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Abstract: The buckling response of functionally graded (FG) porous spherical caps reinforced by
graphene platelets (GPLs) is assessed here, including both symmetric and uniform porosity patterns
in the metal matrix, together with five different GPL distributions. The Halpin–Tsai model is here
applied, together with an extended rule of mixture to determine the elastic properties and mass
density of the selected shells, respectively. The equilibrium equations of the pre-buckling state
are here determined according to a linear three-dimensional (3D) elasticity basics and principle of
virtual work, whose solution is determined from classical finite elements. The buckling load is,
thus, obtained based on the nonlinear Green strain field and generalized geometric stiffness concept.
A large parametric investigation studies the sensitivity of the natural frequencies of FG porous
spherical caps reinforced by GPLs to different parameters, namely, the porosity coefficients and
distributions, together with different polar angles and stiffness coefficients of the elastic foundation,
but also different GPL patterns and weight fractions of graphene nanofillers. Results denote that the
maximum and minimum buckling loads are reached for GPL-X and GPL-O distributions, respectively.
Additionally, the difference between the maximum and minimum critical buckling loads for different
porosity distributions is approximately equal to 90%, which belong to symmetric distributions. It
is also found that a high weight fraction of GPLs and a high porosity coefficient yield the highest
and lowest effects of the structure on the buckling loads of the structure for an amount of 100% and
12.5%, respectively.

Keywords: buckling; FEM; functionally graded materials; graphene platelets; porous materials;
spherical caps; 3D elasticity

1. Introduction

Nowadays, there is a high demand for materials with a low weight and high strength,
for many engineering applications. Among them, FG-GPL porous materials have attracted
the interest of many researchers due to their mechanical potentials in aerospace and marine
industries. A large variety of works from the scientific literature have focused on the static
and/or dynamic behavior of different structural members, such as beams, plates, shells,
with arbitrary shapes and made of composite materials [1–4]. For example, Zhang et al. [5]
applied the DSC-regularized Dirac-delta method using the Timoshenko theory to explore
the dynamics of FG-GPL porous beams resting on elastic foundations and subjected to
a moving load. Based on a shear and normal deformation theory and by employing
the Ritz approach, Priyanka et al. [6] investigated the stability and dynamic responses
of porous beams made of FG-GPLs. Moreover, the free vibrations of rotating, FG-GPL,
porous Timoshenko beams were studied by Binh et al. [7], using the generalized differ-
ential quadrature method (GDQM). Xu et al. [8] adopted the differential transformation
method to investigate the free vibration behavior of FG-GPL porous beams based on the

Nanomaterials 2023, 13, 1205. https://doi.org/10.3390/nano13071205 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13071205
https://doi.org/10.3390/nano13071205
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-7153-4307
https://orcid.org/0000-0002-5968-3382
https://orcid.org/0000-0002-7182-634X
https://doi.org/10.3390/nano13071205
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13071205?type=check_update&version=1


Nanomaterials 2023, 13, 1205 2 of 20

Euler–Bernoulli beam theory under a spinning movement. Ganapathi et al. [9] proposed
a trigonometric shear deformation theory, including a thickness stretching effect, to study
the dynamic problem of curved beams made of FG-GPL porous nanocomposites, and
proposed a closed-form solution as valid tool for further computational investigations. Yas
and Rahimi [10] applied the GDQM to study the thermal vibration of FG-GPL, porous
Timoshenko beams. Safarpour et al. [11] applied the 3D elasticity theory in conjunction
with the GDQM to study the bending and free vibration behavior of porous annular and
circular plates made of FG-GPLs under different boundary conditions. A novel compu-
tational method was proposed by Nguyen et al. [12] to evaluate the static bending and
free vibration response of FG-GPL porous plates based on a first-order shear deformation
theory (FSDT), while using a polygonal mesh with parabolic shape functions. Furthermore,
the nonlinear free vibrations of porous plates made of FG-GPL nanocomposites, resting on
an elastic foundation, were investigated using the GDQ approach by Gao et al. [13], using
classical plate theory (CPT) and von Kármán-type nonlinearities. The same FSDT basics
were applied by Saidi et al. [14] to study analytically the stability and vibrations of FG-GPL
porous plates under an aerodynamical loading. The classical finite element approach and
Rayleigh-Ritz procedure for a comprehensive investigation of the free and forced vibration
behavior, and the static response of FG-GPL porous annular sector plates, were considered
by Asemi et al. [15] using an FSDT approach. In addition, Phan [16] applied a refined
plate theory to analyze the free and forced vibrations of porous plates made of FG-GPL
nanocomposites, while using the (NURBS) non-uniform rational B-spline approximations.
An analytical solution to the wave-propagation problem of FG-GPL porous plates was
presented by Gao et al. [17], based on different plate theories, such as CPT, FSDT, or higher
order theories (HSDTs). Zhou et al. [18] combined the 3D elasticity theory and GDQM
to assess the free vibrations of FG-GPL porous plates, whereas in Ref. [19], the authors
proposed a multiple scale approach and Galerkin method in order to define the nonlinear,
forced vibration response of porous, thin, rectangular plates made of FG-GPL nanocom-
posites, including the von Kármán-type nonlinearities. Furthermore, a deep review on
FG-GPL porous structures was performed by Kiarasi et al. [20]. The fabrication issues of
these structures represent a challenging aspect for many practical applications. A novel
quadrilateral element was proposed by Ton-That et al. [21], in line with the FSDT and
Chebyshev polynomials, to analyze FG-GPL porous plates/shells. In addition, a varia-
tional differential quadrature (VDQ) was proposed by Ansari et al. [22] for solving the
free-vibration response of post-buckled, arbitrarily shaped porous plates made of FG-GPL
nanocomposites, based upon a third-order shear deformation theory (TSDT). The static
and free-vibration analysis of FG-GPL annular plates, cylindrical shells and truncated
conical shells, with various boundary conditions, within a three-dimensional elasticity
theory, were also investigated by Safarpour et al. [23]. Bahaadini [24] defined a further
analytical solution to the free vibration problem of FG-GPL, porous, truncated conical
shells, according to a Love’s first approximation theory, while examining the influences
of porosity coefficients, weight fractions and geometries of GPLs, on the free vibration of
the structure. Babaei and his coauthors analyzed the stress-wave propagation and natural
frequencies of porous joined conical-cylindrical shells made of FG-GPLs [25] and joined
conical-cylindrical-conical shells [26] by using the classical finite element method (FEM).
Based on the Donnell’s theory and the Galerkin approach, the internal resonance of metal
foam cylindrical shells made of FG- GPLs was studied by Ye and Wang [27]. In the further
work [28], the authors employed the Galerkin method and an improved version of Donnell
nonlinear shell theory to investigate the nonlinear vibration of metal foam cylinders rein-
forced with GPLs. Moradi et al. [29] applied the moving least squares (MLSs) interpolations
using an axisymmetric model to analyze stress waves’ propagation in FG-GPL, porous,
thick cylinders in a thermal gradient environment. Based on the FSDT, Salehi et al. [30]
solved analytically the nonlinear vibration of imperfect, FG-GPL, porous nanocomposite
cylindrical shells, whereas in Ref. [31] the authors applied the GDQM to investigate the free
vibration of sandwich pipes, considering the effects of porosity and a GPL reinforcement
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on the conveying fluid flow. Among the recent literature, Zhou et al. [32] examined the
flutter and vibration properties of FG-GPL, porous cylindrical panels under a supersonic
flow. At the same time, the vibration of FG-GPL porous shells was analytically investigated
by Ebrahimi et al. [33]. Pourjabari et al. [34] analytically investigated the effect of porosity
on the free and forced-vibration characteristics of GPL-reinforcement composite cylindrical
shells in a nonlocal sense, based on a modified strain gradient theory (MSGT). In line with
the previous works, a limited attention has been paid to the buckling response of FG-GPL
porous materials and structures. Among the available literature, Zhou et al. [35] presented
an accurate nonlinear buckling study of FG-GPL, porous, composite cylindrical shells based
on Donnell’s theory and HSDT. Shahgholian-Ghahfarokhi et al. [36,37] investigated the
torsional buckling behavior of FG-GPL, porous cylindrical shells, according to a FSDT
and Rayleigh-Ritz method. Similarly, Yang [38] applied the Chebyshev polynomials-based
Ritz method to study the natural frequencies and buckling response of FG-GPL porous
rectangular plates, using the FSDT approach. Dong [39] investigated the buckling behavior
of spinning cylindrical shells made of FG-GPL porous nanocomposites, while applying
a FSDT and Galerkin approach. A novel numerical DQ-FEM solution to investigating the
buckling and post-buckling of FG-GPL porous plates with different shapes and boundary
conditions was applied by Ansari et al. [40]. Kitipornchai [41] analyzed the natural frequen-
cies and elastic buckling of FG-GPL porous beams using the Timoshenko beam approach
and the Ritz method. Twinkle et al. [42] focused on the impacts of grading, porosity and
edge loads on the natural frequency and buckling problems of porous cylindrical panels
made of FG-GPLs. Nguyen [43] investigated the buckling, instability and natural-frequency
response of FG porous plates reinforced by GPLs using three-variable higher order iso-
geometric analysis (IGA). Rafiei Anamagh and Bediz [44], instead, applied the FSDT to
study the free vibration and buckling behavior of porous plates made of FG-GPLs using
a spectral Chebyshev approach.

In the available literature, it seems that the static, buckling and dynamic behavior
of porous spherical shells made of FG-GPLs has not been surveyed so far, despite their
geometry being of great interest in various engineering applications, such as heat exchang-
ers or energy absorbers, among other applications in the areas of aerospace, mechanical
engineering and marine engineering. Among the different shell geometries, a spherical
shell structures, indeed, features a high strength with a simple geometry, even compared
to a cylindrical structure. The design of such structural members considering only static
loading conditions may fail in dynamic situations. In such context, we focus on the buckling
capacities of spherical shells made of porous FG nanocomposites reinforced by graphene,
due to their exceptional flexibility and enhanced physical features. It is well known from
the literature, indeed, that porous ceramic nanocomposites can ensure different beneficial
effects, such as a reduced electrical and thermal conductivity; low weight; reasonable
hardness; and resistance to wear, corrosion and high-temperature applications [45]. Among
the few works on spherical shell dynamics available in the literature, we cite Refs. [46,47],
where a Ritz-Galerking procedure was proposed to solve a dynamic buckling problem for
clumped spherical members. A finite difference method was applied, instead, in [48–50],
to check for the sensitivity of the dynamic buckling response of spherical caps to some
initial manufacturing imperfections. Novel theoretical shear deformation theories were
applied in Refs. [51,52] to treat the buckling response of isotropic and orthotropic shallow
spherical caps, whose problem was solved analytically by means of Chebychev series [51],
or numerically according to classical finite elements [52]. At the present state, however,
there is a general lack of works from the literature focusing on the dynamic buckling of
GPL-reinforced porous nanocomposite spherical shells, whose aspects are explored here
according to the 3D elasticity basics and Green deformation nonlinearities, rather than
common shell theories and Von-Karman nonlinearities, as proposed in [53].

The equilibrium equations of a pre-buckling state are determined from the principle of
virtual work, whose solution is found according to classical finite elements. The buckling
loads are obtained according to the nonlinear Green strain field and the generalized geo-
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metric stiffness concept, for spherical caps featuring a uniform and non-uniform pattern of
GPLs in the metallic matrix, including open-cell internal pores and for various porosity
distributions along the shell’s thickness with uniform and symmetric FG patterns. More
specifically, five different patterns of GPL dispersion pattern are assumed throughout the
shell’s thickness, namely, a FG GPL-X, A, V, UD and O patterns. A systematic investigation
checks for the effects of various porosity distributions and GPL patterns, along with the
weight fractions and porosity coefficients of nano-fillers and different polar angles, on the
buckling behavior of FG-GPL, porous spherical caps.

2. Theoretical Problem
2.1. Description of Geometry and Mechanical Properties

Let assume a spherical cap with uniform thickness h and mean radius of R. The outer
rout = b and inner rin = a radii of the spherical cap are denoted as reported in Figure 1.
The spherical cap is defined using the spherical coordinates that can be defined as follows:
r, 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π.
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As can be seen in Figure 2, two types of non-uniform symmetric distributions and
a uniform one are assumed in the present work, such that three different porosity profiles are
here considered throughout the thickness of the spherical cap. In distribution 1, the porosity
is nonlinear and symmetric. Furthermore, the distribution around the mid-radius is larger
than the corresponding one around the external surfaces of the structure. In distribution 2, the
porosity is also nonlinear and symmetric, but the porosity near the inner and outer surfaces
of the spherical cap is higher than that one around the mid-radius. Equations (1)–(3) define
mathematically the distributions of the material properties considering the effect of porosity,
for the three selected distributions. At the same time, Figure 2 reports the five GPL distribution
profiles throughout the spherical cap, thickness-wise, which are defined next [25,26]. More
specifically, the mechanical properties refer to the mass density ρ(r), Young’s modulus E(r)
and shear modulus G(r) of porous nanocomposite spherical caps [54–58].
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- Porosity distribution 1
E(r) = E∗

[
1− e0 cos

(
π( r−rin

h − 1
2 )
)]

G(r) = G∗
[
1− e0 cos

(
π( r−rin

h − 1
2 )
)]

ρ(r) = ρ∗
[
1− em cos

(
π( r−rin

h − 1
2 )
)] (1)

- Porosity distribution 2
E(r) = E∗

[(
1− e∗0

(
1− cos

(
π( r−rin

h − 1
2 )
))]

G(r) = G∗
[(

1− e∗0
(

1− cos
(

π( r−rin
h − 1

2 )
))]

ρ(r) = ρ∗
[(

1− e∗m
(

1− cos
(

π( r−rin
h − 1

2 )
))] (2)

- Uniform porosity distribution


E(ς) = E∗α

G(ς) = G∗α

ρ(ς) = ρ∗α

(3)

where ρ∗, E∗ and G∗ refer to the mass density, Young’s modulus and shear modulus of the
GPL spherical cap without interior cavities, respectively.

In addition, e0 and e∗0(0 ≤ e0(e∗0) < 1) refer to the coefficients of porosity for the first
two profiles, respectively; em and e∗m stand for the mass density coefficients for these two
distributions, respectively; α and α′ are two parameters referring to a uniform porosity
profile. For an increased size and density of the internal cavities, the porosity increases,
with a subsequent reduction of the mechanical properties.

The relation between the elasticity modulus and density for an open-cell metal foam
is assumed as [58,59]

E(r)
E∗

=

(
ρ(r)
ρ∗

)2
(4)

which is adopted to derive the relation between porosity and mass density coefficients for
various porosity patterns; i.e.,

1− em cos(πr) =
√

1− e0 cos(πr)

1− e∗m(1− cos(πr)) =
√

1− e∗0(1− cos(πr))
α′ =

√
α

(5)

Here, we assume that the masses of spherical caps with various porosity patterns and
GPL dispersions are identical. To compare the stiffness of different distributions, indeed,
the analyses should be implemented for shells with equal masses. Hence, the values of e∗0
and α can be evaluated for a fixed value of e0 [38,39], as

rout∫
rin

√
1− e0 cos(πr) dr =

rout∫
rin

√
1− e∗0(1− cos(πr))dr =

h/2∫
0

√
αdr (6)

According to Equation (6), the values of e∗0 and α can be estimated for a fixed value of
e0, as shown in Table 1.
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Table 1. Porosity coefficients for different distributions.

e0 e∗0 α

0.1 0.1738 0.9361
0.2 0.3442 0.8716
0.3 0.5103 0.8064
0.4 0.6708 0.7404
0.5 0.8231 0.6733
0.6 0.9612 0.6047

It can be seen that e∗0 increases as the value of e0 increases. When e0 equals 0.6, e∗0
becomes equal to 0.9612, which is near to the upper bound. Hereafter, e0 ∈ [0, 0.6] is
used within the numerical investigation. According to the Halpin–Tsai micromechanics
model [60], the elasticity modulus of nanocomposites without internal cavities is defined as

E∗ =
3
8

(
1 + εGPL

L ηGPL
L VGPL

1− ηGPL
L VGPL

)
Em +

5
8

(
1 + εGPL

W ηGPL
W VGPL

1− ηGPL
W VGPL

)
(7)

with

εGPL
L =

2lGPL
tGPL

(8)

εGPL
W =

2wGPL
tGPL

(9)

ηGPL
L =

EGPL − Em

EGPL + εGPL
L Em

(10)

ηGPL
W =

EGPL − Em

EGPL + εGPL
W Em

(11)

where indices m and GPL stand for properties of the metallic matrix and graphene platelets,
respectively; VGPL is the volumetric content of GPLs; and lGPL, wGPL and tGPL refer to the
length, width and thickness of the nano-filler platelets, respectively.

Based on the rule of mixtures, the mass density and Poisson’s ratio of nanocomposite
materials are defined as [61–63]

ρ∗ = ρGPLVGPL + ρm(1−VGPL) (12)

v∗ = vGPLVGPL + vm(1−VGPL) (13)

whereas
G∗ =

E∗

2(1 + v∗)
(14)

refers to the associated shear modulus. The volumetric content of GPLs, VGPL, is assumed
to vary throughout the spherical cap’s thickness, having five different dispersion patterns
(see Figure 2):

VGPL(r) =



Si1

(
1− cos

(
π
(

r−rin
h − 1

2

)))
GPL− X

Si2 cos
((

π r−rin
h − 1

2

))
GPL−O

Si3 GPL−UD

Si4

(
1− cos

(
π
(

r−rin
2h

)))
GPL− A

Si5 cos
(

π
(

r−rin
2h

))
GPL−V


(15)
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where Si1, Si2, Si3, Si4 and Si5 denote the upper limits of VGPL; and subscript i = 1, 2 or
3 refers to various porosity distributions within each pattern. Moreover, VT

GPL stands for
the total volumetric content of GPLs, which is defined in terms of the nanofiller weight
fraction ∆GPL in the following form:

VT
GPL =

∆GPLρm

∆GPLρm + ρGPL − ∆GPLρGPL
(16)

This is, in turn, used to derive Si1, Si2, Si3, Si4 and Si5 as

VT
GPL

rout∫
rin

ρ(r)
ρ∗

dr =



Si1

rout∫
rin

[1− cos
(

π( r−rin
h − 1

2 )
)
] ρ(r)

ρ∗ dr

Si2

rout∫
rin

cos
(

π( r−rin
h − 1

2 )
)

ρ(r)
ρ∗ dr

Si3

rout∫
rin

ρ(r)
ρ∗ dr

Si4

rout∫
rin

[1− cos(π( r−rin
2h )] ρ(r)

ρ∗ dr

Si5

rout∫
rin

cos(π( r−rin
2h ) ρ(r)

ρ∗ dr

(17)

2.2. Governing Equations of the Problem

The stress–strain relations are defined in matrix form as

σ = Dε (18)

where the stress and strain field, together with the elasticity matrix D, read as follows:

σ =
{

σr σφ σθ σrφ σθφ σrθ

}T (19)

ε =
{

εr εφ εθ γrφ γφθ γrθ

}T (20)

D =
E∗(r)

(1 + υ∗)(1− 2υ∗)



1− υ∗ υ∗ υ∗ 0 0 0

υ∗ 1− υ∗ υ∗ 0 0 0

υ υ 1− υ∗ 0 0 0

0 0 0 1−2υ∗
2 0 0

0 0 0 0 1−2υ∗
2 0

0 0 0 0 0 1−2υ∗
2


(21)

where υ∗ is the Poisson’s ratio and E∗ denotes the Young’s modulus that depends on the r
coordinate. Based on the linear elasticity theory, the strain field in spherical coordinate is
defined as

ε = εL + εNL (22)
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with

εL =



∂u
∂r

1
r

(
u + ∂v

∂φ

)
1

r sin φ

(
∂w
∂θ + sin φu + cos φv

)
(

1
r

∂u
∂φ + ∂v

∂r −
v
r

)
1
r

(
1

sin φ
∂v
∂θ + ∂w

∂φ − cot φw
)

(
1

r sin φ
∂u
∂θ + ∂w

∂r −
w
r

)


(23)

and

εNL =



1
2

((
∂u
∂r

)2
+
(

∂v
∂r

)2
+
(

∂w
∂r

)2
)

1
2

((
1
r

∂u
∂φ − v

)2
+
(

1
r

(
u + ∂v

∂φ

))2
+
(

1
r

∂w
∂φ

)2
)

1
2

((
1

r sin φ

(
∂u
∂θ − w sin φ

))2
+
(

1
r sin φ

(
∂v
∂θ − w cos φ

))2
+
(

1
r sin φ

∂w
∂θ + u

r + v cot φ
r

)2
)

1
r

∂u
∂r

(
∂u
∂φ − v

)
+ 1

r
∂v
∂r

(
∂v
∂φ + u

)
+ 1

r
∂w
∂r

∂w
∂φ

1
r2 sin φ

(
∂u
∂φ − v

)(
∂u
∂θ − w sin φ

)
+ 1

r2 sin φ

(
∂v
∂φ + u

)(
∂v
∂θ − w cos φ

)
+ 1

r
∂w
∂φ

(
1

r sin φ
∂w
∂θ + u

r + v cot φ
r

)
1

r sin φ
∂u
∂r

(
∂u
∂θ − w sin φ

)
+ 1

r sin φ
∂v
∂r

(
∂v
∂θ − w cos φ

)
+ ∂w

∂r

(
1

r sin φ
∂w
∂θ + u

r + v cot φ
r

)



(24)

In addition, u, v and w define the kinematic components along r, φ and θ directions,
respectively. According to the above-mentioned relations, the linear strain relation can be
rewritten as

εL = LQ (25)

where Q is the displacements vector and L is an operator matrix involving the partial
derivatives of a function

Q =
{

u v w
}T (26)

L =


∂r 1/r 1/r 1/2r∂φ 0 1

2r sin φ ∂θ

0 1/r∂φ 1/r cot φ 1
2 ∂r − 1

2r
1

2r sin φ ∂θ 0

0 0 1
r sin φ ∂θ 0 ∂φ − cot φ ∂r − 1

r


T

(27)

3. Finite Element Modeling

A FEM-based approach is now adopted to solve the governing equations of the
problem, where the spherical cap is divided into 8–node linear brick elements. For element
(e), the 3D kinematic field is approximated as

Q(e) = ΦΛ(e) (28)

where Φ is the matrix of linear shape functions in spherical coordinates, whereas Λ(e) refers
to the nodal displacement vector of the element, which is defined as

Φ =

Φ1 0 0 · · · Φ8 0 0
0 Φ1 0 · · · 0 Φ8 0
0 0 Φ1 · · · 0 0 Φ8

 (29)
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Λ(e) =
{

U1 V1 W1 · · · U8 V8 W8
}T (30)

The components of Φ are

Φi =
1
V

ΓX (31)

V being the volume of each element; i.e.,

V =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ξ1 η1 ζ1 ξ1η1 ξ1ζ1 η1ζ1 ξ1η1ζ1

1 ξ2 η2 ζ2 ξ2η2 ξ2ζ2 η2ζ2 ξ2η2ζ2

1 ξ3 η3 ζ3 ξ3η3 ξ3ζ3 η3ζ3 ξ3η3ζ3

1 ξ4 η4 ζ4 ξ4η4 ξ4ζ4 η4ζ4 ξ4η4ζ4

1 ξ5 η5 ζ5 ξ5η5 ξ5ζ5 η5ζ5 ξ5η5ζ5

1 ξ6 η6 ζ6 ξ6η6 ξ6ζ6 η6ζ6 ξ6η6ζ6

1 ξ7 η7 ζ7 ξ7η7 ξ7ζ7 η7ζ7 ξ7η7ζ7

1 ξ8 η8 ζ8 ξ8η8 ξ8ζ8 η8ζ8 ξ8η8ζ8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(32)

and
Γij = (−1)i+j∣∣Aij

∣∣ (33)

X = {1, ξ, η, ζ, ξη, ξζ, ηζ, ξηζ}T (34)

It is also

ξ = r cos θ sin φ, η = r sin θ sin φ, ζ = r cos φ (35)

ξi = ri cos θi sin φi, ηi = ri sin θi sin φi, ζi = ri cos φi (36)

where ri, θi and φi are the nodal coordinates and Aij is obtained by elimination of the ith
row and jth column from V. Substituting Equation (26) into Equation (23) gives the strain
matrix of element (e) as

εL
(e) = BΛ(e) (37)

where
B = LΦ(e) (38)

The FEM-based governing equations are determined from the principle of virtual
work, where the potential energy U and virtual work of external loads δW are defined as

δΠ = δU − δW = 0 (39)

δu =
∫

V(e)

(
δε(e)

)T
σ(e)dV (40)

δW =

∫
A

σrr δu dA


r=b

(41)

A being the area under the external radial load σrr = 1, which is subjected to the external
surface of a spherical cap. In a pre-buckling state, the displacement field can be considered
to be small, and the nonlinear terms of strain–displacement relations vanish. Therefore,
one may write
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δU =
∫

V(e)

δ(BΛ(e))
T

D(BΛ(e))dV = δΛ(e)T
KΛ(e) (42)

Therefore, based on the principle of virtual work, the static balance equation of the
problem for each element in a pre-buckling state takes the following form

δΛ(e)T
∫

V(e)
BTDBdVΛ(e) = δΛ(e)T

∫
A(e)

ϕT pdA (43)

Equation (43) in compact form can be written as

K(e)Λ(e) = F(e) (44)

where K(e) is the linear stiffness matrix and F(e) is the force matrix for each element,
defined as

K(e) =
∫

V(e)
BTDB dV (45)

F(e) =
∫

A(e)

ΦT pdA (46)

p =


σrr
0
0


r=b

(47)

By assembling each element matrix, the equilibrium equation of the spherical cap in
the pre-buckling state is obtained as

KΛ = F (48)

whose solution is determined in terms of the strain field in pre-buckling state for σrr = 1.
Afterward, the stress field due to these deformations is used in the geometric stiffness
matrix, as detailed in the following. Finally, in order to determine the governing equations
of an instability problem, the following equation can be used:

δ(δΠ) = δ2Π = 0 (49)

Therefore, based on Equations (44) and (48), it is

δΛ(e)TK(e)δΛ(e) + δ2ΠExt. = 0 (50)

In line with Equation (22), the linear and nonlinear terms of the kinematic relations
have been considered in the strain energy of the shell. In the pre-buckling state, the radial
displacement components or large deformations can be assumed to be small, whereas
only the linear strain terms appear. At the buckling state, instead, the nonlinear kinematic
relations have to be considered. Therefore, the following relation can be obtained:

U = ΠExt. =
1
2

∫
V

(
εnl
)T
σdV (51)

ΠExt. can be rewritten as

ΠExt. =
1
4

∫
V

ψTΘψdV =
1
4

∫
V
(ΞQ)TΘ(ΞQ)dV (52)

where
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ψT =

(
∂u
∂r

1
r

∂u
∂φ − v 1

r sin φ

(
∂u
∂θ − w sin φ

)
∂v
∂r

1
r

(
u + ∂v

∂φ

)
1

r sin φ

(
∂v
∂θ − w cos φ

)
∂w
∂r

1
r

∂w
∂φ

1
r sin φ

∂w
∂θ + u

r +
v cot φ

r

)
1∗9

ψ9∗1 = Ξ9∗3 Q

and

Ξ =



∂
∂r 0 0

1
r

∂
∂φ − 1

r 0

1
r sin φ

∂
∂θ 0 − 1

r

0 ∂
∂r 0

1
r

1
r

∂
∂φ 0

0 1
r sin φ

∂
∂θ − cot φ

r

0 0 ∂
∂r

0 0 1
r

∂
∂φ

1
r

cot φ
r

1
r sin φ

∂
∂θ



Θ =


S0 03×3 03×3

03×3 S0 03×3

03×3 03×3 S0


S0 =


σ0

rr σ0
rφ σ0

rθ

σ0
rφ σ0

φφ σ0
φθ

σ0
rθ σ0

φθ σ0
θθ


In the last relation, S0 refers to the stresses obtained in pre-buckling state. By substitut-

ing Q(e) = ΦΛ(e), we obtain
ψ = Ξ ΦΛ(e) (53)

where

Ω = Ξ Φ (54)

More in detail, it is

Ω =



∂Φ1
∂r 0 0 · · · ∂Φ8

∂r 0 0
1
r

∂Φ1
∂φ −Φ1

r 0 · · · 1
r

∂Φ8
∂φ −Φ8

r 0
1

r sin φ
∂Φ1
∂θ 0 −Φ1

r · · · 1
r sin φ

∂Φ8
∂θ 0 −Φ8

r

0 ∂Φ1
∂r 0 · · · 0 ∂Φ8

∂r 0
Φ1
r

1
r

∂Φ1
∂φ 0 · · · Φ8

r
1
r

∂Φ8
∂φ 0

0 1
r sin φ

∂Φ1
∂θ −Φ1 cot φ

r · · · 0 1
r sin φ

∂Φ8
∂θ −Φ8 cot φ

r

0 0 ∂Φ1
∂r · · · 0 0 ∂Φ8

∂r

0 0 1
r

∂Φ1
∂φ · · · 0 0 1

r
∂Φ8
∂φ

Φ1
r

Φ1 cot φ
r

1
r sin φ

∂Φ1
∂θ · · · Φ8

r
Φ8 cot φ

r
1

r sin φ
∂Φ8
∂θ



(55)
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Thus, according to Equation (50), we have

δ2Π = δ (Λ(e)T)K(e)δ (Λ(e)) + δ (Λ(e)T)(
∫

V(e)

ΩTΘΩdV) δ (Λ(e)) = 0 (56)

Equation (50) can be redefined in the following form:

δ(Λ(e)T)(K(e) + K(e)
G )δ(Λ(e)) = 0 (57)

After the assembly of the element matrices, the following determinant should be
assumed as null for the structure.

|K + KG| = 0 (58)

∣∣∣∣∫V(e)
BTDBdV + ΛCr

∫
V

(e)Ω
TΘΛΩdV

∣∣∣∣ = 0 (59)

Note that K and KG refer to the linear stiffness matrix and geometric stiffness matrix,
respectively, which are computed using the Gauss 8-point numerical integration rules.

Hereafter, we assume the following clamped boundary conditions:

- For a spherical cap with θ = 180◦, φ = 180◦, u, v, w (r, θ and φ = 0, 180◦), σrr = 1 at r = b.
- For a spherical cap with θ = 180◦, φ = 90◦, u, v, w (r, θ and φ = 0, 90◦), σrr = 1 at r = b.

4. Numerical Results and Discussion

In this section, we discuss the numerical results in terms of buckling loads of an FG-
GPL, porous spherical cap with clamped boundary conditions, for various volume or
weight fractions of GPL, and for different GPL distribution patterns, porosity distributions
and coefficients, along with two polar angles of the FG-GPL, porous spherical shell.

4.1. Validation

In order to verify our results, we started the analysis with a comparative evalua-
tion of the buckling predictions using the commercial Ansys Workbench code, for an
isotropic homogeneous spherical cap. Hence, the following changes were considered in
our study: e0 = 0, γGPL = 0. As far as the mechanical properties are concerned, we assumed
Em = 130 GPa, ρm = 8960 kg/m3, νm = 0.34 for the copper material. As geometrical dimen-
sions, we assumed: a = 0.225 m, b = 0.25 m, θ = 180◦, φ = 180◦, 90◦. In this way, the FG-GPL
porous structure changes to an isotropic homogenous structure. The comparison between
our results and predictions from Ansys Workbench is shown in Table 2, with an excellent
agreement among them.

Table 2. Comparison of buckling loads between present study and Ansys Workbench.

Polar Angle ω1 ω2 ω3 ω4 ω5 ω6

(Ansys
Workbench) 2.890 2.901 2.990 3.001 3.012 3.078

180◦ (Present) 2.908 2.924 3.008 3.021 3.033 3.132
(Ansys

Workbench) 1.861 1.867 2.110 2.101 2.159 2.299

90◦ (Present) 1.873 1.875 2.180 2.211 2.222 2.320

4.2. Parametric Analysis of the Buckling Load

We now study the effects of two polar angles, porosity coefficient, porosity dis-
tribution, GPL patterns and the weight fraction of GPL nanofillers (for the first time)
on the buckling load of an FG-GPL, porous spherical cap with clamped boundaries.
Hence, the following geometrical properties are considered: a = 0.225 m, b = 0.25 m,
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θ = 180◦, φ = 180◦, 90◦. The materials is characterized by the following mechanical
properties: Em = 130 GPa, ρm = 8960 kg/m3 and νm = 0.34 for the copper material [28];
and EGPL = 1.01 TPa, ρGPL = 1062.5 kg/m3, νGPL = 0.186, wGPL = 1.5 µm, lGPL = 2.5 µm and
tGPL = 1.5 nm for GPLs.

Table 3 indicates the influences of two types of polar angles and various GPL patterns
on the buckling load of the FG-GPL-reinforced, porous spherical structure, under the
assumptions PD3, e0 = 0.2 and γ = 0.01 wt%. The extreme values of buckling load are
related to GPLX and GPL-O distributions, respectively, which means that, when GPLs
accumulate around the inner and outer surfaces of the shell, the stiffness reaches its highest
value. Moreover, when GPLs are sparser around the outer and inner surfaces of the shell,
the minimum buckling load is obtained. Note also that the critical buckling loads for
a GPLA and GPL-V distributions are approximately the same. The results also show
that the surface area of the shell increases by increasing the polar angle, and there are
consecutive increases in the structural stiffness and buckling load.

Table 3. Buckling loads (GPa) of FG-GPL, porous spherical caps for various polar angles and GPL
patterns (PD3, e0 = 0.2, γ = 0.01 wt%).

GPL Pattern φ Λ1 Λ2 Λ3 Λ4 Λ5 Λ6
90◦ 3.174 3.174 3.670 3.775 3.778 3.939

GPL-X 180◦ 4.450 4.462 4.572 4.600 4.617 4.798

90◦ 1.898 1.901 2.227 2.254 2.264 2.354

GPL-A 180◦ 2.914 2.925 2.997 3.009 3.018 3.109

90◦ 1.885 1.888 2.212 2.238 2.248 2.336

GPL-V 180◦ 2.906 2.917 2.988 3.001 3.009 3.098

90◦ 1.653 1.657 1.949 1.950 1.958 2.018

GPL-O 180◦ 2.731 2.747 2.801 2.821 2.824 2.894

90◦ 1.903 1.906 2.233 2.259 2.270 2.359

GPL-UD 180◦ 2.926 2.937 3.009 3.022 3.030 3.121

The influences of two polar angles and various porosity distributions are reported
in Table 4 (GPLX, e0 = 0.4, γ = 0.01 wt%), which shows that the maximum and minimum
buckling loads belong to PD1 and PD2 distributions, respectively. PD1 provides higher
structural stiffness, and PD2 gives the minimum stiffness of the spherical cap shell. The
main difference between the extreme values of critical buckling load is approximately 90%
for different porosity patterns. This means that the porosity distribution has a considerable
effect on the buckling loads of FG-GPL, porous, spherical cap shells.

Table 4. Buckling loads (GPa) of FG-GPL, porous spherical caps for various polar angles and porosity
distributions (GPLX, e0 = 0.4, γ = 0.01wt%).

Porosity
Distribution φ Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

90◦ 2.842 2.842 3.268 3.346 3.359 3.473

PD1 180◦ 3.964 3.974 4.076 4.092 4.111 4.259

90◦ 1.581 1.584 1.862 1.863 1.870 1.926

PD2 180◦ 2.613 2.632 2.684 2.703 2.707 2.774

90◦ 2.249 2.249 2.607 2.677 2.683 2.799

PD3 180◦ 3.191 3.199 3.280 3.297 3.310 3.434
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The influences of two polar angles and weight fractions of nanofillers on the buckling
loads of FG-GPL, porous spherical shell (PD1, e0 = 0.5, GPLX) are given in Table 5. Note
that, by increasing the weight fraction of GPLs, the critical buckling loads of shell increases
significantly (approximately 100%), along with a small variation of the structural mass.
This issue can be useful for aerospace structures where the high stiffness and low density
are extremely important.

Table 5. Buckling loads (GPa) of an FG-GPL, porous spherical cap for various polar angle and weight
fractions of GPL nano-fillers (PD1, e0 = 0.5, GPLX).

Weight Fraction of
Nano-Fillers (%wt) φ Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

90◦ 1.458 1.459 1.696 1.737 1.744 1.819

0% 180◦ 2.102 2.107 2.162 2.171 2.180 2.258

90◦ 2.191 2.191 2.528 2.601 2.602 2.710

0.5% 180◦ 3.048 3.056 3.130 3.151 3.163 3.290

90◦ 2.744 2.746 3.187 3.261 3.268 3.403

1% 180◦ 3.927 3.940 4.032 4.062 4.076 4.246

Table 6 shows the effect of the porosity coefficient on the critical buckling loads of
FG-GPL, porous spherical shells (PD1, γ = 0.01 wt%, GPLX). When the porosity of the
structure increases, the critical buckling load of FG–GPL porous spherical shells decreases,
because of the decreased structural stiffness. The comparative evaluation of Tables 3–6
denotes that the influence of the porosity coefficient on the critical buckling load is lower
than the GPL pattern and weight fraction of the nanofiller (its impact is approximately
equal to 12.5%). On the other hand, the effects of the GPL pattern, porosity distribution and
weight fraction of nanofillers on the critical buckling loads of FG–GPL, porous spherical
shells are more pronounced than the porosity coefficient. The first six buckling mode
shapes are shown in Figures 3 and 4 for the clamped spherical caps with ϑ = 180◦, φ = 180◦

and 90◦, respectively. The figures clearly show that the first two buckling mode shapes
and loads for each polar angle of spherical cap are the same. It is also observable that the
number of buckling waves increases for higher buckling modes.

Table 6. Buckling loads (GPa) of FG-GPL, porous spherical caps for various polar angles and porosity
coefficients (PD1, γ = 0.01 wt%, GPLX).

e0 φ Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

90◦ 3.262 3.262 3.780 3.881 3.889 4.055

0.2 180◦ 4.626 4.635 4.752 4.777 4.794 4.975

90◦ 2.842 2.842 3.268 3.346 3.359 3.473

0.4 180◦ 3.964 3.974 4.076 4.092 4.111 4.259

90◦ 2.744 2.746 3.187 3.261 3.268 3.403

0.5 180◦ 3.927 3.940 4.032 4.062 4.076 4.246
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5. Concluding Remarks

The present work has studied the buckling responses of spherical caps made of FG
porous materials reinforced by GPLs. Three different porosity distributions and five GPL
patterns have been considered, along with the shell thickness. The equilibrium equations
for the pre-buckling state have been determined according to the linear 3D elasticity theory
and the principle of virtual work, whereas the buckling load associated with the problem
has been computed according to the nonlinear Green strain field and generalized geometric
stiffness concepts. We have studied the influence of the GPL pattern, weight fraction of
nanofillers, porosity coefficient, porosity distribution and polar angles on the buckling
loads of porous spherical cap made of FG-GPLs. Based on a large systematic investigation,
the final remarks can be summarized as follows:

(a) The maximum and minimum buckling loads seem to be reached for GPL-X and
GPL-O distributions, respectively.

(b) The maximum and minimum buckling loads belong to the PD1 and PD2 cases,
respectively.

(c) The difference between the maximum and minimum critical buckling loads for differ-
ent porosity distributions is approximately equal to 90%, and the buckling loads of
the selected structure increase considerably (approximately of 100%) with an increase
in the weight fraction of GPLs.

(d) The effect of the porosity coefficient on the critical buckling load for porous spherical
cap shells made of FG-GPLs is lower than the weight fraction of the nanofillers, being
approximately equal to 12.5%.

Such results could be useful for designing similar shell members with optimized mechan-
ical properties and structural performances, as required by various engineering applications.
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