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Abstract: Recently, there has been an evolution toward a science-supported medicine, which uses
replicable results from comprehensive studies to assist clinical decision-making. Reliable techniques
are required to improve the consistency and replicability of studies assessing the effectiveness of
clinical guidelines, mostly in muscular and therapeutic healthcare. In scientific research, surface
electromyography (sEMG) is prevalent but underutilized as a valuable tool for physical medicine
and rehabilitation. Other electrophysiological signals (e.g., from electrocardiogram (ECG), electroen-
cephalogram (EEG), and needle EMG) are regularly monitored by medical specialists; nevertheless,
the sEMG technique has not yet been effectively implemented in practical medical settings. However,
sEMG has considerable clinical promise in evaluating muscle condition and operation; nevertheless,
precise data extraction requires the definition of the procedures for tracking and interpreting sEMG
and understanding the fundamental biophysics. This review is centered around the application
of sEMG in rehabilitation and health monitoring systems, evaluating their technical specifications,
including wearability. At first, this study examines methods and systems for tele-rehabilitation
applications (i.e., neuromuscular, post-stroke, and sports) based on detecting EMG signals. Then, the
fundamentals of EMG signal processing techniques and architectures commonly used to acquire and
elaborate EMG signals are discussed. Afterward, a comprehensive and updated survey of wearable
devices for sEMG detection, both reported in the scientific literature and on the market, is provided,
mainly applied in rehabilitation training and physiological tracking. Discussions and comparisons
about the examined solutions are presented to emphasize how rehabilitation professionals can reap
the aid of neurobiological detection systems and identify perspectives in this field. These analyses
contribute to identifying the key requirements of the next generation of wearable or portable sEMG
devices employed in the healthcare field.

Keywords: electromyography; EMG instrumentation; tele-rehabilitation; signal processing

1. Introduction

Electromyography (EMG) is a neuro-muscular assessment method that involves de-
tecting, monitoring, and evaluating biopotentials produced by motor units inside a mus-
cular tissue during voluntary or involuntary actions. Two approaches may be identified
based on the receiving sensor typology: intramuscular and superficial electromyography
(sEMG) [1,2]. This enables the effective study of particular muscle activation, and has
thus found several uses in medical investigations such as orthopedics, surgical procedures,
nervous system studies, and gait and postural assessment [3–7]. EMG is also applied in
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risk prevention and ergonomic designs [8–11]. Sport-specific EMGs may provide a conve-
nient point-of-care diagnostic test and a tool to improve sports performance [12]. Athletes
use EMG to avoid muscular damage during performance evaluations [13]. sEMG can be
utilized to develop muscle fatigue measurements in pre- and post-surgery monitoring and
rehabilitation [14]. In recent years, EMG has grown in prominence for physical rehabilita-
tion [15]; it also provides quantitative information on the muscle’s myoelectric output and
is widely used in neurorehabilitation research [16–18].

Surface electromyography allows recording of entire muscular biopotential signals
from several muscle groups, evaluating the functional condition of a muscular area rather
than simply a single motor unit [19]. The surface approach uses the characteristic of large-
scale electrical conductivity, which eliminates the influence of electrode proximity from
the signal source on its form and character [20]. This approach enables the use of non-
invasive electrodes, removing the pain and risk of monitoring. Surface electromyography
detects and monitors the biopotentials generated when a neurological or electrochemical
stimulus triggers muscle fibers. The responses include data on muscle activation, tone,
and exhaustion, as well as recruitment and synchronization patterns [17,21–23]. EMG
permits a more reliable interpretation of electrical events in the innervated muscles thanks
to many years of study and continuous improvement of EMG signal recording technologies
in detection and processing [24,25]. Simultaneously, a rapid technical growth of sEMG
equipment has been observed, enabling more and more new chances to use this technology
in various domains of medicine, predominantly in rehabilitation. For instance, identifying
frames from sEMG data uses Gradient Boosted Regression Tree ensembles to predict
wrist and finger kinematics, or novel algorithms to identify low-level hand movement by
categorizing a single channel sEMG signal [26–30]. The rising use of sEMG in rehabilitation
and physiotherapy, in the research field and clinical setting, suggests the need to present
its applications, particularly in physiotherapy, where sEMG is commonly employed as a
diagnostic and treatment tool [31–33].

Our review aims to provide an informative evaluation of the clinical applications of
sEMG in rehabilitation and therapy by looking at the most current clinical applications of
sEMG in rehabilitation and physiotherapy during the last decade. This paper comprises
experimental studies and gives a summary of the treatment techniques employed and
the findings and conclusions of the research listed. At first, an overview of methods and
systems to acquire EMG signals suitable for tele-rehabilitation applications are discussed;
then, the characteristics of EMG signals are introduced, along with the most common
techniques and instruments to detect and process them. Afterward, an overview of EMG
portable and wearable devices presented in the scientific literature is reported, and several
commercial EMG wearable devices are reviewed. For both device categories, we focused
on compact, unobtrusive, and wireless devices allowing simple and accurate detection of
EMG signals and the derived parameters, such as amplitude and spectral parameters, time
delay, correlation dimension, sample entropy, as well as RQA (Recurrence Quantification
Analysis) parameters. The hardware and firmware of the described wearable devices
were examined to reveal their strengths and limitations. Comparisons are provided in
each section in order to outline the requirements of the next generation of EMG detection
systems. The main strength of the presented paper is represented by the extensive reviews
of the scientific literature, but above all, of commercial devices that are not analyzed in
other similar scientific works. Comparative analyses are a strength of the presented work,
enabling the reader to understand future perspectives of EMG sensors.

The main contributions of the presented review work are:

• A complete overview of methods and systems to acquire and analyze EMG signals for
tele-rehabilitation applications. In detail, the discussion considers the main applica-
tions involving the EMG signals, such as neuromuscular rehabilitation, post-stroke
rehabilitation, and sports rehabilitation.
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• A detailed discussion about the signal processing techniques for EMG signals, as
well as fundamentals about the structure and characteristics of the EMG signals, are
provided, along with details on the architectures of EMG acquisition systems.

• A comprehensive and updated scientific literature survey about portable and wearable
systems to monitor EMG signals applied to rehabilitation purposes. Comparative
analyses are provided for determining the desirable features for the next generation of
wearable EMG detectors.

• An up-to-date review of commercial wearable EMG detectors used for rehabilitation
applications, and reporting comparative analysis to bring out their main requirements.

The remainder of the article is arranged as follows. Section 2 presents an overview of
the main methodologies and systems to detect EMG signals applied to tele-rehabilitation
applications. Section 3 discusses the main characteristics and processing techniques for
EMG signals. Section 4 reports a survey of EMG portable and wearable devices. Finally,
Section 5 reviews commercially available EMG sensors, as well as related comparative
analyses are presented.

2. EMG Methods and Systems Applied to Tele-Rehabilitation Applications

The past decade has seen an emergence of advanced tele-medicine applications uti-
lizing devices and computer technology [34]. As a relatively new and rapidly expanding
field, tele-rehabilitation remains one of the most important applications. The benefit of
tele-rehabilitation is that it reduces the cost both for healthcare organizations and patients
compared to conventional inpatient rehabilitation or a face-to-face approach. Patients living
in remote places can also benefit from tele-rehabilitation, which enables them to receive
therapy remotely. Tele-rehabilitation has primarily been applied to physiotherapy [35]. It
often takes the form of tele-monitoring, essentially efficient monitoring of physiological
parameters in patients with chronic diseases, such as cardiovascular disease and oxygen
levels [36]. Tele-rehabilitation enhanced treatment program versatility and eliminated the
requirement for patients to go to sessions personally [37–39]. Additionally, patients with
disabilities have reported physical and functional improvements [40–42].

Therapist-patient relationships developed through tele-rehabilitation were as good
as those formed through in-person sessions [38,43]. Physiotherapy combined with telere-
habilitation is an effective treatment option for musculoskeletal problems and physical
illnesses. Furthermore, it helps healthcare professionals create a personalized physical
training program for physical rehabilitation, improving patients’ posture and mobility [44].
The examination and monitoring of neuromuscular problems are required in the rehabilita-
tion sector to establish treatment aimed at developing and strengthening proper motor and
sensory contractions. By acquiring these EMG signals, processing, and interpreting them, a
powerful rehab tool for patients with severe impairments is obtained. Amplitude, timing,
morphology, and spectral features of muscle activation can be expressed in various ways.

Numerous studies have been conducted internationally in the context of the COVID-
19 epidemic to investigate the usage and feasibility of tele-rehabilitation, with differing
data [41,45–47]. Persons with respiratory problems, for instance, embraced the online
provisions and had better therapeutic results [45]. Similarly, despite some technical hurdles,
persons saw tele-rehabilitation as practical and accepted it. Those persons noted dispar-
ities in service quality and favored traditional in-person therapy over tele-rehabilitation
treatment [46]. Another study, on the contrary hand, discovered no statistically significant
changes in patient satisfaction among patients who received in-person physical therapy
compared to a patient who received remote physical therapy [47].

The possible clinical uses of sEMG sensors in rehabilitation medicine are described in
the following sections, with an emphasis on (i) neuromuscular rehabilitation, (ii) stroke
rehabilitation, and (iii) athletic rehabilitation.
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2.1. EMG Applied to Neuromuscular Rehabilitation

An efficient rehabilitation process can restore some motor functions of damaged
limbs in neurorehabilitation medicine and is an important aspect of clinical research [48].
Physicians need to assess their patients’ physical and physiological health to determine
if the exercise has an influence and, ultimately, to modify their follow-up rehabilitation
program. The ability to identify impairments in the physician’s clinical evaluation is aided
by functional changes based on muscle activation data. With the ability to measure the
muscle activation by EMG signals, electrodiagnostic medicine has become increasingly
relevant and useful in neurorehabilitation, especially over the past four decades [49,50].
In [19], sEMG techniques are proposed to be utilized in neurorehabilitation. Firstly, the
authors examine the use of EMG in neurological rehabilitation for assessing and treating
muscle spasticity. This is due to EMG’s capability to evaluate the changes caused by
these abnormalities. The authors discuss a limited number of clinical applications. Manca
et al. have conducted another study concerning surface electromyography utilization in
neurorehabilitation [51]. In their study, they collected information regarding:

(i) sEMG’s present applications and therapeutic effects;
(ii) professionals mainly concerned with sEMG;
(iii) academic aspects;
(iv) potential impediments and explanations for its seeming limited utilization in neurore-

habilitation.

Different researchers in this field have proposed and discussed different aspects of
sEMG use in neurorehabilitation, including the most recently developed applications, the
educational, methodological, and technical characteristics, the possibilities of translation
into clinical practice, and the possible benefits for patients and clinicians of this technique.

Neuro-rehabilitation employs surface EMG signals for (i) tracking neuro-muscular
diseases, (ii) the avoidance of risks and disorders associated with the workplace, and
(iii) observation and assessment of neuro-muscular state and healing progress in acutely ill
patients. Valuable information regarding muscular activation patterns during motion and
effort can assist clinicians in evaluating and providing a clinical assessment of both disability
and functional changes [52–54]. Moreover, EMG and EEG (electro-encephalography)
signals can be acquired through biosignal amplifiers to enhance the functionality of devices
and systems used in brain-computer interface (BCI) applications. EEG and EMG can be
used to predict the patient’s imminent movements. It is not unusual to combine EEG and
EMG in BCI applications to either predict as many movements as possible or to improve
the prediction accuracy [55].

2.2. EMG Applied to Post-Stroke Rehabilitation

Among adults worldwide, stroke is a major cause of chronic disabilities [56]. Many
stroke survivors suffer from hemiplegia, which hinders their ability to walk. Therefore, the
rehabilitation of stroke patients is important to regain their motor coordination, muscle
strength, and motor control [57]. From this point of view, exercises that enhance muscle
activity and neuromuscular control are considered effective in motor rehabilitation [58].
EMG-based methods can help detect residual electro-muscular activity and, thus, assist in
controlling exoskeletons, during the post-stroke period, for patients who can’t generate
enough torque for their joints [59]. Controlled neuromuscular electrical stimulation (NMES)
in conjunction with electromyography has produced the best results for patients with
stroke in clinical trials [60]. Accordingly, a systematic review was proposed by Monte-Silva
et al. [61] about how EMG-NMES improves upper limb recovery following stroke. Another
important study is provided by Hameed et al. [62]. The researchers show how assistive
robotic devices can help patients with hand impairments perform everyday tasks and
regain their ability to use their hands. In particular, they demonstrate that sEMG can
control hand robotic devices, such as gloves and exoskeletons, for hand function recovery
and enhancement.
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Additionally, the researchers in [63] examined the possibility of EMG signals to detect
the intention of hand or wrist extension movements, consequently triggering robot-assisted
training. They present a comparison between detecting movement intention by an EMG
sensor and a BCI using EEG sensorimotor rhythms. They concluded that therapy based on
EMG devices has a legitimate and feasible approach to initiating robot-assisted training
with a simpler interface and smaller dimensions than EEG-BCI systems.

2.3. EMG Applied to Sports Rehabilitation

Surface EMG is useful for assessing the status of skeletal muscles, which is important
for muscular rehabilitation and physical exercises. Sport and rehabilitation scientists are in-
creasingly using surface EMG as a research tool. The EMG is beneficial in the rehabilitation
of athletes because it can be used to diagnose muscle impairment, detect incorrect muscle
activation patterns, and evaluate treatment outcomes [12,64–66]. A better understanding
of how to perform their tasks safely helps them avoid damage, since athletes need the
proper usage of muscles and rapid detection of abnormal muscle patterns. sEMG’s dy-
namic study of muscles is extremely useful in sports, notably for injury prevention [67–69].
For example, the measurement of the sEMG signal might develop the enactment of the
exercise by assessing muscle activity and/or fatigue [70,71]. Fatigue analysis in the triceps
brachii is an essential use of EMG in athletic rehabilitation. Based on sEMG, Hussain
et al. [72] present an intriguing review of fatigue analysis in the human triceps brachii.
Other contributions include post-operative rehabilitation when it is required for patients
who have undergone rotator cuff surgery [73,74], and the study of particular muscle tissue
interactions with external stimulation such as deoxygenation and exercise [12,75]. Trainers,
coaches, and athletes can better understand the day-to-day need of athletes using wearable
biosensors [76–78]. In [79], the author employed smart wearable sensing electronics and IoT
technologies to create a sports rehabilitative tracking system. Sensors in this system collect
and monitor biopotential signals, mobility orientation, skin temperature, and other vital
signs. The experimental results reveal that the system can accurately monitor physiological
parameter variations while providing immediate input and analysis. Additionally, the
physiological data collected may be examined to assist clinicians in developing successful
rehabilitation training regimens that provide extra features of the wearable system for
EMG capture and processing to measure athlete performance. A proposed sEMG method
has been tested by the authors in [80] regarding the capability to precisely and reliably
determine muscle-firing waveforms during the isokinetic assessment of knee joint extensors
and flexors.

3. EMG Signal Processing: General Considerations

The human physical activities produced by muscles, such as continuously pumping
blood from the heart, are commanded and controlled by the brain. This gives rise to
three primary bioelectrical signals: EMG, ECG (Electrocardiogram), and EEG. Detection,
processing, and interpretation of these vital signs have been well documented in the
literature [81–86] (Figure 1).

During limb motion, related skeletal muscles are neurologically stimulated and pro-
duce contraction, thereby generating action potentials that are picked up to form EMG
signals [70,85]. As a result, EMG measurement has become an effective and widely used
procedure in rehabilitation and management, as well as in monitoring physical activity
and evaluating of muscle diseases. A well-designed electromyograph is used to capture
high-quality EMG signals, and it is critical to ensure proper signal processing and EMG
feature extraction [87].
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3.1. EMG Signal Characteristics

EMG is an electrodiagnostic medical technique for evaluating and recording the
muscular electrical signal produced by skeletal muscle movements [88]. The EMG signal
represents neuromuscular activity by measuring electrical currents produced in muscles
during contraction [89]. As a result, an EMG provides valuable information on muscle
health and the function of motor neurons that carry electrical impulses to muscle fibers and
allow them to contract. EMG signals have a frequency range of 20 to approximately 2000 Hz
and an amplitude of roughly 50 µV to 20 mV [90]. The biomechanics of human skeletal
muscles or activity levels may be monitored and studied using the features analysis of EMG
signals, which can provide body muscular activity information such as fitness, weariness,
and stamina level, as well as a gesture. Muscle functioning during different levels of
physical activities may provide important information about disability and functional
changes [91]. EMG is employed in rehabilitative medicine, human-machine interface
design, biomedical research, and various other applications, such as prostheses, as shown
in Figure 2 [92,93].

EMG is used for physiological investigations, neurological disease monitoring, therapy
planning, intervention evaluation, and control of prostheses and robotics [94]. Surface
or internal electrodes are the two types of electrodes used in electromyography. Surface
electrodes are used to track a muscle’s overall activity, whereas nerve electrodes are used
to disclose the electrical activity of a neuron. EMG signals show the status of limb muscle
activity, representing skeletal muscle movement and nervous system control information,
and are extremely valuable in stroke rehabilitation programs [91]. EMG signals may be
used to identify and distinguish various limb movements, assisting in identifying and
researching limb motions and their features [52]. Particularly, sEMG offers a non-invasive
and thorough measurement of muscle activity that might be useful in movement analysis
applications that need frequent evaluations or information on the activation patterns
of various muscles [95]. Surface EMG, for example, might be a useful technique for
quantifying progress and evaluating treatment results in sports, rehabilitation, and clinical
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assessment [96]. Surface EMG is typically done on bigger, superficial muscles that are
easily accessible. The surface EMG approach captures data on the amount of excitation
from a broad region, which may comprise several distinct motor unit populations. Despite
its widespread application and ease of implementation, surface EMG has disadvantages.
For example, recording selectively from extremely deep muscles is not viable. In addition,
cross-talk, an error source resulting from the vast pick-up region of the electrodes, may
result in the recording of erroneous signals from deep muscles. Cross-talk must be handled
carefully when analyzing an EMG signal, and can produce erroneous results. Techniques
to limit cross-talk include strategically positioning electrodes on the surface, employing
electrodes of the appropriate size, and maintaining a safe spacing between them. Because
electrodes close to the innervation zone or tendon region may generate significant signal
amplitude variation, it is essential to position them in the proper locations on the surface.
During contractions, the movement of the muscle beneath the skin and the electrodes may
also significantly impact the surface EMG signal [97,98]. Ag-AgCl electrodes are usually
employed sEMG, including a conductive gel to reduce the impedance between the skin
and electrode surface [87].
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Internal EMG electrodes are rarely utilized due to their invasive nature. This technique
is generally applied to evaluate deep muscles and those with a narrow cross-section.
Unlike the implantation of surface electrodes, the insertion of electrodes requires particular
knowledge and time. Thus, a professional operator (e.g., a neurologist, physiatrist, or
physiotherapist) must place the electrode and monitor the muscle’s activity. Intramuscular
EMG is superior to surface EMG because it can detect a specific muscle’s EMG signals
under static and dynamic conditions with low interference. Two types of electrodes are
common in internal EMG: a monopolar needle, constituted by a tip that acts as single
electrodes, and the concentric needle, constituted by an inner core (active electrodes) inside
an outer cannula as a reference electrode. In some circumstances, intramuscular EMG
can be considered unneeded or excessively intrusive. The signal acquired from each
electrode provides a very local representation of the muscle’s activity. Since skeletal muscle
inner structures vary, different locations must be considered to obtain a reliable analysis.
Surface electromyographic signals are less spatially selective than intramuscular recordings
due to the tissues’ low-pass filtering impact on the sources (muscle fibers) and recording
electrodes [99,100].
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3.2. EMG Instrumentation

Similar to every biopotential signal, sEMG signals are nondeterministic, noisy, and
complex; they also have small amplitudes and a frequency range. As a result, their ac-
quisition is complicated. Noise from the electronic acquisition equipment, skin-electrode
interface, and power lines all contribute to background noise. Therefore, a well-designed
system is needed to enhance the acquisition and analysis of EMG signals. Such acquisition
systems comprise electrodes, pre-processing stages (preamplifiers and filters), amplifiers,
analog-to-digital conversions, power supply sections, and wireless transmission mod-
ules [101] (Figure 3).

Electronics 2023, 12, x FOR PEER REVIEW 8 of 34 
 

 

common in internal EMG: a monopolar needle, constituted by a tip that acts as single 
electrodes, and the concentric needle, constituted by an inner core (active electrodes) in-
side an outer cannula as a reference electrode. In some circumstances, intramuscular EMG 
can be considered unneeded or excessively intrusive. The signal acquired from each elec-
trode provides a very local representation of the muscle’s activity. Since skeletal muscle 
inner structures vary, different locations must be considered to obtain a reliable analysis. 
Surface electromyographic signals are less spatially selective than intramuscular record-
ings due to the tissues’ low-pass filtering impact on the sources (muscle fibers) and re-
cording electrodes [99,100]. 

3.2. EMG Instrumentation 
Similar to every biopotential signal, sEMG signals are nondeterministic, noisy, and 

complex; they also have small amplitudes and a frequency range. As a result, their acqui-
sition is complicated. Noise from the electronic acquisition equipment, skin-electrode in-
terface, and power lines all contribute to background noise. Therefore, a well-designed 
system is needed to enhance the acquisition and analysis of EMG signals. Such acquisition 
systems comprise electrodes, pre-processing stages (preamplifiers and filters), amplifiers, 
analog-to-digital conversions, power supply sections, and wireless transmission modules 
[101] (Figure 3). 

 
Figure 3. Flowchart of electromyography acquisition system [101] (Reproduced with permission 
from [101], Springer Nature, 2019). 

The amplification stage aims to increase the level of the differential signal between 
the electrodes while rejecting unwanted common noise. Then, the resulting signal is fil-
tered and digitized with an analog-to-digital converter (ADC) for further analysis. In ad-
dition, the signal acquisition can occur in two different ways: the monopolar mode 
measures the differential voltage between an active electrode and an electrode-secluded 
marker located outside of a phasing region, whereas the bipolar mode measures the dif-
ferential voltage between two electrodes. Furthermore, the system’s wireless transmission 
module allows data to be collected, analyzed, displayed, and stored via an external PC. 
Furthermore, this module is essential to achieving a portable form of rehabilitation train-
ing. 

The acquired EMG signal carries a wide range of desired and undesired information 
based on the surroundings, physiological, and instrumentation noise conditions. In par-
ticular, a pre-processing module composed of a low-pass and high-pass filter is necessary 
to remove the baseline and main frequency components from the EMG signal [102], and 
50/60 Hz rejection, implemented with a notch filter, removes the harmonic noise 

Figure 3. Flowchart of electromyography acquisition system [101] (Reproduced with permission
from [101], Springer Nature, 2019).

The amplification stage aims to increase the level of the differential signal between the
electrodes while rejecting unwanted common noise. Then, the resulting signal is filtered
and digitized with an analog-to-digital converter (ADC) for further analysis. In addition,
the signal acquisition can occur in two different ways: the monopolar mode measures the
differential voltage between an active electrode and an electrode-secluded marker located
outside of a phasing region, whereas the bipolar mode measures the differential voltage
between two electrodes. Furthermore, the system’s wireless transmission module allows
data to be collected, analyzed, displayed, and stored via an external PC. Furthermore, this
module is essential to achieving a portable form of rehabilitation training.

The acquired EMG signal carries a wide range of desired and undesired information
based on the surroundings, physiological, and instrumentation noise conditions. In par-
ticular, a pre-processing module composed of a low-pass and high-pass filter is necessary
to remove the baseline and main frequency components from the EMG signal [102], and
50/60 Hz rejection, implemented with a notch filter, removes the harmonic noise generated
by the power lines. The low-frequency cutoff of high-pass filters must be precisely defined
because it is considered the main reason for the initial loss of amplitude in signals that
change slowly, waveform misrepresentation, reducing the time to peak value, and originat-
ing artifacts [87]. A low-pass filter and high-frequency cutoff must also be o chosen to avoid
reducing the amplitude and rise time of the informative component. After conditioning
and processing steps, the EMG signal should be sent to a suitable data acquisition system
to acquire, analyze, and/or store data. A digital value is assigned to the amplitude of the
signal at predefined time points by a converter that discretizes the signal time and ampli-
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tude. This procedure is required to perform further signal analysis for clinical diagnosis
and research purposes.

In general, the EMG acquisition stage should meet the following substantial specifica-
tions [103]:

• Accuracy: many electronic elements, such as differential amplifiers, ADC converters,
and others, are subject to intrinsic noise. The target is to minimize the noise in each
element so that accuracy may be achieved.

• Sensitivity: pertains to the analog to digital resolution and, therefore, the total resolu-
tion of the device. This helps the medical staff control readings.

• CMRR: which stands for Common-Mode Rejection Ratio, and indicates the ability
of a differential amplifier to reject signals common to both inputs. A high CMRR is
essential in preventing 50–60 Hz power line interference.

• Input impedance: its compatibility is important in the selection of differential ampli-
fiers and applications relative to the skin type and electrode interface.

• Input range: this specification applies to circuitry and the analog to digital converter,
defining the range of EMG signal that can be amplified without saturating the amplifier.
To acquire the complete signal, a greater input range is desired, but this necessitates
an increase in signal resolution.

• SNR: signal-to-noise ratio measures the power of the desired signal relative to back-
ground noise.

4. EMG Portable Devices for Rehabilitation

Rehabilitation involves assessments and specialized training, but healthcare centers’
limited resources often make this process challenging. For this reason, wearable technol-
ogy represents a valid and important solution for objectively assessing and monitoring
patients inside and outside of clinical environments. Using this technology, more detailed
information about the impairment can be determined, allowing rehabilitation therapies
to be identified [104]. The portability, low cost, and unobtrusiveness of wearable devices
make this technology highly effective in tracking movements to improve neurologic or
musculoskeletal care. As an added benefit, these sensors allow the evaluation of motor
behavior, which is useful in compensatory motor recovery mechanisms, remote monitoring,
and tele-rehabilitation [105–107].

Electrical biosignals can gauge the health and fitness conditions of the human body. In
real-time e-health monitoring systems, biosignals such as ECG, EMG, and EEG are captured
and analyzed to extract relevant and useful information for observation, diagnosis, and
treatment [108].

As shown in Figure 4, these systems are generally configured as follows. The EEG,
ECG, and EMG signals are extracted using electrodes placed on the subject and are acquired
and processed by sensor devices connected to proper monitoring equipment. These systems
generally have problems with slow data acquisition and transmission speeds, poor energy
consumption, and cumbersome form factors that restrict their versatility.

Wearable devices monitor activity through two main processes: (i) acquiring, pre-
processing, and managing data, and (ii) analyzing, classifying, and transmitting the data.
Amplification and filtering are examples of signal pre-processing, while signal analysis
comprises methods such as pooling or extracting crucial features used as a classifier test
dataset (Figure 5) [54,109].

Smart sensors are often used in wearable devices to detect and monitor a collection
of physiological characteristics to maintain a constant watch for the sake of diagnosis,
treatment, and regulation [110]. The aging population’s requirement for healthcare admin-
istration requires wearable medicinal products to collect individual health data promptly.
During muscle exercises, electrical signal fluctuations create ECG and EMG, which are sig-
nificant and widely used measures in healthcare management and rehabilitation regimens.
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Figure 5. Transradial prosthesis based on the Myo wireless myoelectric armband proposed in [54]:
(a) Adam’s Hand prosthesis with its main embedded mechanical and electronical modules; (b) func-
tional scheme of the employed electronic modules and related web application (Web-source:
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-smt.2018.5108, every aspect related
to the human subjects’ involvement has been taken into consideration by the authors in [54]) (Repro-
duced with permission from [54], John Wiley and Sons, 2019).

Zhao et al. presented a wearable device for upper limb rehabilitation [110], i.e., a
robotic glove for assistance training that acquires EMG and ECG signals. In detail, these
signals were acquired, pre-processed, digitalized, and transmitted through a Bluetooth
Low-Energy (BLE) module to a remote receiver. Furthermore, a software platform for data
processing was created by combining several instructions to show the captured electrophys-
iological data and reveal interest patterns. The EMG and ECG sensors, respectively, detect
hand movements and changes related to these movements in a subject’s physiological
condition. The findings demonstrate that monitoring ECG and EMG signals can help the
patient enhance upper limb improvement based on the treatment settings and needs of the
users. In this work, wet electrodes were employed for detecting EMG, which can induce a
change of contact impedance with the skin due to gel drying [111].

In [112], the authors present a wireless device to acquire and monitor physiological
signals (i.e., ECG, EMG, PPG, and body acceleration). The system consists primarily of a
portable device, a graphical user interface (GUI), and a software application for presenting
the data on a computer or intelligent device. This system has eight measurement channels,
a powerful microcontroller unit, a lithium battery, Bluetooth 3.0 data transfer, and a 2 GB

https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-smt.2018.5108
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integrated flash memory. The results suggest that the developed device can help clinicians
and scientists collect required physiological signals, exploiting its ability to acquire real-
time data.

Similarly, in [113], the authors present a real-time and remote-control IoT system based
on EMG and inertial signals. Using the Myo-band on an arm, a user may remotely manage
domestic utilities (lights, room heaters, air-conditioners, ventilators, etc.) through eight
gestures (Figure 6). The IoT system comprises four parts: sensing devices, gateway, cloud
servers, and smart devices. The Myo armband collects EMG signals and motion-related
inertial data, forwarding them via Bluetooth toward the gateway (Intel UPS-GWS01),
which filters and extracts information from data and sends them to the cloud server. For
managing electrical appliances and establishing a wireless connection to the home gateway,
ESP8266 was employed. The tests demonstrated that the proposed system could achieve
high accuracies, such as 100% for basic gestures and 90% for challenging ones.
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System latency linked to the internet network load could be a problem, heavily influ-
encing the performance of the developed system.

Park et al. present an energy-efficient integrated circuit using a 128-channel ∆-
modulated ∆Σ analog front-end (∆-∆Σ AFE) for 1024-channel neural recording microsys-
tems [114]. Platform components include eight multi-shank neural probes connected to
individual AFEs (analog front-ends) based on a modular architecture using 128 channels
(Figure 7). A spectrum equalization scheme was implemented to reduce the amount of area
and energy consumed, taking advantage of the inherent spectral properties of neural signals
(the bulk of the energy is found in the low frequencies). ∆-∆Σ AFEs were designed to obtain
the following features: the single-channel AFEs consume 3.05 W at 0.5 and 1.0 V from
an area of 0.05 mm2 with a 63.8-dB signal-to-noise-and-distortion ratio and a 3.02 noise
efficiency factor.
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assembled with the proposed 128-channel AFEs, interposers, silicon caps, and 128-channel multi-
shank probes, and a photograph of the fabricated module on the top of a U.S. penny (Reproduced
with permission from [114], IEEE, 2018).

In [115], a multi-channel data acquisition system is described to record bio-electrical
signals, including EMG. An eight-module front-end acquisition system is coupled with a
synchronization module that ensures reliable synchronization between all acquired signals.
A separate universal serial bus data link connects each front-end acquisition module to
the computer. Using an external clock, it synchronizes with other modules, providing
the microcontrollers with a time base. It is possible to analyze movements in real-time
with a synchronization error lower than 10 µs. Additionally, each AFE relies on the
highly integrated ADS1299 chip, containing analog filters and an eight-channel ADC for
digitalizing bipolar signals simultaneously. As a result, the proposed system can record
up to 64 bipolar channels in real-time. In the end, raw data are analyzed and saved on
a personal or single-board computer. However, the device presented in [115] does not
have a wireless transceiver on board the acquisition board, and therefore requires a wired
connection with the processing section (PC or Raspberry Pi board), limiting the use of the
device in the acquisition of EMG signals in daily activities.

Tran et al. introduced their most recent contribution in [116]. The author developed a
four-channel neural recording AFE integrated circuit (IC) featured by high power efficiency
and low-noise. A low-noise amplifier (LNA), a programmable gain amplifier (PGA),
and buffers made up each front-end channel. A 4-to-1 multiplexer (MUX) and an ADC
accompany the four-channel AFE were used to acquire the four channels sequentially.
The system had a programmable gain ranging from 45 to 63 dB and a 10 kHz operative
band. The characterization demonstrated that the developed four-channel neural recording
AFE produced 3.16 µVRMS input-referred noise, a 2.04 noise efficiency factor, a 4.16 power-
efficiency factor, and a 2.82 µW power consumption for each channel, considering a 1 V
supply voltage. D.J. Piccinini et al. reported a versatile and wearable device for collecting
and wirelessly transmitting biological signals [117]. This system relies on ane ADS1294
Medical AFE and CC3200 MCU (microcontroller unit, manufactured by Texas Instruments),
customized for various signals such as ECG and EMG. The resulting solution is lightweight
and powered by two Li-ion batteries. The test results showed that the developed device
is very promising in terms of size, physical reduction, wireless transmission resilience,
and data collecting and processing dependability. The device relies on an SoC (C3200,
manufactured by Texas Instruments) with an embedded WiFi transceiver to transmit data
to a host device where the data is processed. This limits the use of the device in areas where
a WiFi hotspot is required.
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Sarker et al. presented another application in [118], i.e., a compact wearable device for
acquiring biosignals. Real-time data wireless transmission and minimal energy usage are
its distinguishing features. The device is set up to record ECG and EMG signals over eight
channels with a 24-bit resolution per channel and 500 SPS (samples per second) sampling
rate. The system was presented as an example of prospective integration in an IoT-based
system (Figure 8).
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The size of the presented device could be further reduced to enable integration into
wearable devices, and the firmware further optimized to ensure better energy efficiency,
extending its autonomy.

Mazzetta et al. presented a stand-alone wearable sEMG device for real-time mon-
itoring of muscle activation [119]. This device can detect muscle activation potentials
and, owing to an integrated low-power microprocessor, can perform entire real-time data
processing. The system is designed for low power consumption, compactness, and energy
independence, allowing it to collect patients’ vital diagnostic data sets daily. Furthermore,
the results of testing the system show that it had a specificity and sensitivity of over
87 percent and 82 percent in detecting correct activity time, respectively, with the added
benefit of being wireless and comfortable to wear.

Another contribution in [120] describes 3D-printed smart glasses with bone vibration
sensors and electrodes for electromyography (EMG) installed at the frame (Figure 9). To
measure the EMG, a Bitalino EMG sensor was employed, using flexible fabric electrodes.
A 64 µm PET monofilament was woven in the warp and weft directions to create the
electrodes. To record Temporalis muscle activations, two stripes were applied to the
right temple’s ear bend and temple end of the eyeglasses frame. EMG signals were
acquired at 1 kHz and high-pass filtered at 10 Hz to eliminate baseline drift. The test
results demonstrated that the developed smart glasses obtained a high SNR (15–20 dB)
appropriate to identify chew activities. The main problem of the solution presented in [120]
was maintaining contact between the electrodes and the user’s skin, especially with the
user in motion, a potential source of artifacts on the acquired signals.

For the capture of bioelectric signals in portable systems, compact and low-noise
(AFEs) are becoming crucial. A low-power, multi-modal AFE for wearable health monitor-
ing sensors is presented by Kim et al. [121]. It is based on CMOS (Complementary Metal
Oxide Semiconductor) technology, revolutionary system architecture, and large-scale IC
design approaches. Three sensors to measure bio-potential (i.e., ECG, EEG, and EMG),
photoplethysmography (PPG), and bioelectrical impedance analyzer (BIA) are incorporated
for reducing size and power consumption. The findings revealed that high-quality AFE
enables users to easily self-monitor various clinically important physiological indicators. As
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suggested by the authors, several functional blocks could be shared among the bio-signal
and BIA AFEs, such as anti-aliasing filters and ADCs, further reducing the used area.
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Figure 9. Prototype of the 3D-printed smart glasses, presented in [120] (a) with integrated bone
vibration sensor and EMG electrodes applied on the right temple (b). Smart eyeglasses worn by
a user (c) (Web-source: https://dl.acm.org/doi/10.1145/2971763.2971799, every aspect related to
the human sub-jects’ involvement has been taken into consideration by the authors in [120]) (Image
courtsey by the authors, R. Zhang and O. Amft [120]).

In [122], the authors present a novel AFE featured by three properties: input impedance’s
dependency on voltage, bandpass amplification, and stray capacitance lowering utilizing
capacitively coupled electrocardiogram (cECG) and capacitively coupled electromyogram
(cEMG). The AFE characterization demonstrated that it could achieve a good balance of
sensitivity and stability in capacitive biopotential measurements (CBMs). As a result, it is a
more flexible solution than the traditional voltage followers employed in CBMs (Figure 10).
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Figure 10. Proposed AFE (BNArf) [122] (Reproduced with permission from [122], MDPI, 2020).

Non-invasive EMG and accelerometer signals have been obtained using a wearable
wireless device introduced by Biagetti et al. [123] to monitor human activity during sports
and physical activities, as well as in healthcare applications. This system employs several
tiny, lightweight wireless sensing nodes to collect, analyze, and transmit motion-related
body signals (medical and accelerometer). These were sent to one or more base stations
over an ad hoc 2.4 GHz radio connection. A user interface was also created for accessing,
recording, and interpreting data from a remotely controlled personal computer linked to the
base stations via USB (Universal Serial Bus). Data recorded from many participants were
utilized to develop and test an automated classifier to determine the performed exercise for
evaluating the system’s capacity to identify the user’s activity. On four activities conducted
by three participants, the automated classifier obtained a maximum accuracy of 85.7 percent
using data collected from acceleration and sEMG signals.

https://dl.acm.org/doi/10.1145/2971763.2971799
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Following the earlier designed application, Biagetti et al. [124] reported a wireless
sensing unit for the real-time capture of bioelectrical signals such as EMG and ECG. This
instrument was designed to provide a continuous stream of data suited for individual
activity recognition, motion tracking, and technology-assisted support for people with
mobility or intellectual impairment (Figure 11). Up to three separate electrophysiologic
channels, each of which has 24 bits of resolution and a sampling rate of up to 3.2 kHz, could
be achieved using six electrodes. Furthermore, a BLE wireless connection was utilized
to contact a wide range of consumer equipment. In particular, this work looked into the
data rate restraints specified by these devices suggesting a technique achieving maximum
available bandwidth and the transmission dependability.
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Figure 11. Sensor node architecture with different power supply subsystems highlighted and em-
ployed for reducing the power requirements and the data interfaces. When the general-purpose
input/output (GPIO) line is active, the ADS1293 collects the analog signals and transfers them to
the SoC via a serial peripheral interface (SPI). Using inter-integrated circuit (I2C) communication,
the LSM6DSO inertial measurement unit (IMU) provides data from it to the MCU [124] (a). The
electrodes and electronic section are positioned on the top part of the right forearm, connected to
the biceps brachii, triceps brachii, and deltoideus medium (highlighted in yellow, orange, and blue
markers, respectively) (b). The image on the right below, which depicts the enclosure internal with
the battery atop the circuit board, clearly illustrates the mechanical axis’ alignment (c). When the
device is put on, axes are positioned such that the Y is parallel to the arm and oriented downward
at resting, the X is parallel to the sagittal plane and faces forward, and the Z axis is parallel to the
coronal plane and faces the arm. (Web-source: https://www.mdpi.com/2079-9292/9/6/934, every
aspect related to the human subjects’ involvement has been taken into consideration by the authors
in [124]) (Reproduced with permission from [124], MDPI, 2020).

https://www.mdpi.com/2079-9292/9/6/934
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The device’s design and electrode configuration can be further optimized to make
it more discreet and compact. In addition, some processing (filtering) sections may be
integrated into the device’s firmware, limiting post-processing.

Xian Li and Ye Sun offer a wirelessly non-skin contact button-like wearable system
for long-term tracking of several bioelectric signals (ECG, EMG, and EEG) [125]. For non-
contact sensing, this system relies on the analog front-ultra-high end’s input impedance.
The system is powered by a 150 mAh rechargeable Li-ion battery and comes in a 24.0 g
3D printed compact box with dimensions of 39 mm × 32 mm × 17 mm. A power control
circuit is incorporated to offer a dual power supply to feed the operational amplifiers.
Several movement patterns with various fabric types were used to assess the system’s
effectiveness, and the experimental results suggested that long-term bioelectric tracking is
possible without disrupting everyday tasks.

D. Velumani et al. proposed an IoT-based tool for diagnosing bruxism, detected by
measuring the activity of the masticatory muscles using sEMG [126]. This project’s primary
objective was to gather biosignals using an EMG sensor by placing surface electrodes over
the cheeks and measuring muscle activity to identify signs of bruxism and its performance,
as well as other metrics such as pulse rate. An ESP32 is the core of the developed wearable
device to which EMG and HR sensors are interfaced. The patient is warned when the RMS
(Root Mean Square) of the EMG signal overcomes the threshold value by sending an alert
message to an IoT cloud platform, where the information is wirelessly saved and used
for telediagnosis at any time. In our opinion, the main problem of the proposed solution
is the stability of the contact between the EMG electrode and the patient’s cheek, which
could deteriorate due to the user’s movements during sleep, inducing artifacts on the
acquired signal.

The authors of [127] proposed a handheld device for EMG and other biopotential
signal recording sections to assist in diagnosing and progressing many illnesses. The signal
processing section removes baseline fluctuation (0.1–0.5 Hz) and (50/60 Hz) interfering
components, and the processor generates control signals to set the AFE in two modalities:
low noise–large CMRR and average noise–moderate CMRR modes. A signal filtering
section was developed to pass the interest frequency band and reject the unwanted com-
ponents. A Successive Approximation Register (SAR) DAC-digital to analog converter
receives the control signals from the section above. The resulting biosignal elaborating
section has a total size of 33.005 µm2 and power usage of 0.382 mW, thanks to Spartan-3E
FPGA (Field Programmable Gate Array) and 0.18 µm CMOS TSMC technology.

Lee et al. describe a new wireless ExG sensing tag with different channels for electro-
physiological data acquisition (PSA) for collecting biopotential data [128]. In addition, a
combined microprocessor system-on-chip (SoC) and a BLE transceiver was integrated for
instant detection and wireless communication. The developed system includes an AFE, a
PGA- programmable gain amplifier, a reconfigurable ∑-∆ ADC, and a 32-bit RISC processor.
High-performance computing is used in FFT (Fast Fourier Analysis) and entropy coding
processors with direct memory access (DMA) to decrease dynamic power. This device
is designed to be energy efficient, and continuous recording of ExG signals in medical
diagnostic instruments may be accomplished in as little as 12 h using a 200 mAH battery.

An ECG and EMG recorder featuring versatile architecture is presented in [129] that
supports wired and wireless body sensor networks. Various options can be configured
regarding hardware parameters, signal processing, and recording (Figure 12). The pro-
posed architecture is arranged into three primary levels: data acquisition, processing, and
transmission. A programmed analog front-end ADAS1000 with five single-ended gain lines
with variable gain has been built. A 24-bit resolution ADC with a customizable data rate
of up to 128 kHz has also been developed. A 24-bit resolution analog-to-digital converter
with a customizable data rate of up to 128 kHz has also been developed.



Electronics 2023, 12, 1520 17 of 35

Electronics 2023, 12, x FOR PEER REVIEW 17 of 34 
 

 

An ECG and EMG recorder featuring versatile architecture is presented in [129] that 
supports wired and wireless body sensor networks. Various options can be configured 
regarding hardware parameters, signal processing, and recording (Figure 12). The pro-
posed architecture is arranged into three primary levels: data acquisition, processing, and 
transmission. A programmed analog front-end ADAS1000 with five single-ended gain 
lines with variable gain has been built. A 24-bit resolution ADC with a customizable data 
rate of up to 128 kHz has also been developed. A 24-bit resolution analog-to-digital con-
verter with a customizable data rate of up to 128 kHz has also been developed. 

 
Figure 12. Flow diagram of the data acquisition layer proposed in [129] (Reproduced with permis-
sion from [129], Elsevier, 2016). 

The suggested system might be improved by automatically adjusting the remote re-
corder’s software by the server by the reported diagnostic quality, allowing some firm-
ware blocks to be tailored according to the target device. 

In [130], researchers describe an interference-oriented biosensor front-end integrated 
into an ASIC (Application Specific Integrated Circuit) for wireless body sensor nodes and 
implanted biomedical instruments. The ASIC is made in a 0.18-micron CMOS processing 
and can be reconfigured to handle various bioelectrical signals, with high-pass and low-
pass critical frequencies of 0.5–300 Hz and 150 Hz–10 kHz, accordingly. For the swapping 
10-bit SAR ADC, an antialiasing filter is also provided. The AFE has a programmable gain 
ranging from 38 to 72 dB. A power control unit supplies the entire device with power, 
various voltage, and bias current levels. The AFE and ADC dissipate 5.74 µW and 306 nW, 
respectively, and the device has 2.98 µVRMS input-referred noise, a 2.6 noise efficiency fac-
tor, and a 9.46 power efficiency factor. The AFE covers an area of 0.0228 mm2. 

A musculoskeletal rehabilitation evaluation (MSEva) system is proposed in [131] to 
assess neuromuscular activities using EMG signals, able to recognize five rehabilitative 
exercises from EMG data. MSEva collects signal characteristics with the Wavelet Trans-
form (WT) and then trains its models with the Long Short-Term Memory (LSTM). The 
system employs an LSTM model to detect if the EMG response to rehabilitative proce-
dures is normal. In terms of accuracy, MSEva reaches an average of 94.37%, which is sig-
nificant for directing neuromuscular rehabilitation. 

Table 1 summarizes the main features and strengths of scientific works on electro-
myography wearable monitoring systems published in peer-reviewed journals in the last 
six years. 

 

Figure 12. Flow diagram of the data acquisition layer proposed in [129] (Reproduced with permission
from [129], Elsevier, 2016).

The suggested system might be improved by automatically adjusting the remote
recorder’s software by the server by the reported diagnostic quality, allowing some
firmware blocks to be tailored according to the target device.

In [130], researchers describe an interference-oriented biosensor front-end integrated
into an ASIC (Application Specific Integrated Circuit) for wireless body sensor nodes and
implanted biomedical instruments. The ASIC is made in a 0.18-micron CMOS processing
and can be reconfigured to handle various bioelectrical signals, with high-pass and low-
pass critical frequencies of 0.5–300 Hz and 150 Hz–10 kHz, accordingly. For the swapping
10-bit SAR ADC, an antialiasing filter is also provided. The AFE has a programmable gain
ranging from 38 to 72 dB. A power control unit supplies the entire device with power,
various voltage, and bias current levels. The AFE and ADC dissipate 5.74 µW and 306 nW,
respectively, and the device has 2.98 µVRMS input-referred noise, a 2.6 noise efficiency
factor, and a 9.46 power efficiency factor. The AFE covers an area of 0.0228 mm2.

A musculoskeletal rehabilitation evaluation (MSEva) system is proposed in [131] to
assess neuromuscular activities using EMG signals, able to recognize five rehabilitative
exercises from EMG data. MSEva collects signal characteristics with the Wavelet Transform
(WT) and then trains its models with the Long Short-Term Memory (LSTM). The system
employs an LSTM model to detect if the EMG response to rehabilitative procedures is
normal. In terms of accuracy, MSEva reaches an average of 94.37%, which is significant for
directing neuromuscular rehabilitation.

Table 1 summarizes the main features and strengths of scientific works on electromyo-
graphy wearable monitoring systems published in peer-reviewed journals in the last
six years.
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Table 1. Summarizing table of wearable monitoring systems reviewed in the manuscript (sorted by publication year).

Reference Year Number of Channels Signal
Acquisition

Sampling
Frequency

Wireless
Connection Technical Features and Strengths

S. Zhao et al.
[110] 2020 2 channels

STM32L15 (MCU)
+ Precision

instrumentation
amplifiers +

BMD 101 (16-bit ADC)

N.A. a BLE

• A wearable smart monitoring system for upper limb
rehabilitation based on acquiring and processing the
ECG e EMG signals.

• Wireless data transmission to a remote processing
device to reduce wearable device requirements.

• Integrated software platform based on multi-thread
technology for detecting fatigue (ECG) and training
progress (EMG) using an adaptative strategy.

S. H. Liu et al.
[112] 2019 8 channels MSP430 MCU

(12-bit ADC) 100 Hz Bluetooth 3.0
(BTM-204B)

• Portable and wireless acquisition system to record
physiological signals (ECG, EEG, EOG, GSR, and PPG).

• Real-time monitoring of the multiple biosignals
through proper smartphone and PC applications

M. Nguyen et al.
[113] 2021 8 channels Myo

Armband 200 Hz Bluetooth
• Real-time and remote household utilities.
• Edge computing exploiting a local smart gateway.
• Processing supported by inertial data

S.-Y. Park et al.
[114] 2018 128 channels

128-channel Custom
AFE

(10.9-bit ∆-∆Σ ADC)
800 kHz No

• Energy and area-efficient 128-channel AFE, including a
modular ∆-modulated ∑∆ acquisition system.

• 1024-channel for high-density detection of
brain activity.

• Implementation of spectrum equalization scheme to
exploit the spectral features of neural signals.

• Low power consumption (3.05 µW/channel @ 1 V
supply) and area (0.05 mm2).

• High SNRD (63.8 dB) and low NEF (3.02) for noise
suppression.

L. Tran et al.
[116] 2021 4 channels

4-channel Neural
recording AFE IC
(10-bit SAR ADC)

1–10 kHz No

• Amplification that can be adjusted from 45 dB to 63 dB.
• Low input referred noise (3.16 VRMS) inside the 10 kHz

bandwidth.
• Low NEF (2.04) and high PEF (power efficiency

factor) (4.16)
• Low power consumption (2.82 W/channel).
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Table 1. Cont.

Reference Year Number of Channels Signal
Acquisition

Sampling
Frequency

Wireless
Connection Technical Features and Strengths

D. J. Piccinini et al.
[117] 2016 N.A. a

CC3200 MCU +
ADS1294 AFE (24-bit

∆Σ)
32 kHz WiFi

(CC3200)

• Wireless wearable acquisition system for detecting
biosignals (EMG, ECG, movement, body temperature).

• Discreet and reliable in data acquisition, processing,
and transmission.

V.K. Sarker et al.
[118] 2017 8 channels

ATmega328p
+ ADS1299 AFE

(24-bit ADC)
250–1000 Hz Bluetooth 2.0

(HC-05)

• Lightweight and wearable monitoring system
gathering multiple bio-signals (ECG and EMG).

• High resolution (24 bit) and sample rate (500 samples
per second).

• Extended energy autonomy (13.6 h with a 1700 mAh).

I. Mazzetta et al.
[119] 2018 Differential

1 channel Bio2Bit ≥4 kHz Bluetooth 4.0

• Wearable sEMG system for real-time detection of
muscle activity.

• Fully embedded system for the real-time elaboration of
sEMG signals.

• Wearable, compact, and ubiquitous.
• Low power consumption (26 mW).
• High specificity and sensitivity in detecting the

activation times (87% and 82%, respectively).

R. Zhang et al.
[120] 2016 1 channel Bitalino EMG 1 kHz No

• Compact and low-power wearable and wireless
system for continuously monitoring EMG signals and
bone vibration.

• Fabric-based flexible electrodes applied on the temple
ear bend and temple end.

• High SNR on EMG acquisition (15–20 dB).

I. Kim et al.
[121] 2016 N.A. a

Cyclone IV FPGA
+ Custom AFE

(10-bit SAR ADC)
1.10 MHz No

• Low power and multi-modal AFE for monitoring PPG,
BIA, and biopotential.

• Small covered area (2.5 mm × 2.5 mm) and power
consumption (0.4 mW @ 1.2 V supply voltage).
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Table 1. Cont.

Reference Year Number of Channels Signal
Acquisition

Sampling
Frequency

Wireless
Connection Technical Features and Strengths

H. Nakamura et al.
[122] 2020 N.A. a

Custom AFE to
capacitive biopotential
measurements (CBMs)

(16-bit ADC)

1 kHz No

• Novel AFE architecture featured by:
voltage-dependent input impedance, band
amplification, and stray capacitance reduction.

• Suitable for capacitive biopotential
measurements (CBM).

• Improved SNR

G. Biagetti et al.
[123] 2018 1 channel sEMG sensing nodes

(12-bit ADC) 2 kHz 2.4 GHz
radio link

• Wearable sensor node to detect and wirelessly transmit
signals related to body motions (sEMG and inertial).

• Discreet and cost-effective
• Custom software platform for gathering and

processing the acquired data to recognize
human activity.

G. Biagetti et al.
[124] 2020 3 channels

nRF52840 MCU
+ ADS1293 AFE

(24-bit ADC)
3.2 kHz BLE

• Wearable sensor for continuous monitoring of the
bioelectrical (EMG and ECG) and inertial signals for
activity detection.

• High resolution (24-bit) and sampling rate (3.2 kHz).
• Reliable wireless data transmission (BLE) toward a

host device (smartphone or tablet), which acts as an
aggregator.

X. Li et al.
[125] 2017 N.A. a ATmega328p

(10-bit ADC) N.A. a 2.4 GHz radio link
(nRF24L01)

• Wearable wireless sensor for real-time and long-term
monitoring of biosignals (EMG, EEG, and EEG), using
multi-layer cloth electrodes without direct contact with
the skin.

• Compact (39 mm × 32 mm × 17 mm) and lightweight
(24 g).

D. Velumani et al.
[126] 2022 1 channel ESP32 (12-bit SAR ADC) N.A. a WiFi

(ESP32)

• IoT wearable system for diagnosing bruxism.
• A cloud platform supports the device operation

storing event when the RMS value of the EMG signal
overcomes a threshold.
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Table 1. Cont.

Reference Year Number of Channels Signal
Acquisition

Sampling
Frequency

Wireless
Connection Technical Features and Strengths

B. Senapati et al.
[127] 2017 N.A. a

Spartan-3E FPGA
+ Custom AFE

(16-bit SAR ADC)
N.A. a No

• Biopotential processor for acquiring ECG, EEG, EMG,
and EOG signals.

• High resolution and capability of rejecting baseline
wander and powerline interference (50/60 Hz).

• Two operative modalities: low noise-High CMRR and
average noise and average CMRR modes.

• 33,005 µm2 total area and 0.38 mW power
consumption.

S.C. Lee et al.
[128] 2016 8 channels

Open RISC 1200 MCU
(12-bit ADC)

+ Custom AFE
N.A. a Bluetooth 4.0

• Wireless ExG sensor tag for acquiring multiple
physiological signals.

• Low battery consumption (12-h recording time)

Augustyniak et al.
[129] 2016 Single-ended 5 channels

PXA-270 CPU +
ADAS1000

(24-bit ADC)
500 Hz WiFi

• Multi-purpose BSN architecture (wired and wireless)
to detect physiological signals (e.g., ECG, EMG).

• Fully reconfigurable from the point of view of
hardware configuration, data elaboration, and
software management.

H. Bhamra et al.
[130] 2017 N.A. a ASIC

9.1-bit SAR ADC 4 kHz No

• Integrated AFE for wearable and implantable devices,
reconfigurable to acquire different biosignals.

• Amplification gain from 38 dB to 72 dB.
• Low noise (2.98 µVRMS input-referred noise, 2.6 NEF,

and 9.46 PEF).
• Low power consumption (5.74 µW for the AFE,

306 nW for the ADC).
a N.A.: Not Available.
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5. Commercial Wearable Devices

Wearable medical systems are designed to collect and process medical information
regularly, rapidly diagnosing abnormal indicators and enhancing illness monitoring and
management [132]. Wearable modified electromyography systems are commonly accessible
in the market and are developed and manufactured to meet various requirements. The
following sections present an overview of commercial biosignal sensing devices for vital
signs in this context. These devices were chosen because they are the most used devices in
diagnosis and have comparable qualities that may be measured [133].

Biometrics Ltd. (Newport, UK) provides a variety of monitoring devices to acquire
analog or digital data from various sensor typologies; different device categories are
available, namely mobile, handheld, and lab versions. The proposed wearable devices
enable a complete range of motion without needing cables [134]. Biometrics Ltd. provides
non-invasive wireless electromyography sensors and surface EMG amplifiers (Figure 13).
They are available in 2-, 4-, 8-, and 16-channeled variants for acquiring EMG signals
with non-invasive, compact, and light detectors, enabling secure and effective myoelectric
measurements at a distance of up to 30 m from the medical staff who analyze the data.
The major characteristics of these detectors are operating bandwidth ranging from 10 Hz
to 250 Hz up to 5 kHz, and sensitivity ranging from +/60 mV to +/6000 mV for full-
scale peak-to-peak readings [135]. Wearable devices are constituted by both sensors and
instrumentation systems for stationary and non-stationary measurements in a medical
environment, an academic institute, or any distant point such as an office, work, or house.
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ious parameters [136–138], including configurable digital front-ends for EMG data acqui-
sition and evaluation [137] (Figure 14a). They manufacture surface transducers to monitor 
muscle activity. By a shared referenced electrode, the wireless EMG system offers multiple 
information channels. Besides EMG, ECG signals can be acquired, but the two measure-
ments cannot be made simultaneously. A 450 mAh rechargeable Li-ion battery powers the 
Shimmer3 EMG unit, which includes an MSP430 microprocessor, a Bluetooth transceiver 
(RN-42), and an in-built 8 GB micro-SD card. Since the Shimmer 3 EMG sensor has a 

Figure 13. Biometrics Ltd. EMG sensors and systems are used extensively in the fields of ergonomics,
sports science, and medical research, where measurements are commonly taken for a wide range of
applications. The surface EMG sensor LE230 can be positioned in different body positions, such as
arms (a) and legs (b) (Web-source: https://www.biometricsltd.com/surface-emg-sensor.htm arms
(a), https://www.medicalexpo.com/prod/biometrics/product-123702-880665.html legs (b), every
aspect related to the human subjects’ involvement has been taken into consideration by Biometrics
Ltd.) (Image courtsey by Biometrics Ltd., Newport, UK).

Several sensors are available from Shimmer Co. (Dublin, Ireland) for measuring
various parameters [136–138], including configurable digital front-ends for EMG data
acquisition and evaluation [137] (Figure 14a). They manufacture surface transducers to
monitor muscle activity. By a shared referenced electrode, the wireless EMG system offers
multiple information channels. Besides EMG, ECG signals can be acquired, but the two
measurements cannot be made simultaneously. A 450 mAh rechargeable Li-ion battery
powers the Shimmer3 EMG unit, which includes an MSP430 microprocessor, a Bluetooth

https://www.biometricsltd.com/surface-emg-sensor.htm
https://www.medicalexpo.com/prod/biometrics/product-123702-880665.html
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transceiver (RN-42), and an in-built 8 GB micro-SD card. Since the Shimmer 3 EMG
sensor has a centralized acquisition and processing unit to which the EMG probes must
be connected (Figure 14a), it can be uncomfortable and hinder the movements due to the
presence of cables.
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Figure 14. Applications of the Shimmer3 EMG (a) and FreeEMG (b) sensors on the legs and shoulder
for monitoring body movements (Web-source: https://www.biometricsltd.com/surface-emg-sensor.
htm (a), https://www.medicalexpo.com/prod/biometrics/product-123702-880665.html (b), every
aspect related to the human subjects’ involvement has been taken into consideration by Shimmer Co.
(Dublin, Ireland) and BTS S.p.A. (Garbagnate Milanese, MI Italy), respectively) (Image courtsey by
Shimmer Co. (Dublin, Ireland) and BTS S.p.A. (Garbagnate Milanese, MI Italy), respectively).

Both previous wearable devices (Biometrics and Shimmer 3) were employed in [139]
for validating proposed EMG sensors. The experimental results demonstrated that both
commercial devices obtained a good SNR (≈20 dB). In contrast, the EMG sensor solution
reached an SNR in the range of 11 and 18 dB according to the method used for SNR
calculation. Biometric EMG sensors were involved in a scientific study to analyze the
influence of related muscular co-activities (i.e., vastus lateralis and gastrocnemius) with
knee flexor-extensor actions associated with the onset of Osteoarthritis (OA) [140]. The
outcome focused on the postural efficacy of muscular activities in the stability problems of
knee joint motions and demonstrates that the voltage amplitudes of EMG signals changed
significantly with advancing age.

BioSemi Instrumentation Co. (Amsterdam, The Netherlands) offers the ActiveTwo
bioelectric detection device for scientific purposes [141]. This system integrates up to
a 256-channel DC amplifier, 24-bit ADC per channel, and active electrodes, which are
thinner and lighter than previous models, with significantly improved low-frequency noise
and input impedance specifications. Notably, the Active Two system offers up to 256 +
8 electrodes + 7 sensor channels in a single ultra-compact box, a battery-powered front-end
with fiber optic data transfer, reliable readings without skin treatment, and improved
digital resolution with a 31 nV LSB (Least Significant Bit) value, and a user-configurable
sampling rate of 2, 4, 8, 16 kHz/channel. The system provides the user with a graphical
LabVIEW application for controlling the different sensor parameters, making it suitable for
detecting different biosignals, such as EEG, ECG, and EMG. The ActiveTwo EMG sensor is
impractical for EMG monitoring during daily life, as the acquisition and processing unit is
bulky and requires a large flat cable to connect the electrodes. In addition, the device has
no transceiver for wirelessly transmitting the acquired data.

In [142], an ActiveTwo EMG sensor acquired and analyzed tiny intestine bioelectrical
signals through flexible PCB electrode arrays, enabling up to 256 simultaneous recordings.
The Falling-Edge Variable-Threshold technique was used to automate data processing,

https://www.biometricsltd.com/surface-emg-sensor.htm
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resulting in 92% sensitivity and a 94% positive predictive value. The automatic production
of animations and isochronal maps allowed for the visualization of slow wave propaga-
tion patterns.

The FreeEMG (manufactured by BTS S.p.A., Garbagnate Milanese, MI Italy) is a
portable electromyography system that analyzes musculoskeletal activity in real-time [143]
(Figure 14b). It is a surface EMG monitoring device with 4G technology that ensures
data reliability, lightness, and comfort, thanks to the absence of wires and the smaller
probes. Orthopedic and neurologic problems, pharmacological therapies, the progression
of motor impairments, retraining and follow-up, and sports performance adaptation are
all common uses for FreeEMG. This sensor was employed in [144] to explore the dynamic
asymmetries of healthy individuals’ lower limbs during gait adaptation on a split-belt
treadmill. Ankle, knee, and hip joints, joint rotations, muscle lengthening, and SEMG were
concurrently monitored, along with the produced sagittal power and work. According to
the SENIAM (surface EMG for non-invasive assessment of muscles) recommendations, four
sEMG probes were placed bilaterally on the bellies of the Tibialis Anterior, Gastrocnemius
Lateralis (GaLat), Vastus Medialis, and Semi-Membranosus. The obtained results confirm
that, on solid ground, the problematic leg “escapes” from load while walking with a limp,
whereas in split gait, the quicker leg “escapes” from being pulled behind, the slower limb.

PLUX Wireless Biosignals Co. (Lisbon, Portugal) has created biosignal collection and
monitoring solutions that incorporate wearable body sensors such as EMG and ECG, as
well as wireless connection and software applications [145]. BITalino and Biosignalplux
are two of these systems. The BITalino (r)evolution kit is a versatile board that includes
all parts pre-connected and available to use outside the arrangement, as well as Bluetooth
connectivity [146]. Its non-invasive EMG electrodes are created specifically for it. The
bipolar design is perfect for limiting the noise on collected data, whereas the unfiltered
output makes it suitable for both human-computer interface and biological applications.

Biosignalsplux is a wireless toolbox for collecting and analyzing high-resolution
biosignal data [147]. It comes with a variety of wired and wearable sensors. For gathering
muscular information, the Biosignalsplux EMG sensor is a high-performance bipolar sensor
with minimal noise. The bipolar architecture of this sensor is suitable for acquiring low-
noise data meant to detect muscle activity. The raw data generated is medical-grade,
allowing it to be used for sophisticated medical biomechanics and athletics studies. The
main features of this system are the usage of bipolar differential detection, availability
of pre-processed analog output, high SNR, and medical-grade unfiltered output data;
it is also tiny and simple to use. The muscleBAND is a portable single-channel EMG
instrument for continuous muscle monitoring. It is a single-channel EMG sensor with a
triaxial accelerometer and magnetometer for gathering muscle activity and motion data
and a dual Bluetooth module. The integrated battery adequately feeds the device, ensuring
long-term data streaming and allowing data collection with up to 16-bit resolution at up to
1000 Hz sampling rate.

The main limitation of Trigno Avanti sensors is the need to use a proprietary wireless
station (Trigno Wireless System) for receiving data from the sensors using a proprietary
RF protocol, which could be a problem when collecting data from different typologies of
sensors. The BiosignalsPlux® device was utilized to track the shoulder muscle contraction
pattern during five ADLs (activities of daily living) with various motor patterns [148]. The
major goal of this article is to demonstrate the use of BiosignalsPlux® sensors to characterize
the shoulder muscles’ pattern of contraction while performing ADLs in healthy people.
The results indicate that the pattern of shoulder muscle contraction varies depending on
whether an ADL is aimed at the midline or the opposite side, and that various ADLs
directed at the midline exhibit diverse behaviors.

Delsys Inc. (Natick, MA, USA) offers wearable EMG-based body motion tracking
systems for scientific, medical, and teaching applications [149]. These technologies in-
clude scientific, handheld, light solutions, EMG electrodes, mobile platforms, and device
integration software. Trigno Avanti Sensor is the most commonly used EMG detector



Electronics 2023, 12, 1520 25 of 35

since it effectively detects muscle movement signals. It has patented technology, increased
radiation efficiency, wireless design, adjustable EMG frequency choices, and integrated
signal analyzing, and it is intended to operate with all Trigno units. It also enables bipolar
EMG measurement within a very tiny size and weight. Trigno Research+ is an effective-
performance system that makes EMG signal sensing reliable and simple while providing a
comprehensive range of physiologic and musculoskeletal detection capabilities to facilitate
complex studies and produce the best qualitative data. Trigno’s proprietary RF protocol
ensures sensor coordination and data transfer from Trigno sensing devices to a Trigno
base station.

In [150], Z. Hu et al. analyzed badminton single-leg landing following an overhead
shot, and demonstrated that a deficiency of biomechanical indicators of the knee indi-
cates the risk of anterior cruciate ligament (ACL). Kinematic data were gathered through
13 infrared cameras with a 120 Hz sampling rate. EMG data were collected using the
Trigno Avanti sensor, placed on the quadriceps femoris (rectus femoris), medial hamstrings
(semitendinosus), lateral hamstrings (biceps femoris), medial gastrocnemius, and lateral
gastrocnemius; the sampling frequency was 1200 Hz. The results suggest that during the
single-leg landing in badminton, lower extremity muscle activity and knee kinematics and
kinetics are correlated; thus, lower extremity muscle activity should be taken into account
to create rehabilitation or injury prevention programs.

Table 2 compares the commercial EMG sensing devices previously discussed from the
point of view of the additional detected signals, the number of EMG channels, dimension,
weight, sampling frequency, electrode typology, availability of wireless connectivity, and
suggested applications. In this way, different devices can be compared to highlight their
potentialities and limitations.

From the presented analysis, it can be deduced that the ActiveTwo EMG monitoring
device is the most complete and flexible solution for acquiring biopotential signals, includ-
ing EMG signals, given its wide range of acquisition channels (280 channels) and high
resolution (24-bit). Nevertheless, because this system is wired, it is not suitable for moni-
toring EMG signals when the user is moving. Likewise, the FreeEMG system represents
an optimal solution in terms of compactness, discretion, and ease of use, given its small
dimensions (27 mm × 37 mm × 15 mm), weight (14 g), and availability of wireless connec-
tion (WiFi), enabling its employment in every user condition. Furthermore, it guarantees
good resolution (16-bit) and sampling rate (2 kHz) in detecting the EMG signals.
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Table 2. Comparison between the commercial devices previously discussed from the perspectives of additional acquired signal, number of channels, dimension,
weight, sampling frequency, electrode typology, availability of wireless connectivity, and suggested application.

Device Other
Detected Signals

N◦ of EMG
Channels

Dimension/
Weight

Sampling Frequency
[Hz]

Electrode
Typology

Wireless
Connectivity

Suggested
Applications

Biometrics wireless
sensors [134]

Joint angle
(electro-

goniometers-
optionally)

2, 4, 8, 16 N.A. a 500, 1000, 2000
Disposable sEMG

electrodes with 4 mm
snap

Yes
(WiFi)

• Symmetry studies during gait
• Timing data in biomechanics
• Sport performance monitoring
• Neuro Rehabilitation

Shimmer3 EMG
units
[137]

ECG 2 65 mm × 32 mm ×
12 mm/31 g 125–8000 Patented disposable

EMG electrodes
Yes

(Bluetooth)
• Gait, muscle, and posture disturbances

analysis

ActiveTwo EMG
unit
[141]

EEG, ECG 280 N.A. a 200, 400, 8000, 16,000 Special silver-plated
electrode-tip No • General bio-potential measurements

for research applications

FreeEMG sensors
[143]

Joint angle
(electrogoniometers-

optionally)
1 27 mm × 37 mm × 15

mm/14 g ≤4000 Standard with a clip
connection

Yes
(WiFi)

• Functional evaluation of gait analysis
• Sport biomechanics.
• Injury prevention and return to play.
• Cognitive and mobility rehabilitation.

Trigo Wireless EMG
sensors

[149]
Inertial data 4, 8, 16 N.A. a 2000 Silver

electrodes
Yes

(WiFi and BLE)

• Sport science
• Rehabilitation sciences
• Robotics
• Kinesiology.
• Speech pathology.
• Gaming-rehabilitation
• Motor control

a Not Available.
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6. Discussion

Using and interpreting EMG signals in rehabilitative clinical follow-up is a valuable
tool in identifying and monitoring muscles’ healthy and unhealthy electrophysiological
conditions. A significant amount of research has been conducted on surface electromyogra-
phy. EMG signals provide measurable information about a muscle’s biopotential signal.
However, research outcomes and actual medical applications are conflicting regarding
using sEMG. Several factors are responsible for this, including shortage of time and knowl-
edge due, for example, to sensor locations and device configuration, medically unrelated
sEMG device characteristics, primarily due to sEMG’s restricted spatial resolution, and
insufficient education and assertiveness in sEMG implementing technology. The obvious
issues are technological in nature and include data analyzing and processing algorithms
that do not immediately provide clinically useful data. Another difficulty is that certain
equipment is difficult to operate.

Furthermore, the equipment’s cost and the timed process to perform a study and
acquire medically crucial results have detrimental effects. Concerning wearable applica-
tions, the main required features for a wearable sensor are minimal power consumption,
portability, and reliability. Furthermore, portable equipment must be small and comfort-
able enough to be worn. Additionally, they must be equipped with a storage device and
radio transmission to continuously monitor human activity in every condition. Numerous
commercialized sensors are now flexible enough to meet these criteria, providing tailored
solutions based on unique demands. Because of their tiny size and wearability, these
sensors are more useful in patient control in hospital settings and tele-medicine scenarios.

The main issue that wearable EMG sensors may confront is that each time a muscle is
utilized, the electrodes shift slightly about the underlying musculature. Electrode move-
ment occurs during user activity due to stresses and limb positioning. A change in the
limb’s EMG characteristic (recording) as a result of such an electrode relocation can make
analyzing the motions more difficult.

It is common practice to record an individual’s EMG signal from their limb position
when they are in a stationary position (sitting); however, in a real-world scenario, users
must employ the device in various positions (walking, climbing stairs). On the other hand,
the accuracy of EMG categorization is affected by subtle changes in limb posture. The same
limb assists different muscular contraction forces throughout daily tasks. Therefore, the
discrepancy in myoelectric signal pattern classification happens because muscle contraction
force varies even when the same limb is targeted. Furthermore, the change in gravitational
force caused by different leg postures causes the displacement of target muscles. EMG
signal pattern variation is a result of these factors. Modern commercial sensors are limited
mostly by their high cost and the system’s complexity employed by a single subject, and
they are not always simple to utilize. Frequently, these commercial sensors have com-
plicated designs primarily centered on advanced technology with minimal emphasis on
pleasant sensor-subject contact. An additional issue is that such devices are built using
laboratory measurements, prototypes, and patient simulators, neglecting the factors and
performing well in simulation but exhibiting flaws in real-world situations. Because the
most recent sensor technology must fulfill the demands of physicians and patients, ex-
perimental models are now more vital in overcoming these restrictions. State-of-the-art
EMG sensors should detect prospective diagnostic and therapeutic needs by highlighting
relevant bioelectrical signals associated with certain muscular activities and pursuing the
creation of solutions based on innovative detection systems. These new solutions must be
able to track muscular activities from convenient places by employing innovative commu-
nication techniques. The equipment must also be constructed with these limits and needs
in mind. In the near future, the sEMG technique will aid in collecting myoelectrical signals
at home, proactive clinical procedures, and improving remote treatment and rehabilitation
programs. As a result, the next stages will focus on creating smaller and cost-effective
devices that a broad population will utilize.
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Even once these studies are done, it may be a while before the discussed wearable
systems or treatments are ready for commercialization. Developers of devices are concerned
because they must spend a lot of money to bring their products to the market. It may not
pay off to be the first to market with cutting-edge technology if the new product’s window
of opportunity for big profits is small. Bringing new technology into hospitals is a complex
process that requires buy-in from both doctors and upper administration.

Despite efforts by some of the world’s leading academic institutions to hasten inno-
vation and the introduction of new goods to the market, progress is slowed by a lack of
cooperation and exchange of ideas between the medical and engineering communities. A
sustainable medical device business has emerged in developing nations, partly due to the
reverse engineering of current items, to compensate for the scarcity of affordable devices.

The medical device R&D process and the subsequent commercialization of these
products are extremely high-risk endeavors. It takes a long time and a lot of money
to take an idea from the drawing board to actual use in the clinic. Early research is
typically conducted in universities, whereas the rest of the process, including testing and
manufacturing, is handled by private industry. Procedures typically take a long time and a
lot of money to complete. Despite extensive ex vivo and in vivo testing, there is always a
potential that a new product will fail, leading to major medical problems for the individual
and financial devastation for the producer. Even if they face different health problems,
the wealthiest countries still struggle with healthcare distribution and access. In theory,
everyone in need should have access to transplantation and other life-support equipment
such as dialysis and circulatory assist devices, but in practice, access is severely limited
around the world. This exemplifies moral quandaries that are relevant to other costly
implantable technologies as well.

The merger of medical and technical expertise may result in more rapid and targeted
development and, as a result, more investment resources may be available. Early research
and development can take place through consortia that include academics, industry, and
government agencies, which can reduce investor reluctance to take risks. It is possible that
streamlining clinical testing and taking a more consistent approach to the health technology
assessment process will hasten the process of introducing cost-effective devices into the
market and spreading their use. Alterations to existing patent rules and the application of
those laws could lead to lower prices and greater levels of competition. Although decreased
pricing would threaten the current business model that device firms use, increasing sales
might be able to repay them financially by forming an open worldwide market. There
is a high likelihood that the pricing of medical gadgets, which can be extravagant at
times, cannot be maintained in the world’s wealthy or low-to-middle-income regions.
Many potentially life-saving medical technologies have the potential to become mass-
produced items at prices that are affordable. When dealing with medical technology,
such advancement would make it simpler for the medical industry to stay true to the
fundamental ethical values that guide it.

7. Conclusions

Electromyography is a clinical test to evaluate the condition of the muscular and nerve
cells that drive them (motor neurons). EMG results can identify difficulties with nerve-to-
muscle signal transmission, muscle dysfunction, or both. This article deals with the most
generally utilized electrophysiological monitoring devices in the field of rehabilitation. It
focuses on sEMG monitoring as one of the key platforms for assisting doctors, injured
patients, and general people in rehabilitation. At first, an overview of the main EMG
methodologies and systems applied to tele-medicine applications is introduced. Then, the
characteristics of the EMG signals are discussed, along with the common approaches for
conditioning and processing them. Afterward, a survey of EMG portable and wearable
devices is reported in detail, many references from the literature being included in this study
to demonstrate the relevance of EMG signal capture, processing, and tracking to muscular
activity management. Many commercially applied EMG detectors are reviewed and
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compared to determine the most common characteristics of such sensors in EMG recording.
The main requirements are low dimension and size, reduced power consumption, and the
availability of wirelessly data transfer to ensure actual usage in rehabilitation.

To make the EMG-based motor intention prediction more practically applicable, sig-
nificant attention should be paid to many joints while they are engaged in complex motion
circumstances. In addition, as opposed to rehabilitation, more general applications may
require the operators’ left and right arms to move, and these movements may frequently
have different trajectories.

Hence, figuring out how to use EMG signals to anticipate the movement intention of
one arm while the other arm is simultaneously in motion, and how to predict the movement
intents of both arms simultaneously, are useful in practice, hinting at a new research avenue.

Several approaches have been developed to integrate the EMG and the intelligence
of robots to increase the overall performance of collaboration systems. These methods are
seen from the point of view of shared control. To make up for the shortcomings of the EMG
signals, systems that use shared control might be utilized. The concept of shared control
was developed as a solution to address several issues, including the potential for hazardous
circumstances and accidents, the imprecision of human control, and the exhaustion that
can result from maintaining continuous control over a device. As a result of the limitations
inherent to human control, an intelligent controller and a human controller may have some
level of influence over the equipment being controlled. As a result, advanced approaches
and procedures for shared control can also considerably improve EMG-based human-robot
collaboration systems.
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