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Abstract: Herein we present silver nanoparticles (AgNPs)-doped inorganic–organic hybrid silica
films on glass and polypropylene substrates. A hybrid inorganic–organic silica sol in alcoholic
medium was prepared at room temperature using TEOS, GLYMO, and APTES. Silver nanoparticles
were generated in situ within the hybrid silica sol. AgNPs-SiO2 film was obtained by dip coating
method following drying at 80 ◦C. FTIR spectra shows several vibrational bands of the hybrid silica
network and amine functionalization. AgNPs formation was observed from the XRD spectra of the
dried film. UV–Visible spectra show sharp surface plasmon resonance (SPR) band centered at 412 nm
arising from the evenly distributed silver nanoparticle inside the silica film that was supported by
morphological characterization. Both the coated films showed good antibacterial activity against
E. coli bacterial strain by forming a zone of inhibition in the agar diffusion test. The antibacterial
efficiency for coated glass and polypropylene was 72.5% and 83.75%. This coating approach provides
a straight-forward solution to prepare antibacterial coatings on various substrates especially on
plastics, where low temperature processing is necessary.
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1. Introduction

The outbreak due to the super spreader and highly infectious coronavirus (SARS-
CoV-2) has revealed the need to develop antibacterial and antiviral coating materials [1].
In particular, high-touch surfaces such as public transport, door handles, elevator keys,
and other common areas in hospitals and offices are at high risk of spreading the airborne
pathogens [2]. Silver has been used as a potent antimicrobial agent since ancient times [3,4].
Silver nanoparticles (AgNPs) are considered very potent antimicrobial/antifungal agents
due to their strong cytotoxic effect toward a broad range of microorganism and remarkably
low human toxicity compared to other heavy metals [5]. Although the actual reason for the
antibacterial activity of AgNPs is not clear, many reports propose that Ag ions are released
from the AgNPs, which strongly binds to the thiol groups present in the bacterial/microbial
cell membrane and thus destroy the cell by puncturing the wall leading to cell death [5,6].
Many researchers have proposed several synthesis procedures to prepare highly antibacte-
rial silver nanomaterials [5,7–12]. AgNPs have been successfully loaded on various porous
supports to enhance the antimicrobial efficiency; Yang et al. described E. coli inactivation by
AgNPs anchored on titania nanotubes [13], Joarder et al. reported enhanced antibacterial
activity of AgNPs deposited on MCM-41 type mesoporous silica [14], Guo et al. described
sustained release behavior of halloysite nanotubes loaded with the AgNPs [15], Dung et al.
fabricated silver-doped ceramic filter for antimicrobial water purification [16], and Chen
et al. reviewed the antibacterial activity of silver doped polymeric nanostructures [17].
However, it is necessary to achieve a proper antimicrobial coating that can be applied to
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a variety of substrates since bare or supported AgNPs could exhibit some adverse effects
due to excessive leaching in moist environments that could lead to diminished antibacterial
activity and make the environment toxic as well [18–20]. Antimicrobial coatings based on
AgNPs have been used in medical implants, biomedical devices, and in packaging material
to inhibit the bacterial infection [3,21–25]. Most of the reported works describe either high
temperature sintering or complex multistep procedures that might show difficulties in
obtaining antibacterial coatings on a large scale [3,22,25].

In this work, we report one-pot synthesis of in situ generated AgNPs in organically
modified hybrid silica films coated on glass and polypropylene substrates without using
any additional reducing agents. Hybrid silica films show many advantageous properties
compared to their inorganic counterpart due to their flexibility and film adherence on
a range of substrates without crack formation when comparatively thicker coating is
required [26–28]. They serve as excellent host for trapping and uniformly dispersing the
metal and semiconductor nanoparticles because of their ability to act as stabilizers that
terminates further growth of the nanoparticles by controlling the nucleation process [29,30].
AgNPs were generated inside the hybrid silica film during the synthesis process and
coatings were deposited on glass slide and polypropylene sheets by the dip coating method.
The films were characterized by UV–Visible spectroscopy, Fourier transform infrared
spectroscopy (FTIR), X-ray diffraction (XRD) analysis, and scanning electron microscopy
(SEM). The antibacterial activity of the coated films was tested against Gram negative
Escherichia coli (E. coli) bacterial strain.

2. Materials and Methods
2.1. Chemicals and Biological Reagents

All the chemicals in the synthesis procedure were used without any modification.
Tetraethylorthisilicate (TEOS, Sigma-Aldrich, St. Luis, MO, USA, Reagent grade, 98%) was
used as inorganic precursor, and (3-Glycidyloxypropyl)triethoxysilane (GLYMO, Sigma-
Aldrich, ≥98%) and (3-Aminopropyl)triethoxysilane (APTES, Sigma-Aldrich, ≥98%) were
used as the organic precursors of silica. Silver nitrate (AgNO3, Alfa Aesar Gmbh & Co KG,
Karlsruhe, Germany, 99+%) was used as the silver source. Agar powder was purchased
from A.C.E.F., Luria-Bertani (LB) broth (Miller) and E coli culture BL21 (DE3) strain were
purchased from Merck KGaA, Germany. Milli Q ultrapure water (Resistivity 18.2 MΩ cm)
was used throughout the experimental procedure.

2.2. Hybrid AgNPs-SiO2 Film Preparation

Inorganic–organic hybrid coating approach was followed to prepare the AgNPs-SiO2
coatings on glass slides and PP sheets. Ag nanoparticles were generated inside the SiO2
film matrix at sol processing stage. This inorganic–organic hybrid coating approach not
only helps to induce the formation of AgNPs inside the SiO2 film, but also increases the
adherence to the polypropylene sheets, which was not achieved from conventional silica
sol. In addition, 10 equivalent wt% of SiO2 was maintained to produce a thicker coating
without suffering the cracking and 5 mol% of Ag with respect to SiO2 was used as the
dopant. The molar composition of TEOS: GLYMO: APTES was maintained at 6:3:1 and
1.5 mole of H2O and 10−2 mole of HNO3 per mole of the alkoxide group was used in
the sol to initiate the hydrolysis-condensation reaction, while 2-propanol was used as the
solvent. First, the hybrid silica sol was prepared and kept in a closed container for one
day. Then, the required amount of AgNO3 dissolved in a little amount of water was mixed
with stirring. After 10 min of stirring, the color of the sol changed gradually to dark brown
indicating the formation of AgNPs in the sol. Cleaned glass slides and polypropylene
sheets were coated with the above sol by dip coating method using the lifting speed of
20 cm/min. After coating deposition, the coated substrates were kept in an oven at 80 ◦C
overnight to densify the coating. The coated films showed uniform bright yellow color,
which indicates that AgNPs have been formed inside the silica film. The schematic diagram
of the film forming process is presented in Figure 1.
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2.3. Characterizations

Nanocrystalline nature of the AgNPs in silica film on glass and polypropylene sub-
strates was characterized by X-ray diffraction (XRD) measurement, performed on a Rigaku
Ultima X-ray diffractometer using CuKα radiation (λ = 1.5406 Å) operating at 40 kV/30 mA
with the step size of 0.02◦. FTIR spectra of the dried film were recorded with a JASCO
FTIR-6300 instrument over the range 4000–400 cm−1 with a resolution of 4 cm−1 by accu-
mulating 256 scans for each measurement, adopting the KBr disc method. A little amount
of the film was scrapped off from the coated glass substrate and mixed with the KBr
(powder: KBr weight ratio of 1:10) to prepare the IR transparent disk. UV–Visible absorp-
tion spectra of the films coated on glass and polypropylene were measured with Agilent
Cary 5000 UV–Visible–NIR spectrophotometer. The coated glass slides and PP sheets were
fixed to the solid sample holder accessory and mounted into the sample compartment in
transmission mode. Uncoated glass slide and PP sheet were used as reference material
while performing baseline correction. The absorption spectra were measured directly from
the drop-down measurement command (Absorbance) in the software. Morphology of the
AgNPs-SiO2 film was observed with a Zeiss (model Sigma VP) field emission scanning
electron microscope (FESEM).

2.4. Assay of Antimicrobial Activity

The antimicrobial activity of AgNPs-SiO2 coated glass slide and polypropylene sheet
was investigated against the common pathogenic bacteria E. coli as the model microorgan-
ism, which was pre-cultured at 37 ◦C to reach a concentration above 108 colony forming
units (CFU/mL). The turbidity assay was performed to quantitatively evaluate the an-
timicrobial activity by observing the optical density of the strain at 600 nm. Each sample
was added into 25 mL of E. coli. nutrient broth, seeded with 0.05 mL of test strains
(1.6–1.9 × 108 CFU of total bacteria number), and incubated at 37 ◦C for 18 h. Different
dilutions of the bacterial suspensions were then transferred onto nutrient agar plates and
incubated at 37 ◦C for 18 h. After that, the viable bacteria were monitored by counting the
number of colony forming units from the appropriate dilution on nutrient agar plates and
expressed as CFU. The same procedure was performed on bare substrates as control.

3. Results and Discussion

Silver nanoparticles were generated in the inorganic–organic hybrid silica matrix
without using any additional reducing agent. Here, APTES played a crucial role to reduce
Ag+ to Ag0. Choi et al. reported that aminosilane could be utilized to produce metallic
silver nanoparticles embedded in sol-gel silica matrix without using any external reducing
precursor [30]. Therefore, we can assume that the amine functional groups originating
from APTES could reduce AgNO3 to form Ag nanoparticles in the hybrid silica matrix in
presence of water. The reduction process was monitored by observing the sol color change
from colorless sol to light brownish to deep brown. The amine functionalization to the
silica matrix and the formation of SiO2 network was investigated by FTIR measurements,
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which is presented in Figure 2. The most informative region is situated in the wavenumber
range between 946 to 1250 cm−1 due to the Si−O−Si network, where the most intense
band is observed that consists of a group of bands. The characteristics of this band are quite
different than those reported for inorganic–organic hybrid silica film, where a relatively
sharp band has been shown [26,31]. The vibrational bands centered at 1092 and 805 cm−1

are assigned to the asymmetric and symmetric stretching of Si−O−Si, respectively [26,32].
The Si−O−Si asymmetric stretching band is overlapped with the Si−O−C vibrational
band. A peak due to the NO−3 group at 1387 cm−1 is also observed indicating the presence
of nitrates inside the film originating from silver nitrate [31]. Absence of the epoxide
bands at 1260–1240 cm−1 (epoxy ring breathing) and 950–810 cm−1 (asymmetrical ring
stretching) indicate the polymerization of epoxide groups [31]. The broad band around
3300–3600 cm−1 and relatively low intense band at 976 cm−1 are attributed to the stretching
vibration of H-bonded silanols (Si−OH) with hydroxyl groups of the adsorbed water
molecules. Interestingly, there are new bands centered at 1035 and 1150 cm−1, which
are assigned to Si−O−Si transverse optical (TO) and Si−O−Si longitudinal optical (LO)
stretching modes, respectively (Figure 2), which strongly suggest the functionalization of
APTES with the silica network [33,34]. This functionalization is further confirmed by the
appearance of CH3 asymmetric mode at 2975 cm−1 and CH2 asymmetric and symmetric
stretching modes at 2931 and 2865 cm−1 [33]. There are also some low intense peaks
between 1500 to 1600 cm−1 that could be assigned to the −NH2 scissor vibration and
asymmetric NH+

3 deformation mode, both originating from APTES, which also support
the APTES functionalization with the Si−O−Si.
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Figure 3 shows the XRD pattern of the AgNPs/SiO2 film coated on glass and polypropy-
lene substrates dried at 80 ◦C. In both cases, low intensity and broad diffraction peaks
appeared around 38.18◦ 2θ that correspond to the <111> plane of the face centered cubic
crystalline phase of metallic silver [26]. The appearance of broader diffraction peaks indi-
cates the formation of evenly distributed small sized-silver nanoclusters inside the silica
film that is supported by the morphological investigation discussed later on. We did not
observe any additional peaks due to the silver oxides [35].
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UV–Visible absorption spectra of the AgNPs/SiO2 coated films on glass slide and
polypropylene sheet are presented in Figure 4. Both the films show a strong absorption
band centered at 412 nm wavelength that can be explained by the surface plasmon reso-
nance (SPR) band of the AgNPs. The appearance of sharp and intense SPR band without
having any additional shoulder peaks at higher wavelength region strongly suggests the
uniformly dispersed AgNPs throughout the silica film having narrow size distribution
without forming any agglomeration [36]. This is also supported by the appearance of the
bright yellow color of the coated films (inset of Figure 4).
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Figure 4. UV–Visible spectra of AgNPs/SiO2 film coated on (a) glass slide and (b) PP sheet after
drying at 80 ◦C. The inset shows real photograph of the AgNPs/SiO2 coating on glass slide (left) and
PP sheet (right) after drying.
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The electron micrographs (FESEM) images of the AgNPs in silica film is shown in
Figure 5 with different magnification (Figure 5a–c). It is clearly evidenced that the AgNPs
are evenly distributed inside the silica film matrix. No distinguishable agglomeration was
observed. The average size of the AgNPs was found to be about 20 nm (Figure 5d), which
is in good agreement with the optical absorption spectra [36].
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Figure 5. (a–c) SEM images of the AgNPs/SiO2 film surface coated on glass substrates with differ-
ent magnifications and (d) particles size distribution of the AgNPs counted from image (c) using
Image J software.

Biocidal activity of the AgNPs-SiO2 films coated on glass slides and polypropylene
sheets were evaluated qualitatively and quantitatively against E. coli, which is the most com-
monly used Gram-negative food borne pathogen that is also present in lower intestinal tract
of warm-blooded animals, including humans [37]. E. coli is often responsible for bacterial
infection of the environment through fecal discharge and wastewater from sewage [38]. It is
also easy to grow the E. coli very fast with diverse species in laboratory conditions (~37 ◦C)
that is also well understood so far by several studies [37–39]. The qualitative evaluation
was examined by observing the inhibition zone formation around the coated film using the
disk diffusion method (Figure 6a,b). It is clearly visible from the figure that AgNPs/SiO2
coated films inhibited the bacterial growth by forming a well resolved inhibition zone
around the coated film that confirm no bacterial growth around the coating, whereas there
was no evidence of inhibition zone formation in case of uncoated substrates that reveal
no antibacterial activity of the uncoated substrates. It is also noticeable that the diameter
of the inhibition zone is higher for polypropylene that the glass slides which suggests
strong adherence of the AgNPs/SiO2 film with the glassy surface that might control the
release of Ag+ ions, which are responsible for the killing of the bacteria. Since the glass
surface has many hydroxyl groups (Si-OH) favoring the surface wettability, and AgNPs
containing hybrid silica sol also have silanol groups, a strong chemical bonding could occur
between the glass slide and the hybrid silica sol. On the other hand, polypropylene, having
a chemical formula of (C3H6)n, where the methyl groups (CH3) are arranged on the carbon
chain, shows strong hydrophobicity that makes it difficult to coat with only TEOS-derived
silica sol. Although the inorganic–organic hybrid sol favored the film formation on PP sub-
strate, it may lack the strong adherence achieved in case of the glass slides. The qualitative
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antibacterial efficiency was obtained by the turbidity assay of the growth solution, where
the optical absorption at 600 nm (OD600) was recorded and expressed as colony forming
unit (CFU). The antibacterial efficiency was calculated by the following equation [6]

Efficiency = [1 − CFUAg/CFU0] (1)

where CFUAg and CFU0 represent the bacterial concentration with AgNPs/SiO2 film and
with uncoated substrates, respectively. Figure 6c shows the bacterial growth solution with
AgNPs/SiO2 coated glass and polypropylene substrates and a control solution after 18 h of
incubation. The growth solution containing coated films show optically clear appearance
compared to turbid appearance of the control solution indicating the coated film inhibited
the E. coli growth. The antibacterial efficiency is presented in Figure 6d, where it is observed
that 83.75% efficiency was obtained for the coated polypropylene substrate, whereas for
the coated glass substrate it was 72.5%.
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Figure 6. Antibacterial activity evaluation by inhibition zone formation with AgNPs/SiO2 coated
(a) glass and (b) polypropylene against E. coli bacterial strain. the inset shows the same with uncoated
substrates. (c) Photographs of the E. coli strain with AgNPs/SiO2 coated on glass (c1), polypropylene
(c2), and control (c3). (d) E. coli cell number (CFU/mL) in growth solution with different coated
substrate along with the calculated antibacterial efficiency.

Comparatively lower antibacterial efficiency of the glass slides is in agreement with the
lower inhibition zone formation compared to the coated polypropylene sheets (Figure 6a,b).
Similar antibacterial activities of the AgNPs dispersed in silica coating have been also
reported [40–42].

4. Conclusions

In this work, we have reported a simple coating approach based on AgNPs in hybrid
silica sol to effectively obtain biocide film on various substrates. Since the AgNPs are
produced in situ inside the silica sol, it excludes the second step of reducing the Ag+ to Ag0,
either by using a reducing agent or by thermal curing. The process could be interesting
for low temperature curing substrate such as plastics and/or where a reduction step is
difficult to carry out, e.g., common touch surfaces. AgNPs containing silica sol can also
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be sprayed or rolled to coat larger substrates. Since the coated films showed moderate
antibacterial activity (72.5% and 83.75% for glass and polypropylene), and the AgNPs are
protected inside the glassy SiO2 film, they could be potential candidate in food packaging
industries, where there are limited chances of contamination due to silver leaching. We will
investigate in detail how Ag+ releases from the films on various substrates and its effect on
the antibacterial activity.
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