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Abstract. The aim of this work is to provide a concise survey of results
about Blake–Zisserman functional for image segmentation and inpaint-
ing. Moreover a refinement of the Almansi decomposition is shown for
biharmonic functions in 2-dimensional open disks with crack-tip at the
origin.
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1. Introduction

In this paper we outline the state-of-the-art of the analysis for Blake–Zisser-
man functional for image segmentation and inpainting.
Image segmentation plays an important role in medical imaging and in the
understanding of biological vision, since it provides partitioning of an image
in such a way that in each subregion the colors intensity varies as slow as
possible and the partition boundaries have length as short as possible. In-
painting is relevant in computer vision and image restoration: it refers to
the process of recovering the missing information over a small area where a
given image is damaged; this area may correspond to scratches in a camera
picture, occlusion by objects, blotches in an old movie film or aging of canvas
and colors in a painting ([10], [16], [40], [41], [52], [54], [65]).
Though there is a huge variety of methods available for solving these tasks,
no one can be qualified as the best one for every kind of images. The reason
is that different methods can “see” different features of the image. Therefore
often they are used together (Hybrid Imaging Methods) in medical imaging
in order to optimize the relevant issues: safety, cost, contrast and resolution
([10],[58]).
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However variational models performed better than noise filtering in the de-
tection of discontinuities.
The “weak membrane” variational model for image segmentation was pro-
posed by D.Mumford and J.Shah in [61] and starting from the seminal paper
[47] was studied by several authors ([5], [6], [7], [43], [44], [46], [48], [56], [57],
[60], and more recently [23], [50]).
Blake and Zisserman showed some inconvenient related to Mumford–Shah
weak membrane model (mainly the “gradient limit” or over-segmentation of
the output when processing images with continuous steep variation of inten-
sity) and introduced an alternative variational approach, the “weak plate”
model ([17]) that translates the image segmentation task into a second order
variational formulation which was formalized as a free gradient discontinuity
problem in [27] and [28]. Further analysis of Blake–Zisserman approach was
developed in [4], [22], [26], [29], [30], [31], [32], [34], [36], [42], [66].
Different higher order approachs in image analysis are considered in [14], [15],
[25], [55], [64].
The Blake–Zisserman weak plate model faces the segmentation as an en-
ergy minimization problem. It takes an image and produces three outputs:
two boundary process maps which indicate the location of boundaries (jump
and creases of luminance), and a surface attribute map which indicates the
smoothed (interpolated) luminance values on the surface of objects in the
field.

Here we denote the domain and the color intensity level of a monochromatic
image respectively by Ω and g, in order to introduce a strong formulation of
Blake–Zisserman functional:

F(K, v) =

∫
Ω\K

(
|D2v|2 + |v − g|2

)
dx dy + H1(K ∩ Ω) ; (1.1)

in F we omit the usual tuning parameters for simplicity: the thorough func-
tional is shown by (5.1) in Section 5.
The three terms in (1.1) are in competition when the functional is minimized.
The L2 norm of the difference (v − g) acts as a fidelity term: it increases if
v is not close to the unprocessed image g. The term H1(K ∩Ω) pays for the
length of the segmentation K and prevents an excessive partitioning of Ω.
The L2 norm of the hessian in Ω \K acts as a smoothing of the unprocessed
image g outside the segmentation K. In (1.1) and in the sequel |D2v|2 de-

notes
∑2
i,j=1 |DiDjv|2 where Dk is the the distributional partial derivative

with respect to the kth variable.

Theorem 1.1. ( [28]) Assume

Ω ⊂ R2 is a bounded open set and g ∈ L2(Ω) ∩ L4
loc(Ω) , (1.2)

then the functional (1.1) achieves a finite minimum among closed subsets K
of R2 and functions v which belong to C2(Ω \K).

We remark that nonexistence of minimizers for functional (1.1) may appear
if datum g has low integrability: we showed that for any s < 4 there is g
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in L2(Ω) ∩ Lsloc(Ω) such that the infimum of (1.1) over closed K and v in
C2(Ω \K) is not achieved (Counterexample 27.5 in [29] ).
Obviously for practical segmentation purposes one can always assume that g
belongs to L∞.
Nevertheless we emphasize that maximum principle fails for minimizers of
this second order functional with free discontinuity, as shown in Section 3.

In the present paper we focus on the Blake–Zisserman functional: we show
some motivations, recall the main results and mention some open problems;
in the last Section we state some new technical tools related to the analysis
around a crack-tip. The plan of the paper is as follows.
By referring to the simplified 1-dimensional context, in Section 2, 3 and 4
we shortly recall, respectively: the meaning of the tuning parameters that
are usually inserted as weights of the various terms of the Blake–Zisserman
functional (denoted by F in the 1-d case); the lack of maximum principle;
the issue of uniqueness. We emphasize that in the 1-d case the strong and
weak formulation of the functional coincide, while there is a big gap between
them in dimension n ≥ 2.
Section 5 describes the main results for the Blake–Zisserman functional F for
image segmentation in 2-d, as defined by (5.1).
Section 6 describes the main results for the Blake–Zisserman functional G for
inpainting in 2-d, as defined by (6.1).
Section 7 recalls some energy density estimates for minimizers of Blake–
Zisserman functional for image segmentation and inpainting in 2-d.
Section 8 exhibits some nontrivial admissible and non admissible candidate
local minimizers together with a conjecture. Notice that explicit minimizers
for second order free discontinuity problems are difficult to find, moreover
the rigorous proof of their minimality is still open; whereas some nontrivial
local minimizer for Mumford–Shah were exhibited and analyzed ([2],[20]).
In Section 9 we extend some results concerning Almansi decomposition of
biharmonic function in presence of a crack-tip and related non-integer power
series expansions: these kind of results were useful in the analysis of candidate
local minimizers.

2. Contrast and sensitivity parameters

The non convexity of Blake–Zisserman functional leads to several negative
results in the analysis: there is neither uniqueness of minimizer nor maximum
principle. This happens even in the one-dimensional setting: to clarify these
issues we refer to the simpler one-dimensional version F (defined by (2.1)
below) of Blake–Zisserman functional (see (1.1) and (5.1)), since in the 1-d
case the strong and weak formulation coincide. So the dependance on the
free discontinuity set can be circumvented in the 1-d case and we can play
with variations of one single argument, the function, while the closed set is
replaced by the singular sets of the function itself and of its derivative.
In this Section we introduce some tuning parameters in the functional, by
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limiting our description to the 1-dimensional Blake–Zisserman functional
Fgα,β,µ (shortly denoted by F when there is no risk of confusion), or weak

rod: we define Fgα,β,µ : H2 → [0,+∞) by setting, ∀v ∈ H2 ,

Fgα,β,µ(v) =

∫
I

(
(v̈(x))2 + µ(v(x)− g(x))2

)
dx + α ](Sv) + β ](Sv̇) . (2.1)

Here and in the sequel I ⊂ R is an interval, ] denotes the counting measure
and

H2 :=
{
v : I → R : v is piece-wise H2

}
(2.2)

denotes the set of v ∈ L2
loc(I) which are piecewise H2 Sobolev functions:

precisely, v̇ denotes the absolutely continuous part of the distributional de-
rivative v′ of v ; v̈ denotes the absolutely continuous part of (v̇)′; Sv ⊆ I de-
notes the approximate discontinuity set (or shortly singular set) of v ([5],[53]);
Sv̇ ⊆ I denotes the approximate discontinuity set of v̇ . So H2 is the space of
v ∈ L2

loc(I) such that Sv and Sv̇ are finite sets, v ∈ H2(J) for any bounded
interval J ⊆ I \(Sv∪Sv̇) and v ∈ H2

loc(J) for any unbounded (if any) interval
J ⊆ I \ (Sv ∪Sv̇) , where “L2

loc” and “H2
loc” stand respectively for L2 and H2

in any bounded (possibly not open) subinterval of I.

Theorem 2.1. Assume

0 < β ≤ α ≤ 2β, µ > 0, g ∈ L2
loc(I), ∃u ∈ H2 : Fgα,β,µ(u) < +∞ . (2.3)

Then there is u ∈ H2 such that Fgα,β,µ(u) < +∞ and Fgα,β,µ(u) ≤ Fgα,β,µ(v)

for all v ∈ H2.

Proof. By (2.3) the domain of the nonnegative functional Fgα,β,µ is not empty.

Hence we can select a minimizing sequence and apply the same proof as in [27]
that works also in unbounded intervals, by substituting Lploc to Lp whenever
is needed. �

We emphasize that condition 0 < β ≤ α ≤ 2β, stating that one crease costs
not more than one jump and one jump costs no more than two creases, is
necessary in 1-d to achieve the infimum. Moreover condition 0 < β ≤ α ≤ 2β
is essential when looking for minimizers also in dimension n ≥ 2, since the
functional lacks the semicontinuity property when it is missing (see [27]).

The functional (2.1) pays α for each jump in the graph of v, and pays β
for each crease (without jump!) in the graph of v and weights µ the fidelity
term

∫
|v − g|2. The whole set of parameters is associated to several quan-

tities that have an interpretation as contrast and sensitivity thresholds for
the minimization of Blake–Zisserman functional. By translating the compu-
tations of Section 5.2 in [17] (that were deduced by comparison of “broken”
minimizers energy with energy minimization restricted to smooth competi-
tors) in terms of the different parameters α, β, µ selected in (2.1), since they
are the essential ones from the viewpoint of mathematical analysis, we find
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• contrast threshold: an isolated step of height h is actually detected as
a step if h > h0, where

h0 = 23/4 α1/2 µ−3/8 .

• interaction of two adjacent steps of mutual distance a > 0 and opposite
jumps ±h (top hat): if a >> µ−1/4 then the two steps will be detected,
if a << µ−1/4 then the two steps will be detected if h > h1, where the
detection threshold is

h1 = (α1/2 a−1/2 µ−1/2) h0 = 23/4 a−1/2 α µ−7/8 .

• sensitivity to an isolated crease: a jump of amplitude γ = v̇+ − v̇− in
the first derivative at a continuity point is actually detected as a crease
if γ > γ0, where the detection threshold γ0 for isolated creases is

γ0 = (β1/2 α−1/2 µ1/4)h0 = 23/4 β1/2 µ−1/8 .

3. No maximum principle

Here we perform some straightforward computations showing that, already
in the 1-d case, an L∞ bound cannot be transferred from datum g to the
minimizers: moreover such bound can be exceeded in a subset of infinite
measure. We choose

I = R , g(x) = H(x) for x ∈ R , α = β , µ = 1 , (3.1)

where H denotes the Heaviside function (H(x) = 0 if x < 0, H(x) = 1 if
x ≥ 0), and define the odd function u ∈ C3,1(R) as follows (see Figure 1)

u(x) =

{
1− (1/2) cos(x/

√
2) exp(−x/

√
2) x ≥ 0 ,

(1/2) cos(x/
√

2) exp(x/
√

2) x < 0 ;
(3.2)

then

maxu ≈ 1.034 , minu ≈ −0.034 ; (3.3)

u′′′′(x) + u(x) = H(x) in D′(R) ; (3.4)

FHα,α,1(u) =

∫
R

(
(u′′(x))2 + (u(x)−H(x))2

)
dx =

1

2
√

2
; (3.5)

FHα,α,1(H) = α . (3.6)

Proposition 3.1. Assuming (3.1) and (3.2) we obtain these alternatives.

• If α > 1/(2
√

2) then u is the unique minimizer of FHα,α,1
• If α = 1/(2

√
2) then both u and g are the only minimizers of FHα,α,1

• If α < 1/(2
√

2) then g = H itself is the unique minimizer of FHα,α,1 .
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Proof - Any “broken” competitor must have at least either a step or a crease,
i.e. in both cases an energy not less than α.
On the other hand a smooth competitor has a strictly bigger energy than
FHα,α,1(u) = 1/(2

√
2), unless it coincides with u, due to (3.5) and the strict

convexity of the functional FHα,α,1 with domain restricted to H2(I).
These remarks together with (3.6) easily lead to the claims. �

Remark 3.2. In the above statement the condition (2.3) is useless since H
has finite energy and makes the domain of FHα,α,1 nonempty, whereas the
minimum is explicitly exhibited without exploiting minimizing sequences.

Remark 3.3. We emphasize that, contrarily to Mumford–Shah functional, the
minimizers of Blake–Zisserman are not bounded by datum in general, even
in this simplified 1-dimensional framework. Precisely the choice (2.1),(3.1)

exhibits a case (α > 1/(2
√

2)) where maximum principle fails, that is

‖ argminFgα,β,µ‖L∞ > ‖g‖L∞ .

The example shows also that the positivity of datum g may be not preserved
by the minimizer.

Remark 3.4. The choice (2.1),(3.1) shows also that in 1-d the monotonicity
of datum g does not entail in general the monotonicity of the minimizer u.

Figure 1. Graph of u. Actually there are infinitely many
oscillations, though they are numerically negligible due to
exponential damping.

Remark 3.5. Since the Euler equation u′′′′+u = g is linear and the energy of a
minimizer among the restricted domain of C2(R) functions is quadratic, with
the choices g(x) = kH(x) and µ = 1 we obtain exactly the same alternatives
of Proposition 3.1 where the competitors for minimization of FkHα,α,1 are kH

and k u , while the threshold is k2/(2
√

2).

Actually the minimization of functional (2.1) exhibits many additional kinds
of non uniqueness for minimizers, nevertheless in the next Section we clarify
that a generic uniqueness property holds true for minimizers.
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4. Generic uniqueness

In this Section, by restricting the analysis to the 1-dimensional case with
the choice I = (0, 1), we focus our attention on uniqueness of minimizer for
Blake–Zisserman functional Fgα,β,µ, or weak rod, defined for all v ∈ H2 by

Fgα,β,µ(v) =

∫ 1

0

(
(v̈(x))2 + µ(v(x)− g(x))2

)
dx+ α](Sv) + β](Sv̇) . (4.1)

Moreover we denote

mg(α, β, µ) = inf{Fgα,β,µ(v) : v ∈ H2},
argminFgα,β,µ = { v ∈ H2 : Fgα,β,µ(v) = mg(α, β, µ) }.

By Theorem 2.1, argminFgα,β,µ 6= ∅ whenever the two following conditions
are satisfied:

0 < β ≤ α ≤ 2β , µ > 0 , (4.2)

g ∈ L2(0, 1). (4.3)

Nevertheless minimizers are not unique in general, even if g is piecewise affine.
Section 3 of [18] shows examples of g ∈ L2(0, 1) and α, β fulfilling (4.2) such
that Fgα,β,µ has more than one minimizer: if g = χ[1/2,1] there is α > 0 such

that Fgα,α,µ has exactly two minimizers (Counterexample 3.1 in [18]). There

are α > 0 and g ∈ L2(0, 1) such that uniqueness fails for any β belonging to
a non empty interval (α− ε, α] (Counterexample 3.2 in [18]). For any α and
β fulfilling (4.2) there is g ∈ L2(0, 1) with ](argminFgα,β,µ)> 1 (Counterex-

ample 3.3 in [18]). Moreover there exists an example of a non empty open
subset N ⊆ L2(0, 1) such that for any g ∈ N there are α, β fulfilling (4.2)
and ](argminFgα,β,µ) ≥ 2 (Counterexample 3.4 in [18]).

However the minimum value mg(α, β, µ) of Blake–Zisserman functional de-
pends continuously on g, α, β, µ in the region defined by (4.2),(4.3): see
Theorem 15 and 16 in [19] respectively for the 1-d and n-dimensional case.
The main result concerning generic uniqueness is the following statement
(Theorem 2 in [19]), where dense Gδ set denotes the intersection of at most
countably many dense open sets:

Theorem 4.1. For any α, β and µ with 0 < β ≤ α ≤ 2β, µ > 0 and α
β /∈ Q ,

there is a dense Gδ set Eα,β,µ ⊆ L2(0, 1) such that for any g ∈ Eα,β,µ we
have ](argminFgα,β,µ) = 1.

Since both the complement in L2(0, 1) of a dense Gδ set and the complement
in R2 of the set {(α, β) ∈ R2 : α/β /∈ Q} are sets of first category, Theo-
rem 4.1 says that uniqueness for minimizers of Fgα,β,µ is a generic property.
This is a remarkable property since for variational problems there are few
uniqueness results beyond the case of strictly convex functionals, even in the
1-dimensional case.
Hence the whole picture about generic uniqueness and counterexamples is
coherent with the presence of instable patterns, each of them corresponding
to a bifurcation of optimal segmentation under variation of parameters: this
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fact is natural since suitable ratios involving parameters α and β are related
to contrast threshold, crease detection, luminance sensitivity, resistance to
noise and double-step detection (see Section 2).
We emphasize that jump and crease points of minimizers are not necessarily
localized among those of datum g, even if g is continuous piecewise-affine
(see Section 4 of [18]): hence the techniques used for proving the generic
uniqueness for Mumford–Shah functional in [3] cannot be plainly applied to
Blake–Zisserman functional. For this reason a different strategy is used in
the proof of Theorem 4.1 consisting in careful exploitation of intersection
properties between real analytic varieties.

5. Blake–Zisserman functional for image segmentation

In Section 2 we have shown the relevance of parameters that provide the pos-
sibility of tuning the contrast threshold and sensitivity to steps and creases,
both isolated and interacting in the simplified 1-d context. Here we formalize
the relevant 2-d case when those parameters are taken into account.
Precisely we define the strong formulation F of Blake–Zisserman functional
with tuning contrast parameters for segmentation of 2-d images, according
to [28] and [31].
We denote respectively by Ω and g the domain and the color intensity level
of a monochromatic image. The strong formulation of Blake–Zisserman func-
tional where the tuning contrast parameters are taken into account is given
by:

F (K0,K1, v) = F gα,β,µ(K0,K1, v) := (5.1)

=

∫
Ω\(K0∪K1)

|D2v|2 dx dy + µ

∫
Ω

|v − g|2 dx dy +

+ αH1(K0 ∩ Ω) + βH1(K1 ∩ Ω) .

All terms are positive and play in competition when functional minimization
is performed: better than for (1.1), here it is possible a suitable tuning of these
terms interaction for the images to be processed, acting on the parameters
α, β, µ.

Theorem 5.1. ( [28]) Assume (1.2), µ > 0 and

0 < β ≤ α ≤ 2β , (5.2)

then the functional (5.1) achieves a finite minimum among the essential
triplets (K0,K1, v), say the triplets fulfilling: K0, K1 are disjoint Borel subsets of R2,

K0 ∪K1 is the smallest closed set s.t. v ∈ C2(Ω \ (K0 ∪K1))
and v is appproximately continuous in Ω \K0 .

(5.3)

Moreover, for any locally minimizing triplet (K0,K1, v) the set (K0,K1) pro-
vides the required segmentation of the given raw image g, and v fulfils the
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following partial differential equation:

∆2v + µ (v − g) = 0 in Ω \
(
K0 ∪K1

)
. (5.4)

We emphasize that the unconstrained minimization of F corresponds to the
implicit assumption of natural Neumann boundary condition on ∂Ω and at
least formally on K0 ∪K1 (see [32]).
As we already noticed condition (5.2) is necessary for the lower semicontinuity
of the functional.

We briefly recall the main difficulties in the analysis of the Blake–Zisser-
man functional.

• The presence of both sets and functions in competition for the mini-
mization leads to a lack of convexity; this difficulty is circumvented by
a suitable weak formulation ([27]) for which compactness and semicon-
tinuity are proved.
• The finite energy set associated to the weak formulation of the func-

tional is not a subset of the space of distributions, precisely it requires
the introductions of vector-valued functions with generalized bounded
variation ([45],[27],[62]).
• The lack of convexity leads to examples of non-uniqueness of minimiz-

ers; this is not surprising if one recalls inherent ambiguity of images
interpretation; nevertheless a reasonable kind of well posedness can be
recovered in term of generic uniqueness ([18],[19]).
• Typical features of second order problems are the lack of maximum

principle (see Section 3) to be exploited in the regularization procedure
and the fact that rough truncations of competing functions are not cost-
free ([63]); this fact is circumvented in [27] by introducing a suitable
smooth tapering in place of truncation.
• There is a substantial lack of coercivity, which prevents even the use of

sequential or topological recession functional ([12],[24]):
– there is no control on the gradient as shown by the example in

Remark 5.2 of [21];
– we emphasize the fact that introducing a small penalization (of

the kind ε
∫

Ω\(K0∪K1)
|Dv|2 ) to keep under control the first gra-

dient, would re-introduce the over-segmentation phenomenon and
the other inconveniences associated to the Mumford–Shah func-
tional by mixing the weak plate and weak membrane response;
moreover, it would make numerical computations even more cum-
bersome (see [17], pag.103);

– actually the fidelity term
∫
|v−g|2 cannot be dealt with as a lower

order term due to the lack of control for the first gradient, so the
mimimizers of the functional are not quasi minimizers of the main
part of the functional (say the functional itself without the fidelity
term) so that the regularization techniques developed in [48] must
be adapted accordingly.



10 M.Carriero, A.Leaci and F.Tomarelli

The proof of Theorem 5.1 was achieved by the direct methods in Calculus
of Variations. The strong functional F depends on triplets; we introduced a
weak version of the strong functional F : say a new functional F depending
only on the function v whereas the sets K0 and K1 are taken into account re-
spectively through the discontinuity set of v and of its approximate gradient.
The minimization of the functional F was achieved by showing semiconti-
nuity and compactness in the functional space of images with finite energy
([27],[26]), which turned out to be a broad class of functions whose deriva-
tives are special bounded measure in the sense of De Giorgi, and they are
not even contained in the space of distributions (denoted by GSBV 2(Ω), see
[27]). Then the triplet solving the minimization problem for functional (5.1)
over (5.3) is recovered by showing additional regularity of weak minimizers,
by a blow-up technique ([28]). The corresponding optimal segmentation is
provided by the pair (K0,K1) related to the minimizing triplet.
An essential step in the previous argument is a Poincaré-Wirtinger type in-
equality in the class GSBV 2(Ω) which was proven in [28] allowing surgical
truncations of non integrable functions of several variables.
Then we proved regularity properties for optimal segmentation in [27], [28],
[34], [35], and energy density estimates in [29], [33]; the main estimates are
summarized in Section 7.
Approximation properties of the functional were studied in [4] and [37]. The
framework and techniques adopted to solve this problem are provided by the
Γ-convergence theory ([49]).
In [32] we derived many necessary conditions about weak extremals by per-
forming various kinds of first variations: these delicate computations were
performed by taking into account the differential geometry of free disconti-
nuity set in any dimension n ≥ 2; in particular we developed the full analysis
of crack-tip and crease-tip (boundaries of free discontinuity set).

The issue of a sharp separation between the jump set K0 and the gradient
discontinuity set K1 for an optimal segmentation is still open, though some
information is available via numerical experiments.

6. Blake–Zisserman functional for inpainting G

In image restoration the term inpainting denotes the process of retrieving
the missing information in small subdomains where a given image is dam-
aged: these subdomains may correspond to scratches in a camera picture,
occlusions, blotches in an old movie film or aging of canvas and colors in
a painting ([10], [40], [41], [52], [65]). The Mumford–Shah model has been
adapted by several authors to the inpainting problem, imposing a Dirichlet-
type condition on the preserved part of the image, but some inconvenient
has been detected in this approach (see [41] and [52]). In the Mumford–Shah
approach ([48], [61]), the preferable edge curves are the ones with shortest
length, therefore the model fosters straight edges and may produce artificial
corners. In [37] we faced the inpainting problem for a monochromatic image
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Figure 2. Left: Image with occlusion. Center: occluding
mask Ω (the black subregion) to be inpainted in the rect-

angular image domain Ω̃. Right: inpainted image.

with a higher order variational approach: minimizing Blake–Zisserman or
weak plate functional under Dirichlet-type boundary conditions ([34]). This
weak plate functional smooths artificial corners, due to the cost of second
derivatives in the functional (see Figure 3).

Figure 3. Inpainting and segmentation of a circle obtained
by minimization of (6.1).

In the present Section this approach is shortly outlined: we define the second
order functional G to deal with monochromatic images with gray levels be-
tween 0 and 1 (see (6.1)), aiming to image inpainting in the case of complete
loss of information in the subregion Ω (see Figure 2).
The functional G is defined as follows:

G(K0,K1, v) =

∫
Ω̃\(K0∪K1)

∣∣D2v
∣∣2 dx dy + δ

∫
Ω̃

(v − 1/2)2 dx dy

+ αH1
(
K0 ∩ Ω̃

)
+ βH1

(
K1 ∩ Ω̃

)
.

(6.1)

Here Ω̃ is an open set, which represents the image domain, with Ω̃ ⊂⊂ R2 ,
while α, β, µ, δ are positive tuning parameters. The integral of (v − 1/2)2,
weighted with a fixed positive constant δ, penalizes deviation of gray levels
in the output from the central gray level in the raw image and it entails the
coerciveness of G.
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Let Ω be an open set with Ω ⊂⊂ Ω̃ and ∂Ω Lipschitz, let w be a given

L∞(Ω̃ \ Ω) function with 0 ≤ w ≤ 1, representing the gray level intensity
of the raw image under processing, which is damaged due to the presence

of blotches in the set Ω: the noiseless intensity w is known in Ω̃ \ Ω while is
completely lost in the possibly disconnected set Ω.
To face the inpainting problem for w, we look for minimizers of G among
triplets (K0,K1, v) which fulfill the Dirichlet condition

v = w a.e. on Ω̃ \ Ω . (6.2)

and are essential triplets, say they fulfill (5.3).
The main Theorem 6.1 below, concerning the second order variational

model for image inpainting via minimization of functional G, was proved
in [37], is a general tool since it deals both with discontinuity and gradient

discontinuity in the raw image w which is given in Ω̃\Ω and must be processed
in Ω. Without loss of generality we can assume that the raw image w is
everywhere defined and with constant value equal to 1/2 in Ω.

Theorem 6.1. ( [37] ) Assume

Ω ⊂⊂ Ω̃ ⊂⊂ R2 , (6.3)

Ω Lipschitz open set with piece-wise C2 boundary, Ω̃ open set, (6.4)

0 < β ≤ α ≤ 2β, µ > 0, δ > 0, (6.5)

w : Ω̃→ [0, 1] , D2w ∈ L∞
(
Ω̃ \ (T0 ∪ T1 ∪ ∂Ω)

)
. (6.6)

(T0, T1, w) is an essential triplet in the sense of (5.3) , (6.7)

T0 ∪ T1 is a finite union of C1 curves, (6.8)

H1
(

(T0 ∪ T1) ∩ Ω̃
)
< +∞ , (T0 ∪ T1) ∩ ∂Ω is a finite set . (6.9)

Then there exists a triplet (K0,K1, v) minimizing the functional G defined
by (6.1) among triplets fulfilling (6.2) and (5.3) with G(K0,K1, v) < +∞.
Moreover any triplet (K0,K1, v) which minimizes the functional G among
triplets fulfilling (6.2) and (5.3), verifies:

K0 ∩ Ω̃ and K1 ∩ Ω̃ are (H1, 1) rectifiable sets, (6.10)

v and Dv have well defined two-sided traces, finite H1a.e.on K0 ∪K1 ,
(6.11)

where Dv is the distributional gradient of v in Ω \ (K0 ∪K1).

Remark 6.2. Hypotheses (6.6), (6.7), (6.8), (6.9) may seem technical assump-
tions. Actually they are natural requirements for data whose gray levels corre-
spond to a piece-wise smooth cartoon outside the inpainting region: precisely
we ask for data expressed by an essential triplet.

Several numerical experiments were implemented in [4] for segmentation
problem and in [37] for segmentation and inpainting problem: they are all
based on approximation of F , respectively G, in terms of elliptic function-
als (see also [8],[9] for Mumford–Shah and [13] for Blake–Zisserman) in the
framework of Γ-convergence ([49],[59]). A different approach based on finite
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elements schemes was introduced and implemented in [22]. The inpainted
output images in Figures 2, 3 and 4 are obtained by the scheme introduced
in [37].

Figure 4. An input image with overlapping text mask and
the corresponding inpainted output.

The functional F in Section 5 for segmentation implicitly refers to Neumann
boundary condition, while here functional G for segmentation and inpainting
refers to a relaxed Dirichlet condition on the boundary of the inpainting re-
gion: the datum may be assumed or not. In the second possibility the segmen-
tation appears on the boundary: when this phenomenon occurs, it is described
by energy contribution of a length-type term αH1(K0∩∂Ω)+βH1(K1∩∂Ω).
As in the case of segmentation, the proof of Theorem 6.1 relies on regular-
ity properties of a minimizer of a weak formulation. In this case the main
difficulties are related to the behavior at the boundary points.

The strategy for proving Theorem 6.1 in [37] consists in showing partial
regularity at interior points, at boundary points, and close to the boundary
of the weak minimizers under Dirichlet condition at the boundary of the
inpainting region.
The interior regularity can be recovered by the previous results concerning
Neumann problem; here new tools aiming to regularity up to the boundary
are necessary:

• a Poincaré-Wirtinger inequality for GSBV 2 functions vanishing in a
sector;
• an L2-hessian decay of biharmonic functions in half-disk vanishing to-

gether with its normal derivative on the diameter; in [34] we proved that
any function which is biharmonic in a half-disk and vanishes together
with its normal derivative on the diameter has this hessian decay:

‖D2z‖2
L2(B+

r )
≤ r2 ‖D2z‖2

L2(B+
1 )

(6.12)

for all

z ∈H2(B+
1 ) : ∆2z = 0 on B+

1 , z = ∂z/∂y = 0 on Σ , and r ≤ 1 ,
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where

B+
1 = {(x, y) ∈ R2 : x2 + y2 < 1, y > 0} ⊂ R2 ,

Σ = B1(0) ∩ {(x, y)∈R2 : y = 0} .

These tools are exploited to perform a blow-up argument on minimizers of
the weak functional and deduce a decay estimate for the energy functional.
The study of regularity at boundary points usually requires a smooth ex-
tension with suitable estimates of the blown-up solution. The extension of
biharmonic functions is quite different from extension of an harmonic func-
tion vanishing at the diameter, the latter being based on classical Schwarz
reflection principle that doubles L2 norm of the gradient in the whole disk.
This doubling property was exploited to prove energy decay property for
minimizers of a Dirichlet problem for the Munford–Shah functional. Unfor-
tunately biharmonic extension lacks this doubling property: the biharmonic
extension to the whole disk may increase a lot the L2 norm of the hessian in
the complementary half-disk (see Remark 5 in [33]).
We overcome this difficulty by a careful application of an H2 Almansi de-
composition of biharmonic functions in a disk with a crack (see Section 9)
together with the following extension formula, due to R.J.Duffin ([51]), for
any biharmonic function in half-disk and vanishing together with its normal
derivative on the diameter:
if z is biharmonic in B+(0) := B(0) ∩ { y > 0 } and one sets{

Z(x, y) = z(x, y) , ∀ (x, y) ∈ B+(0) ,

Z(x,−y) = −z(x, y) + 2 y zy(x, y)− y2∆z(x, y) , ∀ (x,−y) ∈ B−(0) ,

then Z is biharmonic in the whole disk B(0).

7. Energy density estimates for minimizers of F

To describe some properties of minimizers for functional F defined by (5.1)
in Section 5, we refer to the usual notation for balls: for every x ∈ R2 and
for every real number r > 0 we denote by Br(x) the disk with radius r and
center at x, namely Br(x) := {y ∈ R2 : ‖y−x‖ < r }. We write shortly Br
in place of Br(0).
Moreover we introduce a technical construction for removing inessential de-
tails from generic triplets.

Definition 7.1. Given a triplet (U0, U1, u) (not necessarily a minimizing triplet)
with U0, U1 ⊂ R2 Borel sets, U0 ∪ U1 a closed set, u ∈ C2(Ω \ (U0 ∪ U1))
and u approximately continuous in Ω \ U0, then there is an essential triplet
(K0,K1, v) associated to triplet (U0, U1, u), uniquely defined by this proce-
dure:

v = ũ

K0 = U0 ∩K \ (U1 \ U0)

K1 = U1 ∩K \ U0
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where K is the smallest closed subset of U0 ∪ U1 such that ũ ∈ C2(Ω \K).

We emphasize that the above construction entails

F (K0,K1, v) = F (U0, U1, u)

and preserves all the relevant quantities as clarified by the next statements,
proved in [33].

Theorem 7.2. Assume (U0, U1, u) is any minimizing essential triplet of F,
then, if the construction of Definition 7.1 is applied to such (U0, U1, u) to
define the triplet (K0,K1, v), then we obtain

(K0,K1, v) = (U0, U1, u).

Theorem 7.3. Assume (K0,K1, v) is a minimizing essential triplet of F and
denote by Sv, S∇v the sets where the approximate continuity ( [5] ) of respec-
tively v and ∇v fails. Then

K0 ∩K1 = ∅ , K0 = K0 \K1 = K0 \K1 , (7.1)

K1 = K1 \K0 , K1 \K1 ⊂ K0 , K1 \K0 = K1 , (7.2)

H1(Sv4K0) = 0 , H1
(
(S∇v \ Sv)4K1

)
= 0 , (7.3)

F (K0,K1, v) =

∫
Ω\(K0∪K1)

∣∣D2v
∣∣2 dx dy +

∫
Ω

|v − g|2 dx dy

+αH1 (K0 ∩ Ω) + βH1 (K1 ∩ Ω) .

(7.4)

We mention four energy density estimates for essential minimizing triplets.

The optimal segmentation (K0,K1) satisfies an upper bound on the “mean
density” on every disk Br(x), i.e. the ratio between the measure of the portion
of (K0,K1) in Br(x) and r (modulo a normalization constant).

Figure 5. Density Upper Bound: if α + (µ/2)‖g‖2L∞ ≤ 1
then an optimal segmentation cannot have more than six
lines reaching a single point.

Density Upper Bound
Assume Ω ⊂ R2 is a bounded open set and g belongs to L∞(Ω).
Then the estimate

H1 ((K0 ∪K1) ∩Br(x)) ≤ (πµ‖g‖2L∞ + 2πα)r
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holds true for every x ∈ Ω and every 0 < r ≤ 1 such that Br(x) ⊂ Ω.
The next property is the crucial point in the proof of the existence theorem
for F, arguing on a minimizer for the weak formulation by F .

Density Lower Bound
Assume Ω ⊂ R2 is a bounded open set and g belongs to L∞(Ω).
Then there exist ε1 > 0, %1 > 0 such that the estimate

H1 ((K0 ∪K1) ∩Br(x)) ≥ ε1r

holds true for every x ∈ K0 ∪K1 and every 0 < r ≤ %1 with Br(x) ⊂ Ω.

The density lower bound entails, among other things, that very small isolated
objects are filtered out by the segmentation achieved through minimization
of the functional F .

Elimination Property
Assume Ω ⊂ R2 is a bounded open set and g ∈ L∞(Ω). Choose ε1 > 0, %1 > 0
as in the previous statement and 0 < r ≤ %1 such that Br(x) ⊂ Ω.
If

H1 ((K0 ∪K1) ∩Br(x)) <
ε1

2
r

then
(K0 ∪K1) ∩Br/2(x) = ∅.

The elimination property states that, when an optimal segmentation in a
small disk has length less than an absolute constant times the radius of the
disk, then such segmentation does not intersect the disk with same center
but halved radius. This is a useful information for the numerical analysis
of the problem, in the sense that a suitable algorithm can eliminate such
isolated parts of K0 ∪K1 because they are “needless energy” for the optimal
segmentation.

Figure 6. Elimination property.

These properties altogether drive the optimal segmentation (K0,K1) to re-
shape an essential pattern of basic lines partitioning the given image in ho-
mogeneous subregions. In this way the optimal segmentation brings more
clearly to the fore the semantic meaning concealed in g.
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Minkowski content of the segmentation
Assume Ω ⊂ R2 is a bounded open set, g belongs to L∞(Ω) and (K0,K1, u)
is an essential minimizing triplet for the functional F . Then

(i) K0 ∪K1 is (H1, 1) rectifiable;
(ii) for every Ω′ ⊂⊂ Ω the following equality holds

lim
%↓0

|{x ∈ Ω ; dist(x, (K0 ∪K1) ∩ Ω′) < % }|
2%

= H1 ((K0 ∪K1) ∩ Ω′) .

This result expresses the agreement between the Hausdorff one dimensional
measure and the Minkowski content of the optimal segmentation K0 ∪ K1:
roughly speaking, the property states that (far away from the boundary of
the image) a uniform fattening of an optimal segmentation is a reasonable
approximation of the segmentation itself. Even this information is important
for numerical computations of minimizers, in order to approximate F by
elliptic functionals for which efficient numerical algorithms can be found: see
[4] and [37].

The above interior estimates were proved in [29] for minimizing triplets
of functional F , their technical refinement up to the boundary were proved in
[33] under Dirichlet boundary conditions, that is the case of functional G in
Section 6 concerning image inpainting. All the statements of the present Sec-

tion hold true for functional G too, provided Ω is replaced by Ω̃ in Definition

7.1 and formula (7.4) and g ≡ 1/2 is assumed everywhere in Ω̃.

8. Admissible and not admissible nontrivial candidates

The main part E of the Blake–Zisserman functional F is defined as follows.

E(K0,K1, u) =

∫
Ω\(K0∪K1)

∣∣D2u
∣∣2dx dy + αH1(K0∩ Ω) + βH1(K1∩ Ω) .

(8.1)
In the study of regularity of minimizers of F via blow-up procedure it is
important the study of locally minimizing triplets for E, with the choice
Ω = R2. We recall the definition of locally minimizing triplets of E and the
notation for the localized functional.

Definition 8.1. By EA we denote the functional defined as E with Ω replaced
by an open subset A ⊂ Ω.

Definition 8.2. (Locally minimizing triplet of E)
An admissible triplet (K0,K1, v) is a locally minimizing triplet of the func-
tional E if

EA(K0,K1, v) < +∞ (8.2)

EA(K0,K1, v) ≤ EA(U0, U1, u) (8.3)

for every open subset A ⊂⊂ Ω and for every admissible triplet (U0, U1, u)
such that

spt(v − u) and (U0 ∪ U1)4(K0 ∪K1) are subsets of A.
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We emphasize some facts about locally minimizing triplets of the main part
of the Blake–Zisserman functional E in Ω = R2 (see [32],[35]):

• any locally minimizing triplet (K0,K1, u) is transformed in another lo-
cally minimizing triplet by all natural re-scaling (centered at x0 ∈ Ω),
which maps
u(x) 7→ %−3/2u(x0 +%x) , Kj 7→ %−1(Kj−x0) , for % > 0, j = 0, 1 .

• any locally minimizing triplet (K0,K1, u) with compact segmentation
K0 ∪ K1 and finite energy actually corresponds to an affine function
with empty singular set;
• neither a straight infinite jump nor a straight infinite wedge can be the

third element of a locally minimizing triplet.

Therefore the above examples cannot be nontrivial admissible candidate local
minimizers.
Proving the minimality of a given candidate for a free discontinuity problem
is a difficult task in general.
Moreover, for the case of Blake–Zisserman functional one has to take into
account the long list of necessary conditions fulfilled by strong extremals in
2-dimensional case proved in [32] by performing several kinds of variations of
the admissible triplets: this leads to severe qualitative and quantitative re-
strictions on the behavior of extremals. Notwithstanding this huge amount of
constraints, we exhibited explicitly a nontrivial candidate for local minimal-
ity which fulfills all Euler conditions in the list and the energy equipartition
between bulk energy and segmentation length ([35]).
We consider the following nontrivial function, with jump discontinuity along
the negative real axis and empty discontinuity set of the gradient:

±
√

α

193π
r3/2

(√
21ω(ϑ) ± w(ϑ)

)
, −π < ϑ < π , (8.4)

where, by making explicit the modes ω and w,

±
√

α

193π
r3/2

(√
21

(
sin

θ

2
− 5

3
sin
(3

2
θ
))
±
(

cos
θ

2
− 7

3
cos
(3

2
θ
)))

,

Function (8.4), together with K0 = {negative real axis} and K1 = ∅, satisfies all
extremality conditions proved for locally minimizing triplets of functional E in
R2 : hence such function is a natural candidate to be a local minimizer of Blake–
Zisserman functional, as conjectured in [35].

9. Almansi decomposition around a crack-tip

In this Section we collect some results of wider interest than the application to
image analysis, nevertheless some of them were exploited in [35] and [38] in the
analysis of nontrivial minimizing triplets for Blake–Zisserman functional. See also
[11] for an alternative approach to crack tips in planar elasticity.
Here we look for a description of all functions which are defined almost everywhere
in B% ⊂ R2 and are biharmonic in B% \ Γ where 0 < % < +∞ and Γ is the closed
negative real axis.
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Figure 7. Graph of one function in the family (8.4), with

α = 1 and plus signs: r3/2
(√

21ω(ϑ) + w(ϑ)
)
/
√

193π.

First, inspired by classical ideas, we rewrite in modern language a statement by
E.Almansi, Theorem 9.1 below, concerning a decomposition of biharmonic func-
tions. Then we relax both assumptions on domain topology and the function regu-
larity and we make explicit the related decomposition operators (Theorem 9.2).

Theorem 9.1. ( [1] )
Classical Almansi decomposition of a biharmonic function in a disk.
Assume 0 ∈ Ω ⊂ R2 open set, Ω star-shaped with respect to the origin and u ∈
C4(Ω), then ∆x

2u = 0 in Ω iff

∃ ϕ,ψ : u(x) = ψ(x) + ‖x‖2ϕ(x), ∆x ϕ(x) = ∆x ψ(x) ≡ 0 ∀x ∈ Ω .

In this section we denote the Laplacean operator in cartesian coordinates by ∆x,
to avoid confusion with polar coordinates used in the sequel.
For our purposes we adapt the previous classical statement to open sets not con-
taining the origin, in particular to 2-dimensional disks with a straight cut. This
geometry introduces several difficulties since the crack-tip allows some kind of sin-
gularities at the origin.

Theorem 9.2. ( [35] )
Decomposition of a biharmonic H2 function around a crack-tip.
Let u ∈ H2(B% \ Γ), 0 < % ≤ +∞. Then

∆ 2
x u = 0 in B% \ Γ (9.1)

if and only if

∃ϕ,ψ : u(x) = ψ(x) + ‖x‖2ϕ(x), ∆xϕ(x) = ∆xψ(x) ≡ 0 , ∀x∈B%\ Γ. (9.2)

Decomposition (9.2) is unique up to possible linear terms in ψ: say A% cosϑ = Ax
and B% sinϑ = By that can switch indifferently between A%−1 cosϑ and B%−1 sinϑ
in ϕ.
By denoting A% := {v ∈ L2(B%) s.t. ∆xv = 0 in B%\Γ } the space of L2 functions



20 M.Carriero, A.Leaci and F.Tomarelli

which are harmonic outside the crack, we can make explicit the decomposition by
introducing the operators Φ and Ψ, that act on every u ∈ H2(B%\Γ) expressed in
polar coordinates as follows:

Φ : H2(B%\Γ)→ H2(B%\Γ) ∩A%, Φ[u](r, ϑ) = r−1

∫ r

0

1

4
∆xu(t, ϑ) dt , (9.3)

Ψ : H2(B%\Γ)→ H2(B%\Γ) ∩A%, Ψ[u](r, ϑ) = u(r, ϑ)− r2 Φ[u](r, ϑ) , (9.4)

u = Ψ[u] + r2Φ[u] , (9.5)

The claim in Theorem 9.2 that decomposition (9.2) entails u is biharmonic is a
straightforward computation. The proof of reversed inference is straightforward if
in addition u ∈ C4(B% \ Γ) and ∆xu is continuous up to the origin, even without
assuming u ∈ H2(B% \ Γ) . Actually the statement of Theorem 9.2 allows to deal
also with the case when u has a singularity at 0. For the detailed proof and related
results under weaker regularity assumptions we refer to [39].

Notice that the candidate minimizer (8.4) in Section 8 fulfils the assumption of
Theorem 9.2: for any % <∞, it belongs to H2(B%\Γ) and is biharmonic in B%\Γ .
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