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Abstract

We compare large N expansion of the localization result for the free energy F in the 3d N = 6 supercon-
formal U(N)k × U(N)−k Chern-Simons-matter theory to its AdS/CFT counterpart, i.e. to the perturbative 
expansion of M-theory partition function on AdS4 × S7/Zk and to the weak string coupling expansion 
of type IIA effective action on AdS4 × CP3. We show that the general form of the perturbative expan-
sions of F on the two sides of the AdS/CFT duality is indeed the same. Moreover, the transcendentality 
properties of the coefficients in the large N , large k expansion of F match those in the corresponding M-
theory or string theory expansions. To shed light on the structure of the 1-loop M-theory partition function 
on AdS4 × S7/Zk we use the expression for the 1-loop 4-graviton scattering amplitude in the 11d super-
gravity. We also use the known information about the transcendental coefficients of the leading curvature 
invariants in the low-energy effective action of type II string theory. Matching of the remaining rational 
factors in the coefficients requires a precise information about currently unknown RR field strength terms 
in the corresponding superinvariants.
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1. Introduction

Localization [1] provides a remarkable source of information about supersymmetric gauge 
theories beyond the standard weak-coupling perturbation theory. In the context of AdS/CFT du-
ality [2] this information may be used to learn about the structure of string theory or M-theory 
corrections to the tree level or supergravity order.

Here we shall focus on the 3d N = 6 supersymmetric U(N)k × U(N)−k Chern-Simons-
matter theory [3] in which the free energy F(N, k) on S3 was computed by localization in [4–7]
(see [8] for a review and further references). For large N and fixed k this theory is dual to M-
theory on AdS4 × S7/Zk while for large N and large k with fixed λ = N

k
is dual to the 10d type 

IIA string theory on AdS4 × CP3 background.2

Our aim will be to compare the large N expansion of F to its AdS/CFT counterpart, i.e.
to perturbative expansion of the M-theory partition function on AdS4 × S7/Zk or weak string 
coupling expansion of string theory effective action on AdS4 × CP3. Related work appeared in 
[9,10] and [11–15] and also in [16–18]. In the M-theory the expansion parameter is the inverse 
of the effective dimensionless M2-brane tension [3]

T2 = 1

(2π)2

L3
11

�3
P

,
L11

�P

= (
25π2Nk

)1/6
, (1.1)

while the type IIA string coupling and effective string tension are

gs = √
π

(2

k

)5/4
N1/4 =

√
π (2λ)5/4

N
, λ = N

k
, (1.2)

2 This superconformal theory represents N M2-branes probing a C4/Zk singularity. The orbifold acts as zi → e
2πi
k zi

where zi , i = 1, 2, 3, 4 are four complex coordinates transverse to the M2-branes.
2
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T = 1

8π

L2

α′ = g
2/3
s

L2
11

8πα′ =
√

λ√
2

,
g2

s

8π T
= λ2

N2 = 1

k2 , (1.3)

where L11 and L are curvature scales in the 11d and 10d metrics.
We will show that the general structure of perturbative expansions of F on the two sides 

of the AdS/CFT duality is indeed the same. Moreover, the transcendentality properties of the 
coefficients in the large N , large k expansion of the localization expression for F match those 
in the corresponding M-theory or string theory expansions. In particular, we will focus on the 
N -independent A(k) part of F and show that the leading ζ(3)k2 term in its large k expansion 
corresponds to the ζ(3) term in the 1-loop 11d graviton amplitude on M10 × S1 [19,20] or the 
tree-level ζ(3)R4 term in the 10d string theory effective action.3 Also, we will find that the π -
dependent factors in the coefficients of subleading 1

kn terms match those in the coefficients of the 
corresponding curvature invariants in the M-theory or string theory effective actions.4 To match 
the remaining rational factors in the coefficients requires precise knowledge of the structure of 
the corresponding superinvariants (RR flux terms in them) and remains an open problem.

The order N0 term in F should correspond to the order (T2)
0 or 1-loop correction in M-theory. 

A similar k-dependent factor in the 1/2 BPS Wilson loop expectation value in the ABJM theory 
was recently reproduced [22] as the 1-loop quantum M2-brane correction.5 The A(k) term in 
the free energy should represent the contribution of quantum M2-brane states propagating in the 
loop. In addition to point-like M2 branes one may need to include also contributions of BPS M2 
branes wrapping 2-cycles in CP3 part of S7/Zk . As we shall discuss below, the structure of the 
A(k) function suggests a close analogy of the present case with the Calabi-Yau compactification 
one in [24–26].6

This paper is organized as follows. In section 2 we review the structure of the large N pertur-
bative part of the free energy as found from localization in ABJM theory on S3. In section 3 we 
compare its large N , fixed k expansion to the perturbative expansion of the partition function or 
effective action in M-theory. In section 3 we discuss the large N , fixed λ expansion of F and show 
its correspondence with the perturbative expansion in type IIA string theory on AdS4 × CP3.

Some basic relations and notation are summarized in Appendix A. In Appendix B we recall 
the matching of the leading large N term in F with the 11d supergravity action evaluated on 
the AdS4 × S7/Zk background. In appendix C we present the AdS4 × CP3 values of the R4

invariants that appear in the tree level and one loop term in the type IIA string effective action. 
Appendix D contains a brief review of the structure of non-perturbative terms in the ABJM free 
energy.

3 In addition to the M-theory and weakly coupled string theory limits one may consider a limit of large N with fixed 
N/k5 that corresponds to the type IIA string at finite string coupling and thus interpolates between M-theory at strong 
coupling and perturbative string theory at weak coupling. Ref. [14] used that limit to compute R4 terms at finite coupling.

4 This is similar to what was observed [21] in the discussion of the leading strong-coupling terms in the localization 
result for free energy in the orbifold N = 2 gauge theory at each order in the 1/N2 expansion. These terms take the form 
of a series in λ3/2

N2 ∼ g2
s

T
and can be matched (up to rational coefficients) with the contributions coming from the DnRm

terms (of lowest order in α′ at each order in g2
s ) in type IIB string effective action.

5 It was observed in [23] that this (sin 2π
k

)−1 prefactor (where 1
k2 = g2

s
8πT

as in (1.3)) in the Wilson loop expectation 
value effectively sums up the leading large T contributions at each order in g2

s . In [22] this prefactor was derived as a 
1-loop correction in the M2-brane world-volume theory and thus it was concluded that this 1-loop M2 brane correction 
effectively sums up all large tension terms at all orders in the weak string coupling expansion in the dual type IIA theory.

6 It would be interesting also to try to do a similar matching in the case of the topological indices (or special partition 
functions on S2 × S1) for which localization results were discussed in [17,18].
3
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2. Free energy of ABJM model in the large N expansion

Our starting point will be the localization result for the free energy of the ABJM theory on S3

expanded at large N . We will consider both fixed k and large k perturbative expansions ignoring 
non-perturbative corrections.

The partition function of the ABJM theory on S3 was first expressed in terms of a localization 
matrix model in [4]. It was later mapped to a lens space matrix model and solved in planar limit 
in [5]. Higher genus 1/N corrections were computed in [6,7] by integrating the holomorphic 
anomaly equation. Neglecting non-perturbative corrections (reviewed in [27,8]) the resummed 
partition function was determined in [28]. The same result was later rederived by Fermi gas 
methods in [29] and tested numerically in [30] at finite N, k. The resulting perturbative partition 
function reads

Z(N,k) ≡ e−F(N,k) = ( 1
2π2k)1/3 eA(k) Ai(z), z = ( 1

2π2k)1/3
(
N − k

24
− 1

3k

)
.

(2.1)

The presence of the function A(k) was first detected in [30] and incorporated into the Fermi 
gas formalism of [29] that provided its small k expansion. The large k expansion of A(k) was 
identified in [30] with a topological string “constant map” contribution [31].7 Ref. [30] proposed 
a resummed integral representation for A(k) (later improved in [34]) valid at both small and large 
k8

A(k) = −ζ(3)

8π2

(
k2 − 16

k

)
+ k2

π2

∞∫
0

dx
x

ekx − 1
log(1 − e−2x) . (2.2)

The expansions of (2.2) in the two regimes may be determined as asymptotic series. For k 	 1

A(k)
k	1= 2 ζ(3)

π2

1

k
+

∞∑
n=1

(−1)n
π2n−2

(2n)! B2nB2n−2 k2n−1 , (2.3)

where B2n are Bernoulli numbers. At large k one finds

A(k)
k
1= −ζ(3)

8π2 k2 + 1

6
log

4π

k
+ 2ζ ′(−1) + Ā(k) , Ā(k) =

∞∑
h=2

qh

k2h−2 , (2.4)

where qn are rational numbers expressed again in terms of the products of two Bernoulli numbers 

or even-argument zeta-function values ζ(2n) = (−1)n+1 (2π)2n

2(2n)! B2n as

qh = (2π)2h−2(−1)h+14h−1

h(2h − 2)(2h − 2)! B2h B2h−2 . (2.5)

The expansion (2.4) reproduces (see below) the dominant terms in λ = N
k


 1 in the 1/N expan-
sion of (2.1). For this reason the resummation proposal (2.2) is usually considered to be correct.9

7 The lens space Chern-Simons matrix model partition function can be interpreted as a partition function of a large N
dual of a topological string theory on a certain class of local Calabi-Yau geometries [32]. This is a generalization of the 
Gopakumar-Vafa duality [33].

8 The specific values of A(k) at integer k are given in Eq. (3.14) of [34]. In particular, A(1) = − ζ(3)

8π2 + 1
4 log 2.

9 Numerical tests of (2.2) for intermediate values of k were also presented in [30].
4
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Below we shall use (2.1), (2.2) as a starting point ignoring non-perturbative corrections (for 
some comments on them see Appendix D).

From the exact expression of F(N, k) we can work out its large N expansion at fixed k

F =1

3

√
2πk1/2N3/2 − π

24
√

2

(
k2 + 8

)
k−1/2 N1/2 + 1

4
log

32N

k
− A(k)

+ π(k2 + 8)2

2304
√

2k3/2N1/2
− k2 + 8

96kN
+ 69120k2 + π2(k2 + 8)3

331776
√

2k5/2πN3/2
− (k2 + 8)2

4608k2N2 + · · · .

(2.6)

One can then assume that k is large and isolate the leading terms in k order by order in large N

Fk
1 =
√

2π

3
k1/2 N3/2 − π

24
√

2
k3/2 N1/2 + 1

4
logN + ζ(3)

8π2 k2

+ π

2304
√

2
k5/2N−1/2 − 1

96
kN−1 + π

331776
√

2
k7/2N−3/2 + · · · . (2.7)

Here the ζ(3) term came from the first term in (2.4). As follows from (2.1), for large k at each 
order in 1/N the relevant combination should be N − 1

24k and indeed one finds that (2.7) may 
be rewritten as

Fk
1 = π

3

√
2k

(
N − k

24

)3/2 + 1

4
log

(
N − k

24

)
+ ζ(3)

8π2 k2 + · · · . (2.8)

In the ’t Hooft expansion, i.e. the expansion in 1/N with fixed λ = N
k

, the resulting large N
expression of F may be written as

F = − logZ = −
∞∑

h=0

(−1)h−1fh(λ)
(2πλ

N

)2h−2 + 1

6
log

N

λ
. (2.9)

Since we isolated in (2.9) the 1/N factors in the combination λ
N

= 1
k

, it follows from (2.1) that 
the functions fh(λ) should naturally depend on the shifted coupling

λ̂ ≡ λ − 1

24
= 1

k
(N − 1

24
k) . (2.10)

Explicitly, one finds the following expressions for fn [17] (A is Glaisher constant)

f0 = 4
√

2π3

3 λ̂3/2 + 1
2ζ(3) ,

f1 = π

3
√

2
λ̂1/2 − 1

4 log λ̂ + 1
6 − 11

12 log 2 + 1
6 logπ − 2 log A ,

f2 = − 1
360 + 1

144π
√

2
λ̂−1/2 − 1

48π2 λ̂−1 + 5
96π3

√
2
λ̂−3/2,

f3 = − 1
22680 − 1

10368
√

2π3 λ̂−3/2 + 1
1152π4 λ̂−2 − 5

768
√

2π5 λ̂−5/2 + 5
512π6 λ̂−3, (2.11)

f4 = − 1
340200 + 1

331776
√

2π5 λ̂−5/2 − 1
20736π6 λ̂−3 + 25

36864
√

2π7 λ̂−7/2 − 5
2048π8 λ̂−4

+ 1105
147456

√
2π9 λ̂−9/2,

f5 = − 1
2494800 − 1

7962624
√

2π7 λ̂−7/2 + 1
331776π8 λ̂−4 − 175

2654208
√

2π9 λ̂−9/2

+ 5
12288π10 λ̂−5 − 1105

393216
√

2π11 λ̂−11/2 + 565
131072π12 λ̂−6 , ...
5
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A remarkable feature of these expressions for fh(̂λ) is that they are given by finite sums of terms. 
For h � 2 we get

fh(̂λ) = ph +
h+1∑
s=1

ph,s(
2π

√
λ̂

)s+2h+4 , h � 2 , (2.12)

where all ph and ph,s are rational coefficients.
As a further refinement, we may consider the λ 
 1 expansion and isolate the leading powers 

of λ at each order in 1/N in (2.9). These special terms read (omitting logk = log N
λ

term in (2.9))

F̃ ≡ Fλ
1 = N2
(π

√
2

3
λ−1/2 − π

√
2

48
λ−3/2 + 1

8π2 ζ(3)λ−2 + ...
)

− π

3
√

2
λ1/2 + F̄ ,

(2.13)

F̄ = −Ā(k) = −
∞∑

h=2

(−1)h−1ph

(2π

k

)2h−2 = −
∞∑

h=2

(−1)h−1ph

(2πλ

N

)2h−2

= −π2

90

λ2

N2 + 2π4

2835

λ4

N4 − 8π6

42525

λ6

N6
+ 16π8

155925

λ8

N8 + · · · . (2.14)

Here we kept few subleading large λ terms only in the first N2 term. Comparing to (2.6), (2.4)
we conclude that the coefficients ph are related to qh in Ā in (2.4) as (cf. (2.5))

ph = (−1)h−1

(2π)2h−2 qh = 4h−1B2h B2h−2

h(2h − 2)(2h − 2)! . (2.15)

The two expansions we have discussed (large N at fixed k and large N , large k with fixed 
λ = N

k
) should correspond to the M-theory and type IIA string theory expansions. We shall 

discuss this connection in the next sections.

3. M-theory perturbative expansion

The large N , fixed k expansion of the ABJM theory should be dual to the perturbative ex-
pansion of M-theory on AdS4 × S7/Zk in which the curvature scale L11 is small compared to 
the 11d Planck length �P so that the effective dimensionless M2-brane tension T2 is large (see 
Appendix A for our notation)

T2 ≡ L3
11T2 = L3

11

(2π)2�3
P

= L3

4π2 , L = L11

�P


 1 , (3.1)

while the parameter k of the 11d background (related to the radius of the 11d circle) is fixed. 
Indeed, since according to (A.9)

L6 = 32π2Nk , (3.2)

this limit is equivalent to the large N , fixed k expansion.
Thus the M-theory perturbative expansion should be in inverse powers of T2 or in powers of 

L−3. Expressed in terms of L and k the large N expansion of the free energy F in (2.6) is indeed

F = c0
1

L9 + c1
8 + k2

L3 + 1
log

L3

− A(k) + c2
(8 + k2)2

L−3 + c3
8 + k2

L−6
k k 2 πk k k

6
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+ O(L−9), (3.3)

c0 = 1

384π2 , c1 = − 1

192
, c2 = π2

576
, c3 = −π2

3
, ... (3.4)

As was suggested in [35], the presence of the 
∫

R4 C3 term in the 11d effective action [36]
implies the following shift of the M2-brane charge N

N → N − 1

24
(k − k−1) . (3.5)

This leads to the following redefinition of L in (3.6) [7]

L6 = 32π2[Nk − 1

24
(k2 − 1)

]
. (3.6)

Expressing the localization result for F(N, k) in (2.6) in terms of this redefined parameter L and 
k we find a remarkable simplification of the k-dependent coefficients of the L3 powers

F =c0
1

k
L9 + c′

1
1

k
L3 + 1

2
log

L3

πk
− A(k) + c′

2
1

k
L−3 + c′

3L−6 + O(L−9), (3.7)

c′
1 = − 3

64
, c′

2 = 9π2

64
, c′

3 = −3π2 . (3.8)

Thus the k-dependence of the L9, L3 and L−3 terms becomes simply 1
k

(though this does not 
apply to L−6 and higher order terms in the expansion).

It is natural to expect that the terms in the free energy that scale as 1
k

may originate from local 
terms in the M-theory partition function or the effective action evaluated on the AdS4 × S7/Zk

background. Indeed, as this background is homogeneous (and its curvature does not depend on 
k explicitly, apart from the dependence via L11 or L) the integrals of curvature (and 4-form) 
invariants will be proportional to the factor of the radius a = 1

k
of the 11d circle coming from the 

integration volume. Other terms that do not scale as 1
k

may come from non-local contributions to 
the M-theory partition function.

3.1. Local terms

The L9 term in (3.7) comes from the 11d supergravity action S0 = 1
2κ2

11

∫
d11x

√−G(R +· · · )
in (A.1) evaluated on the AdS4×S7/Zk background. The value of the coefficient c0 is reproduced 
after taking into account the regularized value of the volume of AdS4 [6,37] (see Appendix B). 
In particular, using that R ∼ (L11)

−2 and (extracting the overall ( 1
2L11)

4(L11)
7 scale factor of 

the 11d volume, see (B.2), (B.3))

vol
(
AdS4 × S7/Zk

) = 4π2

3
× π4

3

1

k
, (3.9)

and also that 2κ2
11 = (2π)8�9

P (see (A.1)) we conclude that the coefficient of the supergravity 
term should scale as 1

π2
1
k

L9 matching the π−2-dependence of c0 in (3.4).

Similarly, the 1
k
L3 term in (3.7) should come from the local 1-loop R4 + · · · term in the 11d 

effective action [38,19,20,39]10

10 Note that here our �P (see Appendix A for notation) is related to �11 used in [20,39] as �3
11 = 2π�3

P
so that the 

values of κ11 and M2-brane tension T2 are the same as in these papers.
7



M. Beccaria and A.A. Tseytlin Nuclear Physics B 994 (2023) 116286
S1 = b1T2

∫
d11x

√−G
(
R4 + ...

)
, T2 = 1

(2π)2�3
P

, b1 = 1

9 · 213 · (2π)4 . (3.10)

Here we isolated the factor of the M2 brane tension T2. This term may be viewed as the 1-
loop 11d supergravity contribution �3R4 + · · · that scales as κ0

11 but is cubically divergent [40]
leading to a finite term in (3.10) after assuming the M-theory UV cutoff � ∼ �−1

P .11 Thus this 
local 1-loop R4 term is the one that corresponds to the k−1/2N1/2 term in F in (2.6).

Let us recall that similar terms ∼ N3/2 and ∼ N1/2 appear in the finite temperature free energy 
of the world-volume theory of multiple M2 branes and have similar origins in the R [42] and R4

[43] terms in the M-theory effective action.
To reproduce the value of the coefficient c′

1 in (3.7), (3.8) one needs the information about the 
precise structure of the 4-form dependent terms in the R4 superinvariant which is not yet known 
(cf. [39]).12 Still, it is remarkable that the fact that the value of c′

1 that comes from (3.10) on the 
AdS4 × S7/Zk background is rational as in (3.8) does follow from the values of b1 in (3.10) and 
of the volume factor (3.9): all factors of π cancel out.

In general, on dimensional grounds, all local terms in the M-theory effective action should 
contain particular powers of the M2-brane tension, i.e. should be given by the sum of terms like 
[20]13

Sp = T
3−2p
2

∫
d11x

√−G
[
bp(D2)3p−3R4 + b̃pR3p+1 + · · ·

]
, (3.11)

where dots stand for other possible terms (depending also on F4) that have the same mass di-
mension 6p + 2. Explicitly, the S1 in (3.3) corresponds to the p = 1 case of (3.11), the p = 2
case is S2 = T −1

2

∫
d11x

√−G
(
b2D

6R4 + b̃2R
7 + · · · ), etc.

Evaluated on AdS4 × S7/Zk background (3.11) will scale as 1
k

L9−6p and may, in principle, 
match some of the subleading terms in the free energy (3.7). Terms that do not scale as 1

k
should 

come from non-local parts of the quantum M-theory effective action.

3.2. Terms corresponding to the 1-loop M-theory contribution

The terms 1
2 log L3

πk
and −A(k) in (3.3) which are of zeroth order in the effective M2-brane 

tension (3.1) should originate from the (UV finite part of) 1-loop contribution to the M-theory 
partition function. The logarithmic 3

2 log L term coming from 1
4 log 32N

k
= 1

2 log L3

πk
term in (2.6)

was reproduced by a 1-loop computation in 11d supergravity in [9] as a universal contribution 
of the zero modes of the 11d supergravity fluctuation operators on AdS4 × X7 background (with 

11 This R4 term should be a superpartner of the R4C3 term. The fact that accounting for the shift (3.6) removes the 
“non-local” kL3 term in (3.3) may be viewed as a consequence of supersymmetry. Note also that in general higher loop 
supergravity contributions should scale as (κ2

11)L−1 ∼ (T2)−3(L−1) but in local terms extra factors of the M-theory UV 
cutoff � ∼ �−1

P
may introduce extra positive powers of T2, see [20,41] and Eq. (3.11) below.

12 While matching the overall coefficient c′
1 is thus an open problem, in [16] the dependence of the coefficient of the 

similar N1/2 ∼ L3 term on extra geometric parameters (like squashing of the S3) in the localization result for the free 
energy F was reproduced from the effective 4d effective action with the supersymmetric R2 terms that should originate 
from the 11d R4 superinvariant compactification to 4d.
13 The special role of the terms (3.11) noted in [20] is that upon reduction to 10d they have perturbative dependence on 
the string coupling gs. Note that some of these terms may be interpreted as higher-loop corrections in 11d supergravity 
proportional to (κ2 )L−1�3n ∼ (T2)3−3L+n (� ∼ �−1 is the 11d UV cutoff).
11 P
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the dependence on �P via L coming from normalization factor related to κ11). The − 1
2 log(πk)

term should have a similar origin (being also related to the volume factor in the normalization of 
the supergravity modes).

The −A(k) term in (3.3) (see (2.6), (2.4)) should correspond to the L-independent part of the 
1-loop contribution in M-theory on AdS4 × S7/Zk .

In general, the 1-loop M-theory partition function should be the contribution of virtual M2-
brane propagating in the loop but it is not clear how to define it precisely. In the case of a 
large amount of supersymmetry of the background one may conjecture that only special BPS 
states (e.g.corresponding to M2-branes wrapped on special 2-cycles of internal space) may be 
contributing to the 1-loop partition function, while contributions of non-BPS states may cancel 
due to extended supersymmetry of the background (cf. [24–26]).

One may start with the contribution of just point-like BPS states corresponding to the 11d 
supergravitons, i.e. approximate the M-theory 1-loop partition function by its 11d supergravity 
counterpart. To get an insight about the structure of the latter and to compare it with F in (3.7)
we will be guided by the expression for the low-energy expansion of the 1-loop correction to 
the 4-graviton amplitude in 11d supergravity [20]. While there is no a priori reason why just the 
supergravity correction should be enough to capture the full M-theory result, we will show that 
it indeed reproduces the structure of the large k expansion of the corresponding term in F .14

Our strategy will be as follows. We shall consider the expression for the 1-loop 4-graviton 
amplitude in 11d supergravity expanded near flat space with 11d circle of radius R11 (found un-
der a simplifying assumption that only 10d components of the 4 polarization tensors and external 
momenta are non-zero) following [20]. We shall then expand this amplitude in powers of mo-
menta and extract its dependence on R11 and 11d UV cutoff � ∼ �−1

P . Finally, we will assume 
that it can be used to shed light on the structure of 11d supergravity 1-loop partition function on a 
curved background. Specifying to the case of the AdS4 × S7/Zk background we shall reproduce 
the structure of the L3, log L and A(k) terms in (3.7). Remarkably, we shall find the terms with 
the same transcendental coefficients ζ(3) and π2h−2 that appear in the large k expansion of A(k)

in (2.4).15

In order to match the remaining rational factors in the coefficients it appears that one is to 
include other contributions to the M-theory partition function on AdS4 × S7/Zk background. 
These are presumably of other (extended) BPS M2-brane states propagating in the loop. By 
analogy with the case of the Calabi-Yau compactification [25] we shall then discuss how one 
could try to modify the supergravity-based result in order to reproduce the double-Bernoulli 
structure of the coefficients in A(k) in (2.4), (2.5).

The 4-graviton amplitude may be written as (omitting polarization tensor and normalization 
factors including 10d volume and momentum delta-function) [44,19,20]

14 Let us note that ref. [10] attempted (unsuccessfully) to reproduce the leading large k terms in the localization expres-
sion for the function A(k) in (3.4), (2.4) by the 1-loop computation in the 11d supergravity on AdS4 × S7/Zk explicitly 
accounting for the contribution of the tower of all 11d supergravity KK modes on S7/Zk . The computation involved 
several subtle points that remain to be sorted out. In particular, it is also possible that one needs a special regularization 
(consistent with 11d symmetry) different from the one used in [10].
15 Let us note that in refs. [15] the values of the function A(k) and its second and fourth derivatives at k = 1 and k = 2
where related to the M-theory 4-graviton 1-loop amplitude and were shown to be consistent with the coefficient of the 
R4 term in the effective action.
9
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Â4(s, t) = A4(s, t) + (symm in s, t,u), A4(s, t) =
∞∑

n=−∞

∞∫
�−2

dτ

τ 2 e
− τ n2

R2
11 P(s, t; τ),

(3.12)

where s, t, u are the standard kinematic variables depending on 10d momenta, the sum is over 
11d component of the virtual momentum and τ has dimension of length squared. The function 
P is given by16

P(s, t; τ) =
∫

d3ρ e− τ M(s,t;ρ) ,

∫
d3ρ ≡

1∫
0

dρ3

ρ3∫
0

dρ2

ρ2∫
0

dρ1 , (3.13)

M(s, t;ρ) ≡ sρ1ρ2 + tρ2ρ3 + uρ1ρ3 + t(ρ1 − ρ2), s + t + u = 0. (3.14)

Focussing on the first term in the sum in (3.12) and expanding e−τM in powers of momenta, or, 
equivalently, in powers of M we get

A4(s, t) =
∞∑

h=0

A4,h(s, t) , A4,h =
∞∑

n=−∞

∞∫
�−2

dτ

τ 2 e
− τ n2

R2
11

(−1)h

h! τh Hh(s, t) ,

(3.15)

Hh ≡
∫

d3ρ Mh(s, t;ρ) = shH̄h

( s

t

)
. (3.16)

The h = 0 term in (3.15) may be written (using Poisson resummation and H0 = 1
6 ) as [19]

A4,0 = 2

3π
R11�

3 + ζ(3)

π2R2
11

. (3.17)

Here the first term comes effectively from the n = 0 contribution and is thus the same as in 
the 1-loop contribution in 10d supergravity. The second term comes from the contribution of 
11d supergravity states with non-zero 11d momentum (or, from the 10d string theory point of 
view, from the contribution of the massive D0-brane states in the loop [19]). The h = 1 contri-
bution vanishes after integrating over ρ, in agreement with the absence of 1-loop logarithmic 
divergences in 11d theory (and also in the 1-loop 4-graviton amplitude in 10d supergravity [45]).

The remaining h ≥ 2 terms are UV finite. The n = 0 term in the sum in (3.16) with h � 2
gives a non-analytic contribution (∼ s log s, etc.) to (3.15) which is independent of R11 (and thus 
should be the same as the 1-loop amplitude in 10d supergravity)

H(s, t) =
∞∑

h=2

∞∫
0

dτ

τ 2

(−1)h

h! τh Hh(s, t) =
∫

d3ρ M(s, t;ρ) logM(s, t;ρ) ≡ s H̄
( s

t

)
.

(3.18)

The contribution of the n �= 0 terms may be written as

16 Here we redefined τ by π compared to [20] so that it has direct proper-time interpretation. Note that the factor π in 
front of M(s, t; ρ) was omitted in going from the first to second line of Eq. (C.7) in [44] and as a result was missing in 
the expression given in [20].
10
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∞∑
h=2

A′
4,h(s, t) =2

∞∑
n=1

∞∫
0

dτ

τ 2 e
− τn2

R2
11

∞∑
h=2

(−1)h

h! τh Hh(s, t) ≡
∞∑

h=2

Ch Hh(s, t) , (3.19)

where Ch is given by

Ch = 2
(−1)h

h!
∞∑

n=1

∞∫
0

dτ

τ 2 e
− τn2

R2
11 τh = 2

(−1)h

h!
∞∑

n=1

(h − 2)!
( n2

R2
11

)1−h = dhR
2(h−1)
11 , (3.20)

dh = 2(−1)h

h(h − 1)
ζ(2h − 2) = (2π)2h−2 B2h−2

h(h − 1)(2h − 2)! , (3.21)

where B2h−2 are Bernoulli numbers. Adding to (3.19) the h = 0 term (3.17) and the non-analytic 
H (3.18) contribution gives

A4(s, t) = 2

3π
R11�

3 + s H̄
( s

t

) + Ā4(s, t) , (3.22)

Ā4(s, t) = ζ(3)

π2R2
11

+
∞∑

h=2

dh R
2(h−1)
11 shH̄h

( s

t

)
. (3.23)

Here H̄ contains log terms while H̄h are polynomials of degree h. Note that all the terms in 
(3.22) have the same dimension (length)−2. In (3.22) we separated the first term that is the only 
one that depends on �P via �.

Let us now interpret (3.22) as providing an indication about the structure of the M-theory 1-
loop partition function on a curved background. Specializing to AdS4 × S7/Zk we will have the 
11d radius R11 → 1

k
L11 and, just on dimensional grounds, the momentum variables s, t scaling 

as L−2
11 . Rescaling (3.22) by L2

11 to get a dimensionless expression we would then get from (3.22)
(L = L11

�P
∼ L11�)

F = u0
1

k
L3 + u1 log L + u2 + F̄(k) , F̄ = ζ(3)

π2 k2 +
∞∑

h=2

d′
h

k2h−2 . (3.24)

Here u0 = 2
3π

w where w is the coefficient of proportionality in �3 = w�−3
P so that matching the 

rational c′
1 coefficient in (3.7) requires w ∼ π .17 The terms u1 log L +u2 come from s H̄( s

t
) term 

in (3.22). The coefficients d′
h are related to dh in (3.21) by rescaling by some rational factors.

Thus (3.24) has the same structure as the sum of the L3, log L and −A(k) terms in (3.7). The 
missing logk term should be coming from the 1-loop 11d supergravity zero mode normalization 
contribution mentioned above and is thus not expected to be captured by this qualitative argument 
based just on the structure of the 4-graviton amplitude.

Remarkably, F̄ in (3.24) has exactly the same form as the leading ζ(3)k2 term plus the sum 
of the subleading 1

k2h−2 terms in −A(k) in (2.4), (2.5). Furthermore, the transcendental factors of 
π match between the coefficients dh ∼ d′

h in (3.21) and qh (2.5) in A(k). To match the rational 
coefficient of the ζ(3) term in −A(k) we would need an extra factor of 1

8 , i.e.

17 This is indeed the right identification as follows from the discussion in [19,20] or the comparison with the coefficient 
of the corresponding R4 term in 11d effective action (3.10). In the present notation w = 1 π , i.e. �3 = 1 π�−3.
2 2 P
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1

8
L2

11A4 = 1

8
F → F . (3.25)

The exact equality of the rational factors in d′
h (that should differ from dh in (3.21) just by 

rational factors) and qh in (2.5) may be hard to expect a priori given the crude nature of the 
above relation between the 1-loop supergravity amplitude and the 1-loop partition function on a 
curved background. But a definite mismatch in powers of the Bernoulli number factors between 
(3.21) and in (2.5) suggests that some other contributions (in addition to 1-loop 11d supergravity 
one) may be missing.

One may wonder whether to match the full expression for the A(k) term in F in (3.7) one 
needs to include contributions of other M2-brane BPS states to the M-theory 1-loop partition 
function.18 By analogy with a discussion in [24,25] one may conjecture that this may lead to a 
modification of the measure in the proper-time integral in (3.19) like

∞∑
n=1

∞∫
0

dτ

τ 2 e
− τn2

R2
11 · · · →

∞∑
n=1

∞∫
0

dτ

τ

μ2

sinh2 (μ2τ)
e
− τn2

R2
11 · · · , (3.26)

where μ is a mass parameter (that may be related to L−1
11 in the present context, so that μR11 ∼

1
k

). Then an extra factor of the Bernoulli numbers required to match dh in (3.21) with qh in (2.5)
may come from the expansion

1

sinh2 τ
= −

∞∑
h=0

22h(2h − 1)

(2h)! B2h τ 2h−2 = 1

τ 2 − 1

3
−

∞∑
h=2

22h(2h − 1)

(2h)! B2h τ 2h−2 . (3.27)

To see at the heuristic level how that may work out we may start with the localization expression 
for Ā(k) in (2.4), (2.5) that has the following integral representation [30]

Ā(k) ≡
∞∑

h=2

qh

k2h−2 =
∞∫

0

dt

t

1

ekt − 1

( 1

sinh2 t
− 1

t2 + 1

3

)
. (3.28)

One may also rewrite the full expression for A(k) in (2.4) as19

A(k) =
∞∫

0

dt

t

1

ekt − 1

1

sinh2 t
=

∞∑
n=1

∞∫
0

dt

t

1

sinh2 t
e−k n t . (3.29)

In (3.29) we are assuming that the evaluation of the singular terms (corresponding to the last two 
terms in the bracket in (3.28)) is done using a suitable regularization.20 Here k = L11

R11
and we 

may redefine t → (L11)
−1τ to put the integral into a similar form as in (3.26).

18 In particular, one may consider contributions of M2-branes wrapped on 2-cycles of CP3 part of S7/Zk (which, in 
the perturbative 10d string limit, are related to the type IIA string world-sheet instantons [46,47] but here play a role of 
massive modes propagating in the loop). These may be the analogs of M2-branes wrapped on 2-cycles of CY space in 
[25]. Note also that the field strength of the RR 1-form A in the S7/Zk metric (A.10) may be playing the role of the 
graviphoton strength in the discussion of [26].
19 Note that using 1

sinh2 t
= 4 

∑∞
n=1 n e−2nt one may also write A(k) = 4 

∑∞
n,m=1 n 

∫ ∞
0

dt
t e−(mk+2n)t .

20 For instance, with an analytic regularization like dt
t → dt

t1+ε one has∫ ∞
0

dt

t1+ε
1

ekt−1
( 1
t2 − 1

3 ) = − 1
6

[ 1
ε + log k + γE − log(2π)

] − ζ(3)

8π2 k2 +O(ε).

The logk and k2 terms here agree with (2.4). The pole term (plus regularization-dependent transcendental constants) 
should be discarded as part of the regularization prescription.
12
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Eq. (3.29) closely resembles the expression in [25,26] used to reproduce the coefficients of the 
special protected R2F2h−2 terms [48] in the 4d effective action of type II string (compactified on 
a CY space) from a conjectured 1-loop M-theory correction coming from M2-brane BPS states. 
Indeed, we may compare the summand in (3.29) with the 4d effective action of a charged scalar 
of mass m (representing an M2-brane wrapped on a 2-cycle in CY space) in a constant self-dual 
gauge field background


(m, eF) = −1

2

∞∫
0

dt

t
tr e−t (�+m2) ∼

∞∫
0

dt

t

1

sinh2( 1
2eF t)

e−tm2
. (3.30)

Here F is the gauge field strength and the UV divergent term is assumed to be subtracted out. 
Specializing to a BPS state with m = e and rescaling t one gets the integrand as 1

sinh2 t ′ e
−2mF−1 t ′ . 

Accounting for multiple wrappings corresponds to m → nm and summing over n so that we get

∞∑
n=1


(nm, nmF) ∼
∞∑

n=1

∞∫
0

dt ′

t ′
1

sinh2 t ′
e−2nmF−1 t ′ . (3.31)

This matches (3.29) if 2mF−1 is identified with k.21 Then the coefficients in the 1
k

expansion of 
(3.29) are directly related to the coefficients in the expansion of (3.31) in powers of F. In the 
present case 1

k
= R11

L11
scales as the square root of the effective curvature of AdS4 × S7/Zk and is 

thus analogous to F.22

4. Type IIA string perturbative expansion

Let us now compare the expansion of the localization result for free energy in the ’t Hooft 
limit (2.9) with the perturbative expansion of the effective action in type IIA string theory in 
AdS4 × CP3 background.

Let us start with the free energy expanded in large N and large k with fixed λ = N
k

(2.9) and 
then expanded further in large λ (see (2.13), (2.14)). Expressing F in terms of the type IIA string 
parameters gs and T in (A.14), (A.15) we will attempt to match the result to the perturbative 
low-energy or α′ expansion of type IIA string effective action in the corresponding AdS4 × CP3

background (A.12) order by order in small gs.
Using the original relations between the parameters (A.14), (A.15) [3]

N = 4
√

2π T 5/2 g−1
s , λ = 2T 2, T = 1

8π

L2

α′ , (4.1)

where L is the scale in 10d metric in (A.12) we get from (2.13)

F̃ = 1

384π2

L8

α′4g2
s

− 1

192

L4

α′2 g2
s

+ 1

8π2

[ζ(3)

g2
s

− 2ζ(2)
]L2

α′ + · · · . (4.2)

21 This matching is not totally unexpected given that both functions were noticed to be related to the topological string 
amplitudes (cf. [49,48] and [6,50]).
22 The difference between (3.29) or (3.31) and the attempted modification (3.26) is that the sum over the 11d KK modes 
in (3.26) involves n2 rather than n, but in going from (3.30) to (3.31) this is taken care of by a rescaling of t . For this to 
be possible requires the measure in (3.26) to depend on n.
13
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Here the first term L8

α′4 scales as the contribution of the R term in the type IIA effective action 

while the third L2

α′ term – as the contribution of the R4 term. The second L4

α′2 contribution could 

come from the 1
g2

s α′2

∫
d10x

√
GR3 term in tree-level string effective action but such term is 

absent in type IIA 10d string theory (on supersymmetry grounds).
This problematic term is eliminated if one takes into account the shift of N in (3.5), (A.18)

implying that the relations between the gauge theory (N, λ) and string theory (gs, T ) parameters 
take the modified form (A.20), (A.19). Note that if we shift N in (3.5) as N → N − k

24 + a
24k−1

with a �= 1 then this term will not be eliminated.23 As a result, (2.13) then gives (cf. (3.7), (3.8))

F̃ = c0
L8

α′4g2
s

+
(
c̃0

ζ(3)

g2
s

+ c′
1

)L2

α′ −
∞∑

h=2

qh

(
g2

s
α′

L2

)h−1
, (4.3)

c0 = 1

384π2 , c̃0 = 1

8π2 , c′
1 = − 3

64
,

q2 = −π2

90
, q3 = 2π4

2835
, q4 = − 8π6

42525
, ...

(4.4)

where we kept only the leading at large tension (large λ or small α′
L2 ) contribution at each order 

in g2
s expansion (apart from the ζ(3)g−2

s term). Since according to (A.16)

g2
s

8πT
= g2

s
α′

L2 = 1

k2 , (4.5)

the qh coefficients in (4.4) are the same as (2.5), (2.15) appearing in the large k expansion of 
A(k) term in (2.6) or in (3.7).

4.1. Transcendentality structure of the coefficients

Similarly to the discussion in section 3.1 above, the first term in (4.3) originates from the 
supergravity part 1

g2
s α′4

∫
d10x

√−G(R + · · · ) of the tree-level 10d superstring effective action 

evaluated on the AdS4 × CP3 background (see (B.2)).

The second L
2

α′ term in (4.3) has the structure that corresponds to the contribution of the sum of 
the tree level 1

(2π)7g2
s α′

1
8ζ(3) 

∫
d10x

√−GR4 term and 1-loop term 1
(2π)7α′

1
4ζ(2) 

∫
d10x

√−G×
(R4 + · · · ). The factors of π in the coefficients match perfectly after we account for π5 coming 
from the volume of AdS4 × CP3 (see (B.3)). As discussed in more detail in the next subsection, 
fixing the remaining rational coefficients requires the information about the RR field strength 
dependent terms in the corresponding superinvariants which is not available at the moment.

The higher order h � 2 terms in (4.4) may originate from local terms in type IIA effective 
action of the form (note that R ∼ L−2 and the L10 factor comes from the 10d volume)

23 Let us mention that instead of expanding in large N one may expand in the effective CFT central charge parameter 
(the coefficient in the 2-point function of the stress tensor) cT ∼ √

kN + ... [11,12,14] which is naturally related to 
the definition of the Newton’s constant in the gravitational dual (the coefficient in the graviton kinetic term). This then 
leads [12,14] to the expected higher derivative terms avoiding spurious terms like R3 (we thank S. Chester for pointing 
this out). Also, an alternative shift of N in relation to 4d Newton’s constant was used in [17] and shown to lead to 
simplification of perturbative expansion. In general, the relation between string/M-theory parameters and dual gauge 
theory ones is effectively a scheme choice required to make the duality manifest; unambiguous relations are found only 
when expressing one observable in terms of the others.
14
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g2h−2
s α′h−1

∫
d10x

√−GLh ,

Lh = eh,1R
h+4 + · · · + eh,rD

2rRh−r+4 + · · · + eh,hD
2hR4 .

(4.6)

Here Lh may contain several terms of the same dimension (depending on curvature and other 
fields) required on supersymmetry grounds. The structure of these invariants is not known but as 
the relative coefficients of the terms in (4.6) should be rational, we may get some information 
about their transcendentality properties by looking at the particular terms D2hR4. Like for the 
tree-level and 1-loop R4 terms, the coefficients of these terms may, in principle, be fixed using 
the type II string 4-graviton scattering amplitude.

In fact, one may follow [20] and conjecture that in the perturbative string theory limit (gs 	
1) the structure of the 11d supergravity amplitude (3.22) implies the presence of special 10d-
local terms g2h−2

s α′h−1
∫

d10x
√−GD2hR4 in the type IIA string effective action. These should 

correspond to local sh terms in (3.23), i.e. should have the coefficients proportional to dh in 
(3.21) or (2π)2h (after including an overall normalization factor ∼ π2 as implied by (3.17)) and 
should thus match the π -dependence of the qh coefficients in (4.4). As was already pointed out 
in the previous section, the matching of the rational factors (proportional to B2hB2h−2 in (2.5), 
(2.15) instead of just B2h−2 in dh in (3.21)) implies the need to account also for the contributions 
of other terms of the same dimension in the corresponding superinvariants in (4.6).

The same conclusion about the structure of the relevant coefficients can be reached also from 
the leading D2nR4 terms in the effective action reconstructed directly from the type II 4-graviton 
10d superstring amplitudes. This applies also to the type IIB effective action (for a related dis-
cussion in connection with free energy of N = 2 4d gauge theory models see [21]). The leading 
D2nR4 terms are the same (at least at 1-loop and 2-loop orders) in both type IIA and type IIB 
theories [41,51]. In the type IIB case one finds

S = 1

(2π)7

∫
d10x

√−G
[
α′−4g−2

s R + α′−1f0(gs)R
4 +

∞∑
n=1

α′nfn(gs)D
2n+2R4

]
. (4.7)

The functions f0, f1, f2 contain a finite number of perturbative contributions plus non-perturbative 
O(e−1/g2

s ) corrections that we shall omit (see, e.g., [41,52])24

f0 = 1
8

(
ζ(3)g−2

s + 2ζ(2)
)

, f1 = 1
16

(
ζ(5)g−2

s + 4
3ζ(4)g2

s

)
, (4.8)

f2 = 1
48

(
[ζ(3)]2g−2

s + ζ(3)ζ(2) + 6ζ(4)g2
s + 2

9ζ(6)g4
s

)
, ... (4.9)

The leading α′ terms at each order in g2
s in (4.7) correspond to the last perturbative terms in 

f0, f1, f2 in (4.9) and their coefficients are expected to be protected by supersymmetry.
This suggests that the coefficients of the terms g2h−2

s α′h−1
∫

d10x
√−GD2hR4 with h �

2 we are interested in are proportional to ζ(2h) = (−1)h+1(2π)2h B2h

2(2h)! ∼ (2π)2h. This is the 
same conclusion that follows from the above conjectured relation to the 11d supergravity 1-loop 
amplitude. Once again, to match the remaining rational factors in the coefficients against those 
in the free energy (2.15) would require the precise knowledge of the superinvariants that have the 
same dimension as D2hR4 terms.

24 Here f3 = 1
64 ζ(9)g−2

s + k0ζ(3) log(−α′D2) + O(g2
s ) and may contain an infinite series of terms in g2

s (though their 
presence appears to remain an open question). The logarithmic term is associated with a non-local term p16 logp2 in the 
4-graviton amplitude on a flat background.
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4.2. Contributions from tree level and 1-loop R4 invariants

To illustrate this point let us go back to the discussion of the contribution of the tree-level and 
1-loop R4 terms in type IIA theory. They may be written as (assuming the dilaton is constant and 
ignoring dependence on B2 field, see, e.g., [39] for a review)

S = 1

(2π)7

∫
d10x

√−G
[ 1

α′4g2
s
(R + · · · ) + 1

α′
( 1

g2
s
r0J0 + r1J1

)
+ · · ·

]
, (4.10)

J0 =t8t8RRRR + 1
8ε10ε10RRRR + · · · , J1 = t8t8RRRR − 1

8ε10ε10RRRR + · · · ,

(4.11)

r0 = 1
3·211 ζ(3), r1 = π2

3·211 2ζ(2) = π2

32·211 . (4.12)

Dots in J0 and J1 stand for other terms of the same dimension depending on RR fields.25 In 
type IIB theory J1 is replaced by J0 so that ζ(3)

g2
s

+ π2

3 is the total coefficient of the R4 terms 
as was already indicated in (4.8). In type IIA theory J0 and J1 should correspond to separate 
superinvariants.

Explicitly, the contribution of the R4 terms is then

�S = 1
(2π)7 3·211α′

∫
d10x

√−G
[(

ζ(3)

g2
s

+ π2

3

)
(t8t8RRRR + · · · )

+
(

ζ(3)

g2
s

− π2

3

)
( 1

8ε10ε10RRRR + · · · )
]

. (4.13)

To compare to the corresponding L2

α′ term in the free energy (4.3) we are to evaluate (4.13)
on the AdS4 × CP3 background.26 As was already mentioned above, since the background is 
homogeneous with R ∼ F 2

4 ∼ F 2
2 ∼ L−2 and the volume of the AdS4 × CP3 given by (B.3), i.e.∫

d10x
√−G

∣∣∣
AdS4×CP3

= 4π2

3 ( 1
2L)4 · π3

6 L6 = π5

32·23 L10 , (4.14)

the coefficient of the ζ(3) term in (4.13) scales as 1
(2π)7·3·211

π5

32·23
L2

α′ = 1
33·216

1
π2

L2

α′ . To match 

c̃0 = 1
8π2 in (4.3), (4.4) thus requires an extra rational factor 33 · 213 that should presumably 

come from the curvature contractions and other terms in J0, J1 depending on fluxes.
A factor of the same order does come from the Weyl-tensor dependent part of J0

27:

J0 = J̄0 + · · · , J̄0 = 3 · 28 (ChmnkCpmnqCh
rspCq

rsk + 1
2ChkmnCpqmnCh

rspCq
rsk) ,

(4.15)

25 Terms with Ricci tensor can be expressed in terms of flux-dependent terms using equations of motion (or field 
redefinitions). In J0, J1 we use Minkowski signature so that ε10ε10 = −10! and after reduction to 8 spatial dimensions 
εmn...εmn... → −2ε8ε8. t8 is the 10-dimensional extension of the 8-dimensional light-cone gauge involving Gμν (see, 
e.g., [53]). Explicitly,

t8t8RRRR = tμ1ν1...μ4ν4 tμ′
1ν′

1...μ′
4ν′

4
R

μ′
1ν′

1
μ1ν1 · · ·Rμ′

4ν′
4

μ4ν4 , ε10ε10RRRR = εαβμ1ν1...μ4ν4εαβμ′
1ν′

1...μ′
4ν′

4
R

μ′
1ν′

1
μ1ν1 · · ·

R
μ′

4ν′
4

μ4ν4 .
26 It is curious to note that if we did not apply the redefinition in (A.18) then the value of the coefficient b1 in (4.3), 
(4.4) would be changed to b′

1 = − 1
24 so that the coefficient of the L2

α′ term in (4.3) would become 1
8π2 (

ζ(3)

g2
s

− π2

3 ) as 
in (4.2) and is thus exactly proportional to the coefficient of the second term in (4.13).
27 Note that J̄0 vanishes in the case of undeformed AdS5 × S5 background (implying, in particular, no correction to the 
radius or free energy, cf. e.g.[54,43,55]) but does not vanish on the AdS × CP3 one.
4
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J̄0

∣∣∣
AdS4×CP3

= 34 · 214L−8 . (4.16)

The difference from the required 33 · 213 factor may be attributed to the contributions of other 
Ricci tensor dependent terms in t8t8RRRR and ε10ε10RRRR (discussed in Appendix C) and 
other RR field strength dependent terms in the invariants J0, J1 (cf. [56]).
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Appendix A. Notation and basic relations

Here we review the relations between M-theory and type IIA string theory parameters in 
general and also in the specific case of the AdS4 × S7/Zk background when they are expressed 
in terms of N and k of ABJM theory [3].

The action of the 11d supergravity is

S11 = 1

2κ2
11

∫
d11x

√−G
(
R − 1

2 · 4!Fmnk�F
mnk� + · · ·

)
, 2κ2

11 = (2π)8 �9
P ,

(A.1)

where our normalization of 11d Planck length �P here is the same as in, e.g., [3,57]. The M2-
brane tension is then [42]

T2 = 1

(2π)2 �3
P

. (A.2)

Assuming compact x11 direction the 11d metric may be written as

ds2
11 = e− 2

3 φ ds2
10 + e

4
3 φ(dx11 + e−φAmdxm)2, x11 ∼ x11 + 2πR11, (A.3)

where, upon reduction to 10d, ds2
10 will be the string frame metric and φ the dilaton. The constant 

part of the dilaton is related to string coupling as gs = eφ , so that (A.1) reduces to the standard 
10d type IIA supergravity action28 with

28 It reads 1
2κ2

10

∫
d10x

√−G [e−2φ̃ (R + ...) + ...] where φ̃ is non-constant part of the dilaton, with constant part in-

cluded in κ10.
17
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2πR11
1

g2
s

1

2κ2
11

= 1

2κ2
10

, 2κ2
10 = (2π)7g2

s α′4 . (A.4)

The M2 brane wrapped on the x11 circle gives the fundamental string action with the standard 
tension29

2π R11 T2 = T1 , T1 = 1

2πα′ . (A.5)

From (A.4) and (A.5), we then learn that in the above notation30

R11 = �P = �s , �s ≡ √
α′ . (A.6)

For a constant φ the effective radius of the 11-th direction is (as in [59])

R11 = e
2
3 φR11 = g

2/3
s R11 . (A.7)

Let us now specialize to the AdS4 ×S7 space supported by the 4-form flux with N̂ units of charge 
(which is the near-horizon limit of the background sourced by multiple M2-branes [60])

ds2
11 = L2

11

(1

4
ds2

AdS4
+ ds2

S7

)
, ds2

AdS4
= dr2 + sinh2 r d�2

3, F4 = dC3 ∼ N̂ ε4.

(A.8)

The flux quantization condition implies that

L11

�P

= (
25π2N̂

)1/6
. (A.9)

Considering Zk quotient of S7 we get [3]

ds2
S7/Zk

= ds2
CP3 + 1

k2 (dϕ + kA)2 , ϕ ≡ ϕ + 2π, (A.10)

ds2
CP3 = dwsdw̄s

1 + |w|2 − wrw̄s

(1 + |w|2)2 dwsdw̄r ,

dA = i
[ δsr

1 + |w|2 − wsw̄r

(1 + |w|2)2

]
dwr ∧ dw̄s,

and thus

R11 = g
2/3
s R11 = L11

k
, N̂ = Nk ,

L11

�P

= (
25π2Nk

)1/6
. (A.11)

Here L11 and k are the parameters of the 11d M-theory background.

29 In relating M2-brane action and the fundamental string action by this double dimensional reduction the dilaton factors 
cancel [58].
30 These relations follow from natural assumption that 11d action does not know about gs which enters only via the 
dilaton. The resulting identifications are also consistent with relations for D-brane tensions as D-brane actions contain 
e−φ factor, i.e. scale as 1

gs
for constant dilaton. A different option is to assume that relation between 11d and 10d actions 

involves only non-constant part of the dilaton. Then (A.4) would not have the 1
g2

s
factor in the l.h.s. and (A.6) would then 

take the form (see, e.g., [57]) �′ = g
1/3
s �s , R′ = gs �s .
P 11
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Upon dimensional reduction we then get the metric and parameters of 10d string theory

ds2
10 = L2

(1

4
ds2

AdS4
+ ds2

CP3

)
, LAdS4 = 1

2
L , (A.12)

L = g
1/3
s L11 , gs = ( L11

k �P

)3/2
. (A.13)

Expressed in terms of the dual gauge-theory parameters N and k the string coupling and the 
effective dimensionless string tension are

gs ≡ √
π (

2

k
)5/4N1/4 =

√
π (2λ)5/4

N
, λ = N

k
, (A.14)

T ≡ L2
AdS4

T1 = L2

8πα′ = g
2/3
s

L2
11

8πα′ =
√

λ√
2

, (A.15)

g2
s

8π T
= λ2

N2 = 1

k2 . (A.16)

The M-theory perturbative expansion corresponds to large curvature scale or large effective M2 
brane tension for fixed parameter k of the background

L ≡ L11

�P


 1 , T2 ≡ T2L
3
11 
 1 , k = fixed , (A.17)

i.e. to the large N limit with fixed k. The 10d string perturbative expansion corresponds to gs 	 1
for fixed T , i.e. to the ’t Hooft expansion in the large N , large k limit with fixed λ = N

k
.

As was argued in [35], the presence of the M-theory correction R4C3 implies the shift

N → N − 1

24

(
k − 1

k

)
, (A.18)

which modifies the relation between L11 and N in (A.11). This leads also to a modification of 
the expressions for the 10d string parameters gs and T in (A.14), (A.15)

gs =
√

π (2λ)5/4

N

(
1− 1

24λ
+ λ

24N2

)1/4
, T ≡ L2

8πα′ =
√

2λ

2

(
1− 1

24λ
+ λ

24N2

)1/2
,

(A.19)

or, equivalently, of how N and λ are expressed in terms of them:

N =4
√

2π
T 5/2

gs

(
1 + 1

48T 2 − 1

384π

g2
s

T 3

)
, λ = 2T 2

(
1 + 1

48T 2 − 1

384π

g2
s

T 3

)
.

(A.20)

Note that the useful relation (A.16) remains unchanged.

Appendix B. Supergravity contribution to the free energy

To find the leading term in the M-theory effective action one is to evaluate the 11d supergrav-
ity action (A.1) on the AdS4 × S7/Zk background. We may first reduce to 10d and evaluate the 
resulting type IIA 10d supergravity action on the corresponding AdS4 × CP3 background. Com-
pactifying on CP3 we get the 4d Einstein action with a cosmological constant that admits the 
AdS4 solution with the radius LAdS4 = 1

2L (cf. (A.12)). Explicitly, one finds (using the negative 
overall sign for the action corresponding to the Euclidean signature)
19
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S0 = − 1

2κ2
10

L6 vol(CP3)

∫
d4x

√
g
(
R + 6L−2

AdS4

)
. (B.1)

Here κ10 is given in (A.4) and on the AdS4 solution R = −12L−2
AdS4

so that

S0 = − 1

2κ2
10

L6 vol(CP3)L4
AdS4

vol(AdS4) (−6)L−2
AdS4

= 1

3 · 27π2

1

g2
s

L8

α′4 = π
√

2

3
λ−1/2N2 .

(B.2)

Here we used that the volumes for the unit-radius spaces are31

vol(AdS4) = 4π2

3
, vol(CP3) = 1

2π
vol(S3) = π3

6
, (B.3)

and also that LAdS4 = 1
2L and (A.13), (A.15), (A.14). Thus (B.2) matches the first term in F in 

(2.14) [6].
The same value is found of course directly from the 11d supergravity action evaluated on the 

on AdS4 × S7/Zk background

S0 = − 1

2κ2
11

1

k
L7

11 vol(S7) ( 1
2L11)

4 vol(AdS4) (−6)( 1
2L11)

−2

= 1

3 · 27π2

1

k

L9
11

�9
P

= π
√

2

3
k1/2N3/2 , (B.4)

where we used (A.11). This matches the first term in the large N expansion of free energy (2.6).

Appendix C. Values of R4 invariants on AdS4 × CP3

In (4.16) we presented the value of the Weyl-tensor part (4.15) of the J0 invariant in (4.11) on 
AdS4 × CP3 background. Here we shall present the values of the full curvature-dependent parts 
of the invariants J0 and J1 keeping also the Ricci tensor dependent contributions.

Using the explicit form of the t8 tensor [61] one finds

t8t8RRRR = tmnlrstpq tabcdefghRmn
abRlr

cdRst
ef Rpq

gh (C.1)

= −96Rab
ef RabcdRce

ghRdfgh + 384Ra
e
c
f RabcdRb

g
f

hRdheg

+ 24Rab
ef RabcdRcd

ghRefgh − 192Rabc
eRabcdRd

fghRefgh

+ 192Ra
e
c
f RabcdRb

g
d
hRegf h + 12(RmnklR

mnkl)2.

In (4.11) one has32

J0 =t8t8RRRR − 1

4
E8 + ... , (C.2)

E8 ≡δn1···n8
m1···m8

Rm1m2
n1n2 · · ·Rm7m8

n7n8 (C.3)

= − 384R2RklR
kl + 768(RklR

kl)2 + 96R2RklmnR
klmn − 384RpqRpqRklmnR

klmn

31 In general, vol(AdS2n) = (−2π)n

(2n−1)!! , vol(CPn) = 1
2π

vol(S2n+1) = πn

n! .
32 In Minkowski signature metric used in (4.11) 1 ε10ε10RRRR = −E8, cf. [39].
2
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+ 48(RklmnR
klmn)2 + 16R4 + R

(
1024Ra

cRabRbc + 1536RabRcdRacbd

− 1536RabRa
cdeRbcde − 512Ra

e
c
f RabcdRbf de + 128Rab

ef RabcdRcdef

)
− 1536Ra

cRabRb
dRcd − 6144Ra

cRabRdeRbdce + 1536RabRcdRac
ef Rbdef

+ 3072RabRcdRa
e
c
f Rbedf + 3072Ra

cRabRb
def Rcdef

− 3072RabRcdRa
e
b
f Rcedf + 6144RabRa

cdeRb
f

d
gRcgef

− 1536RabRa
cdeRbc

fgRdefg + 3072RabRa
c
b
dRc

efgRdefg

− 1536Ra
e
c
f RabcdRb

g
e
hRdgf h − 1536Rab

ef RabcdRc
g
e
hRdhfg

+ 96Rab
ef RabcdRcd

ghRefgh − 768Rabc
eRabcdRd

fghRefgh

+ 768Ra
e
c
f RabcdRb

g
d
hRegf h.

Note that (RklmnR
klmn)2 terms cancel in the combination of (C.1) and (C.3) that enters J0 (cf. 

[62]).
Evaluating these two invariants on AdS4 × CP3 with the metric (A.12) introducing for gener-

ality γ = (
LCP3

LAdS4
)2 as the ratio of the squares of the radii we find33

t8t8RRRR = 29 · 32 (3γ 4 + 48γ 2 + 512)L−8 , E8 = 215 · 33 γ (3γ − 8)L−8 . (C.4)

For γ = 4 corresponding to the metric in (A.12) we get

t8t8RRRR = 220 · 32L−8 , E8 = 219 · 33L−8 . (C.5)

Thus if we would keep only these curvature-dependent terms in J0, J1 in (4.10) we would get 
from (4.13) using (4.14)

��S = 1

8π2

L2

α′
[

4
3

(
ζ(3)

g2
s

+ π2

3

)
− 1

2

(
ζ(3)

g2
s

− π2

3

)]
. (C.6)

This is of the same order as just the Weyl-tensor part contribution in (4.16) but does not match 
the precise rational coefficients in the L2

α′ term in F̃ in (4.3). This suggests that it is important to 
include also the contributions of the RR field strength dependent terms in J0 and J1 to get the 
matching.

As an aside, let us note that E8 has an interpretation of an Euler density in 8 dimensions. In 
general, for a d dimensional space Md with Euclidean signature34

E2n(Md) = 1

(d − 2n)! εdεdRn = δ
a1···a2n

b1···b2n
Rb1b2

a1a2 · · ·Rb2n−1b2n
a2n−1a2n

, (C.7)

which vanishes for 2n > d . For example, for a sphere Sd we have Rab
ce = 1

r2
d

δab
ce , and thus 

E2n(S
d) = 2n d!

(d−2n)!
( 1

r2
d

)n. For a product manifold Mm × Sn, with d = m + n, we have [63]

E2p(Mm × Sn) =
[m/2]∑
t=0

(
p

t

)
n!

(n − 2(p − t))!
( 1

r2
n

)p−t

2t−pE2t (Mm) . (C.8)

33 In particular, RklR
kl = (384 + 36γ 2)L−4, RklmnRklmn = (384 + 24γ 2)L−4, RabRbcR

cdRca = (24576 +
324γ 4)L−4.
34 Recall that in d dimensions εi ···in εj1···jn = δ

j1···jn = ∑
σ (−1)σ δ

j1 · · · δjn , δ
j1···js js+1···jp = (d−s)!

δ
j1···js .
1 i1···in iσ1 iσn i1···is is+1···ip (d−p)! i1···is
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This is a special case of the general relation35

E2p(Mm ×Mn) =
[m/2]∑
t=0

(
p

t

)
E2t (Mm)E2(p−t)(Mn) , (C.9)

implying, in particular, that E8(M4 ×M6) = 4E2(M4) E6(M6) +6E4(M4) E4(M6). Indeed, 
one can check that

E8(AdS4 × CP3) = 4E2(AdS4) E6(CP3) + 6E4(AdS4) E4(CP3), (C.10)

in agreement with the value of E8 in (C.4).

Appendix D. Non-perturbative corrections to the ABJM free energy

Here, for completeness, we recall some facts about non-perturbative corrections to free energy 
of the ABJM theory.

In M-theory one may expect non-perturbative contributions to the M2-brane partition func-
tion related to membranes wrapping a 3-cycle C3 of 11d space and thus producing a factor 
∼ exp(−T2vol(C3)) where T2 is M2-brane tension in (A.2). If C3 wraps 11d circle then this con-
tribution may be interpreted as the 10d fundamental string instanton with T2vol(C3) → T1vol(C2)

where T1 is the string tension (cf. (A.5)) and C2 is a 2-cycle in 10d space on which the string 
worldsheet is wrapped. If C3 lies in 10d subspace then the corresponding contribution is that of 
the D2-brane instanton.

In the context of the ABJM theory one may thus expect two types of non-perturbative contri-
butions to F proportional to (n = 1, 2, ...)

e−2πn
√

2λ = e
−2πn

√
2
√

N
k , (D.1)

related to CP1 ⊂ CP3 world-sheet instantons [46] (cf. (A.15)), and to (� = 1, 2, ...)

e
−(π627λ3)1/4 �

gs = e
−π�

√
2 N√

λ = e−π�
√

2
√

kN , (D.2)

due to D2-brane instantons on generalized Lagrangian submanifolds with topology of RP3 ⊂ CP3

[7] (cf. (A.14)).
In the Fermi gas approach of [29] the exact localization expression for the ABJM partition 

function is expressed in terms of the grand potential J(μ, k) of a non-trivial fermionic system as

Z(N,k) = 1

2πi

∫
dμ e J(μ,k)−μN, (D.3)

that may be evaluated at large N by a saddle point method. The grand potential is given by the 
sum of the perturbative and non-perturbative parts

J(μ, k) = Jp(μ, k) + Jnp(μ, k), (D.4)

where the perturbative one is

35 We use this opportunity to point out a misprint in eq. (4.1) in [39]: the coefficient of the second term in
E8(M4 ×M7) = 4E2(M4) E6(M7) + 6E4(M4) E4(M7)

is 6 not 12. The value of this coefficient was not, actually used in [39].
22
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Jp(μ, k) = 1

3
C(k)μ3 + B(k)μ + A(k), C(k) = 2

π2k
, B(k) = k

24
+ 1

3k
. (D.5)

Evaluating (D.3) with Jp part only gives the function partition function in (2.1) given by the Airy 
function and the eA(k) factor.

The non-perturbative part is expected to have the form

Jnp(μ, k) =
∑
n,�

un,�(k,μ) exp
[
−

(4

k
n + 2�

)
μ

]
, (D.6)

where the two sums may be interpreted as accounting for the contributions of the two types of 
instantons mentioned above. Isolating the terms with � = 0 and n = 0 we may write

Jnp(μ, k) = JI(μ, k) + JII(μ, k) + δJnp(μ, k) . (D.7)

Terms with both � > 0 and n > 0 in (D.6) (or “bound state” corrections) given by δJ np(μ, k)

were discussed in [64]. Here JI(μ, k) is given by

JI(μ, k) =
∞∑

n=1

dn(k) e− 4nμ
k , (D.8)

where dn may be determined using that the ABJM matrix integral is dual to the partition function 
of topological string theory on P1 × P1. JII(μ, k) has the following structure for μ 
 1

JII(μ, k) =
∞∑

�=1

[
a�(k)μ2 + b�(k)μ + c�(k)

]
e−2�μ , (D.9)

where the expansion of the coefficients a�, b�, c� for small k follows from the WKB expansion 
of the Fermi gas representation [29] a�(k) = 1

k

∑∞
m=0 a�,mk2m, etc. Conjectures for the closed 

form of some of these coefficients were suggested in [65] and a unifying picture were all (�, n)

terms in (D.6) arise from a refined topological string representation was presented in [66]. The 
saddle point evaluation of (D.3) sets μ � √

N/C(k). Then, the exponent in (D.6) reproduces the 
expected weights in (D.1) and (D.2)

F np = − logZnp =
∑
n,�

f�,n(N,λ) exp
[
− π

√
2
(

2n
√

λ + �
N√
λ

)]
. (D.10)

Recently, the prefactor of the leading worldsheet instanton correction to the free energy [6] was 
directly computed on the 10d string theory side in [47].

References

[1] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 
313 (2012) 71, arXiv :0712 .2824;
V. Pestun, et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301, arXiv :1608 .02952.

[2] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity, Phys. 
Rep. 323 (2000) 183, arXiv :hep -th /9905111.

[3] O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-
branes and their gravity duals, J. High Energy Phys. 10 (2008) 091, arXiv :0806 .1218.

[4] A. Kapustin, B. Willett, I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with 
matter, J. High Energy Phys. 03 (2010) 089, arXiv :0909 .4559.

[5] M. Marino, P. Putrov, Exact results in ABJM theory from topological strings, J. High Energy Phys. 06 (2010) 011, 
arXiv :0912 .3074.
23

http://refhub.elsevier.com/S0550-3213(23)00215-8/bib248CC638CC97E003F1954CA7E432EFFFs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib248CC638CC97E003F1954CA7E432EFFFs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib248CC638CC97E003F1954CA7E432EFFFs2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib0FD5CC9C743A5B41C6D2CB496211ECC7s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib0FD5CC9C743A5B41C6D2CB496211ECC7s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib33A8130FC9A6D7723FE749A4291636A5s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib33A8130FC9A6D7723FE749A4291636A5s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibFAD04A1A575D8751B44BAF36A9B54FDDs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibFAD04A1A575D8751B44BAF36A9B54FDDs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib6168A87F8505C87E8D2813938FC60E79s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib6168A87F8505C87E8D2813938FC60E79s1


M. Beccaria and A.A. Tseytlin Nuclear Physics B 994 (2023) 116286
[6] N. Drukker, M. Marino, P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 
511, arXiv :1007 .3837.

[7] N. Drukker, M. Marino, P. Putrov, Nonperturbative aspects of ABJM theory, J. High Energy Phys. 11 (2011) 141, 
arXiv :1103 .4844.

[8] M. Marino, Localization at large N in Chern–Simons-matter theories, J. Phys. A 50 (2017) 443007, arXiv :1608 .
02959.

[9] S. Bhattacharyya, A. Grassi, M. Marino, A. Sen, A one-loop test of quantum supergravity, Class. Quantum Gravity 
31 (2014) 015012, arXiv :1210 .6057.

[10] J.T. Liu, W. Zhao, One-loop supergravity on AdS4 × S7/Zk and comparison with ABJM theory, J. High Energy 
Phys. 11 (2016) 099, arXiv :1609 .02558.

[11] N.B. Agmon, S.M. Chester, S.S. Pufu, Solving M-theory with the conformal bootstrap, J. High Energy Phys. 06 
(2018) 159, arXiv :1711 .07343.

[12] S.M. Chester, S.S. Pufu, X. Yin, The M-theory S-matrix from ABJM: beyond 11D supergravity, J. High Energy 
Phys. 08 (2018) 115, arXiv :1804 .00949.

[13] D.J. Binder, S.M. Chester, S.S. Pufu, Absence of D4R4 in M-theory from ABJM, J. High Energy Phys. 04 (2020) 
052, arXiv :1808 .10554.

[14] D.J. Binder, S.M. Chester, S.S. Pufu, AdS4/CFT3 from weak to strong string coupling, J. High Energy Phys. 01 
(2020) 034, arXiv :1906 .07195.

[15] L.F. Alday, S.M. Chester, H. Raj, ABJM at strong coupling from M-theory, localization, and Lorentzian inversion, 
J. High Energy Phys. 02 (2022) 005, arXiv :2107 .10274;
L.F. Alday, S.M. Chester, H. Raj, M-theory on AdS4 × S7 at 1-loop and beyond, J. High Energy Phys. 11 (2022) 
091, arXiv :2207 .11138.

[16] N. Bobev, A.M. Charles, K. Hristov, V. Reys, The unreasonable effectiveness of higher-derivative supergravity in 
AdS4 holography, Phys. Rev. Lett. 125 (2020) 131601, arXiv :2006 .09390;
N. Bobev, A.M. Charles, K. Hristov, V. Reys, Higher-derivative supergravity, AdS4 holography, and black holes, J. 
High Energy Phys. 08 (2021) 173, arXiv :2106 .04581.

[17] N. Bobev, J. Hong, V. Reys, Large N partition functions of the ABJM theory, J. High Energy Phys. 02 (2023) 020, 
arXiv :2210 .09318.

[18] N. Bobev, J. Hong, V. Reys, Large N partition functions, holography, and black holes, Phys. Rev. Lett. 129 (2022) 
041602, arXiv :2203 .14981;
N. Bobev, S. Choi, J. Hong, V. Reys, Large N superconformal indices for 3d holographic SCFTs, J. High Energy 
Phys. 02 (2023) 027, arXiv :2210 .15326.

[19] M.B. Green, M. Gutperle, P. Vanhove, One loop in eleven-dimensions, Phys. Lett. B 409 (1997) 177, arXiv :hep -th /
9706175.

[20] J.G. Russo, A.A. Tseytlin, One loop four graviton amplitude in eleven-dimensional supergravity, Nucl. Phys. B 508 
(1997) 245, arXiv :hep -th /9707134.

[21] M. Beccaria, G.P. Korchemsky, A.A. Tseytlin, Non-planar corrections in orbifold/orientifold N = 2 superconformal 
theories from localization, arXiv :2303 .16305.

[22] S. Giombi, A.A. Tseytlin, Wilson loops at large N and the quantum M2-brane, Phys. Rev. Lett. 130 (2023) 201601, 
arXiv :2303 .15207.

[23] M. Beccaria, A.A. Tseytlin, On the structure of non-planar strong coupling corrections to correlators of BPS Wilson 
loops and chiral primary operators, J. High Energy Phys. 01 (2021) 149, arXiv :2011 .02885.

[24] R. Gopakumar, C. Vafa, M theory and topological strings. 1, arXiv :hep -th /9809187.
[25] R. Gopakumar, C. Vafa, M theory and topological strings. 2, arXiv :hep -th /9812127.
[26] M. Dedushenko, E. Witten, Some details on the Gopakumar-Vafa and Ooguri-Vafa formulas, Adv. Theor. Math. 

Phys. 20 (2016) 1, arXiv :1411 .7108.
[27] Y. Hatsuda, S. Moriyama, K. Okuyama, Exact instanton expansion of the ABJM partition function, PTEP 2015 

(2015) 11B104, arXiv :1507 .01678.
[28] H. Fuji, S. Hirano, S. Moriyama, Summing up all genus free energy of ABJM matrix model, J. High Energy Phys. 

08 (2011) 001, arXiv :1106 .4631.
[29] M. Marino, P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001, arXiv :1110 .4066.
[30] M. Hanada, M. Honda, Y. Honma, J. Nishimura, S. Shiba, Y. Yoshida, Numerical studies of the ABJM theory for 

arbitrary N at arbitrary coupling constant, J. High Energy Phys. 05 (2012) 121, arXiv :1202 .5300.
[31] M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum 

string amplitudes, Commun. Math. Phys. 165 (1994) 311, arXiv :hep -th /9309140;
C. Faber, R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000) 173, arXiv :
math /9810173.
24

http://refhub.elsevier.com/S0550-3213(23)00215-8/bibF76CD1CDE0E323AE06D14713E98F6237s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibF76CD1CDE0E323AE06D14713E98F6237s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib62ACDDAA4172CA94EC83BB39BB0F2FEBs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib62ACDDAA4172CA94EC83BB39BB0F2FEBs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib2F803BCBEC395C0DE1453EC1B9636329s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib2F803BCBEC395C0DE1453EC1B9636329s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib733FC8CA31F9A9630709EE7F3B36C21Cs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib733FC8CA31F9A9630709EE7F3B36C21Cs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib3CEB3309AE8F2478AA7F4A178879E4C4s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib3CEB3309AE8F2478AA7F4A178879E4C4s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib2447D4F3CA6EDBDF1C48C1159348ECC2s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib2447D4F3CA6EDBDF1C48C1159348ECC2s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibF6D9CDCE265B5628547C964022433030s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibF6D9CDCE265B5628547C964022433030s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib175B8CB47659A512C7647E77C5AAD971s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib175B8CB47659A512C7647E77C5AAD971s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibA3ACFF0CFB2268A3B98E8809642845CBs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibA3ACFF0CFB2268A3B98E8809642845CBs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibFD7AD0C18A342CDCBE6C856693DA1AFCs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibFD7AD0C18A342CDCBE6C856693DA1AFCs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibFD7AD0C18A342CDCBE6C856693DA1AFCs2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibFD7AD0C18A342CDCBE6C856693DA1AFCs2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib903F46BCCAA1ACCD14A7713F18ACF0C8s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib903F46BCCAA1ACCD14A7713F18ACF0C8s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib903F46BCCAA1ACCD14A7713F18ACF0C8s2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib903F46BCCAA1ACCD14A7713F18ACF0C8s2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibB661D6D624E7D43A7B175912FD73F207s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibB661D6D624E7D43A7B175912FD73F207s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib7439DF6CBB1339DDD225EAC73A4D232Fs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib7439DF6CBB1339DDD225EAC73A4D232Fs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib7439DF6CBB1339DDD225EAC73A4D232Fs2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib7439DF6CBB1339DDD225EAC73A4D232Fs2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib22D9E2DFAAFD1F55F64DF1AD6985AC6As1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib22D9E2DFAAFD1F55F64DF1AD6985AC6As1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib3409CC4BFE40A5DDF4459DB89CDA7EC2s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib3409CC4BFE40A5DDF4459DB89CDA7EC2s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibE61CC8C225E06D2E0F9871678D13A5AEs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibE61CC8C225E06D2E0F9871678D13A5AEs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib38B05DCBEFEA6D07C149CD90896D3651s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib38B05DCBEFEA6D07C149CD90896D3651s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib070AE616A84B044CA36581589E7A1306s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib070AE616A84B044CA36581589E7A1306s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib59C61ABF9C53F3A4D1A1DD8072BE6A34s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibD6EB1741E18EE0E01F6329BFB9FE4272s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibDA2435330DF3E22220C3F6DC6167C7F6s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibDA2435330DF3E22220C3F6DC6167C7F6s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibE6FC3EF13708B008DF00C59AB5789EF2s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibE6FC3EF13708B008DF00C59AB5789EF2s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib36909BF9230D9661A96FAC546B07EC93s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib36909BF9230D9661A96FAC546B07EC93s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib1F76BE79E4198D99908FBCA9F1367A4Fs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib3C9103ADC14DA80C00A434DB85DF159Ds1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib3C9103ADC14DA80C00A434DB85DF159Ds1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib6DDC89A9F0A2DED682777EF3923ADA59s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib6DDC89A9F0A2DED682777EF3923ADA59s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib6DDC89A9F0A2DED682777EF3923ADA59s2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib6DDC89A9F0A2DED682777EF3923ADA59s2


M. Beccaria and A.A. Tseytlin Nuclear Physics B 994 (2023) 116286
[32] M. Aganagic, A. Klemm, M. Marino, C. Vafa, Matrix model as a mirror of Chern-Simons theory, J. High Energy 
Phys. 02 (2004) 010, arXiv :hep -th /0211098.

[33] R. Gopakumar, C. Vafa, On the gauge theory / geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415, 
arXiv :hep -th /9811131.

[34] Y. Hatsuda, K. Okuyama, Probing non-perturbative effects in M-theory, J. High Energy Phys. 10 (2014) 158, arXiv :
1407 .3786.

[35] O. Bergman, S. Hirano, Anomalous radius shift in AdS4/CFT(3), J. High Energy Phys. 07 (2009) 016, arXiv :
0902 .1743.

[36] M.J. Duff, J.T. Liu, R. Minasian, Eleven-dimensional origin of string-string duality: a one loop test, Nucl. Phys. B 
452 (1995) 261, arXiv :hep -th /9506126.

[37] C.P. Herzog, I.R. Klebanov, S.S. Pufu, T. Tesileanu, Multi-matrix models and Tri-Sasaki Einstein spaces, Phys. Rev. 
D 83 (2011) 046001, arXiv :1011 .5487.

[38] M.B. Green, P. Vanhove, D instantons, strings and M theory, Phys. Lett. B 408 (1997) 122, arXiv :hep -th /9704145.
[39] A.A. Tseytlin, R4 terms in 11 dimensions and conformal anomaly of (2, 0) theory, Nucl. Phys. B 584 (2000) 233, 

arXiv :hep -th /0005072.
[40] E. Fradkin, A.A. Tseytlin, Quantum properties of higher dimensional and dimensionally reduced supersymmetric 

theories, Nucl. Phys. B 227 (1983) 252.
[41] M.B. Green, H.-h. Kwon, P. Vanhove, Two loops in eleven-dimensions, Phys. Rev. D 61 (2000) 104010, arXiv :

hep -th /9910055.
[42] I.R. Klebanov, A.A. Tseytlin, Entropy of near extremal black P-branes, Nucl. Phys. B 475 (1996) 164, arXiv :

hep -th /9604089.
[43] S.S. Gubser, I.R. Klebanov, A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N=4 super-

symmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202, arXiv :hep -th /9805156.
[44] M.B. Green, J.H. Schwarz, L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. 

Phys. B 198 (1982) 474.
[45] R.R. Metsaev, A.A. Tseytlin, On loop corrections to string theory effective actions, Nucl. Phys. B 298 (1988) 109.
[46] A. Cagnazzo, D. Sorokin, L. Wulff, String instanton in AdS(4) x CP3, J. High Energy Phys. 05 (2010) 009, arXiv :

0911 .5228.
[47] F.F. Gautason, V.G.M. Puletti, J. van Muiden, Quantized strings and instantons in holography, arXiv :2304 .12340.
[48] I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor, Topological amplitudes in string theory, Nucl. Phys. B 413 (1994) 

162, arXiv :hep -th /9307158.
[49] M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Holomorphic anomalies in topological field theories, Nucl. Phys. B 

405 (1993) 279, arXiv :hep -th /9302103.
[50] Y. Hatsuda, Spectral zeta function and non-perturbative effects in ABJM Fermi-Gas, J. High Energy Phys. 11 (2015) 

086, arXiv :1503 .07883.
[51] M.B. Green, J.G. Russo, P. Vanhove, Low energy expansion of the four-particle genus-one amplitude in type II 

superstring theory, J. High Energy Phys. 02 (2008) 020, arXiv :0801 .0322.
[52] M.B. Green, P. Vanhove, Duality and higher derivative terms in M theory, J. High Energy Phys. 01 (2006) 093, 

arXiv :hep -th /0510027;
M.B. Green, J.G. Russo, P. Vanhove, Non-renormalisation conditions in type II string theory and maximal super-
gravity, J. High Energy Phys. 02 (2007) 099, arXiv :hep -th /0610299;
E. D’Hoker, M.B. Green, B. Pioline, R. Russo, Matching the D6R4 interaction at two-loops, J. High Energy Phys. 
01 (2015) 031, arXiv :1405 .6226.

[53] M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory Vol. 2: 25th Anniversary Edition, Cambridge Monographs 
on Mathematical Physics, Cambridge University Press, 2012.

[54] T. Banks, M.B. Green, Nonperturbative effects in AdS in five-dimensions × S5 string theory and D = 4 SUSY 
Yang-Mills, J. High Energy Phys. 05 (1998) 002, arXiv :hep -th /9804170.

[55] S. Frolov, I.R. Klebanov, A.A. Tseytlin, String corrections to the holographic RG flow of supersymmetric SU(N) x 
SU(N + M) gauge theory, Nucl. Phys. B 620 (2002) 84, arXiv :hep -th /0108106.

[56] S. Frolov, A.A. Tseytlin, R4 corrections to conifolds and G2 holonomy spaces, Nucl. Phys. B 632 (2002) 69, 
arXiv :hep -th /0111128.

[57] J. Bagger, N. Lambert, S. Mukhi, C. Papageorgakis, Multiple membranes in M-theory, Phys. Rep. 527 (2013) 1, 
arXiv :1203 .3546.

[58] M.J. Duff, P.S. Howe, T. Inami, K.S. Stelle, Superstrings in D=10 from supermembranes in D=11, Phys. Lett. B 
191 (1987) 70.

[59] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85, arXiv :hep -th /9503124;
25

http://refhub.elsevier.com/S0550-3213(23)00215-8/bib70D0215695A423894CDE143028EBF706s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib70D0215695A423894CDE143028EBF706s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib47138508F4B4F5165345D302B7F09F79s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib47138508F4B4F5165345D302B7F09F79s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib0773FE26381407ADD50274586590D95Es1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib0773FE26381407ADD50274586590D95Es1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibAB2517006FB378F37ADA36254E64C959s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibAB2517006FB378F37ADA36254E64C959s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib67D79EACED198EADD048F20F5B5106FDs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib67D79EACED198EADD048F20F5B5106FDs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibF3A7B869DD03857C6E19BFAFC7ADAD96s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibF3A7B869DD03857C6E19BFAFC7ADAD96s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib570F23B12677644A31A8EE42E7E5DC92s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib75952263D050077EDC2E5DD9472BFE07s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib75952263D050077EDC2E5DD9472BFE07s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib9FF21031421E268452027E71921EDCE5s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib9FF21031421E268452027E71921EDCE5s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibA017D9517007733D17088A53A8AB2E01s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibA017D9517007733D17088A53A8AB2E01s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibABC87FFEEC0A30025BE71690F50038DBs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibABC87FFEEC0A30025BE71690F50038DBs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib68EA8C7FDFD032BFFEF0682335A441F0s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib68EA8C7FDFD032BFFEF0682335A441F0s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib086386F80379DB4832E01CB6952EC165s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib086386F80379DB4832E01CB6952EC165s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibF6EED17289391DCB2EC838D66345091Es1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib99939520A4A695F4B03483FD0D623EA7s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib99939520A4A695F4B03483FD0D623EA7s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib620B2BC51BAD2B56FD6A591CDF499AB0s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib6B0809604416DCEFA6074515B2C56286s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib6B0809604416DCEFA6074515B2C56286s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib5C2C8028317C39913985BA989E5BBE9Fs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib5C2C8028317C39913985BA989E5BBE9Fs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibA6198999414307433542AB2F9EB8C457s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibA6198999414307433542AB2F9EB8C457s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib1ED0634514D6502F07E8F89C3793EE64s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib1ED0634514D6502F07E8F89C3793EE64s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibB50EA34C7A7A6ABA9F25B43D98E23E5Bs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibB50EA34C7A7A6ABA9F25B43D98E23E5Bs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibB50EA34C7A7A6ABA9F25B43D98E23E5Bs2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibB50EA34C7A7A6ABA9F25B43D98E23E5Bs2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibB50EA34C7A7A6ABA9F25B43D98E23E5Bs3
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibB50EA34C7A7A6ABA9F25B43D98E23E5Bs3
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib82EA9D52731994B2AC3815145B19A9B5s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib82EA9D52731994B2AC3815145B19A9B5s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib7D0E5AC5836BAF65EAA03E897A6ACF0Bs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib7D0E5AC5836BAF65EAA03E897A6ACF0Bs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibCE299A0B3C8D002AD5E09917F4517520s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibCE299A0B3C8D002AD5E09917F4517520s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib9C91A66E7D18BDB3FE9495122346E915s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib9C91A66E7D18BDB3FE9495122346E915s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibA59E07D8D357C233CAA39DD6C0C61A6Bs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibA59E07D8D357C233CAA39DD6C0C61A6Bs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib906E78218D89BE791310DDCCB17BB379s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib906E78218D89BE791310DDCCB17BB379s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibD16C7ABAF47ED8B51CEB87CE5B191BD5s1


M. Beccaria and A.A. Tseytlin Nuclear Physics B 994 (2023) 116286
P.K. Townsend, Four lectures on M theory, in: ICTP Summer School in High-Energy Physics and Cosmology, Dec. 
1996, pp. 385–438, arXiv :hep -th /9612121.

[60] M.J. Duff, K.S. Stelle, Multimembrane solutions of D = 11 supergravity, Phys. Lett. B 253 (1991) 113.
[61] J.H. Schwarz, Superstring theory, Phys. Rep. 89 (1982) 223.
[62] R.C. Myers, Superstring gravity and black holes, Nucl. Phys. B 289 (1987) 701.
[63] K. Nishida, Lovelock gravity with spontaneous dimensional breaking, arXiv :1305 .4344.
[64] Y. Hatsuda, S. Moriyama, K. Okuyama, Instanton bound states in ABJM theory, J. High Energy Phys. 05 (2013) 

054, arXiv :1301 .5184.
[65] Y. Hatsuda, S. Moriyama, K. Okuyama, Instanton effects in ABJM theory from Fermi gas approach, J. High Energy 

Phys. 01 (2013) 158, arXiv :1211 .1251;
F. Calvo, M. Marino, Membrane instantons from a semiclassical TBA, J. High Energy Phys. 05 (2013) 006, arXiv :
1212 .5118.

[66] Y. Hatsuda, M. Marino, S. Moriyama, K. Okuyama, Non-perturbative effects and the refined topological string, J. 
High Energy Phys. 09 (2014) 168, arXiv :1306 .1734.
26

http://refhub.elsevier.com/S0550-3213(23)00215-8/bibD16C7ABAF47ED8B51CEB87CE5B191BD5s2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibD16C7ABAF47ED8B51CEB87CE5B191BD5s2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bibAC20FFB65B017567737F12C52E8D5B4Ds1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib550CF0A0FDB2703BD7224D6AA594EA1Ds1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib925C5F2EB6AEFECED24EBEF759FBC6BDs1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib7389C1D4E31E8A172B80684071CDF828s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib0FDECC9A5785CB316FA4E70769FCFE69s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib0FDECC9A5785CB316FA4E70769FCFE69s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib7E8623480B71E54117B3F9D7C3306EF4s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib7E8623480B71E54117B3F9D7C3306EF4s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib7E8623480B71E54117B3F9D7C3306EF4s2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib7E8623480B71E54117B3F9D7C3306EF4s2
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib307A7CE64D05BE4497618F78F97166A2s1
http://refhub.elsevier.com/S0550-3213(23)00215-8/bib307A7CE64D05BE4497618F78F97166A2s1

	Comments on ABJM free energy on S3 at large N and perturbative expansions in M-theory and string theory
	1 Introduction
	2 Free energy of ABJM model in the large N expansion
	3 M-theory perturbative expansion
	3.1 Local terms
	3.2 Terms corresponding to the 1-loop M-theory contribution

	4 Type IIA string perturbative expansion
	4.1 Transcendentality structure of the coefficients
	4.2 Contributions from tree level and 1-loop R4 invariants

	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Notation and basic relations
	Appendix B Supergravity contribution to the free energy
	Appendix C Values of R4 invariants on AdS4×CP3
	Appendix D Non-perturbative corrections to the ABJM free energy
	References


