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Abstract—The challenging problem of distribution-agnostic

linear (weighted) unbiased estimation of a global parameter from

heterogeneous and unbalanced data is addressed. This setup

may originate in different signal processing contexts involving

the joint processing of non-homogeneous groups of data whose

statistical distribution is unknown, with (possibly highly) diverse

sample sizes. Since sample estimators of the local variances are

inaccurate in the low-sample regime, suitable weighting schemes

are required. For this problem, we study a family of estimators

based on the idea of trimmed weights, i.e., proportional to the

sample size but with a proper saturation. Such an approach

is theoretically analyzed, showing that it can be linked to the

Maximum Entropy principle under uncertainty on the data

generative model (as well as to a broader class of cost functions).

Different criteria for setting the “cut-off” threshold between

the linear and saturated regions are analyzed, also obtaining

a reduced-complexity approximation of the optimal minimum-

variance estimator for a generalized mixed-effect model. To this

aim, a further contribution is that several estimators of an hy-

perparameter are derived and analyzed. The proposed approach

is analyzed theoretically and its performance are assessed against

state-of-the-art estimators. An illustrative application to real-

world COVID-19 data is also finally developed.

Index Terms—linear unbiased estimator, robust estimation,

unbalanced sample size, heteroscedasticity, trimmed weights

I. INTRODUCTION AND MOTIVATIONS

T
HE estimation of an unknown parameter from a set
of noisy observations is a recurrent problem in signal

processing. A classical instance is the estimation of the DC
component of a signal embedded in (homogeneous) white
noise, typically modeled as Gaussian [1]. Several examples are
found in multi-sensor contexts, e.g. wireless sensor networks
(WSN), where the goal is to estimate a common parameter by
fusing data from different sources (sensors) [2], [3]. Assump-
tions about the noise model are often introduced for more
specific applications: besides the widely-adopted Gaussian
assumption, non-Gaussian models can be adopted, e.g., a
distribution with positive support is of interest in “location
estimation” problems involving arrival times of radio or sound
waves [4]. However, heterogeneous (also called non-uniform)
noise, in which local variances can be different, is frequently
found in practice [5], [6], as noise levels realistically vary
across data samples in several signal processing problems.
Besides WSN, other examples include direction of arrival
estimation [7], [8], spectrum sensing for cognitive radio [9],
and time-delay multistatic target localization [10].
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In general, data heterogeneity may arise from both hetero-
geneous noise in each source or group of data, due to local
causes [11], [12] (including the presence of outliers [13]),
as well as unbalanced sample sizes. Robustness to “wild”
variability of sample sizes among data groups, a different
issue compared to the classical definition of robustness to data
distributional assumptions [14] and other forms of mismatches
(due to e.g., non-idealities, errors, or missing data [15]–[17]),
is of significant practical interest.

A particularly challenging situation occurs when unbalanced
sample sizes — with possibly wild variability across groups
and a significant number of low-sample groups1 — and
data heterogeneity combine with lack of knowledge about
the statistical distribution of the data. This paper addresses
the problem of linear unbiased estimation in such a setup,
for which, thus, distribution-agnostic estimators are needed.2
Indeed, maximum likelihood (ML) estimation theory (as well
as Bayesian MAP/MMSE) is inapplicable when the probability
distribution of the noise, and thus the data, is unknown.
Relevant state-of-the-art solutions typically rely on the least
squares (LS) paradigm under different assumptions on the data
model, with varying levels of heterogeneity ranging from the
purely homogeneous case of the Grand Mean (GM) [21] to the
best linear unbiased estimator (BLUE) [1], [5], [6], analysis-
of-variance (ANOVA) [21], and minimum-variance linear un-
biased estimator (MVLUE) [22] for generalized random-effect
model, which will be all reviewed in Sec. II. The original
contribution of this work is instead to investigate an alternative
estimation approach that is generally-applicable yet simple and
does not introduce specific hypotheses, so that it can cope with
uncertainty about the data model.

A. Statement of contributions
More specifically, we consider a family of estimators which

we refer to as linear unbiased estimators with saturated
sample-size based weights (LUE-S). This family exhibits a
weight profile linear in the sample size but with a saturation,
depending on a single parameter — the “knee-point” of the
resulting piecewise-linear profile, or equivalently the “cut-off”
saturation level. This is motivated by several arguments, as
specified in Sec. I-B. We provide the following contributions:

i) We study the LUE-S family for the problem of estimating
a scalar deterministic parameter from unbalanced, possibly

1In other words, severely unbalanced data groups may mostly be low-
sample but for a few much larger ones, which thus qualify as outliers with
respect to the sample size distribution — i.e., the latter may be heavy-tailed.

2Early work addressed instead the problem by assuming specific statistical
models suitable for particular application contexts, e.g. [18]–[20].

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3293908

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



2

low-sample heterogeneous data; theoretical contributions in-
clude derivation of the probability distribution of the weights,
study of the minimum-variance setting of the saturation pa-
rameter, investigation of relationships with other estimators,
and framing within the Maximum Entropy rationale.

ii) We derive suitable estimators for the hyperparameter
needed in the state-of-the-art estimator MVLUE, of which the
proposed saturated approach can be seen as an approximation
for a certain (data-dependent) choice of the saturation level; the
resulting estimator is easily implementable, making it particu-
larly suitable for practical use since, compared to the MVLUE,
it has lower computational and conceptual complexity.

iii) We provide an insightful performance assessment of
the proposed approach supported by simulations, showing
that the proposed approach can outperform state-of-the-art
estimators; an illustrative application to COVID-19 mortality
rate estimation is also provided using a real-world dataset.

B. Specific motivations and related work
The idea of saturating large weights is heuristically adopted

in practice, often under the term “trimmed weights” or “weight
trimming”, in contexts where there is uncertainty on the weight
profile. For instance, in estimation with stratified populations,
samples are weighted inversely by the probability of inclusion,
e.g., the classical Horvitz-Thompson estimator [23] or other
inverse probability weightings [24], to account for over- or
under-sampling in representing the sampled population; how-
ever, if the resulting weights are highly dispersed, the final
population mean or linear regression estimates may exhibit a
large variance [25]–[27]. Weight trimming or winsorizing is
often introduced to reduce the weight variability and hence
improve the efficiency of survey estimates [28]–[30].3 The
same applies to other statistical settings, such as propensity
score methods in which misspecified models may cause ex-
treme weights: a possible solution is again to reduce their
impact through trimming [34]–[36]. We consider this idea for
the signal processing problem addressed in the paper, which
has different peculiarities compared to survey scenarios.

There are further theoretical reasons for studying linear
unbiased estimation based on saturated weights, that is the
LUE-S family. Winsorizing and trimming are known for their
capability to promote robustness to outliers in the observations
in a distribution-agnostic way. The rationale of this work is to
apply the same idea, which is somewhat reminiscent of the L-
estimation approach4 to sample-size based weights rather than
on data values (observations), so leading to a weight profile
proportional to the sample size but with a proper saturation.

3Variance reduction comes at the expense of introducing bias, but if the
variance reduction is larger than the squared bias increase (as a result of
a suitable choice of the tuning parameter) then the net result is an overall
decrease in mean square error (MSE) [31], [32] (the same motivation supports
the use of `2-norm regularization in machine learning, see [33, Sec. 3.8]).

4L-estimators are linear combinations of order statistics [37], hence stem
for their simplicity and robustness against outliers while being distribution-
agnostic [38]. They have found application in many signal processing prob-
lems, e.g. [39], [40]. Popular L-estimators (besides trivial single-point cases
involving percentiles, e.g., median, maximum/minimum) are the truncated
or ↵-trimmed mean, where ↵% of the largest values are excluded, and the
winsorized mean, where conversely largest values are clipped to a constant
value [41], as we propose here for the sample size values in the weight profile.

It is also worth noting that the resulting two-region
piecewise-linear profile (linearly increasing until a cut-off
value, then constant at the saturation level) shares, up to mirror
transformations, the basic non-linear shape adopted in signal
processing and statistical learning to reduce the impact of a
range of values. Examples are the popular rectified linear unit
(ReLU) activation function used in neural networks [33] and
the hinge loss adopted for maximum-margin classification,
in particular in support vector machines (SVM) [33]. These
and other functions indeed share with trimmed weights the
functional form involving a maximum or minimum between
the independent variable and a chosen value (ref. eq. (13)).

Furthermore, one of the contributions of the present paper
is to provide a principled theoretical justification for saturated
weights, which can be found in the Maximum Entropy formu-
lation of the distribution-agnostic estimation problem — and
actually in a broader class of cost functions (ref. Sec. III-A).

C. Notation
Boldface letters are used for vectors, with | indicating trans-

pose. Rn denotes real-valued n-dimensional vectors, whereas
R+ (respectively, R++) is the set of non-negative (positive)
real numbers. kxk2 is the `2 (Euclidean) norm of x. 1{·}
is the indicator function. E[·] and VAR[·] denote statistical
expectation and variance of a random variable, respectively.
X ⇠ D(p) indicates that the random variable X has distri-
bution D with parameters p. Finally, min(x, y) (respectively,
max(x, y)) denotes the minimum (maximum) between scalars
x and y, whereas min(x) (respectively, max(x)) is the mini-
mum (maximum) among the elements of x.

II. PROBLEM FORMULATION, BACKGROUND AND
STATE-OF-THE-ART APPROACHES

In this section we formulate the problem and review
different state-of-the-art estimation approaches that assume
increasing levels of heterogeneity.

The addressed problem can be abstractly formalized by con-
sidering N data sources, hereafter referred to as groups, each
with a variable number ni � 1 of independent measurements
xi,m 2 R, m = 1, . . . , ni, i = 1, . . . , N . The goal is to
estimate a common (global) deterministic parameter µ based
on the independent but non-identically distributed local means

✓̂i
def
=

1

ni

niX

m=1

xi,m (1)

xi,m = µ+ ei,m (2)

through an unbiased linear (weighted) estimator, i.e.

µ̂ =
NX

i=1

wi✓̂i = w|✓̂ (3)

with ei,m independent noise terms, possibly heterogeneous
across groups i = 1, . . . , N . The sample-size vector n =
[n1 · · · nN ]| is given in input to the problem5 and ✓̂ =

5In fact, in many scenarios it is not possible to obtain an arbitrary amount
of data, i.e., n is known but values cannot be chosen. For completeness, we
mention that there might exist situations in which only the local means ✓̂is (1)
are provided, while the nis are not available or may be (severely) quantized.
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[✓̂1 · · · ✓̂N ]
|

are the observed data, whose heterogeneity thus
comes from both the (possibly wildly) different sample sizes
n and the non-identical distribution of the noise terms (as
also discussed in Sec. I), while w 2 RN

+ are normalized non-
negative weights to be determined.

Several choices of weights w are possible, leading to dif-
ferent properties of the corresponding estimators. Since a key
aspect of the problem setup is that the statistical distribution
(pdf) fXi of the measurements xi,m is unknown, (weighted)
LS approaches are typically adopted in the literature for this
type of problems, as mentioned in Sec. I and reviewed below
under different assumptions on the heterogeneous noise. Only
essential aspects are highlighted here, while more details can
be found in Appendix A.

A. Homogeneous model
In general, the LS approach requires that at least the first

two moments of fXi exist. If all measurements are assumed to
be homogeneously affected by independent white noise (ref.
Sec. A-A for details), the optimal estimator in the LS sense
(optimization problem (A.1)) is the Grand Mean (GM) [21]

µ̂GM def
=

NX

i=1

wGM
i ✓̂i =

PN
i=1 ni✓̂iPN
j=1 nj

. (4)

A different estimator is instead obtained under the assumption
of homogeneity on local averages rather than on raw measure-
ments (ref. Sec. A-B for details); in that case the LS estimator
(optimization problem (A.2)) is the so-called Mean of Group
Means (MGM) [21] with constant weights wMGM

i
def
= 1/N :

µ̂MGM def
=

NX

i=1

wMGM
i ✓̂i =

1

N

NX

i=1

✓̂i. (5)

B. Non-homogeneous model
To cope with the more general non-homogeneous case,

assuming each group of data has known variance �̄2
i (ref. Sec.

A-C for details), the optimal estimator (optimization problem
(A.4)) is the best linear unbiased estimator (BLUE) [1]

µ̂BLUE =

PN
i=1

ni
�̄2
i
✓̂i

PN
i=1

ni
�̄2
i

(6)

as in fact VAR[✓̂i] = �̄2
i /ni. Since group variances are often

unknown in practice, sample estimators such as

ˆ̄�2
i =

1

ni

niX

m=1

(xi,m � ✓̂i)
2 (7)

are typically used in place of the true �̄2
i , though estimator (6)

with (7) plugged in is no longer the BLUE.

C. Non-homogeneous model with random-effect
The non-homogeneous model can be further generalized as

the so-called random-effect model. This is a well-established
way to take into account heterogeneous conditions in the
data [21], and consists in regarding the heterogeneous noise

as the sum of two stochastic components, i.e., homogeneous
noise plus a random term that represents the local contribution
to non-homogeneity (ref. Sec. A-D for details). This results
in VAR[✓̂i] = �2

✓ + �2
i /ni to be used in place of the BLUE’s

�̄2
i /ni to inversely weight the ✓̂is. The implementation requires

however knowledge of the group variances �2
i s as well as

of the additional variance �2
✓ accounting for random effects;

again, sample estimators are often used in practice instead of
the true variances, which leads to the well-known analysis-of-
variance (ANOVA) approach [21]:

µ̂ANOVA =

PN
i=1

ni
ni�̂

2
✓+�̂2

i
✓̂i

PN
i=1

ni
ni�̂

2
✓+�̂2

i

. (8)

A limitation of this estimator is that it requires large values
of the sample sizes nis to properly estimate the unknown vari-
ances. To cope with the challenging scenario where ni can be
very small and with wild variability (heavy-tailed distribution),
for which the ANOVA approach is very inaccurate, in [22] not
only the ✓is but also the �2

i s are modeled as random variables,
instead of deterministic parameters (ref. Sec. A-E for details).
In doing so, the classical random-effect model is generalized,
and the issue with the inaccuracy of sample variance estimates
overcome. Assuming existence of the mean of the (unknown)
distribution of �2

i s, and denoting it by

E def
= E[�2

i ] 2 R+, (9)

the minimum-variance linear unbiased estimator (MVLUE,
optimization problem (A.14)) is obtained as [22]

µ̂MVLUE =

PN
i=1

ni
ni+� ✓̂iPN

j=1
nj

nj+�

(10)

where the hyperparameter

�
def
=

E
�2
✓

2 R+ (11)

is the ratio of the statistics describing local and global vari-
ability. It is straightforward to show that

lim
�!0

µ̂MVLUE = µ̂MGM, lim
�!1

µ̂MVLUE = µ̂GM, (12)

as also apparent in Fig. 1 where the weight profiles of the
MVLUE, GM and MGM are graphically compared with the
saturated (trimmed weights) estimators that will be derived in
the following, namely LUE-S, MVLUE-S, and ELUE-S. For
a discussion on the interpretation of � please see Sec. A-D
and, for more details, [22].

We remark that the LUE-S family we study takes a different
path compared to the approaches reviewed above, as it adopts a
generally-applicable yet simple weight profile that does not ex-
ploit any of the assumptions of the state-of-the-art approaches;
as a consequence, it can naturally cope with uncertainty about
the most appropriate model to describe the data. Still, the
estimators reviewed in this section can serve as reference:
specifically, despite they are derived under a different setup
and without imposing constraints on the weights, both GM
and MGM are unbiased estimators of µ in general, since
their weights sum up to one. Thus they have general-purpose
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Fig. 1: Comparison between the different weight profiles for � = 10 and n
linearly spanning the interval [1, 1000].

applicability too, irrespective of the fact that their design
assumptions are actually met or not; they indeed represent
intuitive ways to combine group means as either an overall
average or a sample-size-weighted average of local averages,
with no dependency on unknown parameters (namely variance
values). One may expect that their performance is inferior to
the MVLUE on heterogeneous data, as the MVLUE includes
GM and MGM as limit cases and represents the stochastic
counterpart (for random �2

i s) of the optimal BLUE (that knows
the true variances). However, the drawback of the MVLUE,
besides its higher conceptual and computational complexity
(discussed in details in Sec. III-B), is the dependency on
the parameter � linked to the moments E and �2

✓ : since
the latter are typically unknown, the MVLUE cannot be
implemented in exact form. Furthermore, mismatches to its
design assumptions may be found in practice, which could
harm its optimality even if the true � were used. This motivates
the quest for a generally-applicable approach, able to cope
with heterogeneous noise in the low-sample regime as well as
uncertainty on the data model, indeed the aim of this work.

III. LINEAR UNBIASED ESTIMATION WITH SATURATED
SAMPLE-SIZE BASED WEIGHTS

Motivated by the discussion in Sec. II and inspired by
weight trimming reviewed in Sec. I-B, we propose to consider
saturated sample-size based weights, i.e., the LUE-S family,
for the problem formulated above — in summary, distribution-
agnostic linear unbiased estimation of a global deterministic
parameter µ based on independent but non-identically dis-
tributed local means ✓̂i (ref. eqs. (1)-(3)), with no information
on variance values and considering possibly low-sampled n
— which has different peculiarities compared to the classical
statistical literature: in particular, it hampers sample estimation
of local variances, implying that state-of-the-art approaches
like ANOVA become very inaccurate. The use of saturated
(trimmed) weights, despite quite popular in applications, has
not received much theoretical attention. In the following, we
provide a comprehensive analysis, with a number of theoret-
ical contributions as well as numerical assessment via both
simulations and real-world data, as summarized in Sec. I-A.

A. Definition and principled derivation
We define the LUE-S family of estimators, denoted by µ̂LUE-S,

as (3) with weights linear in ni but saturating at ⌧ � 0, i.e.

wLUE-S
i =

min(ni, ⌧)PN
j=1 min(nj , ⌧)

. (13)

Two limit cases of (13) are instances of the LS family:
specifically, for ⌧  min(n) one obtains constant weights 1/N
hence the MGM estimator (5) is retrieved, while ⌧ � max(n)
leads to the GM estimator (4) that uses wi / ni.

The structure in (13) has an interesting “water-filling”
interpretation: by regarding nis as resource demands and wis
as shares of allocated resource, such a scheme is max-min fair,
i.e., small demands are firstly satisfied, then the remaining
amount of resource is equally divided among the others [42],
[43].6 Such an appealing property in our case means that
each ✓̂i will be weighted according to its own ni, which is
reasonable since the higher the sample size, the better the
accuracy, but at the same time no group will be weighted more
than what is feasible in order not to underweight smaller-sized
groups. Clearly, in this respect the value of ⌧ plays a role.

Before discussing possible strategies for its setting, we
prove the link between the proposed LUE-S family and the
Maximum Entropy (ME) principle, which is related to the
max-min fair interpretation discussed above.

The ME principle is a fundamental approach to deal with
uncertainty. In our problem, uncertainty may come from unmet
assumptions of the models, estimation error on the required
parameters, imperfect knowledge of the values of nis (for
instance, due to approximate counting, e.g., in stream process-
ing, missing data, and/or quantization), just to name a few. To
cope with such aspects, adhering to Occam’s razor rationale —
which underlies many ideas in signal processing, from model
order selection to compressed sensing and sparse learning [33]
— one should opt for the solution requiring the least number
of hypotheses [45], [46], possibly incorporating only general
known aspects while assuming nothing specific about what
is unknown. Following statistical physics and information-
theoretic arguments, a ME solution thus represents the least
biased choice, since most feasible solutions have entropy close
to the maximum (entropy concentration theorem [47]) and any
other solution with lower entropy (less information) would
inject into the model unwarranted assumptions or information
that is not available [48], [49].7

In the considered problem, since weights are non-negative
and sum up to one, they have the properties of a probability
mass function (pmf); we can thus set up an optimization
problem to find the discrete distribution with ME. If no con-
straints are considered besides the probability simplex (w � 0

6As a result, a single share never exceeds the corresponding demand, and
at the same time the scheme prevents that large demands would exhaust the
resource (so starving small demands). The fact that the allocation is monotone
in the whole range but flat in the higher range (hence the term “water-filling”
[43]) is “fair” in the sense that there is no way to increase a share without
decreasing already smaller shares [42], [44].

7A ME distribution agrees with everything that is known but avoids
assuming anything that is unknown, thus “it is a transcription into mathematics
of an ancient principle of wisdom” [50]. Equivalently, the ME approach to
uncertainty is the best way to avoid unnecessary assumptions [51].
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with
PN

i=1 wi = 1), the well-known solution is the uniform
distribution, which coincides with the MGM wMGM

i = 1/N
[52]. To obtain a non-trivial solution, further constraints need
to be considered. Again, by the Occam’s razor, we opt for
the minimalistic choice of a mild constraint in the form of
upper bound, the simplest option being proportional to the
sample size. Indeed, this is a plain, linear relationship also
found in other state-of-the-art estimators, namely the GM and
BLUE. Moreover, for the ANOVA and MVLUE it is a simple
matter to rewrite the weights as wi =

1
Z

ni
ni+ai

where Z is the
normalization constant (to satisfy

PN
i=1 wi = 1) and ai are

positive parameters; thus, being ni � 1, it follows that

wi  ↵ni (14)

with ↵ = 1
Z . All such considerations motivate the choice of

constraints of type (14) for the ME problem, i.e.

w? = argmin
w

NX

i=1

wi logwi s.t.
⇢

0  w  ↵nPN
i=1 wi = 1

(15)

where the objective function is the usual negative8 Shannon’s
entropy. We have the following result.

Proposition 1. For the problem of linear unbiased estimation
of µ based on ✓̂i in (1)-(3), the solution of the ME problem (15)
is given by the LUE-S (13), with ⌧ / 1/↵ a reparametrization,
i.e., a function of ↵ � 1/

PN
i=1 ni.

Proof. The proof is a slight variant of the classical Lagrangian-
based derivation of the uniform pmf (coinciding with wMGM

i =
1/N ) as ME distribution, with additional KKT conditions for
the upper-bound constraints (14): this leads to wis that are
either equal to a constant  1/N or trimmed to ↵ni, that
is the LUE-S (13) after reparametrization. A self-consistent
detailed proof is reported in the supplemental material.

A further interesting result is that the LUE-S represents, in
a sense, a kind of “attractor” for an entire class of objective
functions, not only the ME. In particular, it is possible to
replace the entropy term wi logwi with any other strictly
convex (continuously differentiable) function g(wi), being the
symmetry of the problem still preserved, as stated below.

Proposition 2. The solution of the optimization problem

w? = argmin
w

NX

i=1

g(wi) s.t.
⇢

0  w  ↵nPN
i=1 wi = 1

(16)

where g : R 7! R is any strictly convex continuously differen-
tiable function, is given by the LUE-S (13), with ⌧ / 1/↵ a
reparametrization, i.e., a function of ↵ � 1/

PN
i=1 ni.

Proof. See supplemental material.

It is worth noting that the infinite set of possible g includes
quadratic functions, leading in particular to the minimization
of the `2 (Euclidean) norm; this is tantamount to reducing the
variance of the weights, as it is known that `2-norm regulariza-
tion introduces shrinkage for the sake of MSE reduction (e.g.,

8As customary, entropy maximization has been recast as minimization
problem by taking the negative entropy as objective function.

ridge regression) [33]. This supports the practice of weight
trimming (or winsorizing) found in applications, as recalled in
Sec. I-B, which is also the rationale behind the LUE-S. In the
following we provide a thorough analysis and demonstration
of the merits of such a family of estimators.

B. Complexity analysis
With the exception of MGM (constant weights), all state-of-

the-art estimators require to explicitly compute all N weights.
The MVLUE, in particular, requires about 4N flops (count-
ing additions and multiplications 1 flop each). By contrast,
the LUE-S requires to compute only weights for ni < ⌧ ,
the remaining ones being all equal. This amounts to about
(k⌧ � 1) + 3 + k⌧ + 1 + (N � 1) ⇡ N + 2k⌧ = (1 + 2⇣)N
flops, where ⇣ = k⌧/N 2 [0, 1] is the fraction of ni < ⌧ out of
the total N . The complexity is thus i) worst-case: 3N ; ii) best-
case: N ; iii) average case (1+2p)N where p = Prob(ni < ⌧).
Differently put, the MVLUE is computationally more ex-
pensive by a factor ranging from 133% to 400%, which is
very significant especially for large-scale problems. Similar
considerations apply to the other weight profiles.

C. Distributional Analysis
In this section we derive and analyze the distribution of the

weights wLUE-S
i in (13) with respect to the vector n.

Proposition 3. The pdf of the weights wLUE-S
i in (13), for i.i.d.

random variables having common pdf fS characterizing the
distribution of the sample sizes, and p = Prob(ni < ⌧), is

fW (w) =
1

w2

Z

IZ\ IY
zfS(z) f

(c)
Y

✓
z
1� w

w

◆
dz

+ ⌧(1� p) f (c)
Y

✓
⌧
1� w

w

◆
1{w> 1

N }

+
⌧w2(N � 1)(1� p)1/N

(1� w)2
fS(⌧)1{w< 1

N }

+ (1� p)N�

✓
w � 1

N

◆

(17)

where f (c)
Y denotes the continuous part of fY , the latter

being the pdf of yi =
PN

j 6=i min(nj , ⌧), and IZ \ IY the
intersection of the supports of fZ and fY , with fZ the pdf of
zi = min(ni, ⌧).

Proof. See Appendix B, where particular expressions for
Uniform and Pareto distribution of n, i.e., S ⇠ U(a, b) and
S ⇠ P (↵), are also reported.

Fig. 2 shows the pdf of w̃i for the Uniform (left) and Pareto
(right) sample size. The histogram, obtained via Monte Carlo
simulation, aligns well with the theoretical expression. In both
cases, a Dirac � function is located at 1/N , which is also the
mean of the distribution. The � impact on the histogram is
significant in the Uniform case but not visible in the Pareto
case, since its amplitude is ⇠ 10�9. Remarkably, the weight
distribution for the proposed LUE-S estimator adapts to the
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Fig. 2: Comparison between Monte Carlo histogram and analytical fW for
Uniform and Pareto distributed sample size, N = 10 and ⌧ = � = 10. Both
distributions have a Dirac � at 1/N = 0.1 (arrow), which is clearly visible in
the Uniform histogram, but not in Pareto one, since its amplitude is ⇠ 10�9.
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Fig. 3: Distribution of the weights fW for Pareto distributed sample size,
number of groups N = 10 and varying ⌧ . All distributions have a Dirac �
located at 1/N , indicated with an arrow.

sample size distribution, producing notable differences in the
weight profile. In contrast, the MGM has constant weights,
i.e., a � with unitary amplitude located at 1/N , regardless of
the sample size distribution. The effect of the differing weight
profile on the estimation error will be assessed in Sec. VI.

Fig. 3 shows how the weight distribution of the LUE-S
changes with ⌧ , and compares it to that of the GM estimator.
The distributions are obtained with respect to a vector n of
N = 10 i.i.d. Pareto random variables. All distributions feature
a Dirac � function, indicated with an arrow, localized at 1/N ,
which is also the mean of the distribution (see also Proposition
4 later). We can observe that varying ⌧ significantly impact the
shape of the weights distribution, reinforcing the interpretation
of the LUE-S as a family of estimators. Notice also that such a
distribution differs from that of the GM, MGM, and MVLUE;
precisely, it collapses to the distribution of the GM only for
⌧ � max(n), and to that of the MGM for ⌧  min(n). Lastly,
it approximates the distribution of the MVLUE for ⌧ = �: such
a particular choice, referred to as Empirical LUE-S (ELUE-S)
will be analyzed in details in Sec. IV-C.

IV. SETTING OF ⌧

In this section we discuss different strategies to set the cut-
off parameter ⌧ of µ̂LUE-S. Beforehand, it is worth pointing
out that although both MVLUE and LUE-S are parametric

estimators, there is an important difference: ⌧ in the LUE-S
is a degree of freedom, while � in the MVLUE is the ratio of
two statistical moments, typically unknown in practice. Thus,
the MVLUE cannot be implemented in exact form. We will
propose in Sec. V several estimators for �, which will also
enable a comparison with the ELUE-S (LUE-S with ⌧ = �).

As to the setting of ⌧ , this is unfortunately related to the
same issue found in robust statistics, i.e., seeking a general
rule for choosing the trimming level, still an open problem
[53]. In fixed cut-off estimators, the level that separates outliers
from non-outliers is established prior to data collection. In fact,
while theoretically the optimal cut-off could be derived if the
distribution of the data were known, in practical applications
the latter is unknown and historic data and expert judgement
are the best tools for defining the most suitable fixed cut-off,
to be reviewed periodically [54]. Indeed, while methods for
automatic setting have been proposed in the survey sampling
literature (e.g., based on the interquartile range compared to
the median weight, or some empirical percentile), many real-
world survey analysts continue to choose the cut-off in an ad-
hoc manner [55]. In the following we discuss some possible
approaches for setting ⌧ in the context of this work.

A. Minimum and Maximum `2-norm weights
A first simple strategy is to look at the variance of the

weights, as in fact the goal of trimming (saturate) weights is to
reduce their variance to some extent (shrinkage), as discussed
in Sec. I-B. We have the following result.

Proposition 4. The weights of any linear unbiased estimator
of µ have mean 1/N irrespective of n, hence the minimum
and maximum variance of wLUE-S

i s correspond to the minimum
and maximum `2-norm solutions with respect to ⌧ ; these are
obtained for ⌧  min(n) and ⌧ � max(n), and coincide with
the MGM and GM estimators, respectively.

Proof. See Appendix C.

Notice that for the minimum-norm case the weight profile
is constantly equal to 1/N (MGM) hence it achieves the
minimum possible variance value of zero. The maximum-norm
case can be instead interpreted as a degenerate saturation in
one point (max(n)), yielding maximum variance within the
LUE-S family. As a whole, such a result shows that looking at
the weight variance does not lead to a convenient way to set
⌧ . A better approach is to look at the variance of the estimator
instead of the variance of the weights, as shown below.

B. Minimum estimation variance weights (MVLUE-S)
In the following we aim at determining the optimal value

⌧⇤ that minimizes the total estimation variance. In general, a
minimum-variance linear unbiased estimator for µ is obtained
by solving an optimization problem of the type (A.11), where
the variance of the group means ✓̂is depends on the assumed
observation model. In particular, recalling Sec. II, we have that

VAR[✓̂i] =

8
>><

>>:

�̄2
i

ni
BLUE

�2
✓ +

�2
i

ni
random-effect

�2
✓ +

E
ni

MVLUE

. (18)
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Fig. 4: Example of variance of the LUE-S as function of the threshold ⌧ for
ni generated as Pareto with ↵ = 0.9 (considering the MVLUE case, third
line in eq. (18), for � = 40). In this realization we have N̆ = 19 unique
values n̆` out of N = 100 generated ni. Dots indicate the minimum values
of the variance over each interval [n̆`, n̆`+1], attained at ⌧⇤` , whereas the
cross mark indicates the global minimum attained at ⌧⇤.

Clearly, if one knew which model exactly matches the data
at hand, there would be no need of alternative estimators,
as the optimal one (for that case, i.e., under the related
assumptions) would be available. In this work we are instead
considering that in real-world applications there is uncertainty
in this respect, motivating the interested in the LUE-S (as
discussed at the beginning of Sec. III and III-A). Therefore, it
is reasonable to adopt a distribution-agnostic and very general
type of estimator, that is the LUE-S family, but then use for
its parameter setting one of the variances in (18) as a proxy
for the unknown actual variance — the choice should be the
one expected to be the closest, so moderately reintroducing
in the estimator this partial (uncertain) prior knowledge. The
general result is given by the following proposition.

Proposition 5. Let us assume, without loss of generality, that
the elements of n are sorted in ascending order and be n̆ the
vector containing the N̆  N unique elements n̆` of n. The
optimal ⌧⇤ can be obtained by selecting, among the points

⌧⇤` =

8
><

>:

r` if n̆` < r` < n̆`+1

n̆` if r`  n̆`

n̆`+1 if r` � n̆`+1

, ` = 1, . . . , N̆ � 1 (19)

the one that yields the minimum value of the variance of µ̂LUE-S

over all intervals [n̆`, n̆`+1] (eq. (D.3)), where

r` =
(N � k⌧ )

Pk⌧
i=1 n

2
i �iPk⌧

i=1 ni
PN

i=k⌧+1 �i
, (20)

and k⌧ 2 {1, . . . , N} counts the number of ni < ⌧ .

Proof. See Appendix D.

Proposition 5 leads to an estimator we will refer to as Mini-
mum Variance Unbiased Estimator with Saturated sample-size
based weights (MVLUE-S), whose weights are therefore

wMVLUE-S
i

def
=

min(ni, ⌧⇤)PN
j=1 min(nj , ⌧⇤)

. (21)

As formally shown in Appendix D, the variance of µ̂LUE-S

(eq. (D.4)) is a piecewise function of ⌧ , obtained as disjoint
union of the variances over each interval [n̆`, n̆`+1], the latter
exhibiting at most one stationary point r`; therefore, the global
optimizer ⌧⇤ can be readily obtained by selecting the point ⌧?` ,
computed via eqs. (19)-(20), that yields the minimum variance.
Fig. 4 shows an illustrative example, to facilitate a clarifying
visualization of the described behavior.

C. Empirical Linear Unbiased Estimator with Saturated
Sample-Size based Weights (ELUE-S)

The optimization in Sec. IV-B may be undesirable for
practical use, especially for large problem instances. Moreover,
as discussed at the beginning of Sec. IV, optimal setting of a
trimming level in the general case is an open problem, and
may be even unsolvable in presence of uncertainty due to
the difficulty of defining the most appropriate optimization
criterion; therefore, a very popular approach remains a fixed
manual setting. However, we discuss here an alternative for-
mulation where ⌧ is replaced by a simple value depending only
on low-order statistics that can be estimated directly from the
data through an explicit formula. Since this idea is loosely
reminiscent of the Empirical Bayes approach, the resulting
estimator will be referred to as Empirical Linear Unbiased
Estimator with Saturated sample-size based weights (ELUE-
S)9. We will show in particular that the setting ⌧ = � with �
replaced by a suitable estimator �̂ is a viable option, which
can be justified by drawing a connection with the MVLUE.

We start by noticing that the MVLUE weighs samples dif-
ferently based on their sizes, but exhibits a kind of asymptotic
saturation for large ni. In fact, consider the function w(x) =
x

x+� and let us study its limit behaviour. Straightforward
investigation reveals that the derivative dw

dx = �
(x+�)2

yields
the first order approximation w(x) ⇡ w(0)+ dw

dx

��
0
x = x/� for

small argument x, while for large argument w(x) ⇡ 1. Under
these two regimes, w(x) can be approximated by straight lines
for x � � or x ⌧ �, having intersection at x = �, as also
graphically apparent in Fig. 1.

The asymptotic behavior above is consistent with the ob-
servation that the terms in the summation of the total variance
of the MVLUE (see eq. (A.14)) can be approximated as

w2
i

✓
ni + �

ni

◆
⇡

8
<

:

w2
i

�

ni
ni ⌧ �

w2
i ni � �

(22)

and the resulting optimization problem returns as optimal
solution exactly the ELUE-S (details are reported in Appendix
E). We will analyze in Sec. VI the performance of this
estimator, also in comparison with other choices of ⌧ .

V. HYPERPARAMETER ESTIMATION

In this section we propose different estimators �̂, which
will be used in the implementation of the ELUE-S (but allow

9Notice however that the proposed approach cannot be considered Bayesian,
since the parameter µ to be estimated is deterministic and in the problem
formulation at hand all probability distributions are unknown. Consequently,
no statistical model is available for Bayesian inference, which requires the
posterior distribution. The proposed approach is indeed distribution-agnostic.
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for implementation of the MVLUE as well). Their relative
performance, and the consequent impact on the estimation of
µ, will be then assessed in Sec. VI.

Recalling the definition (11), we observe that in order to
estimate � we need to estimate the ratio between the two
moments E and �2

✓ . To this aim, a possible approach is to
obtain �̂ as the ratio between any estimators of E and �2

✓ ,
i.e., �̂ = Ê/�̂2

✓ . Although in general the ratio estimator is not
the ratio of the estimators, the latter is an unbiased estimator
of the ratio (to first order, up to higher-order terms in Taylor
expansion) if the two estimators (numerator and denominator)
are unbiased [56]. The simplest choice is to use the sample
mean and sample variance of ✓̂i’s, respectively, that is

Ê =
1

N

NX

i=1

�̂2
i =

1

N

NX

i=1

1

ni � 1

niX

m=1

(xi,m � ✓̂i)
2, (23)

�̂2
✓ =

1

N � 1

NX

i=1

 
✓̂i �

1

N

NX

i=1

✓̂i

!2

=
1

N � 1

NX

i=1

⇣
✓̂i � µMGM

⌘2
.

(24)

It is easy to prove that Ê is an unbiased estimator of E (E[Ê ] =
E), while for �̂2

✓ it can be shown that

E[�̂2
✓ ] =

1

N

NX

i=1

1

ni
E + �2

✓ . (25)

Eq. (25) reveals that the variance estimator (24) is biased,
but suggests a natural way to reduce the bias. In particular, it
is possible to consider the following adjusted estimator

�̂2
✓,USS = �̂2

✓ �
1

N

NX

i=1

1

ni
Ê (26)

which tries to compensate the bias by leveraging the unbiased
estimator Ê in (23). We use the label Unweighted Sum of
Squares (USS) for this proposed estimator since (26) can be
seen as the generalization to random �2

i s of the USS estimator
available in the literature for deterministic �2

i ’s [21].
A more sophisticated approach is to consider a weighted

version of the sample variance estimator (24), with the aim of
mitigating the impact of wrong sample variance estimation.
This may be particularly suitable when the sample size varies
wildly across the groups, and/or it is not sufficiently large
to guarantee an accurate estimation. Let us thus consider the
generic weighted estimator

�̂2
✓,weighted =

V1

V 2
1 � V2

NX

i=1

vi

0

@✓̂i �
1

V1

NX

j=1

vj ✓̂j

1

A
2

(27)

where V1 =
PN

i=1 vi and V2 =
PN

i=1 v
2
i . It is easy to prove

that the bias of �̂2
✓,weighted is

E[�̂2
✓,weighted]=

1

V̄

NX

i=1

1

ni

✓
vi �

v2i
V1

◆
E + �2

✓ (28)

where we defined for convenience V̄ = (V1 � V2/V1). Clearly,
in the weighted case the expression for the bias is more

Parameter Value

D
et

er
m

in
is

tic

N 50
↵ 0.9
µ 50
�2
✓ 0.1
E 2

R
an

do
m

ni P (↵)

✓i N (µ,�2
✓)

�2
i Rayleigh(E

p
2/⇡)

xi,m Gumbel (µGumbel,�Gumbel)

TABLE I: Simulation parameters

involved, but nevertheless it can still be compensated by using
the unbiased estimator of E , as done in the USS approach.

A reasonable choice for the weights is vi = ni, which, when
corrected for the bias using the unbiased estimator Ê , gives

�̂2
✓,ANOVA =

1

V̄

 
NX

i=1

ni

⇣
✓̂i � µ̂GM

⌘2
� (N � 1)Ê

!
(29)

where we have highlighted how this choice of the weights
implies the use of µ̂GM as sample estimator for the mean. We
label the proposed estimator (29) as ANOVA since, again,
it can be seen as the generalization to random �2

i s of the
well-known variance estimator for deterministic �2

i s used in
standard ANOVA [21].

With these definitions of the �2
✓ estimators, the proposed

unbiased estimators of � are consequently defined as

�̂USS = Ê/�̂2
✓,USS (30)

and
�̂ANOVA = Ê/�̂2

✓,ANOVA. (31)

VI. NUMERICAL RESULTS

We analyze the ELUE-S by comparing its performance
against different approaches. The analysis is first performed
via Monte Carlo simulations, then an illustrative application
to the COVID-19 dataset provided is discussed.

A. Simulations
Synthetic data are obtained by simulating N = 50 data

sources or groups, having cardinality distributed as Pareto
with ↵ = 0.9. This gives sample sizes nis with very uneven
distribution (theoretically, infinite mean and variance). The
observations (raw data) xi,m are generated from a Gumbel
distribution with location and scale parameters set to have local
mean ✓i and local variance �2

i . Moreover, the local means
✓is are Gaussian distributed with mean µ = 50 (the global
parameter of interest) and variances �2

✓ = 0.1, while the local
variances �2

i s are Rayleigh distributed with mean E = 2. Such
settings10, summmarized in Table I, represent a non-trivial
scenario where many low samples, but also a few large ones,

10For reproducibility, we remind that, to obtain a mean E , the parameter of
the Rayleigh distribution must be set to E

p
2/⇡. Likewise, to obtain mean

✓i and local variance �2
i , the scale and location parameters of the Gumbel

distribution must be set to �Gumbel =
q

(6�2
i /⇡

2) and µGumbel = ✓i �
�em�Gumbel, respectively, where �em is the Euler–Mascheroni constant.
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are present, hence local sample estimators of the variance may
be inaccurate. Moreover, both means and variances locally
vary (due to the random generation), so making the whole
dataset heterogeneous, though bringing information about the
same underlying common (global) parameter µ.

We will first focus on the estimation of the statistics needed
to estimate the hyperparameter �, which will in turn be used
to provide an estimate of µ for the ELUE-S.

The three plots in Fig. 5 show the pdf estimates of the
different quantities involved in the estimation process obtained
with M = 106 Monte Carlo runs. In the plots, the true values
are illustrated as vertical loosely dashed lines. Specifically,
Figs. 5a and 5b report the performance of the estimators of
E and �2

✓ , respectively. The pdf estimate of Ê in Fig. 5a is
centered around the true value E , which is not surprising, as
the estimator (23) is unbiased. More revealing, Fig. 5b shows
the performance of the different estimators of �2

✓ derived in
Sec. V, i.e., �̂2

✓ , �̂2
✓,USS, and �̂2

✓,ANOVA. As expected, the bias of �̂2
✓

greatly affects its performance, as its pdf estimate is centered
around a completely wrong value. The USS is able to adjust
for the bias, however we can still see how the estimates are
highly scattered (large variance). Clearly, a thoughtful choice
of the weights, as in the case of the ANOVA estimator, leads
to better performance, which in turns yields a more accurate
�̂, as illustrated in Fig. 5c.

We now analyze the bias and MSE/variance of the estima-
tors of �. Fig. 6 reports the MSE as function of N , together
with a bias-variance analysis. Considering the values of the
parameters as above, the ground truth is � = 20. Fig. 6a shows
the superiority of �̂ANOVA with respect to the biased estimator
�̂ and the �̂USS, in particular when N is very large. The bias
of �̂ does not vanish as N grows, therefore its performance
does not improve with the number of groups; on the contrary, it
worsens as N gets larger than 10, as it becomes more probable
to draw wild ni from the Pareto distribution. Figs. 6b-6c show
the bias-variance trade-off for �̂ANOVA and �̂USS, respectively.
The bias correction implemented in �̂USS guarantees that, as
N increases, the estimator performance improves; however, it
still suffers from the heterogeneity of the sample sizes, which
�̂ANOVA tries instead to mitigate, outperforming its competitors.

We now assess how the performance of such estimators
impact onto the final estimation accuracy on µ. Figs. 7
and 8 show the estimates produced by the different ver-
sions of the ELUE-S, namely the ELUE-S, ELUE-SUSS, and
ELUE-SANOVA (which use the corresponding estimators of
�), compared to the GM/MGM estimators which are the
natural competitors. The performance of the estimators are also
compared against the (non-implementable) oracle estimator
LUE-SORACLE that uses the true value of �, which represents a
theoretical benchmark. As the LUE-S is an unbiased estimator
irrespective of the choice of weights, the pdfs in Fig. 7 are
all centered around the true value of the parameter µ to be
ultimately estimated. Different weighting strategies however
strongly affect the estimator variance. For the case at hand, the
best performance, attained obviously by the oracle estimator,
are almost matched by µ̂ELUE-S

ANOVA, as a consequence of the better
estimate of the hyperparameter � as from Fig. 5c. Slightly
worse performance are obtained by µ̂ELUE-S

USS , while µ̂ELUE-S is the

worst among the three solutions. A large performance gap is
instead evident with the competitors, especially the µ̂GM which
performs significantly worse.

To better highlight the performance differences among the
estimators, in particular with reference to larger errors, the
complementary cumulative distribution function (CCDF) of
the squared estimation error (µ̂ � µ)2 is plotted in Fig. 8,
in doubly-logarithmic scale. It is evident the excellent perfor-
mance of µ̂ELUE-S

ANOVA, very close to the theoretical ideal benchmark
(oracle), while a certain fraction of outlying error values affect
the tail behavior of the other estimators. The competitors µ̂GM

and µ̂MGM lead to systematically larger errors in the whole
range, with very significant differences on higher MSE values.

Fig. 9 shows the asymptotic performance of the different
estimators of µ in terms of MSE with respect to N . We
can see how the behaviour of the estimators is consistent
in the asymptotic regime, with µ̂ELUE-S

ANOVA achieving the same
performance of the Oracle estimator (which knows the true
�). It is also interesting to notice that the GM estimator, when
N is very small (< 10), performs similarly with respect to its
competitors. This is probably due to the fact that the other
more complex estimators rely on the possibility to obtain
good estimates of the statistics of the problem (Ê , �̂2

✓ ). This
is particularly difficult when N is very small, therefore the
performance of the estimators are more or less all the same.
As N grows, and the nis become more and more “wild”, the
GM fails in copying with the heterogeneity of the data, and
its performance degrades. This interpretation is also supported
by the fact that the µ̂ELUE-S

ANOVA error curve does not achieves the
same error of the Oracle estimator.

Fig. 10 shows the CCDF of the estimation error attained by
the MVLUE with � obtained using �̂ANOVA and the estimation
error of the LUE-S for ⌧ = 1, . . . ,max(n). We can clearly
see that, for several choices of ⌧ , the LUE-S outperforms the
MVLUE in terms of MSE (colored curves). This is because
the MVLUE is optimal only if its assumptions are exactly met,
while the LUE-S has the flexibility to possibly approach the
optimal estimator for known variances (BLUE). However, how
to obtain the optimal ⌧ in the most general case is still an open
problem, as discussed in Sec. IV. Therefore, the choice of the
ELUE-S (⌧ = �) is a convenient one, as it remains close to
the MVLUE but is more flexible; moreover, it depends on a
single parameter for which we have provided estimators (Sec.
V) to adapt to the data; finally, it has low conceptual as well
computational complexity (as discussed in Sec. III-B).

B. Application to a real-world dataset: COVID-19

Estimation of epidemiological quantities such as reproduc-
tion number R0 or death rate is of paramount importance
to monitor, predict, and counteract the spread of viruses.
However, this is a particularly difficult task, as such indicators
try to summarize the enormous complexity of the epidemic
into single values. Moreover, the extreme heterogeneity of
the data at hand significantly challenges the performance of
estimators. The recent COVID-19 pandemic has caused a
surge in the scientific literature around these topics [57]–[59].
In practice, however, simple indicators are typically used by
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number of groups N .

decision makers to take informed actions, which makes very
important their accurate estimation. Hereafter we will focus
on the problem of estimating the COVID-19 death rate by
using the data available from The New York Times official
repository [60]. The time window goes from the pandemic
surge on March 2020 up to January 2021, before the beginning
of the vaccination campaign. The dataset consists of the daily
cumulative number of cases and cumulative deaths for each
county in the US. We denote ni(t) and xi(t) the number of
cases and deaths, respectively, on day t and for the i-th county.

Assuming the number of deaths to be the sum of binary
variables indicating whether the m-th individual survived the
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Fig. 10: CCDF of the MVLUE estimation error with � (black solid line) and
of the LUE-S estimation error for ⌧ = 1, . . . ,max(n) (colored lines). For
several choices of ⌧ , the LUE-S outperforms the MVLUE in terms of MSE.

infection, i.e., xi(t) =
Pni(t)

m=1 xi,m(t) and xi,m(t) = [0, 1],
our goal is to estimate the mortality of the infection µ, which
is also the probability of xi,m to be equal 1.

Figs. 11-14 illustrate the characteristic of the dataset along
the considered time span. In Fig. 11 we can see the evolution
of N , which is the number of US counties that at time t have
ni � 1 cases (dates are in MM/DD format). As one may
expect, as the pandemic spreads, the number of counties which
started testing and reporting cases of infected individuals
increased rapidly by the end of March 2020 and reached its
maximum by the end of August 2020. The distribution of ni

changed also dramatically during the pandemic, as illustrated
in Fig. 12 where we show the empirical CCDF of n(t) in
doubly-logarithmic scale. The CCDF helps visualizing the
long tail of the distribution, whose upper bound of the support
increases by two orders of magnitude during the considered
time span. The changes in the shape of distribution are clearly
visible in Fig. 13, where the empirical pdf of log(n(t)) is
shown for five different days (dates are in YY/MM/DD for-
mat). The logarithmic transformation is applied to facilitate the
comparison and highlight the main features of the distribution,
which otherwise would be hindered by the heavy tail. Finally,
we are also interested in the distribution of ✓̂(t), shown in
Fig. 14. Such a distribution is an indicator of the heterogeneity
of the local measures: its “wildness”, together with an uneven
distribution of n, directly affects the estimation problem (3).
Here it is evident that for the first months of the pandemic, the
local means distribution is significantly wide, with an heavy
tail that slowly disappears as we move forward in time.

Fig. 15 shows the result of the estimation of the death
rate using the different proposed estimators and the natural
competitors. In particular, we compare the GM and MGM with
the ELUE-S based on the different � estimators discussed in
Sec. V. We can observe several interesting features in the plot.
During the first days of the pandemic, estimates vary abruptly:
due to the scarcity of data (many sample sizes are ni = 1 or
2), we are in a regime of low sample and high heterogeneity,
and the estimate are consequently unreliable. After some
time, as the sample size increases, the estimate becomes
apparently more reliable and, also, the difference between
the estimators can be clearly appreciated. Since no ground
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truth is available, no absolute error comparison is possible.
Nevertheless, we can observe that the estimate provided by
the ELUE-SANOVA lies almost at the center between the other
approaches. This, together with the observation that the GM
and MGM can be interpreted as limit cases of the ELUE-S
and given the analysis in Sec. VI-A, suggests that they are
likely under- and over-estimating, respectively, the parameter
of interest. The proposed ELUE-S instead, with its particular
weighting strategy, is capable of counteracting effectively both
heterogeneity and presence of outliers in the data, providing
more trustworthy results. As discussed in Sec. IV-B, when
most of the sample sizes are large enough to provide reliable
local estimates (last two curves in Fig. 13), the weight profile
becomes less crucial and all curves converge to a similar value.

VII. CONCLUSION

The paper addressed the challenging problem of
distribution-agnostic linear unbiased estimation of a
global deterministic parameter from non-homogeneous
data. This setup is found in many practical cases where joint
processing of different groups of data is performed, or data
contamination from outliers and/or structural heavy-tailedness
of the underlying random process exist. Special consideration
has been given to scenarios in which the applicability of
sample estimators of the local variance is limited due to
low-sample at each source or group. This means in particular
that standard state-of-the-art approaches, including ANOVA
techniques, yield poor results.

To tackle such a problem under uncertain conditions on
the data model, an estimation approach has been investigated
where the idea of winsorizing is applied to the sample size
values determining the weight profile, so obtaining a family
of estimators with trimmed weights, proportional to the sample
size but with a proper saturation. A comprehensive theoretical
analysis has been performed. Finally, proper estimators for the
hyperparameters have been proposed and analyzed.

Numerical simulations results have shown that the proposed
approach outperforms state-of-the-art alternative approaches
based on least squares. Moreover, illustrative application to
COVID-19 data analysis has been presented, which high-
lighted the challenges of dealing with unbalanced, heteroge-
neous data, and confirmed the merits of the proposed approach.
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APPENDIX A
STATE-OF-THE-ART ESTIMATORS

A. Grand Mean (GM)

Assuming for all measurements a white model, i.e., (2) with
E[ei,m] = 0 and VAR[ei,m] = �2, the optimal estimator is the
Grand Mean (GM), solution of the LS optimization problem

µ̂GM = argmin
µ̃

NX

i=1

niX

m=1

(xi,m � µ̃)2. (A.1)

Simple derivative computation yields wGM
i / ni, i.e., eq. (4).

Notice that if �2 were known, the weighted LS approach
would standardize the errors by �, i.e., xi,m�µ̃

� would replace
xi,m � µ̃ in (A.1); this trivially leads again to the GM.

B. Mean of Group Means (MGM)

Under the assumption of homogeneity on local averages,
i.e., xi,m might have unequal variances but the latter become
(possibly approximately) the same after the local averaging
operation, the optimal LS estimator is the so-called Mean of
Group Means (MGM) with constant weights wMGM

i
def
= 1/N : it

solves the problem

µ̂MGM = argmin
µ̃

NX

i=1

(✓̂i � µ̃)2 (A.2)

which returns eq. (5).

C. Best Linear Unbiased Estimator (BLUE)

To cope with the more general non-homogeneous case of
unequal variances

VAR[ei,m] = �̄2
i (A.3)

the (weighted) LS approach standardizes each error by the
corresponding standard deviation. The resulting estimator,
often called best linear unbiased estimator (BLUE) [1], [5],
[6], is thus the solution of the problem

µ̂BLUE = argmin
µ̃

NX

i=1

niX

m=1

✓
xi,m � µ̃

�̄i

◆2

(A.4)

which by a simple calculation of the derivative yields eq. (6).
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D. Analysis-of-Variance (ANOVA)
The non-homogeneous model can be further generalized

as the so-called random-effect model. Indeed, to accommo-
date the different local conditions resulting from inter-group
variability, a hierarchical model is considered in which mea-
surements xi,m, m = 1, . . . , ni have unknown pdf depending
on a local random variable ✓i, with variance �2

✓ in addition
to the group variances �2

i , regarded instead as deterministic
parameters. More specifically, heterogeneous noise terms ei,m
are modeled as the sum of two random components, i.e.

ei,m = �i + ẽi,m (A.5)

which the observation model (2) can be rewritten as
(

xi,m = ✓i + ẽi,m

✓i = µ+ �i

(A.6)

under the assumptions that �i and ẽi,m are (independent) zero-
mean random variables with11

VAR[�i] = �2
✓ , hence E[✓i] = µ (A.7)

VAR[ẽi,m] = �2
i , hence E[xi,m|✓i] = ✓i (A.8)

which imply that E[E[xi,m|✓i]] = µ. Denoting by f⇥ the
unknown common pdf of ✓is, and assuming that the first
two moments of f⇥ exist, the law of total variance can be
used to compute the variances of xi,m required by the LS
approach. It can be then straightforwardly shown for eq. (1)
that VAR[✓̂i] = �2

✓ +�2
i /ni, to be used as inverse weights for

✓̂is; then, replacing the true (unknown) variances with sample
estimators leads to the ANOVA approach in eq. (8) [21].

E. Minimum-Variance Linear Unbiased Estimator (MVLUE)
A limitation of the ANOVA estimator is that it requires

sufficiently large values of the sample sizes nis to properly
estimate the unknown variances. To cope with the challenging
scenario where ni can be very small and with wide variability
(heavy-tailed distribution), for which the ANOVA approach
would be very inaccurate, in [22] not only the ✓is but also the
variances �2

i s are modeled as random variables. Denoting by
f⌃ the unknown pdf of the latter and again assuming the first
two moments exist, we have that

�2
i

def
= VAR[xi,m|✓i,�2

i ] 2 R+ (A.9)

is the (conditional) variance of xi,m and

�2
✓

def
= VAR[✓i] 2 R+ (A.10)

the (unconditional) variance of ✓i; they both account for the
heteroscedasticity of the random effects.

It is worth remarking two main aspects that differentiate
this formulation from standard random-effect models. First,
since the pdfs of the different random variables at play are
unknown, optimal estimation approaches that assume specific
statistical models (ML or MAP/MMSE) cannot be adopted.
Second, in standard random-effect models such as ANOVA

11It is actually sufficient to assume that the conditional mean of the
measurements is proportional to ✓i, i.e., E[xi,m|✓i] / ✓i, since it is always
possible to renormalize the data to get rid of the proportionality factor.
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Fig. 16: Schematic representation of the hierarchical model with relevant
distributions and parameters. From left to right: observable empirical data
(represented as histograms), corresponding unknown theoretical pdfs with
relevant parameters (Gaussian pdfs are used only for the sake of visualization),
and underlying process-related unknown pdfs for the hyperparameters.

and its variants, the conditional variances �2
i s are deterministic

parameters, to be estimated together with �2
✓ (and µ) [21],

often assuming exactly or approximately equal sample sizes
(balanced case). However, local variance estimators provide in-
accurate results for small sample size, and additional issues are
found in unbalanced cases characterized by significant sample
size variations across groups. As said, to overcome such lim-
itations in [22] �2

i s are regarded as random variables instead
of deterministic parameters with mean E in eq. (9) and the
minimum-variance linear unbiased estimator (MVLUE) is de-
rived accordingly. Such an estimator µ̂MVLUE =

PN
i=1 w

MVLUE
i ✓̂i

is obtained by solving the optimization problem

wMVLUE = argmin
w�0,

PN
i=1 wi=1

VAR[µ̂(w)] (A.11)

where

VAR[µ̂(w)] =
nX

i=1

w2
i VAR[✓̂i] (A.12)

and the constraint
PN

i=1 wi = 1 serves to obtain an unbiased
estimator, being E[µ̂] =

PN
i=1 wiE[E[✓̂i]] = µ

PN
i=1 wi. From

the law of total variance it follows that [22]

VAR
h
✓̂i
i
= �2

✓ +
1

ni
E (A.13)

hence problem (A.11) is equivalent to

wMVLUE = argmin
w�0,

PN
i=1 wi=1

NX

i=1

w2
i

✓
1 +

�

ni

◆
(A.14)

where � in eq. (11) is the ratio of the statistics E and �2
✓

describing local and global variability, respectively. Indeed,
(A.13)-(A.14) indicate that variability in each group has both
global (�2

✓ ) and local (E) causes, and a larger sample size can
mitigate only the latter. Fig. 16 summarizes the scenario.
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The optimal solution of (A.14) is eq. (10) [22]. A low
� corresponds to limited local variability, where the intra-
group fluctuation of the xi,ms around their mean value ✓i is
significantly smaller than the inter-group dispersion of the ✓i’s.
In that case, the problem setup approximately meets the ho-
mogeneous assumption of the MGM. Conversely, from (A.14)
it follows that a large value of � yields a proportional increase
of the total estimation variance, and the actual possibility to
end up with a satisfactory estimate depends on the availability
of sufficiently large samples. In that case, the strategy of the
GM is close to optimal, since local estimates are weighted
proportionally to their sample size, so limiting the contribution
of small-size groups to the total variance.

APPENDIX B
PROOF OF PROPOSITION 3

To start with, let us recall that in the general case the pdf
fW̃ characterizing the normalized weights w̃i =

z̃i
z̃i+ỹi

, where
z̃i = g(ni) and ỹi =

PN
j 6=i z̃j , can be written as [22]

fW̃ (w̃) =
1

w̃2

Z
z̃fZ̃(z̃)fỸ

✓
z̃

✓
1

w̃
� 1

◆◆
dz̃

=
1

w̃2

Z
z̃fZ̃(z̃)fỸ (z̃w̃0) dz̃ (B.1)

where fZ̃ and fỸ are the pdfs of z̃i and ỹi, respectively, and
we introduced the shorthand w̃0 def

= 1/w̃� 1. We are interested
in developing further (B.1), which holds true for any choice
of w̃i, for the case at hand. To this aim, we denote zi

def
=

min(ni, ⌧), whereas yi, wi, and w0
i follow immediately from

the definitions above. Then, we rewrite

wi =
�ini + (1� �i)⌧PN

j=1 [�jnj + (1� �j)⌧ ]
=

⌧ + �i(ni � ⌧)

⌧N +
PN

j=1 �j(nj � ⌧)

where �is are i.i.d. Bernoulli random variables taking on value
1 with probability p

def
= Pr{ni < ⌧} = FS(⌧). Clearly, Z

is a mixed random variable and its probability function can
be written as fZ(z) = (1 � p)�(z � ⌧) + fS(z)1{z<⌧}. The
common pdf of the yis can be obtained by means of the law
of total probability as

fY (y) = (1� p)N�1� (y � ⌧(N � 1))

+
N�1X

k=1

✓
N � 1

k

◆
pk(1� p)N�1�kfTk

(y)

def
= f (d)

Y (y) + f (c)
Y (y)

(B.2)

where f (d)
Y and f (c)

Y denote the discrete and continuous part of
fY , and fTk

is the pdf of the sum of k i.i.d. random variables
distributed as S, but conditioned on S < ⌧ , i.e., the sum of k
truncated random variables. Hence, (B.1) can be rewritten as
the sum of four contributions, that is eq. (17) once recalling
that w0 = 1�w

w and denoting by IZ \ IY the intersection of
the supports of fZ and fY .

For the uniform distribution, assuming a < ⌧ < b, the pdf
of Z becomes fZ(z) = (1�p)�(z�⌧)+ 1

b�a1{az<⌧}, where
p = ⌧�a

b�a . The pdf of yi can be obtained by noticing that fTk

appearing in (B.2) is the pdf of the sum of k random variables
uniformly distributed in (a, ⌧), called Irwin-Hall distribution:

fTk
(t) =

(⌧ � a)�1

2(k � 1)!

kX

`=0

(�1)`
✓
k

`

◆
('k(t)� `)k

|'k(t)� `| (B.3)

where the function 'k(t) = (t � ka � ⌧(N � k))/(⌧ � a)
shifts and rescales each term by a quantity depending on the
number of nis below and above ⌧ .

Let us now consider the pdf of the normalized weights fW .
Firstly, we observe that the integration domain can be written
as IZ \ IY = [amax(1, N�1

w ), ⌧ min(1, N�1
w )] = [A,B]. By

isolating one factor of the k-th power appearing in (B.3), the
sign function is obtained. Then, substituting (B.3) in (17), we
observe that the order of the two summations and the integral
can be exchanged, and the integration domain splits in two
terms with opposite sign. The splitting value is obtained as

'k(zw0)� `

|'k(zw0)� `|=
(
1 z > (⌧�a)(`�k)+⌧(N�1)

w0 = ⇢

�1 otherwise
. (B.4)

Finally, the integral in (17) can be rewritten as

�k(zw
0) =

Z
z ('k (zw

0)� `)
k�1

dz

= �
✓
⌧ � a

w0

◆2 ('k(�kzw0)� `)('k(zw0)� `)k

k(k + 1)
(B.5)

and evaluated as
8
><

>:

�k(B)� �k(A) ⇢ < A

�k(B)� �k(A)� 2�k(⇢) A < ⇢ < B

�k(A)� �k(B) ⇢ > B

. (B.6)

When the sample size is Pareto-distributed, the common pdf
of the zis is fZ(z) = (1� p)�(z � ⌧) + ↵

z↵+11{1z<⌧}, with
p = (1 � ⌧�↵)1{⌧�1}. In the Pareto case the distribution of
Tk is available in terms of the integral function

fTk
(y) =

1

⇡

 Z 1

0
e�i((y+k(��µ))⇠+↵k⇡

2 )
✓
↵

p
(�⇠)↵

�
�(�↵,�i�⇠)��(�↵,�i(�+⌧�µ)⇠)

�◆k

d⇠

� (B.7)

where �(·, ·) is the upper incomplete Gamma function. As
discussed in [61], the integral in (B.7) is essentially a shifted
version of the Fourier transform and it can be efficiently
computed by leveraging numerical methods for integration of
functions expressed as product between an oscillatory part and
decaying part [62]–[64].

APPENDIX C
PROOF OF PROPOSITION 4

Since wi is a function of ni only, and nis are i.i.d. (when
regarded as random variables), all wi have the same mean.
Thus, computing the expected value at both sides of

P
i wi =

1, one obtaines NE[wi] = 1 from which it follows that the
mean of any linear unbiased estimator of µ is equal to 1/N
irrespective of the distribution of the nis.

Moreover, since zi = min(ni, ⌧) is an increasing function
of ⌧ , and wi = zi/

P
i zi, by sorting nis in ascending order

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3293908

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



16

it trivially follows that zi  z0i
def
= min(ni, ⌧ 0) for ⌧ 0 � ⌧ .

Likewise,
P

i z
0
i �

P
i zi. Thus, w0

i
def
= z0i/

P
i z

0
i will have

z0i = zi for ni  ⌧ and z0i > zi for larger values of ni, and all
w0

i will be divided by a normalization factor
P

i z
0
i larger than

that appearing in wi. The result is that wi < w0
i for ni < ⌧ , and

vice versa for the upper range where the saturation to the value
⌧ 0 exceeds that to the value ⌧ , so increasing the dispersion of
weights with respect to their mean value 1/N . From these
observations it follows that in general the variance of wis is
always increasing in ⌧ , hence ⌧ = min(n) (or smaller) yields
the minimum variance for the weights, while ⌧ = max(n)
(or larger) yields maximum variance. As

P
i(wi � 1/N)2 =

kwk22 � 1/N2, the thesis follows.

APPENDIX D
PROOF OF PROPOSITION 5

Being the elements of n sorted in ascending order (without
loss of generality), eq. (13) can be conveniently rewritten as

wLUE-S
i =

(⌧ � ni)1{⌧<ni} + ni
PN

j=1(⌧ � nj)1{⌧<nj} + nj

. (D.1)

Substituting back in (A.12) gives the following expression

VAR[µ̂LUE-S] /

NX

i=1

�i
⇥
(⌧ � ni)1{⌧<ni} + ni

⇤2

0

@
NX

j=1

h
(⌧ � nj)1{⌧<nj} + nj

i
1

A
2 (D.2)

where we used the shorthand �i = VAR[✓̂i] (ref. eq. (18)).
Let us consider the vector n̆ with element n̆` and length

N̆  N containing the unique elements of n. For ⌧ 2
[n̆`, n̆`+1], the sums in (D.2) split in two parts, for ni  ⌧ and
ni > ⌧ , or equivalently for i  k⌧ and i > k⌧ , respectively,
where k⌧ 2 {1, . . . , N} counts the number of ni < ⌧ . By
introducing the map VAR`[µ̂LUE-S](⌧) : [n̆`, n̆`+1] 7! R+

VAR`[µ̂
LUE-S] =

k⌧X

i=1

n2
i �i + ⌧2

NX

i=k⌧+1

�i

0

@
k⌧X

j=1

nj + (N � k⌧ )⌧

1

A
2 , ⌧ 2 [n̆`, n̆`+1]

(D.3)
where we have omitted the explicit dependency on ⌧ to
simplify the notation, the total variance (D.2) can be rewritten
as union of functions with disjoint supports, i.e.

VAR[µ̂LUE-S] =
N̆�1G

`=1

n
(⌧,VAR`[µ̂

LUE-S])
�� ⌧ 2 [n̆`, n̆`+1]

o
.

(D.4)
Consequently, (D.4) is a piecewise function at least continuous
over its domain, hence by the Weierstrass theorem it admits
a global minimum. The global minimizer, i.e., the optimal
threshold ⌧⇤, thus belongs to the set of all the minimizers
⌧⇤` of VAR`[µ̂LUE-S] for ` = 1, . . . , N̆ � 1. Moreover, (D.3) is
the ratio of two quadratic functions in ⌧ , hence its derivative
is easily computed and shows that there may exist at most

one stationary point over each interval. Since the function is
decreasing/increasing before/after such a point, the latter qual-
ifies as a possible local minimum only if it falls in the interior
of the interval; otherwise, the minimum over the considered
interval is attained at one of the two boundaries (left or right,
see inset in Fig. 4 which provides an illustrative example). It
is easy to show that the root of the derivative of (D.3) (with
respect to ⌧ ) is given by eq. (20), hence the expression for
the set of points ⌧⇤` reported in eq. (19) follows. The global
minimizer ⌧⇤ is readily obtained by evaluating (D.3) at all ⌧⇤`
for ` = 1, . . . , N̆ � 1 and selecting the one that yields the
smallest value.

APPENDIX E
DERIVATION OF THE ELUE-S AS APPROXIMATE MVLUE

Under these approximations, the optimization prob-
lem (A.14) can be conveniently rewritten with a cost function
split in two parts, with associated Lagrangian function

k�X

i=1

w2
i
�

ni
+

NX

i=k�+1

w2
i + �(

NX

i=1

wi � 1)

where k� 2 {1, . . . , N} denotes the maximum integer such
that nk�  �. By taking the derivative with respect to wi and
posing equal to zero, we obtain

8
<

:

2wi
�

ni
+ � = 0 i = 1, . . . , k�

2wi + � = 0 i = k� + 1, . . . , N

from which the value of wi as function of the Lagrange
multiplier � easily follows. By exploiting the constraintPN

i=1 wi = 1 we obtain � = � 2
1
�
Pk�

i=1 ni+(N�k�)
and, finally,

wi =

8
><

>:

ni
Pk�

i=1 ni + �(N � k�)
ni  �

�
Pk�

i=1 ni+�(N�k�)
ni > �

(E.1)

which is equivalent to the more convenient expression

wi =
min(ni, �)PN
j=1 min(nj , �)

. (E.2)

From (E.2) it is immediate to realize that such weights are
formally identical to those of the LUE-S (13) for ⌧ = �.
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