
self-averaging property on the biological genome collected by The 1000 Genomes Project
Consortium [64] and on artificial genomes generated by two neural networks (a Generative
Adversarial network and a Restricted Boltzmann machine) [65] that have already proved to
reproduce correctly allele frequencies, linkage disequilibrium, pairwise haplotype distances
and population structure.

The 1000 Genomes Project Consortium has undertaken a seven year research project (the
1KGP), set up in 2008, with the plan of providing high quality genomes out of 2504 people
involving 26 populations across five continents, probably resulting in the most highly trustable
collection of human genetic variations. Indeed the human genome comprises three billion
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Figure 9. Errors measured for the various ultrametric identities as a function of the
mating threshold qmin for the SFM and for different values ofM; the process average is
taken over a run of 102 ×M generations. At the numerical level, the new set of identities
keep holding also for the SFM (i.e. ε1 ∼ ε2 ∼ ε3 ∼ 0), while all the other constraints
seem to be violated.

bases (estimated to carry around 20 000 protein coding genes) and, given two random gen-
omes, their average difference is of order of millions of bases11, hence their careful sequencing
is pivotal in providing highly informative repositories. The 1000 Genomes Project Consortium
has constituted a monumental challenge for bioinformaticians, who provided both whole-
genome sequencing and targeted exome sequencing, and researchers have now validated 80
millions (out of 100) variants stored in the public database on SNP, hence it is the perfect target
to test our new identities as well as the standard ones.

As in [65, 66], we consider a population of M= 2504 individuals (∼5 · 103 haplotypes)
spanning N= 805 Single Nucleotide Polymorphism (SNPs)12 from [64], which reflect a high
proportion of the population structure present in the whole dataset [65, 78]. The various fluc-
tuation relations are evaluated by splitting the dataset of M individuals into

√
M groups: the

population average ⟨ · ⟩ is carried out by identifying distinct replica indices with distinct indi-
viduals within the same group. In contrast, the process average · is carried out by performing
an arithmetic mean over the different evaluations of each group. Regarding the finite-size-
scaling with N, it has been carried out by selecting a common subset of size N of the genome
variable (−1,+1) for each individual.

Results are collected in figure 10 and show that also in these structured datasets the new
set of identities is better respected w.r.t. the classical ones (although the violation of the lat-
ter is minimal in these settings). Further, ε3, that, we recall, is the error related to the new

11 A typical genome differs from the reference human genome in 4–5millions of sites andmore than 99.9% of variants
consist of SNPs on which the theoretical models discussed in this paper are built.
12 Single nucleotide polymorphisms are the most common type of genetic variation among people: each SNP rep-
resents a difference in a single nucleotide (e.g. an SNP may replace the nucleotide cytosine C with the nucleotide
thymine T in a certain stretch of DNA).

19



J. Phys. A: Math. Theor. 56 (2023) 385001 E Agliari et al

Figure 10. Finite-size-scaling on genome length testing the various ultrametric identit-
ies for the real human genome (HUMAN, taken from [64]) and two artificial genomes
(taken from [65]) generated respectively with a Generative Adversarial Network (GAN)
and a Restricted Boltzmann machine (RBM). In these settings still our new family of
identities seems to be respected, while mild violations of the others persist (despite their
violation is minimal, i.e. εAC ∼ εGG ∼ O(10−3)).

4-replica ultrametric identity, see equation (2.40), seems to be sensible to the origin of the
dataset (biological vs artificial) as in the real biological dataset exhibits a faster drop as N is
increased.

3. Conclusions

The non-self-averaging behavior of the order parameter in spin-glass models is a peculiar,
intensively-studied feature which can be described in terms of a set of relations connecting
the fluctuations of the order parameter. Driven by strong analogies between Natural Evolution
and statistical mechanics of disordered systems, we investigated the validity of these ultramet-
ric relations and the existence of other kinds of relations focusing on three stochastic models
of evolving populations in flat landscapes. These models are the fairly standard ones in the
Literature on Natural Evolution without selective pressure, that is (i) the OPM – where repro-
duction is asexual and the distribution of genetic distances lacks self-averaging – (ii) the HPM
– where reproduction is sexual and with random mating (i.e. regardless the genetic distance)
and thus results in a replica symmetric picture where the genetic distance between pairs of
individuals has vanishing fluctuations in the thermodynamic limit—and (iii) the SFM where
reproduction is still sexual but with a threshold on the required similarity among mating gen-
omes before duplication. The latter represents the most interesting case as it is the closest to
biology and it spontaneously gives rise to a complex dynamics reaching a steady state with
new species that are continuously and spontaneously generated and suppressed during the
evolutionary process. Further, while in the first model the evolutionary tree is assumed and
it is related to single descendants from common ancestors, in the latter the evolutionary tree
emerges and it works at the level of species rather than single elements.

Focusing on fluctuations in the genetic distances between individuals, as far as the OPM
is concerned, after checking that self-averaging is absent in this model statistics, we have
shown by a finite-size-scaling argument that nor the Ghirlanda–Guerra identities neither the
Aizenman–Contucci polynomials are respected. On the other hand, we were able to prove a
new class of identities that are indeed respected also in our finite-size numerical checks. For
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the HPM, as it is replica symmetric, all these constraints are equally guarantee to converge to
zero in the asymptotic limit but they do not convey actual information. Then, dealing with the
SFM, our identities continue to hold, being only mildly affected by finite-size effects.

As a final test we focused on human genomes: we considered the real biological dataset
taken from the 1000 genome project consortium and two synthetic datasets on artificial gen-
omes generated by neural networks and, for all these three cases the scenario depicted by
the SFM seems to be confirmed here as well: the new set of ultrametric identities is sharply
respected while mild violations affect both Ghirlanda–Guerra identities as well as Aizenman–
Contucci polynomials. Clearly, the validity of these new constraints should be made statistic-
ally robust with more and more analysis on real datasets, and it is difficult to state by now their
role in a near future, but possible practical applications could involve shortening the timeline
of sequence analysis, result in novel filtering techniques to clean raw dataset and more.

Further, as models of Natural Evolution under selective pressure (namely Darwinian
Evolution) are known to display standard Ghirlanda–Guerra fluctuations (see e.g. the Franz-
Peliti-Sellitto model, corresponding to the P→∞ limit of the Kauffman–Levin P-spin-glass
model or the REM in the spin-glass jargon, and the equal-trap model analyzed by Leuthäusser
and Tarazona corresponding to the Hopfield model in the spin-glass jargon), a similar ana-
lysis to the present one should be conducted also in these not flat landscape scenarios to better
understand the role covered by Natural Selection (beyond random mutation) in shaping evol-
utionary taxonomies because, at present, these new findings seem to be in better agreement
with Kimura Theory of Neutral Evolution.
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