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Abstract
We investigate a new algebraic structure which always gives rise to a set-theoretic
solution of the Yang–Baxter equation. Specifically, a weak (left) brace is a non-empty
set S endowed with two binary operations + and ◦ such that both (S,+) and (S, ◦)

are inverse semigroups and

a ◦ (b + c) = (a ◦ b) − a + (a ◦ c) and a ◦ a− = −a + a

hold, for all a, b, c ∈ S, where −a and a− are the inverses of a with respect to + and
◦, respectively. In particular, such structures include that of skew braces and form a
subclass of inverse semi-braces. Any solution r associated to an arbitrary weak brace
S has a behavior close to bijectivity, namely r is a completely regular element in the
full transformation semigroup on S × S. In addition, we provide some methods to
construct weak braces.
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Introduction

The quantum Yang–Baxter equation is a fundamental topic of theoretical physics that
appeared at first in [37] and, independently, in [2]. Drinfel’d [15] posed the question of
finding all the set-theoretical solutions of this equation. Determining all the solutions,
up to equivalence, is very challenging and a large number of works related to this
matter of study has been produced over the years. Among the seminal papers, we
mention those of Gateva-Ivanova and Van den Bergh [18], Gateva-Ivanova and Majid
[19], Etingof, Schedler, and Soloviev [16], Lu, Yan, and Zhu [27]. For more details on
the development of the studies to date, we refer the reader to the introduction of [10]
and references therein. If S is a set, a map r : S × S −→ S × S satisfying the relation

(r × idS) (idS ×r) (r × idS) = (idS ×r) (r × idS) (idS ×r)

is said to be a set-theoretic solution of the Yang–Baxter equation, or shortly a solution,
on S. If S and T are sets, two solutions r and s on S and T , respectively, are called
equivalent if there exists a bijective map f : S → T such that ( f × f )r = s( f × f ),
see [16]. Given a solution r , it is usual to write r(a, b) = (λa(b), ρb(a)), with λa

and ρb maps from S into itself, for all a, b ∈ S. Moreover, r is said to be left non-
degenerate if λa is bijective, for every a ∈ S, right non-degenerate if ρb is bijective,
for every b ∈ S, and non-degenerate if r is both left and right non-degenerate. If r
is neither left nor right non-degenerate, then it is called degenerate. Furthermore, r is
called involutive if r2 = idS×S , idempotent if r2 = r , and cubic if r3 = r .

A productive research line for studying solutions drawn by Rump [32] is based
on the study of the theory of (left) braces, algebraic structures which include the
Jacobson radical rings. Guarnieri and Vendramin [21] introduced a generalization of
braces, namely, skew (left) braces, that are triples (S,+, ◦), where (S,+) and (S, ◦)

are groups and the following condition holds

a ◦ (b + c) = (a ◦ b) − a + (a ◦ c) ,

for all a, b, c ∈ S. In particular, if the group (S,+) is abelian then S is a brace.
Convention: To avoid parentheses, from now on, we will assume that the multipli-

cation has higher precedence than the addition.
As proved in [21, Theorem 3.1] every skew brace gives rise to a bijective non-

degenerate solution. As shown in [5, Theorem 9], such a solution r : S × S → S × S
can be written as

r (a, b) =
(

a ◦ (
a− + b

)
,

(
a− + b

)− ◦ b
)

, (1)

for all a, b ∈ S, where a− is the inverse of a in the group (S, ◦). Moreover, r is
involutive if and only if S is a brace. In the last years, several results about skew braces
have been provided in [6, 11, 12, 20, 23, 25, 28], just to recall a few.

To determine new solutions, in [10] there were introduced inverse semi-braces,
structures including skew braces. A (left) inverse semi-brace is a triple (S,+, ◦) such
that (S,+) is an arbitrary semigroup, (S, ◦) is an inverse semigroup, and
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a ◦ (b + c) = a ◦ b + a ◦ (
a− + c

)

holds, for all a, b, c ∈ S, where a− is the inverse of a with respect to themultiplication.
We recall that a semigroup (S, ◦) is called inverse if, for each a ∈ S, there exists a
unique a− ∈ S satisfying a ◦ a− ◦ a = a and a− ◦ a ◦ a− = a−. The books of
Clifford and Preston [14], Petrich [30], Howie [22], and Lawson [26] contain the most
important known results on the wide theory of inverse semigroups.

Inverse semi-braces S with (S, ◦) group are the semi-braces, structures studied
in [24]. They were initially introduced in [5] in the cancellative case, namely when
(S,+) is a cancellative semigroup, and recently deepened in [4]. Moreover, inverse
semi-braces with (S, ◦) a Clifford semigroup, i.e., an inverse semigroup having central
idempotents, are the generalized semi-braces [8].

Note that if S is an inverse semi-brace, the map r given in (1) is not necessarily a
solution. Sufficient conditions so that it is can be found in [10, Theorem 7]. Further-
more, in the context of semi-braces, a characterization has been given in [7, Theorem
3]. In particular, if (S,+) is a left cancellative semigroup, the map r is a left non-
degenerate solution [5, Theorem 9].

This paper aims to investigate a subclass of inverse semi-braces S in which the map
r always is a solution. Specifically, a non-empty set S endowed with two operations
+ and ◦ is said to be a weak (left) semi-brace if (S,+) and (S, ◦) both are inverse
semigroups satisfying

a ◦ (b + c) = a ◦ b + a ◦ (
a− + c

)
and a ◦ (

a− + b
) = −a + a ◦ b, (2)

for all a, b, c ∈ S, where −a denotes the inverse of a with respect to the sum. We
show that the conditions in (2) are equivalent to

a ◦ (b + c) = a ◦ b − a + a ◦ c and a ◦ a− = −a + a, (3)

for all a, b, c ∈ S, which make these structures very close to skew braces.
We highlight that the additive semigroup (S,+) and the multiplicative semigroup

(S, ◦) have the same set of idempotents and besides (S,+) is a Clifford semigroup.
Fully exploiting the inverse semigroup on the additive structure, we recover most
of the properties already known for skew braces. Among these, the map λ : S →
End(S,+), a �→ λa is a homomorphism from (S, ◦) into End(S,+) and the map ρ :
S → TS, b → ρb is an anti-homomorphism from (S, ◦) into the full transformation
semigroup TS . In addition, the following relation holds

a ◦ b = a ◦ (
a− + b

) ◦ (
a− + b

)− ◦ b,

for all a, b ∈ S, trivially satisfied in the case of (S, ◦) a group, and which is crucial to
prove our main result.

As mentioned before, the solution r associated to a skew brace S is bijective. In
particular, r−1 is the solution associated to the opposite skew brace Sop defined by
considering the opposite sum of S, see [25, Proposition 3.1]. Moreover, also maps λa

and ρb are bijective. Any weak brace S has an analogous behavior. Indeed, the maps
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λa and ρb admit an inverse in TS given by λa− and ρb− , respectively. Moreover, r has
a behavior near to bijectivity, since it is a completely regular element in TS×S , namely,
it admits the map rop as an inverse, that is the solution associated to the opposite weak
brace of S, and it holds rrop = ropr .

Finally, we review some of the constructions of inverse semi-braces provided in
[10] to obtain several instances of weak braces. Moreover, classes of examples can be
obtained starting from exactly factorizable Clifford monoids. For a fuller treatment we
refer the reader to the survey [17] that contains methods for constructing factorizable
inverse monoids. Specifically, our examples include those of skew braces provided by
Guarnieri and Vendramin in [21, Example 1.6] and also by Smoktunowicz and Ven-
dramin in [33, Theorem 3.3], which were mainly motivated by the result of Weinstein
and Xu in [36, Theorem 9.2]. In addition, we review some of the constructions of
inverse semi-braces provided in [10], to produce other new examples.

1 Basics on inverse semi-braces

In this section, we recall some basics on inverse semi-braces and we give some new
properties related to them.

For the ease of the reader, we initially recall essential notions for our treatment
which one can find, for instance, in [22] and [30]. Given a semigroup (S, ◦) and
a ∈ S, we say that an element x of S is an inverse of a if a ◦ x ◦a = a and x ◦a ◦ x = x
hold. The semigroup (S, ◦) is called inverse if, for each a ∈ S, there exists a unique
inverse of a, which we denote by a−. Clearly, every group is an inverse semigroup. A
fundamental instance of inverse semigroup is the set IX consisting of all the partial
one-to-one maps of a non-empty set X under the standard operation ◦ of composition
of relations (see [22, Theorem 5.1.5]).

The behavior of inverse elements in an inverse semigroup (S, ◦) is similar to that
in a group, since (a ◦ b)− = b− ◦ a− and (a−)− = a, for all a, b ∈ S. If a ∈ S, then
a ◦ a− and a− ◦ a are idempotents of S. Moreover, the set E(S, ◦) of the idempotents
is a commutative subsemigroup of S and e = e−, for every e ∈ E(S, ◦).

In addition, inverse semigroups in which its idempotents are central is called a
Clifford semigroups. Such semigroups belong to the class of completely regular semi-
groups, namely semigroups (S, ◦) for which, for any a ∈ S, there exists a unique
inverse a−1 of a such that a ◦ a−1 = a−1 ◦ a. Note that in a Cifford semigroup
a− = a−1, for every a ∈ S.

Definition 1 (Definition 3, [10])Let S be a non-empty set endowedwith twooperations
+ and ◦ such that (S,+) is a semigroup (not necessarily commutative) and (S, ◦) is
an inverse semigroup. Then, we say that (S,+, ◦) is a (left) inverse semi-brace if the
following holds

a ◦ (b + c) = a ◦ b + a ◦ (
a− + c

)
,

for all a, b, c ∈ S, where a− is the inverse of a with respect to ◦. We call (S,+) and
(S, ◦) the additive semigroup and the multiplicative semigroup of S, respectively.

123



232 F. Catino et al.

Any semi-brace [5, 24] is an inverse semi-brace, since in this case (S, ◦) is a group.
Other examples of inverse semi-braces are generalized semi-braces [8], with (S, ◦)

a Clifford semigroup. By the way, we recall that a generalized (left) semi-brace is
a structure (S,+, ◦) such that (S,+) is a semigroup, (S, ◦) is a completely regular
semigroup, and it holds a ◦ (b + c) = a ◦ b + a ◦ (

a−1 + c
)
, for all a, b, c ∈ S.

Any skew brace [21] and, in particular any brace [32], is an inverse semi-brace, too.
Indeed, −a + a ◦ b = a ◦ a− − a + a ◦ b = a ◦ (

a− + b
)
, for all a, b ∈ S.

Given an inverse semi-brace S, the map r : S × S → S × S given by

r(a, b) =
(

a ◦ (
a− + b

)
,

(
a− + b

)− ◦ b
)

,

for all a, b ∈ S, is called the map associated to S. Sufficient conditions so that the map
r is a solution have been provided in [10, Theorem 7]. For the class of semi-braces,
one can find a characterization in [7, Theorem 3]. In particular, if (S,+) is a left
cancellative semigroup, the map r is a left non-degenerate solution, see [5, Theorem
9]. In the more specific case of S a skew brace, r is a solution which is bijective and
non-degenerate, as proved in [21, Theorem 3.1].

We point out that, every non-commutative Clifford semigroup gives rise to two
inverse semi-braces that produce two not equivalent solutions.

Example 1 [10] Let (S, ◦) be an arbitrary Clifford semigroup and let us consider the
trivial inverse semi-brace (S,+, ◦), with a + b = a ◦ b, and the almost trivial inverse
semi-brace

(
S, +̃, ◦)

, with a +̃ b = b ◦ a, for all a, b ∈ S. Then, the solutions r and
s associated to (S,+, ◦) and

(
S, +̃, ◦)

are

r (a, b) = (
a ◦ a− ◦ b, b− ◦ a ◦ b

)
s (a, b) = (

a ◦ b ◦ a−, a ◦ b− ◦ b
)
,

for all a, b ∈ S, respectively. Moreover, if (S, ◦) is commutative, the maps r and s
coincide and r is cubic.

Note that the previous examples include [21, Example 1.3], given in the context of
skew braces. In addition, if the group (S, ◦) is not abelian, r = s−1, thus such solutions
are not equivalent.

As usual, if S is an arbitrary inverse semi-brace, let λ : S → End(S,+), a �→ λa

and ρ : S → TS, b �→ ρb be the maps defined by

λa (b) = a ◦ (
a− + b

)
ρb (a) = (

a− + b
)− ◦ b,

for all a, b ∈ S, respectively.
The following proposition contains some properties which essentially involve the

map λa and the idempotents of themultiplicative semigroup of any inverse semi-brace.

Proposition 2 Let S be an inverse semi-brace. Then, the following assertions hold:

1. λa◦a− = λaλa− ,
2. λa◦b◦b− = λa◦bλb− ,
3. a ◦ λa−(b) = a + λa◦a−(b),
4. a + λa(b) = a ◦ (

a− ◦ a + b
)
,
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for all a, b ∈ S.

Proof 1. Let a, b ∈ S. Then, we get

λa◦a− (b) = a ◦ a− ◦ (
a ◦ a− + b

) = a ◦ (
a− ◦ a ◦ a− + λa− (b)

)

= a ◦ (
a− + λa− (b)

) = λaλa− (b) .

2. If a, b, c ∈ S, we obtain

λa◦b◦b− (c) = a ◦ b ◦ b− ◦ (
b ◦ b− ◦ a− + c

)

= a ◦ b ◦ (
b− ◦ a− + λb− (c)

) = λa◦bλb− (c) .

3. If a, b ∈ S, we have that

a ◦ λa−(b) = a ◦ a− ◦ (a + b) = a + λa◦a− (b) .

4. If a, b ∈ S, it follows that

a + λa(b) = a ◦ a− ◦ a + a ◦ (
a− + b

) = a ◦ (
a− ◦ a + b

)
,

which completes the claim. ��
As a direct consequence, we get the following result.

Corollary 3 Let S be an inverse semi-brace. Then, the following equalities

λaλa−λa = λa and λa−λaλa− = λa−

hold, for any a ∈ S.

In other words, for every a ∈ S, the map λa admits the map λa− as an inverse in TS .
Finally, we note that in the case of (S, ◦) a group, it trivially holds the equality

a ◦ b = λa(b) ◦ ρb(a), for all a, b ∈ S. More generally, arbitrary inverse semi-braces
satisfy the following weaker properties.

Proposition 4 Let S be an inverse semi-brace. Then, the following statements hold:

1. λa(b)− ◦ λa(b) ◦ ρb(a) = λa(b)− ◦ a ◦ b,
2. λa(b) ◦ ρb(a) ◦ ρb(a)− = a ◦ b ◦ ρb(a)−,

for all a, b ∈ S.

Proof We only prove 1. and, in the same way, one can check the second equality. If
a, b ∈ S, then

λa(b)− ◦ λa(b) ◦ ρb(a) = (
a− + b

)− ◦ a− ◦ a ◦ (
a− + b

) ◦ (
a− + b

)− ◦ b

= (
a− + b

)− ◦ (
a− + b

) ◦ (
a− + b

)− ◦ a− ◦ a ◦ b

= (
a− + b

)− ◦ a− ◦ a ◦ b = λa(b)− ◦ a ◦ b.

Therefore, the assertion is proved. ��
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2 Weak braces

In this section, we introduce the algebraic structure of weak brace which generalizes
that of skew brace and forms a subclass of inverse semi-braces. Examples and several
structural properties are given.

From now on, if (S,+) and (S, ◦) are inverse semigroups, for any a ∈ S, we denote
by a− and −a the inverses of a with respect to ◦ and +, respectively.

Definition 5 Let S be a non-empty set endowed with two operations+ and ◦ such that
(S,+) and (S, ◦) both are inverse semigroups. Then, (S,+, ◦) is a weak (left) brace
if the following relations hold

a ◦ (b + c) = a ◦ b − a + a ◦ c and a ◦ a− = −a + a,

for all a, b, c ∈ S. We call (S,+) and (S, ◦) the additive semigroup and the multi-
plicative semigroup of S, respectively.

Any weak brace S is an inverse semi-brace. Indeed, we have

−a + a ◦ b = −a + a − a + a ◦ b = a ◦ a− − a + a ◦ b = a ◦ (
a− + b

)
,

for all a, b ∈ S.
The trivial and the almost trivial inverse semi-braces inExample 1 are easy instances

of weak braces obtained starting from a Clifford semigroup. On the other hand, not
every inverse semi-brace is a weak brace, see for instance [10, Example 1].

Clearly, the sets of the idempotents E(S,+) and E(S, ◦) coincide. As a direct
consequence, since inverse semigroups with exactly one idempotent are groups (cf.
Proposition 4 of Section 1.4 in [26]), it holds that (S,+) is a group if and only if (S, ◦)

is a group. Furthermore, (S,+) is an idempotent semigroup if and only if (S, ◦) is an
idempotent semigroup.

Proposition 6 Let S be a weak brace. Then, (S,+) is an inverse monoid with unit 0 if
and only if (S, ◦) is an inverse monoid with unit 0.

Proof Initially, we assume that (S,+) is a monoid with unit 0. If a ∈ S, we have

a ◦ 0 − a + a ◦ 0 = a ◦ (0 + 0) = a ◦ 0

and

−a + a ◦ 0 − a = a ◦ (
a− + 0

) − a = a ◦ a− − a = −a + a − a = −a,

thus a ◦ 0 = −(−a) = a. Moreover, since 0 ∈ E(S, ◦), from what has been just
proved, we get

a = a ◦ a− ◦ a = a ◦ a− ◦ 0 ◦ a = 0 ◦ a ◦ a− ◦ a = 0 ◦ a,

because 0 and a ◦ a− commute. Thus, (S, ◦) is a monoid with unit 0.
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Now, we suppose that (S, ◦) is a monoid with unit 0. Since, 0 ∈ E(S,+), we have
−0 = 0. If a ∈ S, we obtain

a = 0 ◦ (a − a + a) = 0 ◦ a − 0 + 0 ◦ (−a + a) = a + 0 − a + a = a + 0,

because 0 and −a + a commute. On the other hand, we have

a = a − a + a = a − a + 0 + a = 0 + a − a + a = 0 + a.

Therefore, (S,+) is a monoid with unit 0. ��
The additive structure of an arbitrary weak brace S is a Clifford semigroup, as we

will prove later. Thus, the fact that the trivial and the almost trivial weak braces are
defined by means of a Clifford semigroup is essential. To show this result on (S,+),
we need to give some structural properties, many of which are already known for skew
braces, and that we will also use throughout the paper.

The next lemma includes a result contained in [21, Lemma 1.7] and establishes a
link between the addition and the multiplication of any weak brace.

Lemma 1 Let S be a weak brace. Then, the following statements hold:

1. a ◦ (−b) = a − a ◦ b + a,
2. a ◦ b = a + λa(b),

for all a, b ∈ S.

Proof 1. If a, b ∈ S, at first we check that a ◦ (−b) = − (−a + a ◦ b − a). Indeed,

a ◦ (−b) + (−a + a ◦ b − a) + a ◦ (−b)

= a ◦ (−b + b) − a + a ◦ (−b) = a ◦ (−b + b − b) = a ◦ (−b)

and

(−a + a ◦ b − a) + a ◦ (−b) + (−a + a ◦ b − a)

= −a + a ◦ (b − b) − a + a ◦ b − a

= −a + a ◦ (b − b + b) − a = −a + a ◦ b − a,

hence we get the claim.
2. If a, b ∈ S, by 1., we have that

a ◦ b = a ◦ (− (−b)) = a − a ◦ (−b) + a = a − a + a ◦ b − a + a.

Thus,

a ◦ b = a − a + (a − a + a ◦ b − a + a) = a − a + a ◦ b = a + λa(b),

which is our claim.
��
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The next result concerning the map λ : S → End (S,+) is already proved for skew
braces, cf. [21, Proposition 1.9 - Corollary 1.10].

Proposition 7 Let S be a weak brace. Then, the map λa is an endomorphism of (S,+),
for every a ∈ S. Moreover, the map λ : S → End (S,+) , a �→ λa is a homomorphism
of the inverse semigroup (S, ◦) into the endomorphism semigroup of (S,+).

Proof Let a, b, c ∈ S. Then, we obtain

λa(b + c) = −a + a ◦ (b + c) = −a + a ◦ b − a + a ◦ c = λa(b) + λa(c).

Moreover, we get

λa(−b) + λa(b) + λa(−b) = λa(−b + b − b) = λa(−b),

λa(b) + λa(−b) + λa(b) = λa(b − b + b) = λa(b),

thus −λa(b) = λa(−b), i.e., λa is an endomorphism of the inverse semigroup (S,+).
Finally, by 1. in Lemma 1, we have that

λa◦b(c) = −a ◦ b + a ◦ b ◦ c = −a + a ◦ (−b) − a + a ◦ b ◦ c

= −a + a ◦ (−b + b ◦ c) = −a + a ◦ λb(c) = λaλb(c),

thus we get the claim. ��
Lemma 2 Let S be a weak brace. Then, it holds λa(a−) = −a, for every a ∈ S.

Proof Let a ∈ S. By 2. in Lemma 1, it holds a ◦ (
a− + λa− (a)

) = a ◦ (
a− ◦ a

) = a.
Moreover, by Proposition 7, we get

a = a ◦ (
a− + λa− (a)

) = a ◦ a− − a + a ◦ λa− (a) = a ◦ a− + λa◦a− (a)

= a ◦ a− − a ◦ a− + a = a ◦ a− + a.

It follows that

λa
(
a−) = −a + a ◦ a− = − (−a ◦ a− + a

) = − (
a ◦ a− + a

) = −a.

Therefore, the claim is proved. ��
As a consequence of Lemma 2, if S is a weak brace, we trivially have that

ρa− (a)− = a ◦ (
a− + a−) = λa

(
a−) = −a, for every a ∈ S.

We highlight that statements in Lemma 1, Proposition 7, and Lemma 2 hold more
in general starting from a triple (S,+, ◦) for which (S,+) and (S, ◦) are inverse
semigroups and a ◦ (b + c) = a ◦ b − a + a ◦ c holds, for all a, b, c ∈ S. The
additional property a ◦ a− = −a + a allows one to show that the additive semigroup
of any weak brace lies in the special class of Clifford semigroups.

Theorem 8 Let S be a weak brace. Then, the additive structure (S,+) is a Clifford
semigroup.
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Proof In light of [30, Exercises II.2.14 (i)], to prove our statement we show that (S,+)

is a completely regular semigroup. By Lemma 2 and Lemma 1-2., if a ∈ S, we obtain

a − a = a + λa
(
a−) = a ◦ a− = −a + a.

Therefore, (S,+) is a Clifford semigroup. ��
Below, we give some examples of weak braces. Let us observe that the third one

ensures that the multiplicative semigroup of a weak brace is not a Clifford semigroup
in general.

Example 2 1. Let S, T be two Clifford semigroups. Then, S × T endowed with the
following operations

(a, u) + (b, v) = (ab, vu) (a, u) ◦ (b, v) = (ab, uv) ,

for all (a, u) , (b, v) ∈ S × T , is a weak brace.
2. Let us consider a commutative inverse semigroup S and a group T , not necessarily

abelian. If α : S → Aut(T ), a �→ αa is a homomorphism of inverse semigroups,
then S × T endowed with the following operations

(a, u) + (b, v) = (ab, uαa (v)) (a, u) ◦ (b, v) = (ab, uv) ,

for all (a, u) , (b, v) ∈ S × T , is a weak brace.
3. Let S, T be two Clifford semigroups. If β : S → Aut(T ), a �→ βa is a homo-

morphism of inverse semigroups, then S × T endowed with the operations defined
by

(a, u) + (b, v) = (ab, uv) (a, u) ◦ (b, v) = (ab, uβa (v)) ,

for all (a, u) , (b, v) ∈ S × T , is a weak brace.

Note that the previous examples include those of skew braces provided by Koch
and Truman in [25, Example 6.1] and by Guarnieri and Vendramin in [21, Examples
1.4-1.5].

Further examples of weak braces will be subsequently presented in the last two
sections. Specifically, the third weak brace in Examples 2 will be a particular case of
a construction we deal with in Sect. 4.

The following propositions are crucial to prove that any weak brace determines a
solution.

Proposition 9 Let S be a weak brace. Then, the following hold:

1. λa(b) = −a ◦ b ◦ b− + a ◦ b,
2. λa (b) = a ◦ b ◦ ρb (a)−,
3. ρb (a)− = b− ◦ a− − b−,
4. ρb (a) = λa (b)− ◦ a ◦ b,
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for all a, b ∈ S. In particular,

λa(b) = a ◦ b ◦ b− ◦ (
a− + b

)
ρb(a) = (

a− + b
)− ◦ a− ◦ a ◦ b,

for all a, b ∈ S.

Proof 1. Let a, b ∈ S. Then,

λa (b) = −a + a ◦ (b − b + b)

= −a + a ◦ (−b ◦ b− + b
)

= −a + a ◦ (−b ◦ b−) − a + a ◦ b

= −a ◦ b ◦ b− + a ◦ b. by Lemma 1 − 1.

2. If a, b ∈ S, we have that

λa (b) = −a ◦ b ◦ b− + a ◦ b by 1.

= −a ◦ b + a ◦ b − a ◦ b ◦ b− + a ◦ b by Theorem 8

= a ◦ b ◦ (a ◦ b)− − a ◦ b ◦ b− + a ◦ b

= a ◦ b ◦ b− ◦ (
a− + b

)

= a ◦ b ◦ ρb (a)− .

3. Let a, b ∈ S. Then, we get

ρb (a)− = b− ◦ (
a− + b

) = b− ◦ a− − b− + b− ◦ b = b− ◦ a− − b−.

4. If a, b ∈ S, we obtain that

(
λa (b)− ◦ a ◦ b

)− = (a ◦ b)− ◦ a ◦ (
a− + b

)

= (a ◦ b)− − (a ◦ b)− ◦ a + (a ◦ b)− ◦ a ◦ b

= (a ◦ b)− − b− ◦ a− ◦ a by Theorem 8

= b− ◦ a− − b− + b− ◦ (−a− ◦ a
) − b− by Lemma 1 − 1.

= b− ◦ (
a− + a− ◦ a

) − b−

= b− ◦ a− − b−

= ρb (a)− , by 3.

which complete our claim. ��
As shown in [5, Proposition 6], if S is a left cancellative semi-brace, then the map

ρ : S → TS, b �→ ρb is a semigroup anti-homomorphism of the group (S, ◦) into the
monoid TS . This property also holds in any weak brace.

Proposition 10 Let S be a weak brace. Then, the map ρ : S → TS, b �→ ρb is a
semigroup anti-homomorphism of the inverse semigroup (S, ◦) into the monoid TS.
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Proof Let a, b, c ∈ S. Then, we get

(ρcρb(a))− = c− ◦ ρb(a)− − c− by Proposition 9 − 3.

= c− ◦ (
b− ◦ a− − b−) − c− by Proposition 9 − 3.

= c− ◦ b− ◦ a− − c− + c− ◦ (−b−) − c−

= c− ◦ b− ◦ a− − c− ◦ b− by Lemma 1 − 1.

= (b ◦ c)− ◦ a− − (b ◦ c)−

= ρb◦c (a)− by Proposition 9 − 3.

hence ρb◦c = ρcρb, which is our statement. ��
Remark 1 If S is a weak brace, the map ρb can be written as

ρb (a) = λλa(b)− (−a ◦ b + a + a ◦ b) ,

for all a, b ∈ S, see [21, Theorem 3.1]. In fact, we have that

λλa(b)− (−a ◦ b + a + a ◦ b)

= λλa(b)− (−λa (b) + a ◦ b)

= −λλa(b)− (λa (b)) + λλa(b)− (a ◦ b) by Proposition 7

= λa (b)− + λλa(b)− (a ◦ b) by Lemma 2

= λa (b)− ◦ a ◦ b by Lemma 1 − 2.

= ρb (a) by Proposition 9 − 4.

which is our claim.

3 The solution associated to a weak brace

In this section, we show that the map r associated to any weak brace S is a solution.
Furthermore, such a map r admits as an inverse the map rop, that coincides with the
solution associated to the opposite weak brace of S, and it holds rrop = ropr , namely
r is a completely regular element in TS×S . Finally, we investigate the behavior of the
powers of these solutions.

Let us begin by introducing the following lemma which allows us to prove the main
result of this paper.

Lemma 3 Let S be a weak brace. Then, the following identity

a ◦ b = λa(b) ◦ ρb(a) (4)

holds, for all a, b ∈ S.
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Proof Let a, b ∈ S. Then, we have

a ◦ (
a− + b

) ◦ (
a− + b

)− ◦ b = a ◦ (
a− + b − b − a−) ◦ b

= a ◦ (
a− − a− + b − b

) ◦ b by Theorem 8

= a ◦ (
a− ◦ a + b ◦ b−) ◦ b

= (
a + λa

(
b ◦ b−)) ◦ b

= a ◦ b ◦ b− ◦ b by Lemma 1 − 2.

= a ◦ b.

Therefore, this is the desired conclusion. ��
Theorem 11 Let S be a weak brace. Then, the map associated to S r : S × S → S × S
defined by

r (a, b) =
(

a ◦ (
a− + b

)
,
(
a− + b

)− ◦ b
)

,

for all a, b ∈ S, is a solution.

Proof Given a set S, it is a routine computation verifying that a map r : S×S → S×S
written as r (a, b) = (λa (b) , ρb (a)) is a solution if and only if

λaλb(c) = λλa(b)λρb(a) (c) (5)

λρλb(c)(a)ρc (b) = ρλρb(a)(c)λa (b) (6)

ρcρb(a) = ρρc(b)ρλb(c) (a) , (7)

for all a, b, c ∈ S. Thus, we prove our statement by showing that these last equalities
hold for the map r associated to the weak brace S.
By Proposition 7 and by Proposition 10, the maps λ and ρ are a homomorphism and
an anti-homomorphism, respectively. Thus, by (4), the relations in (5) and (7) follow.

Finally, since by Proposition 9, we have

λa(b) = a ◦ b ◦ b− ◦ (
a− + b

)
and ρb (a) = λa (b)− ◦ a ◦ b, (8)

we get

λρλb (c)(a)ρc (b)

= ρλb(c) (a) ◦ ρc (b) ◦ ρc (b)− ◦ (
ρλb(c) (a)− + ρc (b)

)
by (8)

= (λaλb (c))− ◦ a ◦ λb (c) ◦ ρc (b) ◦ ρc (b)− ◦ (
ρλb(c) (a)− + ρc (b)

)
by (8)

= (λaλb (c))− ◦ a ◦ b ◦ c ◦ (
ρρc(b)ρλb(c) (a)

)− by (4)

= (
λλa (b)λρb(a) (c)

)− ◦ a ◦ b ◦ c ◦ (ρcρb (a))− by (5) and (7)

= (
λλa (b)λρb(a) (c)

)− ◦ λa(b) ◦ ρb(a) ◦ c ◦ c− ◦ (
ρb(a)− + c

)
by (4)

= (
λλa (b)λρb(a) (c)

)− ◦ λa (b) ◦ λρb(a) (c) by (8)
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= ρλρb (a)(c)λa (b) , by (8)

thus (6) is satisfied. Therefore, r is a solution. ��
Now, to show that the solution r associated to any weak brace S is a completely

regular map, we introduce the notion of opposite weak brace of S, which is consistent
with that given by Koch and Truman [25, Proposition 3.1] in the context of skew
braces.

Proposition 12 Let (S,+, ◦) be a weak brace and define a +op b := b + a, for all
a, b ∈ S. Then, Sop := (S,+op, ◦) is a weak brace, which we call the opposite weak
brace of S.

Proof Clearly, (S,+op) is an inverse semigroup with −opa = −a, for every a ∈ S.
Thus,

−opa +op a = a − a = a ◦ a−.

Moreover, if a, b, c ∈ S, we get

a ◦ (
b +op c

) = a ◦ (c + b) = a ◦ c − a + a ◦ b = a ◦ b −op a +op a ◦ c,

thus Sop is a weak brace. ��
Simple examples of opposite weak braces are the trivial and the almost trivial ones.

Remark 2 Given a weak brace S, let us observe that the solution rop associated to Sop

can be written as

rop (a, b) = (
a ◦ b − a, (a ◦ b − a)− ◦ a ◦ b

) =
(
ρa−

(
b−)−

, λb−
(
a−)−)

,

for all a, b ∈ S. Indeed, by Proposition 9-3.,

λa (b)op = a ◦ (
b + a−) = a ◦ b − a + a ◦ a− = a ◦ b − a = ρa−

(
b−)−

and

ρb (a)op = (
λa (b)op)− ◦ a ◦ b by Proposition 9 − 4.

= ρa−
(
b−) ◦ a ◦ b

= λb−
(
a−)−

, by Proposition 9 − 2.

for all a, b ∈ S.

The following theorem illustrates a significant property of the solution r associated
to an arbitrary weak brace S, namely r has a behavior close to bijectivity. Moreover,
this result includes that in [25, Theorem 4.1], where it is proved that the inverse of the
bijective solution r associated to a skew brace S is the solution rop associated to the
opposite skew brace of S.
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Theorem 13 Let S be a weak brace, r the solution associated to S, and rop the solution
associated to the opposite weak brace of S. Then, the following hold

r rop r = r , rop r rop = rop, and rrop = ropr ,

namely, r is a completely regular element in TS×S. Moreover, rrop is a solution. In
particular, if S is a skew brace, then the solution r is bijective with r−1 = rop.

Proof Let a, b ∈ S. Initially, we prove that rrop = ropr . Note that, by Proposition 7,
we have

a ◦ b − a ◦ b + a = a ◦ b + λa (−b) = a ◦ (b − b) = a ◦ b ◦ b−. (9)

Thus, the first component of rrop (a, b) is

−λa (b)op + λa (b)op ◦ ρb (a)op = a − a ◦ b + a ◦ b by Remark 2 and (4)

= a ◦ b − a ◦ b + a by Theorem 8

= a ◦ b ◦ b−. by (9)

Moreover, by Proposition 9-4. and by (4), the second component of rrop(a, b) is equal
to

(
λλ

op
a (b)ρ

op
b (a)

)− ◦ λ
op
a (b) ◦ ρ

op
b (a) = (

a ◦ b ◦ b−)− ◦ a ◦ b = a− ◦ a ◦ b.

Besides, we obtain that

ropr (a, b) = (
λa (b) ◦ ρb (a) − λa (b) , (λa (b) ◦ ρb (a) − λa (b))− ◦ λa (b) ◦ ρb (a)

)

= (
a ◦ b − a ◦ b + a, (a ◦ b − a ◦ b + a)− ◦ a ◦ b

)
by (4)

= (
a ◦ b ◦ b−, a− ◦ a ◦ b

)
. by (9)

Therefore, the map ropr = rrop. Moreover, it is a routine computation to verify that
rrop satisfies (5), (6), and (7), hence it is a solution. It follows that, by Proposition 9-1.,
the first component of r rop r(a, b) is

λa◦b◦b−
(
a− ◦ a ◦ b

) = −a ◦ b ◦ b− + a ◦ b = λa (b)

and, by Proposition 9-4., the second component is equal to

ρa−◦a◦b
(
a ◦ b ◦ b−) = λa (b)− ◦ a ◦ b = ρb (a) ,

and so r rop r = r . Furthermore, by Remark 2, the first component of rop r rop(a, b)

is

a ◦ b ◦ b− ◦ a− ◦ a ◦ b − a ◦ b ◦ b− = a ◦ b − a ◦ b ◦ b−

= a ◦ b − a + a ◦ (−b ◦ b)− − a by Lemma 1-1.
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= a ◦ (
b + b ◦ b−) − a

= a ◦ b − a = λ
op
a (b)

and the second one is

(a ◦ b − a)− ◦ a ◦ b ◦ b− ◦ a− ◦ a ◦ b = (a ◦ b − a)− ◦ a ◦ b = ρ
op
b (a) ,

i.e., rop r rop = rop. Therefore, r is a completely regular map. Finally, if S is a skew
brace, by [21, Thereom 3.1], r is bijective, hence we clearly have that rop = r−1. ��

Remark 3 1. In general, one can note that every solution may have more than one
inverse. An example is given by the solution r on a monoid (S, ◦), with |S| ≥ 1,
defined by r (a, b) = (a ◦ b, 1), for all a, b ∈ S. Indeed, r is an idempotent solu-
tion (cf. [9, Examples 1.1]), thus an inverse is r itself. Furthermore, the idempotent
solution s (a, b) = (1, a ◦ b) is another inverse of r , which does not commutewith
r .

2. If S is a weak brace, then the solution r associated to S has a behavior which is
close to non-degeneracy. Indeed, as observed in Corollary 3, the map λa admits
the map λa− as an inverse, for every a ∈ S. Similarly, by Proposition 10, the map
ρb admits ρb− as an inverse, for every b ∈ S. Evidently, if (S, ◦) is a Clifford
semigroup, such maps are completely regular. In the next section, we will provide
a weak brace in Example 3 for which λa◦a− 	= λa−◦a .

Remark 4 Note that the map rrop in Theorem 13 can be obtained starting from an
arbitrary inverse semigroup. Namely, if (S, ◦) is an inverse semigroup, the map s =
rrop given by

s (a, b) = (
a ◦ b ◦ b−, a− ◦ a ◦ b

)
,

for all a, b ∈ S, is a solution that is idempotent.

Now, we focus on the behavior of the powers of the solutions r . We start by proving
the following lemma, which is already known for solutions associated to skew braces,
see [33, Lemma 4.13]. The properties obtained until now allow us to prove it in a
similar way even in the more general context.

Lemma 4 Let S be a weak brace and r the solution associated to S. Then, the following
hold

r2n (a, b) = (−n (a ◦ b) + a + n (a ◦ b) , (−n (a ◦ b) + a + n (a ◦ b))− ◦ a ◦ b
)

r2n+1 (a, b) = (−n (a ◦ b) − a + (n + 1) (a ◦ b) ,

(−n (a ◦ b) − a + (n + 1) (a ◦ b))− ◦ a ◦ b
)
,

for every n ∈ N, n > 0, and for all a, b ∈ S.
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Proof For the sake of simplicity, set λ(1)
a (b) := λa (b) and ρ

(1)
b (a) := ρb (a), and for

every n ∈ N, n > 0, write

λ(n)
a (b) := λ

λ
(n−1)
a (b)

ρ
(n−1)
b (a) and ρ

(n)
b (a) := ρ

ρ
(n−1)
b (a)

λ(n−1)
a (b) ,

for all a, b ∈ S. It is a routine computation to check that

rn (a, b) =
(
λ(n)

a (b) , ρ
(n)
b (a)

)

and

λ(n)
a (b) ◦ ρ

(n)
b (a) = a ◦ b (10)

hold, for all a, b ∈ S. Furthermore, by (10) and by Proposition 9-4., proceeding by a
simple induction we obtain

ρ
(n)
b (a) =

(
λ(n)

a (b)
)− ◦ a ◦ b,

for all a, b ∈ S. Hence, we only prove that

λ(2n)
a (b) = −n (a ◦ b) + a + n (a ◦ b) , (11)

λ(2n+1)
a (b) = −n (a ◦ b) − a + (n + 1) (a ◦ b) , (12)

for all a, b ∈ S, and we proceed by induction on n > 0.
If a, b ∈ S, for n = 1, by (4) we get

λ(2)
a (b) = λλa(b)ρb (a) = −λa (b) + λa (b) ◦ ρb (a) = −a ◦ b + a + a ◦ b

and,

λ(3)
a (b) = λ

λ
(2)
a (b)

ρ
(2)
b (a) = λ(2)

a (b) + λ(2)
a (b) ◦ ρ

(2)
b (a)

= (−a ◦ b + a + a ◦ b) + a ◦ b by(10)

= −a ◦ b − a + 2 (a ◦ b) .

Assume the claim follows for some n > 1. Then, if n is even, by induction hypothesis,
we have

λ(2n+1)
a (b) = λ

λ
(2n)
a (b)

ρ
(2n)
b (a) = −λ(2n)

a (b) + λ(2n)
a (b) ◦ ρ

(2n−1)
b (a)

= −λ(2n)
a (b) + a ◦ b by (10)

= − (−n (a ◦ b) + a + n (a ◦ b)) + a ◦ b

= −n (a ◦ b) − a + (n + 1) (a ◦ b) ,

hence (12) follows. Analogously, if n is odd, one can see that (11) is satisfied. ��
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In the following proposition, we prove that the solutions associated to a weak brace
having a commutative semigroup as additive structure are cubic, i.e., r3 = r . Clearly,
if S is a brace, since r is bijective we obtain r2 = idS×S , see [32].

Proposition 14 Let S be a weak brace and r the solution associated to S. Then, if the
inverse semigroup (S,+) is commutative it follows that r3 = r .

Proof Let a, b ∈ S. Then, by Lemma 4, we have that

λ(3)
a (b) = −a ◦ b − a + 2 (a ◦ b) = −a + a ◦ b − a ◦ b + a ◦ b

= −a + a ◦ b = λa (b) ,

hence, by 4. in Proposition 9,ρ(3)
b (a) =

(
λ

(3)
a (b)

)−◦a◦b = (λa (b))−◦a◦b = ρb(a).

Therefore, the claim follows. ��
To conclude this section, we give a property of a solution associated to a weak brace

S with an idempotent semigroup (S,+).

Proposition 15 Let S be a weak brace and r the solution associated to S. Then, if the
inverse semigroup (S,+) is idempotent it follows that r3 = r2.

Proof If a, b ∈ S, then by Lemma 4, we have that

λ(3)
a (b) = −a ◦ b − a + 2 (a ◦ b) = −a ◦ b − a + a ◦ b = λ(2)

a (b) ,

hence ρ
(3)
b (a) =

(
λ

(3)
a (b)

)− ◦ a ◦ b = (
λa (b)(2)

)− ◦ a ◦ b = ρ
(2)
b (a). Therefore, the

claim follows. ��

4 Constructions of weak braces

This section aims to review some of the constructions of inverse semi-braces provided
in [10] to obtain new examples belonging to the class of weak braces.

To this purpose, it is useful to characterize inverse semi-braces which are also weak
braces.

Proposition 16 Let S be a non-empty set endowed with two operations + and ◦ such
that (S,+) and (S, ◦) are semigroups. Then, S is a weak brace if and only if S is an
inverse semi-brace such that the following hold:

1. (S,+) is inverse,
2. a ◦ (

a− + b
) = −a + a ◦ b,

for all a, b ∈ S.

Proof Initially, note that we have already observed that any weak brace is an inverse
semi-brace. Conversely, assume that S is an inverse semi-brace such that 1. and 2. are
satisfied. We only have to show that, for every a ∈ S, a ◦a− = −a +a. Let us observe
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that the statements in Lemma 1, Proposition 7, and Lemma 2 still hold. If a ∈ S, we
have that a ◦ a− ∈ E(S,+). In fact,

a ◦ a− = a ◦ (
a− − a− + a−) = a ◦ a− + a ◦ (

a− − a− + a−) =a ◦ a−+a ◦ a−.

Moreover, we obtain

a = a + a ◦ a−.

Indeed, byLemma2,−a = λa
(
a−) = a◦(

a− + a−) = a◦a−+λa
(
a−) = a◦a−−a,

hence a = a − a ◦ a− = a + a ◦ a−.
Now, we show that a ◦ a− is the opposite of −a + a. We have that

a ◦ a− − a + a + a ◦ a− = a ◦ a− − a + a = a ◦ (
a− + a− ◦ a

) = a ◦ a−

and

−a + a + a ◦ a− − a + a = −a + a − a + a = −a + a.

Therefore, S is a weak brace. ��
Let us begin by examining the construction named matched product of inverse

semi-braces. We show that any matched product of weak braces gives rise to another
one without requiring any additional properties. To this purpose, we need the maps
α and β in [10, Definition 10], which allow for obtaining such a new weak brace
having multiplicative semigroup isomorphic to a Zappa product of the starting inverse
semigroups. Hereinafter, for the ease of the reader, given two weak braces S and T ,
we use the letters a, b, c for the elements of S and u, v, w for the elements of T .

Definition 17 Let S and T be two weak braces, α : T → Aut (S) a homomorphism of
inverse semigroups from (T , ◦) into the automorphism group of (S,+), and β : S →
Aut (T ) a homomorphism of inverse semigroups from (S, ◦) into the automorphism
group of (T ,+) such that

αu

(
α−1

u (a) ◦ b
)

= a ◦ α
β−1

a (u)
(b) βa

(
β−1

a (u) ◦ v
)

= u ◦ β
α−1

u (a)
(v) (13)

αu

(
α−1

u (a) ◦ a
)

= a, βa

(
β−1

a (u) ◦ u
)

= u 
⇒ αu (a) = a, βa (u) = u (14)

hold, for all a, b ∈ S and u, v ∈ T . Then, (S, T , α, β) is called a matched product
system of weak braces.

Theorem 18 (cf. [10], Theorem 12) Let (S, T , α, β) be a matched product system of
weak braces. Then, S × T with respect to

(a, u) + (b, v) := (a + b, u + v)

(a, u) ◦ (b, v) :=
(
αu

(
α−1

u (a) ◦ b
)
, βa

(
β−1

a (u) ◦ v
))

,
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for all (a, u) , (b, v) ∈ S × T , is a weak brace, called the matched product of S and
T (via α and β) and denoted by S � T .

Proof By [10, Theorem 12], we have that S � T is an inverse semi-brace. More-
over, the additive structure is clearly an inverse semigroup since (S × T ,+) is the
direct product of (S,+) and (T ,+). Thus, we only need to show that condition 2. in
Proposition 16 is satisfied.

Let (a, u) , (b, v) ∈ S × T . Then, we obtain

− (a, u) + (a, u) ◦ (b, v)

= (−a,−u) +
(
αu

(
α−1

u (a) ◦ b
)
, βa

(
β−1

a (u) ◦ v
))

=
(
−a + αu

(
α−1

u (a) ◦ b
)
,−u + βa

(
β−1

a (u) ◦ v
))

=
(
−a + a ◦ α

β−1
a (u)

(b), −u + u ◦ β
α−1

u (a)
(v)

)
by (13)

=
(
λaα

β−1
a (u)

(b), λuβ
α−1

u (a)
(v)

)

and

(a, u) ◦ (
(a, u)− + (b, v)

)

= (a, u) ◦
((

α−1
β−1

a (u)

(
a−)

, β−1
α−1

u (a)

(
u−)) + (b, v)

)

=
(
αu

(
α−1

u (a) ◦
(
α−1

β−1
a (u)

(
a−) + b

))
, βa

(
β−1

a (u) ◦
(
β−1

α−1
u (a)

(
u−) + v

)))

=
(

a ◦
(

a− + α
β−1

a (u)
(b)

)
, u ◦

(
u− + β

α−1
u (a)

(v)
))

by (13)

=
(
λaα

β−1
a (u)

(b), λuβ
α−1

u (a)
(v)

)
.

Therefore, by Proposition 16, S × T is a weak brace. ��
As shown in [10, Theorem 15], the solution r associated to any matched product

S � T of two weak braces S and T is exactly the matched product of the solutions
rS and rT associated to S and T , respectively, and it is given by

r ((a, u) , (b, v)) :=
((

αuλā(b), βaλū(v)
)
,

(
α−1

U
ραū(b)(a), β−1

A
ρβā(v)(u)

))
,

where we set

ā := α−1
u (a), ū := β−1

a (u) , A := αuλā(b), U := βaλū(v), A := α−1
U (A),

U := β−1
A (U ) ,

for all (a, u) , (b, v) ∈ S × T (cf. [10, Theorem 14]).
The semidirect product of two weak braces, cf. [10, Corollary 17], is a particular

case of the matched product. Specifically, if (S, T , α, β) is a matched product system,
we consider βa = idT , for every a ∈ S. Analogously, one can consider the case
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αu = idS , for every u ∈ T . A simple example of such a case is 3. in Examples 2,
regarding both the Clifford semigroups S and T as trivial weak braces. In this way,
the inverse semigroup (S × T , ◦) is exactly the semidirect product of the inverse
semigroups (S, ◦) and (T , ◦) viaα (or viaβ), in the sense of [29, 31].Namely, this is the
Zappa product of the two semigroups (S, ◦) and (T , ◦) with ua = σ (u) (a) = αu (a)

and ua = βa (u) = u, for all a ∈ S and u ∈ T . In particular, the multiplication ◦ on
S × T is given by

(a, u) ◦ (b, v) = (
a ◦ ub, u ◦ v

)
,

for all (a, u), (b, v) ∈ S × T .
The following is an instance of weak brace obtained starting from the semidirect

product of Clifford semigroups, cf. [10, Example 9].

Example 3 Let X := {1, x, y}, S the upper semilattice on X with join 1, and T the
commutative inverse monoid on X with identity 1 in which they hold x ◦x = y◦ y = x
and x ◦ y = y. Consider the trivial weak braces on S and T , respectively. If τ is the
automorphism of S given by the transposition τ := (x y), then the map σ : T →
Aut(S) given by σ(1) = σ(x) = idS and σ(y) = τ , is a homomorphism from (T , ◦)

into the automorphism group of the weak brace S. Therefore, by Theorem 18, S × T
is the semidirect product of S and T .

In addition, as anticipated in Remarks 3, there exists an element (a, u) ∈ S×T such
that λ(a,u)◦(a,u)− 	= λ(a,u)−◦(a,u). Indeed, λ(y,y)◦(y,y)− (y, 1) = λ(y,x) (y, 1) = (y, x)

and λ(y,y)−◦(y,y) (y, 1) = λ(x,x) (y, 1) = (1, x).

Now, we show how to obtain a new weak brace involving the construction of the
double semidirect product of inverse semi-braces, cf. [10, Theorem 19]. In this case,
to obtain an inverse semigroup (S × T ,+), we need that the codomain of the map δ

is Aut(S), cf. [35, Theorem 4]. Moreover, the additional condition (15) ensures that it
also is a Clifford semigroup, a necessary condition by Theorem 8.

Theorem 19 Let S and T be two weak braces, σ : T → Aut (S) a homomorphism
from (T , ◦) into the automorphism group of the weak brace S, with ua := σ(u)(a),
for all a ∈ S and u ∈ T , and δ : S → Aut (T ) an anti-homomorphism from (S,+)

into the automorphism group of (T ,+), with ua := δ(a)(u), for all a ∈ S and u ∈ T .
If the following conditions

(u − u)a = u − u (15)

(u ◦ v)λa(ub) + u ◦
((

u−)b + w
)

= u ◦
(
vb + w

)
(16)

hold, for all a, b ∈ S and u, v, w ∈ T , then S × T with respect to

(a, u) + (b, v) :=
(

a + b, ub + v
)

(a, u) ◦ (b, v) := (
a ◦ ub, u ◦ v

)
,

for all (a, u) , (b, v) ∈ S × T , is a weak brace. We call such a weak brace the double
semidirect product of S and T (via σ and δ).
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Proof By [10, Theorem 19], we have that S � T is an inverse semi-brace. Moreover,
the additive structure is an inverse semigroup since it is the semidirect product of the
semigroups (S,+) and (T ,+). Thus, we only show that the condition 2. in Propo-
sition 16 is satisfied. If (a, u) , (b, v) ∈ S × T , by setting v = u− ◦ u in (16), we
obtain

uλa(ub) + u ◦
((

u−)b + w
)

= u ◦
((

u− ◦ u
)b + w

)

= u ◦
((

u− − u−)b + w
)

= u ◦ (
u− − u− + w

)
by (15)

= u ◦ (
u− ◦ u + w

)

= u + λu (v) by Proposition 2 − 4.

= u ◦ v by Lemma 1 − 2.

Hence, we get

(−u)λa(ub) + u ◦ v = (−u)λa(ub) + uλa(ub) + u ◦
((

u−)b + v
)

= (−u + u)λa(ub) + u ◦
((

u−)b + v
)

= −u + u + u ◦
((

u−)b + v
)

by (15)

= −u + u + u ◦ (
u−)b − u + u ◦ v

= u ◦ (
u−)b − u + u ◦ v

= u ◦
((

u−)b + v
)

.

Thus, it follows that

− (a, u) + (a, u) ◦ (b, v) = (−a,−u−a) + (
a ◦ ub, u ◦ v

)

=
(
−a + a ◦ ub,

(−u−a)a◦ ub + u ◦ v
)

=
(
λa

( ub
)
, (−u)λa(ub) + u ◦ v

)

=
(
λa

(ub
)
, u ◦

((
u−)b + v

))

and

(a, u) ◦ (
(a, u)− + (b, v)

) = (a, u) ◦
((

u−
a−, u−)

+ (b, v)
)

= (a, u) ◦
(

u−
a− + b,

(
u−)b + v

)

=
(

a ◦ u
(

u−
a− + b

)
, u ◦

((
u−)b + v

))

=
(

a ◦ (
a− + ub

)
, u ◦

((
u−)b + v

))
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=
(
λa

(ub
)
, u ◦

((
u−)b + v

))
.

Therefore, by Proposition 16, S × T is a weak brace. ��
By [10, Theorem 23], we have that the solution r associated to a double semidirect

product of S and T via σ and δ is given by

r ((a, u) , (b, v)) =
((

λa
(ub

)
, u ◦ 	b

u,v

)
,

((
	b

u,v

)−
u−

ρub (a),
(
	b

u,v

)− ◦ v

))
,

for all (a, u) , (b, v) ∈ S × T , with 	a
u,v := (

u−)a + v, for all a ∈ S, u, v ∈ T .

5 Weak braces obtained from factorizable inversemonoids

In this section, we give a class of examples of weak braces. Specifically, we extend the
construction provided in [21, Example 1.6] and [33, Theorem 3.3], involving exactly
factorizable inverse monoids. Finally, we show that any exactly factorizable group
determines two skew braces which, in general, are not isomorphic.

A semigroup (S,+) is said to be factorizable if S = U + V , where U and V are
subsemigroups of S [34]. The pair (U , V ) is called a factorization of S, with factors
U and V . Moreover, a factorization (U , V ) of S is called exact (or univocal) if any
element a ∈ S can be written in a unique way as a = ua + va , with ua ∈ U and
va ∈ V . In such a case, it holds that U ∩ V = {0}, with 0 both right identity of U and
left identity of V , cf. [3, Theorem 2]. Clearly, if U and V are Clifford semigroups,
then 0 is the identity of U and V and, consequently, (S,+) is a monoid.

Let us observe that, in general, if S is a monoid admitting an exact factorization
into two Clifford submonoids, then S is not necessarily a Clifford monoid. However,
below we illustrate how to obtain easy examples of Clifford semigroups admitting an
exact factorization, involving the semidirect product of a group and a Clifford monoid.

Example 4 Let S be a group, T a Clifford monoid, and σ : T → Aut (S) a homomor-
phism.Then, S�σ T is aClifford semigroup. Indeed, by [31,Theorem6], it is an inverse
semigroup. Moreover, it is easy to check that E (S �σ T ) = {(0, e) | e ∈ E (T )}.
Hence, if (a, u) ∈ S × T and e ∈ E (T ),

(a, u) + (0, e) = (a, ue) = (a, eu) = (0, e) + (a, u) ,

i.e., S �σ T is a Clifford semigroup. Furthermore, the factorization of S �σ T is exact.
Note that, if T is an idempotent semigroup, then the semidirect product is direct.

We refer to the survey by FitzGerald [17] for methods that allow to construct
factorizable inverse monoids.

The following theorem is the main result of this section which shows how to obtain
a weak brace starting from an exact factorization of a Clifford semigroup.
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Theorem 20 Let (S,+) be a Clifford semigroup and (U , V ) an exact factorization of
S into two Clifford subsemigroups. Define on S the operation given by

a ◦ b := ua + b + va,

for all a, b ∈ S. Then, S◦ := (S,+, ◦) is a weak brace and its multiplicative semigroup
is isomorphic to the additive semigroup U × V . Moreover, U and V are the trivial
and the almost trivial weak braces, respectively.

Proof Initially, let us observe that (S, ◦) trivially is a semigroup. Moreover, (S, ◦) is
a completely regular semigroup. Indeed, if a ∈ S and x := −ua − va , we get

a ◦ x ◦ a = a ◦ (−ua + a − va) = ua − ua + a − va + va = ua + va = a,

and a ◦ x = ua − ua − va + va = −ua + ua + va − va = x ◦ a. Besides, (S, ◦) is a
Clifford semigroup. In fact, if e ∈ E(S, ◦) and a ∈ S, then we have ue, ve ∈ E(S,+)

and a ◦ e = ua + ue + ve + va = ue + ua + va + ue = e ◦ a. In addition, it holds
x = a−, since

x ◦ a ◦ x = x ◦ (ua + x + va) = −ua + ua + x + va − va = −ua − va = x .

Now, if a, b, c ∈ S, then we obtain

a ◦ b − a + a ◦ c = ua + b + va − va − ua + ua + c + va

= ua − ua + ua + b + c + va − va + va

= a ◦ (b + c)

and a ◦ a− = ua − ua − va + va = −ua + ua − va + va = −a + a. Therefore, S◦ is
a weak brace.

Moreover, it is easy to show that the map η : U ×V → S given by η(u, v) = u −v,
for all (u, v) ∈ U × V , is an isomorphism from the additive semigroup U × V into
the multiplicative semigroup (S, ◦). Finally, the last part of the statement is trivial. ��

Let us observe that weak braces S◦ obtained as in the previous theorem are also
generalized semi-braces.

In the particular case of factorizable groups, we recover the results given in
[21, Example 1.6] and [33, Theorem 3.3].

Corollary 21 Let (G,+) be a group and (U , V ) an exact factorization of G into two
subgroups. Then, G◦ is a skew brace and its multiplicative group is isomorphic to the
additive group U × V . Moreover, U and V are the trivial and the almost trivial skew
braces, respectively.

Remark 5 Regarding any element a = ua + va of G as the pair (ua, va) in U × V , the
construction in Corollary 21 is an instance of the double semidirect product of the two
skew braces U and V presented in Theorem 19, where σv = idU , for every v ∈ V , or,
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equivalently, (U ,+) � (G,+). Indeed, in such a case, if a, b ∈ U and t, v, w ∈ V ,

clearly

(a, t) + (b, v) =
(

a + b, tb + v
)

(a, t) ◦ (b, v) = (a + b, v + t) = (a ◦ b, t ◦ v) ,

and (15) is trivial. Moreover, λa (b) = b and

(t ◦ v)λa(b) + t ◦
((

t−
)b + w

)
= (v + t)b − tb + w + t = vb + w + t ◦

(
vb + w

)
,

i.e., (16) holds.

Remark 6 We recall that a skew (left) brace (S,+, ◦) is a bi-skew (left) brace if in
addition the roles of the sum and the multiplication can be reversed, i.e.,

a + (b ◦ c) = (a + b) ◦ a− ◦ (a + c)

holds, for all a, b, c ∈ S, cf. [13]. As a direct consequence of [13, Proposition 7.1], if
(G,+) is a group and (U , V ) is an exact factorization of G into two subgroups, then
G◦ is a bi-skew brace.

Now, given a group (G,+) with an exact factorization (U , V ), we wonder what
happens if we consider the other factorization (V , U ) of G. Thus, any element a ∈ G
can be also written as a = v′

a + u′
a . In a similar way, by exchanging the roles of U

and V in Corollary 21, one can prove the following result.

Proposition 22 Let (G,+) be a group and (V , U ) an exact factorization of G into
two subgroups. Define on G the following operation

a • b = v′
a + b + u′

a,

for all a, b ∈ G. Then, G• := (G,+, •) is a skew brace and its multiplicative group
is isomorphic to V ×U. Moreover, V and U are the trivial and the almost trivial skew
braces, respectively.

As in the case of G◦, one can check the following result.

Proposition 23 Let (G,+) be a group and (V , U ) an exact factorization of G into
two subgroups, with V a normal subgroup of G. Then, G• is a bi-skew brace.

In general, we point out that the skew braces G◦ and G• are not isomorphic. Note that,
if two skew braces are not isomorphic, the associated solutions can be equivalent. For
instance, it is enough to consider the trivial left braces on two abelian not-isomorphic
groups having the same order, since the solutions associated coincide with the twist
map. Thus, we wonder under which assumptions the skew braces G◦ and G• give rise
to non-equivalent solutions.

The next is an easy example in which the solutions r◦ and r• associated to G◦ and
G•, respectively, are not equivalent since G◦ is a trivial skew brace and G• is an almost
trivial skew brace.
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Example 5 Let us consider a group G which is the direct product G = U + V with a
non-abelian group U and an abelian group V . Clearly, we have that u + v = v + u,
for all u ∈ U and v ∈ V . Then, G◦ is the trivial skew brace, since

a ◦ b = ua + ub + vb + va = ua + ub + va + vb = ua + va + ub + vb = a + b,

for all a, b ∈ G. On the other hand, G• is an almost trivial skew brace. Indeed,

a • b = va + vb + ub + ua = ub + ua + va + vb = ub + a + vb = b ◦ a = b + a,

for all a, b ∈ G. Obviously, these skew braces are not isomorphic and the solutions
associated to G◦ and G• are not equivalent. In this case, such solutions are

r◦ (a, b) = (b, −ub + a + ub) r• (a, b) = (−ua + b + ua, a) ,

for all a, b ∈ G, respectively. Moreover, it holds r◦ = τ r• τ , where τ is the twist map.

Now, we focus on exact factorizations having abelian factors. Initially, we observe
that if G = U +V is an exact factorization withU and V abelian subgroups of (G,+),
then (G, ◦) is an abelian group, indeed

a ◦ b = ua + ub + vb + va = ub + ua + va + vb = b ◦ a,

for all a, b ∈ G. Similarly, (G, •) is an abelian group.
Recently, a complete classification of skew braces of order pq with p and q primes,

up to isomorphism, has been provided in [1, Theorem p.2]. In particular, if p > q
and q | p − 1 there are 2q + 2 skew braces, otherwise there is only the trivial one.
As far as we have observed, starting from an exact factorization G = U + V different
from a direct sum, with |U | = p and |V | = q, we obtain that (G, ◦) and (G, •) are
abelian groups. Consequently, the skew braces G◦ and G• are among those described
in the cases (i i) or (i i i) in [1, Theorem p.2] with the additive group isomorphic to
Zp � Zq . Indeed, by elementary computations, one can check that (i i) and (i i i) are
the unique skew braces in the classification having abelian multiplicative groups.

Below, we highlight that even in the smallest case, G◦ and G• are not isomorphic
and the solutions r◦ and r• are not equivalent.

Example 6 Let us consider the symmetric group G = Sym3 exactly factorized as
U +V , whereU = 〈(12)〉 and V = 〈(123)〉. Then,G◦ is a skewbrace (case (i i)), while
G• is a bi-skew brace (case (i i i)) having both the multiplicative groups isomorphic
to the cyclic group of order 6. Specifically, (G, ◦) = 〈(13)〉 = 〈(23)〉 and (G, •) =
〈(13)〉 = 〈(23)〉. In addition, the solutions r◦ and r• are described by

λ◦
id3 = λ◦

(12) = idSym3

λ◦
(23) = ((12) (13) (23))

λ◦
(123) = λ◦

(132) = λ◦
(13) = ((12) (23) (13))

ρ◦
id3 = ρ◦

(123) = ρ◦
(132) = idSym3
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ρ◦
(12) = ρ◦

(13) = ρ◦
(23) = ((13) (23)) ((123) (132))

and

λ•
id3 = λ•

(123) = λ•
(132) = idSym3

λ•
(12) = λ•

(13) = λ•
(23) = ((13) (23)) ((123) (132))

ρ•
id3 = ρ•

(12) = idSym3

ρ•
(23) = ρ•

(123) = ((12) (13) (23))

ρ•
(13) = ρ•

(132) = ((12) (23) (13)) .

These solutions are not equivalent. Indeed, by a routine computation one can check
that the unique bijection f from G into itself satisfying ( f × f )r◦ = r•( f × f )would
be the identity on G, an absurd.
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