
Expert Systems With Applications 237 (2024) 121457

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A multi-modal tourist trip planner integrating road and pedestrian networks
Tommaso Adamo a, Lucio Colizzi b,∗, Giovanni Dimauro b, Gianpaolo Ghiani a,
Emanuela Guerriero a

a Dipartimento di Ingegneria dell’Innovazione, University of Salento, Via Monteroni, Lecce 73100, Italy
b Dipartimento di Informatica, University of Bari Aldo Moro, Via E. Orabona, 4, Bari 70125, Italy

A R T I C L E I N F O

Keywords:
Team orienteering problem with time windows
Multi-modal tourist trip design problem

A B S T R A C T

The Tourist Trip Design Problem aims to prescribe a sightseeing plan that maximizes tourist satisfaction while
taking into account a multitude of parameters and constraints, such as the distances among points of interest,
the expected duration of each visit, the opening hours of each attraction, the time available daily. In this article
we deal with a variant of the problem in which the mobility environment consists of a pedestrian network and
a road network. Hence, a plan includes a car tour with a number of stops from which pedestrian subtours to
attractions (each with its own time windows) depart. We study the problem and develop a method to evaluate
the feasibility of solutions in constant time, to speed up the search. The proposed method is embedded into an
ad-hoc iterated local search. Experimental results show that our approach can handle realistic instances with
up to 3643 points of interest (over a seven day planning horizon) in few seconds.
1. Introduction

The tourism industry is one of the fast-growing sectors in the world.
On the wave of digital transformation, this sector is experiencing a shift
from mass tourism to customized travel. Designing a tailored tourist trip
is a rather complex and time-consuming process. Therefore, the use of
expert and intelligent systems can be beneficial. Such systems typically
appear in the form of ICT (Information Communication Technology)
integrated solutions that perform (usually on a hand-held device) three
main services: recommendation of attractions (Points of Interest, PoIs),
route generation and itinerary customization (Gavalas et al., 2014b). In
this research work, we focus on route generation, known in literature as
the Tourist Trip Design Problem (TTDP). The objective of the TTDP is to
select PoIs that maximize tourist satisfaction, while taking into account
a set of parameters (e.g., alternative transport modes, distances among
PoIs) and constraints (e.g., the duration of each visit, the opening hours
of each PoI and the time available daily for sightseeing). In last few
years there has been a flourishing of scholarly work on the TTDP (Ruiz-
Meza & Montoya-Torres, 2022). Different variants of TTDP have been
studied in the literature, the main classification being made w.r.t. the
mobility environment which can be unimodal or multi-modal (Ruiz-Meza
& Montoya-Torres, 2021).

In this article, we focus on a variant of the TTDP in which a tourist
can move from one PoI to the next one as a pedestrian or as a driver
of a vehicle (like a car or a motorbike). Under this hypothesis, one

∗ Corresponding author.
E-mail addresses: tommaso.adamo@unisalento.it (T. Adamo), lucio.colizzi@uniba.it (L. Colizzi), giovanni.dimauro@uniba.it (G. Dimauro),

gianpaolo.ghiani@unisalento.it (G. Ghiani), emanuela.guerriero@unisalento.it (E. Guerriero).

TTDP solution includes a car tour with a number of stops from which
pedestrian subtours to attractions (each with its own time windows)
depart. We refer to this multi-modal setting as a walk-and-drive mobility
environment. Our research work was motivated by a project aiming
to stimulate tourism in the Apulia region (Italy). Unfortunately, the
public transportation system is not well developed in this rural area and
most attractions can be conveniently reached only by car or scooter, as
reported in a recent newspaper article (CiteDrive, 2023): (in Apulia)
sure, there are trains and local buses, but using them exclusively to cross
this varied region is going to take more time than most travellers have. Our
research was also motivated by the need to maintain social distancing
in the post-pandemic era (Li et al., 2021).

The walk-and-drive variant of the TTDP addressed in this article
presents several peculiar algorithmic issues that we now describe. The
TTDP is a variant of the Team Orienteering Problem with Time Windows
(TOPTW), which is known to be NP-hard (Gavalas, Konstantopoulos,
Mastakas et al., 2015). A multi-modal setting further increases the com-
putational complexity. Indeed, a multi-modal mobility environment
widens the search space of a route generation algorithm, since it has
to choose among different travel scenarios. Moreover, the solution has
to prescribe not only direct connections, but also transfer connections,
which occur when the tourist has to change transport means while
travelling from one PoI to another one. Algorithmic issues implied
by transfer connections are highly influenced by the features of the
vailable online 7 September 2023
957-4174/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.eswa.2023.121457
Received 8 October 2022; Received in revised form 2 September 2023; Accepted 2
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

September 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:tommaso.adamo@unisalento.it
mailto:lucio.colizzi@uniba.it
mailto:giovanni.dimauro@uniba.it
mailto:gianpaolo.ghiani@unisalento.it
mailto:emanuela.guerriero@unisalento.it
https://doi.org/10.1016/j.eswa.2023.121457
https://doi.org/10.1016/j.eswa.2023.121457
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.121457&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.
Fig. 1. Example of a daily itinerary (weights on the arcs indicate travel times).
underlying physical networks. In particular, the impact of transfer
connections has been investigated in literature with respect to public
transportation, where a transfer connection occurs when the tourist
has to walk to reach a bus stop and/or take more than one line
bus before reaching the next PoI. In transit networks, travel times
are time-dependent due to waiting times at boarding stops (Gavalas,
Konstantopoulos, Mastakas et al., 2015). In such an application set-
ting, the main algorithmic issues concern the fast computation of
time-dependent travel times.

In a walk-and-drive mobility environment, even if the tourist has
not to wait at boarding stops, the computation of transfer times still
exhibits several algorithmic issues that have to be carefully addressed.
In particular, a transfer connection corresponds to the last arc of a
walking subtour, where the vehicle is parked nearby the PoI visited
twice. For example, the itinerary in Fig. 1 is characterized by two
walking subtours, where PoIs 𝑖3 and 𝑖6 are both visited twice: the first
time to sightsee the attraction, the second time to pick-up the vehicle
parked nearby the attraction. As discussed in the following sections, it
is not affordable precomputing all (potential) transfer times associated
to each pair of PoIs. Moreover, paths can be selected on either road
network or pedestrian network depending on the compromise they
offer between travel time and tourist preferences about transport mode
selection. For example, the tourist might consider more reasonable to
walk for 5 min from one PoI to the next, if the quickest path on the
road network lasts less than 2 min. Algorithms proposed in literature
for the multi-modal TTDP are not able to deal with these solution
features without essential structural modifications. Indeed, solution
with subtours would be labelled as infeasible by an algorithm designed
for solving multi-modal variants of TTDP studied in literature so far.
Moreover neighbourhood search-based algorithms, widely used for
solving the TTDP, rely on the assumption that a PoI insertion/removal
has an impact on later PoIs only in terms of changes of arrival times.
As thoroughly discussed in the following sections, in a walk-and-drive
mobility environment inserting/removing a PoI might also affect travel
times of (later) transfer connections.

In this paper, we seek to go one step further with respect to the
literature by devising insertion and removal operators tailored for a
walk-and-drive mobility environment. Then we integrate the proposed
operators in an iterated local search. A computational campaign on
realistic instances show that the proposed approach can handle realistic
instances with up to 3643 points of interests in few seconds. The
paper is organized as follows. Section 2 summarizes the literature. In
Section 3 we provide problem definition. In Section 4 we describe the
structure of the algorithm used to solve the TTDP. Sections 5 and 6
introduce insertion and removal operators to tackle the TTDP in a walk-
and-drive mobility environment. Section 7 illustrates how we enhance
the proposed approach in order to handle instances with thousands of
PoIs. In Section 8, we show the experimental results. Conclusions and
2

further work are discussed in Section 9.
2. Literature review

This section reviews the state-of-the-art of modelling approaches,
solution methods and planning applications for tourism planning. A sys-
tematic review of all the relevant literature has been recently published
in Ruiz-Meza and Montoya-Torres (2022).

The TTDP is a variant of the Vehicle Routing Problem (VRP) with
Profits. The VRP aims to determine the least cost routes for a fleet of
vehicles, possibly subject to side constraints, such as vehicle capac-
ity (Toth & Vigo, 2014). In the presence of time windows the VRP
also exhibits a scheduling component, which naturally arise in business
organizations that work on fixed time schedule (Han et al., 2015;
Solomon, 1987). The VRP with profits is a generalization of the classical
VRP where the constraint to visit all customers is relaxed (Archetti
et al., 2014). A known profit is associated with each demand node.
Given a fixed-size fleet of vehicles, VRP with profits aims to maximize
the profit while minimizing the travelling cost. The basic version with
only one route is usually presented as a Traveling Salesman Problem
(TSP) with Profits (Feillet et al., 2005). Following the classification
introduced in Feillet et al. (2005) for the single-vehicle case, we dis-
tinguish three main classes. The first class of problems is composed by
the Profitable Tour Problems (PTPs) (Dell’Amico et al., 1995) where
the objective is to maximize the difference between the total collected
profit and the travelling cost. The capacitated version of PTP is studied
in Archetti et al. (2009). The second class is formed by Price-Collecting
Traveling Salesman Problems (PCTSPs) (Balas, 1989) where the objec-
tive is to minimize the total cost subject to a constraint on the collected
profit. The Price-Collecting VRPs has been introduced in Tang and
Wang (2006). Finally, the last class is formed by the Orienteering Prob-
lems (OPs) (Golden et al., 1987) (also called Selective TSPs (Laporte &
Martello, 1990) or Maximum Collection Problems (Kataoka & Morito,
1988)) where the objective is to maximize collected profit subject to
a limit on the total travel cost. The Team Orienteering Problem (TOP)
proposed by Chao et al. (1996) is a special case of VRP with profits; it
corresponds to a multi-vehicle extension of OP where a time constraint
is imposed on each tour.

For the TTDP, the most widely modelling approach is the TOP.
Several variants of TOP have been investigated with the aim of ob-
taining realistic tourist planning. Typically PoIs have to be visited
during opening hours, therefore the best known variant is the Team
Orienteering Problem with Time-Windows (TOPTW) (Boussier et al.,
2007; Montemanni et al., 2011; Righini & Salani, 2009; Vansteenwegen
et al., 2009). In many practical cases, PoIs might have multiple time
windows. For example, the tourist attraction is open between 9 am
and 14 am and between 3 pm and 7 pm. In Tricoire et al. (2010),
the authors devise a polynomial-time algorithm for checking feasibility
of multiple time windows. The size of the problem is reduced in a
preprocessing phase if the PoI-based graph satisfies the triangle in-

equality. The model closest to the one proposed in this work is the

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.

𝑚
q
r
c
p
r
d
a
t

a
b

i
d
v

Multi-Modal TOP with Multiple Time Windows (MM-TOPMTW) (Ruiz-
Meza & Montoya-Torres, 2022). Few contributions deal with TTDP in
a multi-modal mobility environment. Different physical networks and
modes of transports are incorporated according to two different models.
The former implicitly incorporates multi-modality by considering the
public transport. Due to the waiting times at boarding stops, the model
is refereed to as Time-Dependent TOPTW (Garcia et al., 2013; Gavalas,
Konstantopoulos, Mastakas, Pantziou, & Tasoulas, 2015; Zografos &
Androutsopoulos, 2008). Other models incorporate the choice of trans-
port modes more explicitly, based on availability, preferences and time
constraints . In particular in the considered transport modes the tourist
either walks or takes a vehicle as passenger, i.e. bus, train, subway,
taxi (Ruiz-Meza et al., 2021a; Ruiz-Meza & Montoya-Torres, 2021; Yu
et al., 2017). To the best of our knowledge this is the first contribution
introducing the TTDP in a walk-and-drive mobility environment. Other
variants have been proposed to address realistic instances. Among the
others, they include: time dependent profits (Gündling & Witzel, 2020;
Khodadadian et al., 2022; Vansteenwegen & Gunawan, 2019; Yu et al.,
2019), score in arcs (Verbeeck et al., 2014), tourist experiences (Ruiz-
Meza et al., 2021a, 2021b; Ruiz-Meza & Montoya-Torres, 2021; Zheng
& Liao, 2019), hotel selection (Divsalar et al., 2013; Zheng et al., 2020),
clustered POIs (Expósito et al., 2019a, 2019b).

In terms of solution methods, meta-heuristic approaches are most
commonly used to solve the TTDP and its variant. As claimed in Ruiz-
Meza and Montoya-Torres (2022), Iterated Local Search (ILS) or some
variations of it (Gavalas, Kasapakis, Konstantopoulos et al., 2015;
Gavalas, Konstantopoulos, Mastakas, Pantziou, & Tasoulas, 2015; Souf-
friau et al., 2013a; Vansteenwegen et al., 2009) is the most widely
applied technique. Indeed, the ILS provides fast and good quality
solutions and, therefore, has been embedded in several real-time ap-
plications. Other solution methods are: GRASP (Expósito et al., 2019a;
Ruiz-Meza et al., 2021b), large neighborhood search (Amarouche et al.,
2020), evolution strategy approach (Karabulut & Tasgetiren, 2020),
tabu search (Tang & Miller-Hooks, 2005), simulated annealing (Lin &
Yu, 2012, 2015), particle swarm optimization (Dang et al., 2013), ant
colony optimization (Ke et al., 2008). We finally observe that Gedik
et al. (2017) have investigated how to formulate the orienteering prob-
lem and its variants as a scheduling problem. In particular, they propose
a constraint programming model based on (time) interval variables,
which are useful to represent complex scheduling and routing activities
especially when they are optional (Adamo et al., 2016).

We finally observe that algorithms solving the TTDP represent one
of the main back-end components of expert and intelligent systems
designed for supporting tourist decision-making. Among the others they
include electronic tourist guides and advanced digital applications such
as CT-Planner, eCOMPASS, Scenic Athens, e-Tourism, City Trip Plan-
ner, EnoSigTur, TourRec, TripAdvisor, DieToRec, Heracles, TripBuilder,
TripSay. A more detailed review of these types of tools can be found
in Hamid et al. (2021), Gavalas et al. (2014a) and Borràs et al. (2014).

3. Problem definition

Let 𝐺 = (𝑉 ,𝐴) denote a directed complete multigraph, where each
vertex 𝑖 ∈ 𝑉 represents a PoI. Arcs in 𝐴 are a PoI-based representation
of two physical networks: pedestrian network and road network. More-
over, let 𝑚 be the length (in days) of the planning horizon. We denote
with (𝑖, 𝑗, 𝑚𝑜𝑑𝑒) ∈ 𝐴 the connection from PoI 𝑖 to PoI 𝑗 with transport
𝑜𝑑𝑒 ∈ {𝑊 𝑎𝑙𝑘,𝐷𝑟𝑖𝑣𝑒}. Arcs (𝑖, 𝑗,𝑊 𝑎𝑙𝑘) and (𝑖, 𝑗, 𝐷𝑟𝑖𝑣𝑒) represent the
uickest paths from PoI 𝑖 to PoI 𝑗 on the pedestrian network and the
oad network, respectively. As far as the travel time durations are
oncerned, we denote with 𝑡𝑤𝑖𝑗 and 𝑡𝑑𝑖𝑗 the durations of the quickest
aths from PoI 𝑖 to PoI 𝑗 with transport mode equal to 𝑊 𝑎𝑙𝑘 and 𝐷𝑟𝑖𝑣𝑒,
espectively. A score 𝑃𝑖 is assigned to each PoI 𝑖 ∈ 𝑉 . Such a score is
etermined by taking into account both the popularity of the attraction
s well as preferences of the tourist. Each PoI 𝑖 is characterized by a
ime windows [𝑂 ,𝐶] and a visit duration 𝑇 . We denote with 𝑎 the
3

𝑖 𝑖 𝑖 𝑖
rrival time of the tourist at PoI 𝑖, with 𝑖 ∈ 𝑉 . If the tourist arrives
efore the opening hour 𝑂𝑖, then he/she can wait. Hence, the PoI visit

starts at time 𝑧𝑖 = 𝑚𝑎𝑥(𝑂𝑖, 𝑎𝑖). The arrival time is feasible if the visit of
PoI 𝑖 can be started before the closing hour 𝐶𝑖, i.e. 𝑧𝑖 ≤ 𝐶𝑖. Multiple time
windows have been modelled as proposed in Souffriau et al. (2013b).
Therefore each PoI with more than one time window is replaced by a
set of dummy PoI (with the same location and with the same profit)
and with one time window each. A ‘‘max-n type’’ constraint is added
for each set of PoIs to guarantee that at most one PoI per set is visited.

In a walk-and-drive mobility environment a TTDP solution consists
in the selection of 𝑚 itineraries, starting and ending to a given initial
tourist position. Each itinerary corresponds to a sequence of PoI visits
and the transport mode selected for each pair of consecutive PoIs. As an
example, Fig. 1 depicts the itinerary followed by a tourist on a given
day. The tourist drives from node 𝑖𝑠1 to node 𝑖3, parks, then follows
pedestrian tour 𝑖3 − 𝑖4 − 𝑖5 in order to visit the attractions in nodes 𝑖3,
𝑖4 and 𝑖5. Hence he/she picks up the vehicle parked nearby PoI 𝑖3 and
drives to vertex 𝑖6, parks, then follows pedestrian tour 𝑖6 − 𝑖7 − 𝑖8 − 𝑖9
in order to visit the corresponding attractions. Finally the tourist picks
up the vehicle parked nearby PoI 𝑖6 and drives to the final destination
𝑖𝑒1 (which may coincide with 𝑖𝑠1).

Two parameters model tourist preferences in transport mode selec-
tion: 𝑀𝑖𝑛𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 and 𝑀𝑎𝑥𝑊 𝑎𝑙𝑘𝑖𝑛𝑔𝑇 𝑖𝑚𝑒. Given a pair of PoIs (𝑖, 𝑗),
we denote with 𝑚𝑜𝑑𝑒𝑖𝑗 the transport mode preferred by the tourist.
In the following, we assume that a tourist selects the transportation
mode 𝑚𝑜𝑑𝑒𝑖𝑗 with the following policy (see Algorithm 1). If 𝑡𝑤𝑖𝑗 is
strictly greater than 𝑀𝑎𝑥𝑊 𝑎𝑙𝑘𝑖𝑛𝑔𝑇 𝑖𝑚𝑒, the transport mode preferred
by the tourist is 𝐷𝑟𝑖𝑣𝑒. Otherwise if 𝑡𝑑𝑖𝑗 is not strictly greater than
𝑀𝑖𝑛𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 (and 𝑡𝑤𝑖𝑗 ≤ 𝑀𝑎𝑥𝑊 𝑎𝑙𝑘𝑖𝑛𝑔𝑇 𝑖𝑚𝑒), the preferred transport
mode is 𝑊 𝑎𝑙𝑘. In all remaining cases, the tourist prefers the quickest
transport mode. It is worth noting that our approach is not dependent
on the mode selection mechanism used by the tourist (i.e., Algorithm
1). A solution is feasible if the selected PoIs are visited within their
time windows and each itinerary duration is not greater than 𝐶𝑚𝑎𝑥. The
TTDP aims to determine the feasible tour that maximizes the total score
of the visited PoIs. Tourist preferences on transport mode selection
have been modelled as soft constraints. Therefore, ties on total score
are broken by selecting the solution with the minimum number of
connections violating tourist preferences.
Algorithm 1: SelectTransportMode

Input: PoI 𝑖, PoI 𝑗
Output: 𝑚𝑜𝑑𝑒𝑖𝑗

1 if 𝑡𝑤𝑖𝑗 > 𝑀𝑎𝑥𝑊 𝑎𝑙𝑘𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 then
2 𝑚𝑜𝑑𝑒𝑖𝑗 ← 𝐷𝑟𝑖𝑣𝑒;
3 else if 𝑡𝑑𝑖𝑗 ≤ 𝑀𝑖𝑛𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 then
4 𝑚𝑜𝑑𝑒𝑖𝑗 ← 𝑊 𝑎𝑙𝑘;
5 else
6 if 𝑡𝑤𝑖𝑗 ≤ 𝑡𝑑𝑖𝑗 then 𝑚𝑜𝑑𝑒𝑖𝑗 ← 𝑊 𝑎𝑙𝑘 else 𝑚𝑜𝑑𝑒𝑖𝑗 ← 𝐷𝑟𝑖𝑣𝑒;
7 end if

3.1. Modelling transfer

Transfer connections occur when the tourist switches from the road
network to the pedestrian network or vice versa. Since we assume that
tourists always enter a PoI as a pedestrian, travel time 𝑡𝑑𝑖𝑗 has to be
ncreased with transfer times associated to the origin PoI 𝑖 and the
estination PoI 𝑗. The former models the time required to pick up the
ehicle parked nearby PoI 𝑖 (PickUpTime). The latter models the time

required to park and then reach on foot PoI 𝑗 (ParkingTime). During
a preprocessing phase we have increased travel time 𝑡𝑑𝑖𝑗 by the (initial)
PickUpTime and the (final) ParkingTime. It is worth noting that a transfer
connection also occurs when PoI 𝑖 is the last PoI visited by a walking
subtour. In this case, the travel time from PoI 𝑖 to PoI 𝑗 corresponds to
the duration of a walk-and-drive path on the multigraph G: the tourist

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.
starts from PoI 𝑖, reaches on foot the first PoI visited by the walking
subtour, then reaches PoI 𝑗 by driving. In Fig. 1 an example of walk-
and-drive path is 𝑖5 − 𝑖3 − 𝑖6. We observe that the reference application
context consists of thousands of daily visitable PoIs. Therefore, it is not
an affordable option pre-computing the durations of (|𝑉 | − 2) walk-
and-drive paths associated to each pair of PoIs (𝑖, 𝑗). For example in
our computation campaign the considered 3643 PoIs would require
more than 180 GB of memory to store about 5 ⋅ 1010 travel times. For
these reasons we have chosen to reduce significantly the size of the
instances by including in the PoI-based graph 𝐺 only the PickUpTime
and ParkingTime. As illustrated in the following sections, walk-and-drive
travel scenarios are handled as a special case of 𝐷𝑟𝑖𝑣𝑒 transport mode
with travel time computed at run time.

4. Problem-solving method

Our solution approach is based on the Iterated Local Search (ILS)
proposed in Vansteenwegen et al. (2009) for the TOPTW. To account
for a walk-and-drive mobility environment, we developed a number of
extensions and adaptations, which are thoroughly discussed in cor-
responding sections. In our problem, the main decisions amount to
determine the sequence of PoIs to be visited and the transport mode for
each movement between pairs of consecutive PoIs. The combination of
walking subtours and transport mode preferences is the new challenging
part of a TTDP defined on a walk-and-drive mobility environment.
To handle these new features, our ILS contains new contributions
compared to the literature. Algorithm 2 reports a general description
of ILS. The algorithm is initialized with an empty solution. Then, an
improvement phase is carried out by combining a local search and
a perturbation step, both described in the following subsections. The
algorithm stops when one of the following thresholds is reached: the
maximum number of iterations without improvements or a time limit.
The following subsections are devoted to illustrating local search and
the perturbation phase.

4.1. Local search

Given an initial feasible solution (incumbent), the idea of local search
is to explore a neighbourhood of solutions close to the incumbent one.
Once the best neighboor is found, if it is better than the incumbent, then
the incumbent is updated and the search restarts. In our case the local
search procedure is an insertion heuristic, where the initial incumbent is
the empty solution and neighbours are all solutions obtained from the
incumbent by adding a single PoI. The neighbourhood is explored in a
systematic way by considering all possible insertions in the current so-
lution. As illustrated in Section 5, the feasibility of neighbour solutions
is checked in constant time, i.e., with a time complexity of O(1). As far
as the objective function is concerned, we evaluate each insertion as
follows. For each itinerary of the incumbent we consider a (unrouted)
PoI 𝑗, if it can be visited without violating both its time window and the
corresponding max-n type constraint. Then it is determined the itinerary
and the corresponding position with the smallest time consumption.
We compute the ratio between the score of the PoI and the extra
time necessary to reach and visit the new PoI 𝑗. The ratio aims to
model a trade-off between time consumption and score. As discussed
in Vansteenwegen et al. (2009), due to time windows the score is con-
sidered more relevant than the time consumption during the insertion
evaluation. Therefore, the POI 𝑗∗ with the highest (𝑠𝑐𝑜𝑟𝑒)2∕(𝑒𝑥𝑡𝑟𝑎 𝑡𝑖𝑚𝑒)
ratio is chosen for insertion. Ties are broken by selecting the insertion
with the minimum number of violated soft constraints. After the PoI
to be inserted has been selected and it has been determined where to
insert it, the affected itinerary needs to be updated as illustrated in
Section 6. This basic iteration of insertion is repeated until it is not
possible to insert further PoIs due to the constraint imposed by the
maximum duration of the itineraries and by PoI time windows. At this
point, we have reached a local optimal solution and we proceed to
4

diversify the search with a Solution Perturbation phase. In Section 7, we
illustrate how we leverage clustering algorithms to identify and explore
high density neighbourhood consisting of candidate PoIs with a ‘good’
ratio value.

4.2. Solution perturbation

The perturbation phase has the objective of diversifying the local
search, avoiding that the algorithm remains trapped in a local optima
of solution landscape. The perturbation procedure aims to remove a
set of PoIs occupying consecutive positions in the same itinerary. It is
worth noting that the perturbation strategy is adaptive. As discussed in
Section 5, in a multi-modal environment a removal might not satisfies
the triangle inequality, generating a violation of time windows for PoIs
visited later. Since time windows are modelled as hard constraints,
the perturbation procedure adapts (in constant time) the starting and
ending removal positions so that no time windows are violated. To this
aim we relax a soft constraint, i.e. tourist preferences about transport
mode connecting remaining PoIs. The perturbation procedure finalizes
(Algorithm 2 - line 16) the new solution by decreasing the arrival times
to a value as close as possible to the start time of the itinerary, in
order to avoid unnecessary waiting times. Finally, we observe that the
parameter concerning the length of the perturbation (𝜌𝑑 in Algorithm
2) is a measure of the degree of search diversification. For this reason 𝜌𝑑
is incremented by 1 for each iteration in which there has not been an
improvement of the objective function. If 𝜌𝑑 is equal to the length of the
longest route, to prevent search from restarting from the empty solution,
the 𝜌𝑑 parameter is set equal to 50% of the length of the smallest route
in terms of number of PoIs. Conversely, if the solution found by the
local search is the new best solution 𝑠∗, then search intensification degree
is increased and a small perturbation is applied to the current solution
𝑠′∗, i.e. 𝜌𝑑 perturbation is set to 1.

Algorithm 2: Iterated Local Search
Data: MaxIter, TimeLimit

1 𝜎𝑑 ← 1, 𝜌𝑑 ← 1, 𝑠′∗ ← ∅, 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇 𝑖𝑚𝑒𝑠𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← 0;
2 while NumberOfTimesNoImprovement ≤ MaxIter Or ElapTime≤

TimeLimit do
3 𝑠′∗ ← 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑃 𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒(𝑠′∗);
4 if 𝑠′∗ better than 𝑠∗ then
5 𝑠∗ ← 𝑠′∗;
6 𝜌𝑑 ← 1;
7 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇 𝑖𝑚𝑒𝑠𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← 0;
8 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇 𝑖𝑚𝑒𝑠𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ←

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇 𝑖𝑚𝑒𝑠𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 + 1;
9 𝜌𝑑 ← 𝜌𝑑 + 1;
10 if 𝜌𝑑 ≥ Size of biggest itinerary then
11 𝜌𝑑 ← max(1, ⌊ (Size of smallest itinerary)∕2⌋);
12 end if
13 𝜎𝑑 ← 𝜎𝑑 + 𝜌𝑑 ;
14 𝜎𝑑 ← 𝜎𝑑 𝑚𝑜𝑑 (Size of smallest itinerary);
15 𝑠′∗ ←PerturbationProcedure(𝑠′∗,𝜌𝑑 ,𝜎𝑑);
16 Update ElapTime;
17 end while

5. Constant time evaluation framework

This section illustrates how to check in constant time the feasibility
of a solution chosen in the neighbourhood of 𝑠′∗. To this aim the
encoding of the current solution has been enriched with additional
information. As illustrated in the following section, such information
needs to be updated not in constant time, when the incumbent is
updated. However this is done much less frequently (once per iteration)
than evaluating all solutions in the neighbourhood of the current

solution.

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.
Fig. 2. Graphical representation of solution encoding of itinerary of Fig. 1. Red travel times refers to duration of walk-and-drive paths (𝑖5 − 𝑖3 − 𝑖6) and (𝑖9 − 𝑖6 − 𝑖𝑒1).
Solution encoding. We recall that, due to multi-modality, a feasible
solution has to prescribe for each itinerary a sequence of PoIs and the
transport mode between consecutive visits. We encode each itinerary
in the solution 𝑠′∗ as a sequence of PoI visits. Fig. 2 is a graphical
representation of the solution encoding of itinerary of Fig. 1. Given two
PoIs 𝑖 and 𝑘 visited consecutively, we denote with 𝑚𝑜𝑑𝑒∗𝑖𝑘 the transport
mode prescribed by 𝑠′∗. We also denote with 𝑡𝑖𝑘, the travel time needed
to move from PoI 𝑖 to PoI 𝑘. If the prescribed transport mode is 𝐷𝑟𝑖𝑣𝑒,
then the travel time 𝑡𝑖𝑘 has to take properly into account the transfer
time needed to switch from the pedestrian network to the road network
at PoI 𝑖. In particular, a transfer connection starting at the origin PoI 𝑖
might generate a walking subtour. For example in the itinerary of Fig. 1,
in order to drive from PoI 𝑖5 to PoI 𝑖6, the tourist has to go on foot from
PoI 𝑖5 to PoI 𝑖3 (transfer connection), pick up the vehicle parked nearby
PoI 𝑖3, drive from PoI 𝑖3 to PoI 𝑖6 and then park the vehicle nearby PoI
𝑖6. In this case we have that 𝑡𝑖5𝑖6 = 𝑡𝑤𝑖5𝑖3 + 𝑡𝑑𝑖3𝑖6 . To evaluate in constant
time the insertion of a new visit between PoIs 𝑖5 and 𝑖6, we need to
encode also subtours. Firstly we maintain two quantities for the ℎth
subtour of an itinerary: the index of the first PoI and the index of the
last PoI denote 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼ℎ and 𝐿𝑎𝑠𝑡𝑃 𝑜𝐼ℎ, respectively. For example, the
itinerary in Fig. 1 has two subtours: the first subtour (ℎ = 1) is defined
by the PoI sequence 𝑖3 − 𝑖4 − 𝑖5 (𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼1 = 𝑖3, 𝐿𝑎𝑠𝑡𝑃 𝑜𝐼1 = 𝑖5); the
second subtour (ℎ = 2) is defined by the PoI sequence 𝑖6 − 𝑖7 − 𝑖8 − 𝑖9
(𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼2 = 𝑖6, 𝐿𝑎𝑠𝑡𝑃 𝑜𝐼2 = 𝑖9). We also maintain information for
determining in constant time the subtour which a PoI belongs to. In
particular, we denote with 𝑆 a vector of |𝑉 | elements: if PoI 𝑖 belongs
to subtour ℎ, then 𝑆𝑖 = ℎ. For the example in Fig. 1 we have that
𝑆𝑖3 = 𝑆𝑖4 = 𝑆𝑖5 = 1, while 𝑆𝑖6 = 𝑆𝑖7 = 𝑆𝑖8 = 𝑆𝑖9 = 2. To model that
the remaining PoIs do not belong to any subtour we set 𝑆𝑖1 = 𝑆𝑖2 = −1.
Given two PoIs 𝑖 and 𝑘 visited consecutively by solution 𝑠′∗, the arrival
time 𝑎𝑘 is determined as follows:

𝑎𝑘 = 𝑧𝑖 + 𝑇𝑖 + 𝑡𝑖𝑘, (1)

where the travel time 𝑡𝑖𝑘 is computed by Algorithm 3, according to the
prescribed transport 𝑚𝑜𝑑𝑒. If 𝑆𝑖 ≠ −1 and 𝑚𝑜𝑑𝑒 = 𝐷𝑟𝑖𝑣𝑒, then the input
parameter 𝑝 denote the first PoI of the subtour which PoI 𝑖 belongs
to, i.e. 𝑝 = 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼𝑆𝑖

. If 𝑚𝑜𝑑𝑒 = 𝑊 𝑎𝑙𝑘 the input parameter 𝑝 is set
to the default value −1. Parameter 𝐶ℎ𝑒𝑐𝑘 is a boolean input, stating
if soft constraints are relaxed or not. If 𝐶ℎ𝑒𝑐𝑘 is 𝑡𝑟𝑢𝑒, when 𝑚𝑜𝑑𝑒𝑖𝑘
violates soft constraints the travel time 𝑡𝑖𝑘 is set to a large positive
value M, making the arrivals at later PoIs infeasible wrt (hard) time-
window constraints. In all remaining cases 𝑡𝑖𝑘 is computed according
to the following relationship:

𝑡𝑖𝑘 = 𝑡𝑤 + 𝑡𝑑 . (2)

In particular if the prescribed transport mode is ‘‘walk from PoI 𝑖 to PoI
𝑘", then 𝑡𝑤 = 𝑡𝑤𝑖𝑘 and 𝑡𝑑 = 0. Otherwise the prescribed transport mode is
‘‘walk from PoI 𝑖 to PoI 𝑝, pick-up the vehicle at PoI 𝑝 and then drive from
PoI 𝑝 to PoI 𝑘", with 𝑡𝑤 = 𝑡𝑤𝑖𝑝 and 𝑡𝑑 = 𝑡𝑑𝑝𝑘. We abuse notation and when
PoI 𝑖 does not belong to a subtour (𝑆𝑖 = −1) and 𝑚𝑜𝑑𝑒 = 𝐷𝑟𝑖𝑣𝑒, we set
𝑝 = 𝑖 with 𝑡𝑤𝑖𝑖 = 0 and 𝑚𝑜𝑑𝑒𝑖𝑖 = 𝑊 𝑎𝑙𝑘. A further output of Algorithm 3
is the boolean value 𝑉 𝑖𝑜𝑙𝑎𝑡𝑒𝑑, exploited during PoI insertion/removal
to update the number of violated soft constraints.
5

The first six columns of Table 1 report the encoding of the itinerary
reported in Fig. 2. Tourist position is represented by dummy PoIs 𝑖𝑠1 and
𝑖𝑒1, with a visiting time equal to zero. The arrival time 𝑎𝑖 is computed
according to (1). Column 𝑧𝑖 + 𝑇𝑖 reports the leaving time with 𝑧𝑖 =
𝑚𝑎𝑥(𝑎𝑖, 𝑂𝑖) and a visiting time 𝑇𝑖 equal to 5 time units. All leaving
times satisfy time-window constraints, i.e. 𝑧𝑖 ≤ 𝐶𝑖. As far as the timing
information associated to the starting and ending PoIs 𝑖𝑠1 and 𝑖𝑒1, they
model that the tourist leaves 𝑖𝑠1 at a given time instant (i.e. 𝑎𝑖𝑠1 = 0), the
itinerary duration is 224 time units, with time available for sightseeing
equal 320 time units. All connections satisfy soft constraints, since we
assume that 𝑀𝑎𝑥𝑊 𝑎𝑙𝑘𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 and 𝑀𝑖𝑛𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 are equal to 30
and 2 time units, respectively. The last four columns reports details
about travel time computations performed by Algorithm 3. Travel time
information between PoI 𝑖 and the next one is reported on the row
associated to PoI 𝑖. Thus this data are not provided for the last (dummy)
PoI 𝑖𝑒1.

Algorithm 3: Compute travel time
Data: M
Input: PoI 𝑖, PoI 𝑘, 𝑚𝑜𝑑𝑒, 𝐶ℎ𝑒𝑐𝑘, PoI 𝑝
Output: 𝑡𝑖𝑘, Violated

1 Violated← False;
2 if 𝑚𝑜𝑑𝑒 == 𝑊 𝑎𝑙𝑘 then
3 𝑡𝑑 ← 0;
4 if (𝐶ℎ𝑒𝑐𝑘 ∧ 𝑚𝑜𝑑𝑒𝑖𝑘 ≠ 𝑊 𝑎𝑙𝑘) then 𝑡𝑤 ← 𝑀 else 𝑡𝑤 ← 𝑡𝑤𝑖𝑘;
5 if (𝑚𝑜𝑑𝑒𝑖𝑘 ≠ 𝑊 𝑎𝑙𝑘) then Violated← True;
6 else
7 if (𝐶ℎ𝑒𝑐𝑘 ∧ 𝑚𝑜𝑑𝑒𝑖𝑝 ≠ 𝑊 𝑎𝑙𝑘) then 𝑡𝑤 ← 𝑀 else 𝑡𝑤 ← 𝑡𝑤𝑖𝑝;
8 if (𝐶ℎ𝑒𝑐𝑘 ∧ 𝑚𝑜𝑑𝑒𝑝𝑘 ≠ 𝐷𝑟𝑖𝑣𝑒) then 𝑡𝑑 ← 𝑀 else 𝑡𝑑 ← 𝑡𝑑𝑝𝑘;
9 if (𝑚𝑜𝑑𝑒𝑖𝑝 ≠ 𝑊 𝑎𝑙𝑘 ∨ 𝑚𝑜𝑑𝑒𝑝𝑘 ≠ 𝐷𝑟𝑖𝑣𝑒) then Violated← True;
10 𝑡𝑖𝑘 = 𝑡𝑤 + 𝑡𝑑 ;

5.1. Feasibility check

In describing rules for feasibility checking, we will always consider
inserting (unrouted) PoI 𝑗 between PoI 𝑖 and 𝑘. In the following
we assume that PoI 𝑗 satisfies the max-n type constraints, modelling
multiple time windows. Feasibility check rules are illustrated in the
following by distinguishing three main insertion scenarios. The first
one is referred to as basic insertion and assumes that the extra visit 𝑗
propagates a change only in terms of arrival times at later PoIs. The
second one is referred to as advanced insertion and generates a change
on later PoIs in terms of both arrival times and (extra) transfer time of
subtour 𝑆𝑘 ≠ −1. The third one is referred to as a special case of the
advanced insertion, with PoI 𝑘 not belonging to any subtour (i.e. 𝑆𝑘 is
equal to −1). A special case insertion generates a new subtour where
PoI 𝑘 is the last attraction to be visited.

Algorithm 4 reports the pseudocode of the feasibility check pro-
cedure, where the insertion type is determined by (𝑚𝑜𝑑𝑒∗𝑖𝑘, 𝑆𝑘, 𝑚𝑜𝑑𝑒𝑖𝑗 ,
𝑚𝑜𝑑𝑒𝑗𝑘). To illustrate the completeness of our feasibility check proce-
dure, we report in Table 2 all insertion scenarios, discussed in detail
in the following subsections. It is worth noting that if 𝑚𝑜𝑑𝑒∗𝑖𝑘 is 𝑊 𝑎𝑙𝑘
then there exists a walking subtour consisting of at least PoIs 𝑖 and 𝑘,
i.e. 𝑆 ≠ −1. For this reason we do not detail case 0 in Table 2.
𝑘

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.

P
I
t

w
i
w
A
v

Table 1
Details of solution encoding for itinerary reported in Fig. 2.

Itinerary Time windows Travel Time Computation

PoI Violated mode∗𝑖𝑘 S𝑖 a𝑖 z𝑖+𝑇 𝑖 𝑂𝑖 𝐶𝑖 p t𝑤 t𝑑 t𝑖𝑘
𝑖𝑠1 False Drive −1 0 0 0 0 𝑖𝑠1 0 25 25
𝑖2 False Drive −1 25 30 0 75 𝑖2 0 15 15

𝑖3 False Walk 1 45 55 50 115 −1 20 0 20
𝑖4 False Walk 1 75 80 60 95 −1 5 0 5
𝑖5 False Drive 1 85 90 60 115 𝑖3 25 5 30

𝑖6 False Walk 2 120 125 80 135 −1 10 0 10
𝑖7 False Walk 2 135 155 150 175 −1 20 0 20
𝑖8 False Walk 2 175 180 90 245 −1 7 0 7
𝑖9 False Drive 2 187 192 90 245 𝑖6 27 5 32

𝑖𝑒1 – – −1 224 224 0 320 – – – –
Algorithm 4: Feasibility check procedure
Data: PoI 𝑖, PoI 𝑗,PoI 𝑘, incumbent solution 𝑠∗

1 Compute 𝑆ℎ𝑖𝑓𝑡𝑗 and 𝑊 𝑎𝑖𝑡𝑗 ;
2 if 𝑚𝑜𝑑𝑒∗𝑖𝑘 = 𝑚𝑜𝑑𝑒𝑗𝑘 ∧ (𝑚𝑜𝑑𝑒𝑗𝑘 = 𝐷𝑟𝑖𝑣𝑒 ∨ 𝑚𝑜𝑑𝑒𝑖𝑗 = 𝑊 𝑎𝑙𝑘) then
3 Check Feasibility with (5) and (6) // Basic Insertion;
4 else if 𝑆𝑘 ≠ −1 then
5 Compute 𝛥𝑘 and 𝑆ℎ𝑖𝑓𝑡𝑞 ;
6 Check feasibility with (11), (12) and (6) // Advanced Insertion;
7 else
8 Compute 𝛥𝑘 and 𝑆ℎ𝑖𝑓𝑡𝑞 ;
9 Check feasibility with (13), (12) and (6) // Special Case;
10 end if
Table 2
Insertion scenarios and their relationships with feasibility check procedures.

Case 𝑚𝑜𝑑𝑒∗𝑖𝑘 𝑆𝑘 (𝑚𝑜𝑑𝑒𝑖𝑗 , 𝑚𝑜𝑑𝑒𝑗𝑘) Insertion type

0 𝑊 𝑎𝑙𝑘 = −1 – –

1 𝑊 𝑎𝑙𝑘 ≠ −1

(Walk, Walk) Basic

(Drive, Drive)
Advanced(Walk, Drive)

(Drive, Walk)

2 𝐷𝑟𝑖𝑣𝑒 ≠ −1

(Walk, Walk) Advanced

(Drive, Drive) Basic(Walk, Drive)

(Drive, Walk) Advanced

3 𝐷𝑟𝑖𝑣𝑒 −1

(Walk, Walk) Special Case

(Drive, Drive) Basic(Walk, Drive)

(Drive, Walk) Special Case

5.1.1. Basic insertion
We observe that in a unimodal mobility environment a PoI insertion

is always basic (Vansteenwegen et al., 2009). In a walk-and-drive mobil-
ity environment an insertion is checked as basic if one of the following
conditions hold. If PoI 𝑗 is added to the walking subtour which PoI 𝑖 and
oI 𝑘 belong to, i.e. case 1 in Table 2 with 𝑚𝑜𝑑𝑒𝑖𝑗 = 𝑚𝑜𝑑𝑒𝑗𝑘 = 𝑊 𝑎𝑙𝑘.
n all other cases we have a basic insertion if it prescribes 𝐷𝑟𝑖𝑣𝑒 as
ransport mode from 𝑗 to 𝑘, i.e. case 1 and 2 with 𝑚𝑜𝑑𝑒𝑗𝑘 = 𝐷𝑟𝑖𝑣𝑒.

Five out of 12 scenarios of Table 2 refers to basic insertions. Conditions
underlying the first three basic insertion scenarios is that 𝑘 belongs to a

alking subtour (i.e. 𝑆𝑘 ≠ −1) and 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼𝑆𝑘
is not updated after the

nsertion. The remaining basic insertions of Table 2 refer to scenarios
here before and after the insertion, PoI 𝑘 does not belong to a subtour.
ll these five scenarios are referred to as basic insertions since the extra
isit of PoI 𝑗 has an impact only on the arrival times at later PoIs.
6

Examples. To ease the discussion, we illustrate two examples of basic
insertions for the itinerary of Fig. 1. Other illustrative examples can be
easily derived from Fig. 1.

• Insert PoI 𝑗 between PoI 𝑖 = 𝑖3 and POI 𝑘 = 𝑖4, with 𝑚𝑜𝑑𝑒𝑖𝑗 = 𝑊 𝑎𝑙𝑘
and 𝑚𝑜𝑑𝑒𝑗𝑘 = 𝑊 𝑎𝑙𝑘. Before and after the insertion 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼𝑆𝑘

is
𝑖3 and, therefore, the insertion has no impact on later transfer
connections.

• Insert PoI 𝑗 between PoI 𝑖 = 𝑖𝑠1 and POI 𝑘 = 𝑖2, with 𝑚𝑜𝑑𝑒𝑖𝑗 = 𝑊 𝑎𝑙𝑘
and 𝑚𝑜𝑑𝑒𝑗𝑘 = 𝐷𝑟𝑖𝑣𝑒. Before and after the insertion PoI 𝑖2 does not
belong to a subtour. Insertion can change only arrival times from
PoI 𝑖2 on.

To achieve an O(1) complexity for the feasibility check of a basic
insertion, we adopt the approach proposed in Vansteenwegen et al.
(2009) for a unimodal mobility environment and reported in the fol-
lowing for the sake of completeness. We define two quantities for each
PoI 𝑖 selected by the incumbent solution: 𝑊 𝑎𝑖𝑡𝑖, 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖. We denote
with 𝑊 𝑎𝑖𝑡𝑖 the waiting time occurring when the tourist arrives at PoI
𝑖 before the opening hour:

𝑊 𝑎𝑖𝑡𝑖 = 𝑚𝑎𝑥{0, 𝑂𝑖 − 𝑎𝑖}.

𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖 represents the maximum increase of start visiting time 𝑧𝑖,
such that later PoIs can be visited before their closing hour. 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖
is defined by (3), where for notational convenience PoI 𝑖+1 represents
the immediate successor of a generic PoI 𝑖.

𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖 = 𝑚𝑖𝑛{𝐶𝑖 − 𝑧𝑖,𝑊 𝑎𝑖𝑡𝑖+1 +𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖+1}. (3)

Table 3 reports values of 𝑊 𝑎𝑖𝑡 and 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡 for the itinerary of
Fig. 1. It is worth noting that the definition of 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖 is a backward
recursive formula, initialized with the difference (𝐶𝑚𝑎𝑥 − 𝑧𝑚𝑎𝑥), where
𝑧𝑚𝑎𝑥 denotes duration of the itinerary. To check the feasibility of an
insertion of PoI 𝑗 between PoI 𝑖 and 𝑘, we compute extra time 𝑆ℎ𝑖𝑓𝑡𝑗
needed to reach and visit PoI 𝑗, as follows:

𝑆ℎ𝑖𝑓𝑡𝑗 = 𝑡𝑖𝑗 +𝑊 𝑎𝑖𝑡𝑗 + 𝑇𝑗 + 𝑡𝑗𝑘 − 𝑡𝑖𝑘. (4)

It is worth noting that travel times are computed by taking into account

soft constraints (i.e. input parameter Check of Algorithm 3 is set equal

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.

o

𝑆

i
c

Table 3
Solution encoding with additional information for itinerary of Fig. 2.

Itinerary Time Windows Additional data

PoI Violated mode∗𝑖𝑘 S𝑖 a𝑖 z𝑖+𝑇 𝑖 O𝑖 C𝑖 Wait𝑖 MaxShif t𝑖 𝑊 𝑎𝑖𝑡𝑖 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖 ME𝑖

𝑖𝑠1 False Drive −1 0 0 0 0 0 0 – – –
𝑖2 False Drive −1 25 30 0 75 0 20 – – –

𝑖3 False Walk 1 45 55 50 115 5 15 5 20 0
𝑖4 False Walk 1 75 80 60 95 0 15 0 20 15
𝑖5 False Drive 1 85 90 60 115 0 15 0 30 25

𝑖6 False Walk 2 120 125 80 135 0 15 15 15 0
𝑖7 False Walk 2 135 155 150 175 15 25 15 25 0
𝑖8 False Walk 2 175 180 90 245 0 58 0 58 85
𝑖9 False Drive 2 187 192 90 245 0 58 0 58 97

𝑖𝑒1 – – −1 224 224 0 320 0 96 – – –
w

m
𝑖

𝑀

w
𝑗
t
𝑚

𝑖
a

𝑆

to true). Feasibility of an insertion is checked in constant time at line 3
f Algorithm 4 by inequalities (5) and (6).

ℎ𝑖𝑓𝑡𝑗 = 𝑡𝑖𝑗 +𝑊 𝑎𝑖𝑡𝑗 + 𝑇𝑗 + 𝑡𝑗𝑘 − 𝑡𝑖𝑘 ≤ 𝑊 𝑎𝑖𝑡𝑘 +𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑘 (5)

𝑧𝑖 + 𝑇𝑖 + 𝑡𝑖𝑗 +𝑊 𝑎𝑖𝑡𝑗 ≤ 𝐶𝑗 . (6)

5.1.2. Advanced insertion
In advanced insertion, the feasibility check has to take into account

that the insertion has an impact on later PoIs in terms of both arrival
times and transfer times. Let consider an insertion of a PoI 𝑗 between
PoI 𝑖2 and 𝑖3 of Fig. 1, with 𝑚𝑜𝑑𝑒𝑖2𝑗 = 𝑚𝑜𝑑𝑒𝑗𝑖3 = 𝑊 𝑎𝑙𝑘. The insertion has
an impact on the travel time from PoI 𝑖5 to PoI 𝑖6, i.e. after the insertion
travel time 𝑡𝑖5𝑖6 has to be updated to the new value 𝑡𝑛𝑒𝑤𝑖5𝑖6

= 𝑡𝑤𝑖5𝑖2 + 𝑡𝑑𝑖2𝑖6 .
This implies that we have to handle two distinct feasibility checks.
The former has a scope from PoI 𝑖3 to 𝑖5 and checks the arrival times
with respect to 𝑆ℎ𝑖𝑓𝑡𝑗 computed according to (4). The latter concerns
PoIs visited after 𝑖5 and checks arrival times with respect to 𝑆ℎ𝑖𝑓𝑡𝑖5 ,
computed by taking into account both 𝑆ℎ𝑖𝑓𝑡𝑗 and the new value of
𝑡𝑖5𝑖6 . For notational convenience, the first PoI reached by driving after
PoI 𝑘 is referred to as PoI 𝑏. Similarly, we denote with 𝑞 the last PoI
of the walking subtour, which 𝑘 belongs to (i.e. if 𝑆𝑘 ≠ −1, then
𝑞 = 𝐿𝑎𝑠𝑡𝑃 𝑜𝐼𝑆𝑘

). To check if the type of insertion is advanced, we have
to answer the following question: has the insertion an impact on the
travel time 𝑡𝑞𝑏? To answer it is sufficient to check if after the insertion
the value of 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼𝑆𝑘

will be updated, i.e. the insertion changes the
first PoI visited by the walking subtour 𝑆𝑘. Five out of 12 scenarios of
Table 2 refers to advanced insertions, that is scenarios where 𝑘 belongs
to a walking subtour (i.e. 𝑆𝑘 ≠ −1) and 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼𝑆𝑘

is updated after the
insertion. Algorithm 4 handles such advanced insertions by checking if
one of the following conditions holds. The insertion of PoI 𝑗 splits the
subtour which PoI 𝑖 and PoI 𝑗 belong to, i.e. case 1 in Table 2 with
𝑚𝑜𝑑𝑒𝑖𝑗 = 𝐷𝑟𝑖𝑣𝑒 ∨ 𝑚𝑜𝑑𝑒𝑗𝑘 = 𝐷𝑟𝑖𝑣𝑒. In all other cases the insertion is
checked as advanced if PoI 𝑗 is appended at the beginning of the subtour
𝑆𝑘, i.e. case 2 in Table 2 with 𝑚𝑜𝑑𝑒𝑗𝑘 = 𝑊 𝑎𝑙𝑘.

Examples. As we did for basic insertions, we illustrate two advanced
insertions for the itinerary of Fig. 1. Other illustrative examples can be
easily derived from Fig. 1.

• Insert PoI 𝑗 between PoI 𝑖 = 𝑖7 and POI 𝑘 = 𝑖8, with 𝑚𝑜𝑑𝑒𝑖𝑗 = 𝐷𝑟𝑖𝑣𝑒
and 𝑚𝑜𝑑𝑒𝑗𝑘 = 𝑊 𝑎𝑙𝑘. After the insertion 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼𝑆𝑘

is 𝑗. Insertion
change 𝑡𝑖9𝑖1 to the new value 𝑡𝑛𝑒𝑤𝑖9𝑖1

= 𝑡𝑤𝑖9𝑗 + 𝑡𝑑𝑗𝑖1 .
• Insert PoI 𝑗 between PoI 𝑖 = 𝑖5 and POI 𝑘 = 𝑖6, with 𝑚𝑜𝑑𝑒𝑖𝑗 = 𝑊 𝑎𝑙𝑘

and 𝑚𝑜𝑑𝑒𝑗𝑘 = 𝑊 𝑎𝑙𝑘. After the insertion 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼𝑆𝑘
is 𝑖3. Insertion

change 𝑡𝑖9𝑖1 to the new value 𝑡𝑛𝑒𝑤𝑖9𝑖1
= 𝑡𝑤𝑖9𝑖3 + 𝑡𝑑𝑖3𝑖1 .

To evaluate in constant time an advanced insertion, for each PoI 𝑖
included in solution 𝑠′∗, three further quantities are defined when 𝑆𝑘 ≠
−1: 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖, 𝑊 𝑎𝑖𝑡𝑖 and 𝑀𝐸𝑖. 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖 represents the maximum
ncrease of start visiting time 𝑧𝑖, such that later PoIs of subtour 𝑆𝑖
an be visited within their time windows. The definition of 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡
7

𝑖

is computed as follows in (backward) recursive manner starting with
𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑞 = (𝐶𝑞 − 𝑧𝑞).

𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖 = 𝑚𝑖𝑛{𝐶𝑖 − 𝑧𝑖,𝑊 𝑎𝑖𝑡𝑖+1 +𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖+1}. (7)

𝑊 𝑎𝑖𝑡𝑖 corresponds to the sum of waiting times of later PoIs of subtour
𝑆𝑖. We abuse notation by denoting with 𝑖+1 the direct successor of PoI
𝑖 and such that 𝑆𝑖+1 = 𝑆𝑖. Then we have that

𝑊 𝑎𝑖𝑡𝑖 = 𝑊 𝑎𝑖𝑡𝑖+1 +𝑊 𝑎𝑖𝑡𝑖, (8)

ith 𝑊 𝑎𝑖𝑡𝐿𝑎𝑠𝑡𝑃 𝑜𝐼𝑆𝑖 = 𝑊 𝑎𝑖𝑡𝐿𝑎𝑠𝑡𝑃 𝑜𝐼𝑆𝑖 . It worth recalling that in a multi-
modal mobility environment an insertion might propagate to later
PoIs a decrease of the arrival times. The maximum decrease that a
PoI 𝑖 can propagate is equal to max{0, 𝑎𝑖 − 𝑂𝑖}. 𝑀𝐸𝑖 represents the

aximum decrease of arrival times that can be propagated from PoI
to 𝐿𝑎𝑠𝑡𝑃 𝑜𝐼𝑆𝑖

, that is

𝐸𝑖 = min{𝑀𝐸𝑖+1,max{(0, 𝑎𝑖 − 𝑂𝑖)}}, (9)

ith 𝑀𝐸𝐿𝑎𝑠𝑡𝑃 𝑜𝐼𝑆𝑖
= max{(0, 𝑎𝐿𝑎𝑠𝑡𝑃 𝑜𝐼𝑆𝑖 −𝑂𝐿𝑎𝑠𝑡𝑃 𝑜𝐼𝑆𝑖

)}. If extra visit of PoI
generates an increase of the arrival times at later PoIs, i.e. 𝑆ℎ𝑖𝑓𝑡𝑗 ≥ 0,

hen the arrival time of PoI 𝐿𝑎𝑠𝑡𝑃 𝑜𝐼𝑆𝑘
is increased by the quantity

𝑎𝑥{0, 𝑆ℎ𝑖𝑓 𝑡𝑗−𝑊 𝑎𝑖𝑡𝑘}. On the other hand if 𝑆ℎ𝑖𝑓𝑡𝑗 < 0 then the arrival
time of PoI 𝐿𝑎𝑠𝑡𝑃 𝑜𝐼𝑆𝑘

is decreased by the quantity min{𝑀𝐸𝑘, |𝑆ℎ𝑖𝑓𝑡𝑗 |}.
Let 𝜆𝑗 be a boolean function stating when 𝑆ℎ𝑖𝑓𝑡𝑗 is non-negative:

𝜆𝑗 =
{

1 𝑆ℎ𝑖𝑓𝑡𝑗 ≥ 0
0 𝑆ℎ𝑖𝑓𝑡𝑗 < 0

We quantify the impact of extra visit of PoI 𝑗 on the arrival times of
PoI 𝐿𝑎𝑠𝑡𝑃 𝑜𝐼𝑆𝑘 by computing the value 𝛥𝑘 as follows

𝛥𝑘 = 𝜆𝑗 × max{0, 𝑆ℎ𝑖𝑓 𝑡𝑗 −𝑊 𝑎𝑖𝑡𝑘} − (1 − 𝜆𝑗) × min{𝑀𝐸𝑘, |𝑆ℎ𝑖𝑓𝑡𝑗 |}.

To check the feasibility of the insertion of PoI 𝑗 between PoI 𝑖 and 𝑘,
along with 𝑆ℎ𝑖𝑓𝑡𝑗 we compute 𝑆ℎ𝑖𝑓𝑡𝑞 as the difference between the
new arrival time at PoI 𝑏 and the old one, that is:

𝑆ℎ𝑖𝑓𝑡𝑞 = 𝑡𝑛𝑒𝑤𝑞𝑏 + 𝛥𝑘 − 𝑡𝑞𝑏, (10)

where 𝑡𝑛𝑒𝑤𝑞𝑏 would be the new value of 𝑡𝑞𝑏 if the algorithm inserted PoI
𝑗 between PoIs 𝑖 and 𝑘. Feasibility of the insertion of PoI 𝑗 between PoI

and 𝑘 is checked in constant time at line 6 of Algorithm 4 by (11), (6)
nd (12).

ℎ𝑖𝑓𝑡𝑗 ≤ 𝑊 𝑎𝑖𝑡𝑘 +𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑘 (11)

𝑆ℎ𝑖𝑓𝑡𝑞 ≤ 𝑊 𝑎𝑖𝑡𝑏 +𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑏. (12)

Table 3 reports values of 𝑊 𝑎𝑖𝑡, 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡 and 𝑀𝐸 for subtours of
itinerary of Fig. 1. As we did for basic insertions, travel times are
computed by taking into account soft constraints.

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.

d
b
c
𝑀

𝛥

b

𝑆

Algorithm 5: Insertion Procedure
1 INIT: incumbent solution 𝑠′∗;
2 for POI j visited by 𝑠′∗ do
3 Determine the best feasible insertion with minimum value of 𝑆ℎ𝑖𝑓𝑡′𝑗 ;
4 Compute 𝑅𝑎𝑡𝑖𝑜𝑗 ;
5 end for
6 Select POI 𝑗∗ = 𝑎𝑟𝑔min

𝑗
(𝑅𝑎𝑡𝑖𝑜𝑗);

7 Visit 𝑗∗: Compute 𝑎𝑗∗ , 𝑧𝑗∗ , 𝑊 𝑎𝑖𝑡𝑗∗ , 𝑆ℎ𝑖𝑓𝑡𝑗∗ , 𝑆𝑗∗ ;
8 Update information of subtours 𝑆𝑖∗ , 𝑆𝑘∗ ;
9 if Advanced Insertion then 𝑞∗ ← 𝐿𝑎𝑠𝑡𝑃 𝑜𝐼𝑆𝑘∗

, Compute 𝑆ℎ𝑖𝑓𝑡𝑞∗ else 𝑞∗ ← −1;
10 𝑗 ← 𝑗∗;
11 for POI j visited later than 𝑗∗ (Until 𝑆ℎ𝑖𝑓𝑡𝑗 = 0 ∧ 𝑗 ≥ 𝑞∗) do // Forward Update
12 Update 𝑎𝑗 , 𝑧𝑗 , 𝑊 𝑎𝑖𝑡𝑗 ,𝑆𝑗 ;
13 if 𝑗 ≠ 𝑞∗ then Update 𝑆ℎ𝑖𝑓𝑡𝑗 ;
14 if 𝑆ℎ𝑖𝑓𝑡𝑗 = 0 ∧ 𝑗 ≥ 𝑞∗ then 𝑗 ← 𝑗;
15 end for
16 for POI j visited earlier than 𝑗 (Until 𝑗 = 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼𝑆𝑗∗

) do // Backward Update-Step 1
17 Update 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑗 ;
18 if 𝑆𝑗 ≠ −1 then Update 𝑊 𝑎𝑖𝑡𝑗 , 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑗 , 𝑀𝐸𝑗 ;
19 end for
20 for POI j visited earlier than 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼𝑆𝑖∗

do // Backward Update-Step 2
21 Update 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑗 ;
22 end for
23 Update the number of violated soft constraints;
I
o
𝑆
i
e
t
t
c

𝑎

𝑆

𝑊

Special case. A special case of the advanced insertion is when PoI 𝑘
oes not belong to a subtour (i.e. 𝑆𝑘 = −1) in the solution 𝑠′∗, but it
ecomes the last PoI of a new subtour after the insertion. Feasibility
heck rules (11) and (12) do not apply since 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑘, 𝑊 𝑎𝑖𝑡𝑘 and
𝐸𝑘 are not defined. In this case, 𝛥𝑘 is computed as follows:

𝑘 = 𝜆𝑗×max(0, 𝑆ℎ𝑖𝑓 𝑡𝑗−𝑊 𝑎𝑖𝑡𝑘)−(1−𝜆𝑗)×min{max{0, 𝑎𝑘−𝑂𝑘}, |𝑆ℎ𝑖𝑓𝑡𝑗 |}.

Then we set 𝑞 = 𝑘 and compute 𝑆ℎ𝑖𝑓𝑡𝑞 according to (10). Feasibility of
the insertion of PoI 𝑗 between PoI 𝑖 and 𝑘 is checked in constant time
y (13), (12) and (6).

ℎ𝑖𝑓𝑡𝑗 ≤ 𝑊 𝑎𝑖𝑡𝑘 + (𝐶𝑞 − 𝑧𝑞), (13)

6. Updating an itinerary

During the local search after a PoI to be inserted has been selected
and it has been decided where to insert the PoI, the affected itinerary
needs to be updated. Similarly, during the perturbation phase after a
set of selected PoIs has been removed, the affected itineraries need
to be updated. The following subsections detail how we update the
information maintained to facilitate feasibility checking when a PoI is
inserted and a sequence of PoI is removed.

6.1. Insert and update

Algorithm 5 reports the pseudocode of the proposed insertion pro-
cedure. During a major iteration of the local search, we select the
best neighbour of the current solution 𝑠′∗ as follows (Algorithm 5
lines 2–6). For each (unrouted) PoI 𝑗 we select the insertion with
the minimum value of 𝑆ℎ𝑖𝑓𝑡′𝑗 = 𝑆ℎ𝑖𝑓𝑡𝑗 + 𝑆ℎ𝑖𝑓𝑡𝑞 . Then we compute
𝑅𝑎𝑡𝑖𝑜𝑗 = (𝑃𝑗)2∕𝑆ℎ𝑖𝑓𝑡′𝑗 . The best neighbour is the solution obtained
by inserting in 𝑠′∗ the PoI 𝑗∗ with the maximum value of 𝑅𝑎𝑡𝑖𝑜𝑗∗ ,
i.e. 𝑗∗ = 𝑎𝑟𝑔max𝑗 (𝑃𝑗)2∕𝑆ℎ𝑖𝑓𝑡′𝑗 . Ties are broken by selecting the solution
that best fits transport mode preferences, i.e. the insertion with the
minimum number of violated soft constraints. The coordinate of the
best insertion of 𝑗∗ are denoted with 𝑖∗, 𝑘∗. Solution is updated in
order to include the visit of 𝑗∗ (Algorithm 5-lines 7–8). If the type of
8

insertion is advanced we determine the value of 𝑆ℎ𝑖𝑓𝑡𝑞∗ according to 𝑧
(10) (Algorithm 5-line 9). Then, the solution encoding update consists
of two consecutive main phases. The first phase is referred to as forward
update, since it updates a few information related to visit of PoI 𝑗∗

and later PoIs. The forward update stops when the propagation of the
insertion of 𝑗∗ has been completely absorbed by waiting times of later
PoIs (Algorithm 5-lines 11–14). The second phase is initialized with the
PoI 𝑗 satisfying the stopping criterion of the forward update. Such final
step is refereed to as backward update, since it iterates on PoIs visited
earlier than 𝑗 (Algorithm 5-lines 16–21). We finally update the number
of violated constraints. As illustrated in the following, new arcs do not
violate tourist preferences and therefore after the insertion of 𝑗∗ the
number of violated soft constraints cannot increase.

Solution encoding update. Once inserted the new visit 𝑗∗ between PoI 𝑖∗
and PoI 𝑘∗, we update solution encoding as follows:

𝑎𝑗∗ = 𝑧∗𝑖 + 𝑇 ∗
𝑖 + 𝑡𝑖∗𝑗∗ (14)

𝑊 𝑎𝑖𝑡𝑗∗ = max{0, 𝑂𝑗∗ − 𝑎𝑗∗} (15)

𝑆ℎ𝑖𝑓𝑡𝑗∗ = 𝑡𝑖∗𝑗∗ +𝑊 𝑎𝑖𝑡𝑗∗ + 𝑇𝑗∗ + 𝑡𝑗∗𝑘∗ − 𝑡𝑖∗𝑘∗ . (16)

f needed, we update 𝑆𝑗∗ , 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼𝑆𝑘∗
and 𝐿𝑎𝑠𝑡𝑃 𝑜𝐼𝑆𝑖∗

. The insertion
f 𝑗∗ propagates a change of the arrival times at later PoIs only if
ℎ𝑖𝑓𝑡𝑗∗ ≠ 0. We recall that in a multi-modal setting, the triangle

nequality might not hold. This implies that 𝑗∗ insertion propagates
ither an increase (i.e. 𝑆ℎ𝑖𝑓𝑡𝑗∗ > 0) or a decrease (i.e. 𝑆ℎ𝑖𝑓𝑡𝑗∗ < 0) of
he arrival times. Solution encoding of later PoIs is updated according
o formula (17)–(20). For notational convenience we denote with 𝑗 the
urrent PoI and 𝑗 − 1 its immediate predecessor.

𝑗 = 𝑎𝑗 + 𝑆ℎ𝑖𝑓𝑡𝑗−1 (17)

ℎ𝑖𝑓𝑡𝑗 =
{

max{0, 𝑆ℎ𝑖𝑓 𝑡𝑗−1 −𝑊 𝑎𝑖𝑡𝑗} 𝑆ℎ𝑖𝑓𝑡𝑗−1 > 0
max{𝑂𝑗 − 𝑧𝑗 , 𝑆ℎ𝑖𝑓 𝑡𝑗−1} 𝑆ℎ𝑖𝑓𝑡𝑗−1 < 0

(18)

𝑎𝑖𝑡𝑗 = 𝑚𝑎𝑥{0, 𝑂𝑗 − 𝑎𝑗} (19)
𝑗 = 𝑧𝑗 + 𝑆ℎ𝑖𝑓𝑡𝑗 (20)

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.
Fig. 3. Example of infeasible insertions.
At the first iteration, 𝑗 is initialized with 𝑘∗ and 𝑆ℎ𝑖𝑓𝑡𝑗−1 = 𝑆ℎ𝑖𝑓𝑡𝑗∗ .
In particular (18) states that after 𝑗 it is propagated the portion of
𝑆ℎ𝑖𝑓𝑡𝑗−1 exceeding 𝑊 𝑎𝑖𝑡𝑗 , when 𝑆ℎ𝑖𝑓𝑡𝑗−1 > 0. Otherwise 𝑆ℎ𝑖𝑓𝑡𝑗 is
strictly negative only if no waiting time occurs at PoI 𝑗 in solution 𝑠′∗,
that is 𝑧𝑗 > 𝑂𝑗 . If type of insertion is advanced we omit to update
𝑆ℎ𝑖𝑓𝑡𝑞∗ , since it has been precomputed at line 9 according to (10).
The forward updating procedure stops before the end of the itinerary
if 𝑆ℎ𝑖𝑓𝑡𝑗 is zero, meaning that waiting times have entirely absorbed
the initial increase/decrease of arrival times generated by 𝑗∗ insertion.
Then we start the backward update, consisting of two main steps.
During the first step the procedure iterates on PoIs visited between the
POI 𝑗, where the forward update stopped, and 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼𝑆∗

𝑗
. We update

𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑗 according to the (3) as well as additional information for
checking feasibility for advanced insertions. Therefore, if PoI 𝑗 belongs
to a subtour (i.e. 𝑆𝑗 ≠ −1), then we also update 𝑊 𝑎𝑖𝑡𝑗 , 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑗
and 𝑀𝐸𝑗 according to the backward recursive formula (8), (7) and (9).
The second step iterates on PoI 𝑗 visited earlier than 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼𝑆𝑗∗

and
updates only 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑗 .

6.2. Remove and update

The perturbation procedure aims to remove for each itinerary of the
incumbent solution 𝜌𝑑 PoIs visited consecutively starting from position
𝜎𝑑 . Given an itinerary, we denote with 𝑖 and 𝑘 respectively the last PoI
and the first PoI, that are visited before and after the selected 𝜌𝑑 PoIs.
Let 𝑆ℎ𝑖𝑓𝑡𝑖 denotes the variation of total travel time generated by the
removal and propagated to PoIs visited later, that is:

𝑆ℎ𝑖𝑓𝑡𝑖 = 𝑡𝑖𝑘 − (𝑎𝑘 − 𝑇𝑖 − 𝑧𝑖).

In particular when we compute 𝑡𝑖𝑘 we do not take into account tourist
preferences, i.e. in Algorithm 3 the input parameter 𝐶ℎ𝑒𝑐𝑘 is equal
to false. Due to multi-modality, the triangle inequality might not be
respected by the removal, since it can be propagate either an increase
(i.e. 𝑆ℎ𝑖𝑓𝑡𝑖 > 0) or a decrease of the arrival times (i.e. 𝑆ℎ𝑖𝑓𝑡𝑖 <
0). In order to guarantee that after removing the selected PoIs, we
obtain an itinerary feasible wrt hard constraints (i.e. time windows),
we require that 𝑆ℎ𝑖𝑓𝑡𝑖 ≤ 0. To this aims we adjust the starting and the
ending removal positions so that it is not allowed to remove portions of
multiple subtours. In particular, if 𝑆𝑖 is not equal to 𝑆𝑘, then we set the
initial and ending removal positions respectively to 𝐹 𝑖𝑟𝑠𝑡𝑃𝑂𝐼 and the
9

𝑆𝑖
immediate successor of 𝐿𝑎𝑠𝑡𝑃𝑂𝐼𝑆𝑘
. In this way we remove subtours 𝑆𝑖,

𝑆𝑘 along with all the in-between subtours. For example in Fig. 1, if 𝑖
and 𝑘 are equal to PoI 𝑖2 and 𝑖4 respectively, then we adjust 𝑘 so that
the entire first subtour is removed, i.e. we set 𝑘 equal to 𝑖6. Once the
selected PoIs have been removed, the solution encoding update steps
are the same of a basic insertion. We finally update the number of
violated constraints.

6.3. A numerical example

We provide a numerical example to illustrate the procedures de-
scribed so far. We consider the itinerary of Fig. 1.

In particular we illustrate the feasibility check of the following three
insertions for a PoI 𝑗, with [𝑂𝑗 , 𝐶𝑗] = [0, 300] and 𝑇𝑗 = 5. Durations
of arcs involved in the insertion are reported in Figs. 3 and 4. As
reported in Table 3 the itinerary of Fig. 1 is feasible with respect to
both time windows and soft constraints. As aforementioned, during the
feasibility check, all travel times are computed by Algorithm 3 with
input parameter 𝐶ℎ𝑒𝑐𝑘 set equal to true.

Insertion of PoI j between PoI 𝑖𝑠1 and 𝑖2 with 𝑚𝑜𝑑𝑒𝑖1𝑗 = 𝑚𝑜𝑑𝑒𝑗𝑖2 = 𝐷𝑟𝑖𝑣𝑒.
We check feasibility by Algorithm 4, with 𝑖 = 𝑖𝑠1, 𝑘 = 𝑖2. The type
of insertion is basic since 𝑚𝑜𝑑𝑒∗𝑖𝑘 = 𝑚𝑜𝑑𝑒𝑗𝑘 and 𝑚𝑜𝑑𝑒𝑗𝑘 = 𝐷𝑟𝑖𝑣𝑒. The
feasibility is checked by (5) and (6), that is:

𝑆ℎ𝑖𝑓𝑡𝑗 = 𝑡𝑖𝑗 +𝑊 𝑎𝑖𝑡𝑗 + 𝑇𝑗 + 𝑡𝑗𝑘 − 𝑡𝑖𝑘 = 25 + 0 + 5 + 25 − 25 = 30 ≰ 0 + 20

= 𝑊 𝑎𝑖𝑡𝑘 +𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑘,

𝑧𝑖 + 𝑇𝑖 + 𝑡𝑖𝑗 +𝑊 𝑎𝑖𝑡𝑗 = 25 ≤ 80 = 𝐶𝑗 ,

where travel times 𝑡𝑖𝑗 and 𝑡𝑗𝑘 has been computed by Algorithm 3 with
𝑝 set equal to 𝑖𝑠1 and 𝑗, respectively. The insertion violates time window
of PoI 𝑖4. Such infeasibility is checked through the violation of (5).

Insertion of PoI j between PoI 𝑖5 and 𝑖6 with 𝑚𝑜𝑑𝑒𝑖5𝑗 = 𝑚𝑜𝑑𝑒𝑗𝑖5 = 𝑊 𝑎𝑙𝑘.
We check feasibility by Algorithm 4, with 𝑖 = 𝑖5, 𝑘 = 𝑖6. The type of
insertion is advanced since 𝑚𝑜𝑑𝑒∗𝑖𝑘 ≠ 𝑚𝑜𝑑𝑒𝑗𝑘 and 𝑆𝑘 ≠ −1. We recall
that feasibility check consists of two parts. Firstly we check feasibility
with respect to (11) and (6) that is

𝑧𝑖 + 𝑇𝑖 + 𝑡𝑖𝑗 +𝑊 𝑎𝑖𝑡𝑗 = 118 ≤ 300 = 𝐶𝑗 ,

𝑆ℎ𝑖𝑓 𝑡 = 𝑡 +𝑊 𝑎𝑖𝑡 + 𝑇 + 𝑡 − 𝑡 = 15 ≤ 15 = 𝑊 𝑎𝑖𝑡 +𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡 ,
𝑗 𝑖𝑗 𝑗 𝑗 𝑗𝑘 𝑖𝑘 𝑘 𝑘

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.
Algorithm 6: Perturbation Procedure
1 INIT: an itinerary of solution 𝑠′∗, i, k;
2 𝑚𝑜𝑑𝑒 = 𝐷𝑟𝑖𝑣𝑒;
3 if 𝑆𝑖 = 𝑆𝑘 then
4 if 𝑆𝑖 ≠ −1 then 𝑚𝑜𝑑𝑒 ← 𝑊 𝑎𝑙𝑘;
5 else
6 if 𝑆𝑖 ≠ −1 then 𝑖 ← 𝐹 𝑖𝑟𝑠𝑡𝑃 𝑜𝐼𝑆𝑖

;
7 if 𝑆𝑘 ≠ −1 then 𝑖 ← immediate successor of 𝐿𝑎𝑠𝑡𝑃 𝑜𝐼𝑆𝑘

;
8 end if
9 Remove PoIs visited between 𝑖 and 𝑘;
10 𝑚𝑜𝑑𝑒∗𝑖𝑘 = 𝑚𝑜𝑑𝑒;
11 𝑆ℎ𝑖𝑓𝑡𝑖 ← 𝑡𝑖𝑘 − (𝑎𝑘 − 𝑧𝑖 − 𝑇𝑖);
12 Update 𝑎𝑖, 𝑧𝑖, 𝑊 𝑎𝑖𝑡𝑖;
13 for POI j visited later than 𝑖 (Until 𝑆ℎ𝑖𝑓𝑡𝑗 = 0) do // Forward Update
14 Update 𝑎𝑗 , 𝑧𝑗 , 𝑊 𝑎𝑖𝑡𝑗 ;
15 if 𝑆ℎ𝑖𝑓𝑡𝑗 = 0 then 𝑗 ← 𝑗;
16 end for
17 for POI j visited earlier than 𝑗 (Until 𝑗 = 𝑖) do // Backward Update-Step 1
18 Update 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑗 ;
19 if 𝑆𝑗 ≠ −1 then Update 𝑊 𝑎𝑖𝑡𝑗 , 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑗 , 𝑀𝐸𝑗 ;
20 end for
21 Update 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖;
22 for POI j visited earlier than 𝑖 do // Backward Update-Step 2
23 Update 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑗
24 end for
Fig. 4. Example of feasible insertion.
where travel times have been computed by Algorithm 3, with 𝑝 =
−1. However the new visit of PoI 𝑗 is infeasible with respect to soft
constraints. As aforementioned this case is encoded as a violation of
time windows. Indeed, we compute 𝑆ℎ𝑖𝑓𝑡𝑞 according to (10) with
𝑞 = 𝑖9, 𝑏 = 𝑖𝑒1, where travel time 𝑡𝑛𝑒𝑤𝑞𝑏 is computed by Algorithm 3, with
𝑝 = 𝑖3. Since the tourist has to walk more than 30 time units to pick up
the vehicle, i.e. 𝑡𝑤𝑖9𝑖3 = 92, then Algorithm 3 returns a value 𝑡𝑛𝑒𝑤𝑞𝑏 equal
to the (big) value M, which violates all time windows of later PoIs.

Insertion of PoI j between PoI 𝑖2 and 𝑖3 with 𝑚𝑜𝑑𝑒𝑖2𝑗 = 𝐷𝑟𝑖𝑣𝑒 and 𝑚𝑜𝑑𝑒𝑗𝑖3 =
𝑊 𝑎𝑙𝑘. We check feasibility by Algorithm 4, with 𝑖 = 𝑖2, 𝑘 = 𝑖3. The
type of insertion is advanced since 𝑚𝑜𝑑𝑒∗𝑖𝑘 ≠ 𝑚𝑜𝑑𝑒𝑗𝑘 and 𝑆𝑘 ≠ −1. The
insertion does not violate time windows of PoI 𝑗 and PoIs belonging
to the subtour 𝑆𝑘. This is checked by verifying that conditions (6) and
(11) are satisfied, that is:

𝑆ℎ𝑖𝑓𝑡 = 𝑡 +𝑊 𝑎𝑖𝑡 + 𝑇 + 𝑡 − 𝑡 = 1 ≤ 20 = 𝑊 𝑎𝑖𝑡 +𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡 ,
10

𝑗 𝑖𝑗 𝑗 𝑗 𝑗𝑘 𝑖𝑘 𝑘 𝑘
𝑧𝑖 + 𝑇𝑖 + 𝑡𝑖𝑗 +𝑊 𝑎𝑖𝑡𝑗 = 38 ≤ 300 = 𝐶𝑗 ,

where 𝑡𝑖𝑗 and 𝑡𝑗𝑘 are computed by Algorithm 3 with 𝑝 = −1. Then we
check feasibility with respect to closing hours of remaining (routed)
PoIs. In particular we compute 𝑆ℎ𝑖𝑓𝑡𝑞 with 𝑞 = 𝑖5, 𝑏 = 𝑖6. Travel
time 𝑡𝑛𝑒𝑤𝑞𝑏 is computed with 𝑝 = 𝑗. We have that 𝑡𝑛𝑒𝑤𝑞𝑏 = 28 + 8. Since
𝑆ℎ𝑖𝑓𝑡𝑗 > 0, then 𝛥𝑘 = max{0, 𝑆ℎ𝑖𝑓 𝑡𝑗 −𝑊 𝑎𝑖𝑡𝑘} = 0.

𝑆ℎ𝑖𝑓𝑡𝑞 = 𝑡𝑛𝑒𝑤𝑞𝑏 +𝛥𝑘 − 𝑡𝑞𝑏 = 36+0−30 = 6 ≤ 0+15 = 𝑊 𝑎𝑖𝑡𝑏 +𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑏.

The insertion is feasible since it satisfies also (12).
Table 4 shows details of the itinerary after the insertion of PoI 𝑗

between PoIs 𝑖2 and 𝑖3. It is worth noting that 𝑆ℎ𝑖𝑓𝑡𝑘 = 0, but the
forward update stops at 𝑗 = 𝑖7 since 𝑆ℎ𝑖𝑓𝑡𝑞 = 6. There is no need to
update additional information of later PoIs.

Removal of PoIs between 𝑖2 and 𝑖6. Table 5 reports details of the
itinerary after the removal of PoIs visited between 𝑖 and 𝑖 . Travel
2 6

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.

e
s
a

7

h
t
e
g
c



Table 4
Details of the itinerary after the insertion.

Itinerary Time Windows Additional data

PoI Violated mode∗𝑖𝑘 S𝑖 a𝑖 z𝑖+𝑇 𝑖 O𝑖 C𝑖 Wait𝑖 MaxShif t𝑖 𝑊 𝑎𝑖𝑡𝑖 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖 ME𝑖

𝑖𝑠1 False Drive −1 0 0 0 0 0 0 – – –
𝑖2 False Drive −1 25 30 0 75 0 13 – – –

𝑗 False Walk 1 38 43 0 300 0 13 4 24 0
𝑖3 False Walk 1 46 55 50 115 4 9 4 20 0
𝑖4 False Walk 1 75 80 60 95 0 9 0 20 15
𝑖5 False Drive 1 85 90 60 115 0 9 0 30 25

𝑖6 False Walk 2 126 131 80 135 0 9 9 9 0
𝑖7 False Walk 2 141 155 150 175 9 25 9 25 0
𝑖8 False Walk 2 175 180 90 245 0 58 0 58 85
𝑖9 False Drive 2 187 192 90 245 0 58 0 58 97

𝑖𝑒1 – – −1 224 224 0 320 0 96 – – –
Table 5
Details of the itinerary after the removal.

Itinerary Time Windows Additional data

PoI Violated mode∗𝑖𝑘 S𝑖 a𝑖 z𝑖+𝑇 𝑖 O𝑖 C𝑖 Wait𝑖 MaxShif t𝑖 𝑊 𝑎𝑖𝑡𝑖 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡𝑖 ME𝑖

𝑖𝑠1 False Drive −1 0 0 0 0 0 0 – – –
𝑖2 True Drive −1 25 30 0 75 0 50 – – –

𝑖6 False Walk 2 32 85 80 135 48 55 103 55 0
𝑖7 False Walk 2 95 155 150 175 55 25 55 25 0
𝑖8 False Walk 2 175 180 90 245 0 58 0 58 85
𝑖9 False Drive 2 187 192 90 245 0 58 0 58 97

𝑖𝑒1 – – −1 224 224 0 320 0 96 – – –
a
m
t
t
w

c
a

time 𝑡𝑖2𝑖6 is computed by Algorithm 3 with input parameter 𝐶ℎ𝑒𝑐𝑘 set
qual to false. We observe that driving from PoI 𝑖2 to PoI 𝑖6 violates the
oft constraint about 𝑀𝑖𝑛𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑇 𝑖𝑚𝑒, therefore after the removal the
lgorithm increases the total number of violated soft constraints.

. Lifting ILS performance through unsupervised learning

The insertion heuristic explores in a systematic way the neighbour-
ood of the current solution. Of course, the larger the set 𝑉 the worse
he ILS performance. In order to reduce the size of the neighbourhood
xplored by the local search, we exploited two mechanisms. Firstly,
iven the tourist starting position 𝑖𝑠1, we consider an unrouted PoI as
andidate for the insertion if it belongs to set:

𝑟(𝑖𝑠1) = {𝑖 ∈ 𝑉 ∶ 𝑑(𝑖, 𝑖𝑠1) ≤ 𝑟} ⊆ 𝑉

where 𝑑 ∶ 𝑉 × 𝑉 → R+ denotes a non-negative distance function and
the radius 𝑟 is a non negative scalar value. The main idea is that it is
likely that the lowest ratio values are associated to PoIs located very far
from 𝑖𝑠1. We used the Haversine formula to approximate the shortest (or-
thodromic) distance between two geographical points along the Earth’s
surface. The main drawback of this neighbourhood filtering is that a
low value of radius 𝑟 might compromise the degree of diversification
during the search. To overcome this drawback we adopt the strategy
proposed in Gavalas et al. (2013). It is worth noting that in Gavalas
et al. (2013) test instances are defined on a Euclidean space. Since we
use a (more realistic) similarity measure representing the travel time
duration of a quickest path, we cannot use k-means algorithm to build
a clustering structure. To overcome this limitation we have chosen
a hierarchical clustering algorithm. Therefore, during a preprocessing
step we cluster PoIs. The adopted hierarchical clustering approach
gives different partitioning depending on the level-of-resolution we are
looking at. In particular, we exploited agglomerative clustering which
is the most common type of hierarchical clustering. The algorithm
starts by considering each observation as a single cluster; then, at each
iteration two similar clusters are merged to define a new larger cluster
until all observations are grouped into a single fat cluster. The result
is a tree called dendrogram. The similarity between pair of clusters is
11

established by a linkage criterion: e.g. the maximum distances between
ll observations of the two sets or the variance of the clusters being
erged. In this work, the metric used to compute linkage is the walking

ravel time between pairs of PoIs in the mobility environment: this with
he aim of reducing the total driving time. Given a PoI 𝑖 ∈ 𝑉 , we denote
ith 𝑖 the cluster label assigned to 𝑖. 𝑑 is the cluster containing the

tourist starting position. We enhance the local search so that to ensure
that a cluster (different from 𝑑) is visited at most once in a tour. 𝑑
an be visited at most twice in a tour: when departing from and when
rriving to the depot, respectively. A PoI 𝑗 ∈ 𝑟(𝑖𝑠1) can be inserted

between PoIs 𝑖 and 𝑘 in a itinerary p only if at least one of the following
conditions is satisfied:

• 𝑖 = 𝑗 ∨ 𝑘 = 𝑗 , or
• 𝑖 = 𝑘 = 𝑑 ∧ |p| = 1, or
• 𝑖 ≠ 𝑘 ∧ 𝑗 ∉ p,

where p denotes the set of all cluster labels for PoIs belonging to
itinerary p. At first iteration of ILS p = {𝑑}; subsequently, after each
insertion of a PoI 𝑗, set p is enriched with 𝑗 . In the following section
we thoroughly discuss about the remarkable performance improvement
obtained, when such cluster based neighbourhood search is applied on
(realistic) test instances with thousands of PoIs.

8. Experimental campaign

This section presents the results of the experimental campaign con-
ducted to evaluate computational performance of our method as well as
users’ evaluation of recommended itineraries. In Section 8.1, we present
and discuss computational results obtained by testing our heuristic
algorithm on a set of 224 instances, derived from the pedestrian and
road networks of Apulia in Italy. In Section 8.2, we provide user
evaluation results stemming from an experimental campaign involving
38 users.

8.1. Computational results

All computational experiments were run on a standalone Linux

machine with an Intel Core i7 processor composed by 4 cores clocked

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.

l
d
o
W
e
a
a
t
v
a
o
I
W
s
d

i
w
t

Table 6
Parameters characterizing walk-and-drive mobility
environment.
Parameter Value

𝑀𝑎𝑥𝑊 𝑎𝑙𝑘𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 30 min.
𝑃𝑎𝑟𝑘𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 10 min.
𝑃𝑎𝑟𝑘𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 5 min.
𝑃 𝑖𝑐𝑘𝑈𝑝𝑇 𝑖𝑚𝑒 6 min.

at 2.5 GHz and equipped with 16 GB of RAM. The machine learning
component was implemented in Python (version 3.10). The agglomer-
ative clustering implementations were taken from scikit-learn machine
earning library. All other algorithms have been coded in Java. Map
ata were extracted from OpenStreetMap (OSM) geographic database
f the world (publicly available at https://www.openstreetmap.org).
e used the GraphHopper (https://www.graphhopper.com/) routing

ngine to precompute all quickest paths between PoI pairs applying an
d-hoc parallel one-to-many Dijkstra for both moving modes (walking
nd driving). GraphHopper is able to assign a speed for every edge in
he graph based on the road type extracted from OSM data for different
ehicle profiles: on foot, hike, wheelchair, bike, racing bike, motorcycle
nd car. A fundamental assumption in our work is that travel times
n both driving and pedestrian networks satisfy triangle inequality.
n order to satisfy this preliminar requirement, we run the Floyd-

arshall (Floyd, 1962; Warshall, 1962) algorithm as a post-processing
tep to enforce triangle inequality when not met (due to roundings or
etours). The PoI-based graph consists of 3643 PoIs.

Table 6 reports all parameters characterizing walk-and-drive mobil-
ty environment. In particular walking speed has been fixed to 5 km/h,
hile the maximum walking distance is 2.5 km: i.e. the maximum

ime that can be travelled on foot is half an hour (𝑀𝑎𝑥𝑊 𝑎𝑙𝑘𝑖𝑛𝑔𝑇 𝑖𝑚𝑒).
As stated before, we improved the removal and insertion operators of
the ILS proposed in order to take into account the extra travel time
spent by the tourist to switch from the pedestrian network to the
road network. Assuming that the destination has a parking service, we
increased the traversal time by car of a customizable constant amount
fixed to 10 min (𝑃𝑎𝑟𝑘𝑖𝑛𝑔𝑇 𝑖𝑚𝑒). We set the time need to switch from the
pedestrian network to the road network equal to at least 5 time minutes
(𝑃 𝑖𝑐𝑘𝑈𝑝𝑇 𝑖𝑚𝑒). Walking is the preferred mode whenever the traversal
time by car is lower than or equal to 6 mi (𝑀𝑖𝑛𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑇 𝑖𝑚𝑒). As already
mentioned, the research presented in this paper is part of a project
aimed at developing technologies to enhance territorial marketing and
tourism in Apulia, Italy. The PoI score measures the popularity of
attractions, which has been derived from a Twitter dataset related to
tourism in Apulia, as detailed in Stirparo et al. (2022). This dataset
comprises approximately 730,000 tweets, of which around 190,000
are in English and roughly 540,000 are in Italian. During an initial
natural language (pre-)processing phase, each tweet was transformed
into a scalar vector. The most frequent 1000 words and hashtags
were manually categorized and grouped into two dictionaries: Tourism
and Not Tourism. Utilizing a k-means algorithm combined with Latent
Dirichlet Allocation (Blei et al., 2003) (a topic modelling technique),
tourism-related tweets were identified by assigning relevant topics to
each tweet. Following this preprocessing step, 44,690 tweets related
to tourism were selected. Through the application of keywords and
regular expressions, these tweets were linked to their corresponding
tourist attractions. Finally, a sentiment analysis was performed to
assign a sentiment score to each tweet, ranging from −1 to 1 (Hutto
& Gilbert, 2014). A sentiment score from −1 to 0 represents a negative
review, while a non-negative sentiment score between 0 and 1 indicates
a positive review. The PoI score for each attraction has been computed
using the formula:

𝑃𝑖 =
𝑛𝑢𝑚+

𝑖
+ − ,
12

(𝑛𝑢𝑚𝑖 + 𝑛𝑢𝑚𝑖)
Table 7
Candidate PoIs set size.
𝑟 position PoIs 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝐷7

10 1 172 257 257 257 203 257 256 148
2 62 91 91 91 89 91 90 71
3 172 214 215 176 216 216 136 137
4 109 118 120 109 120 120 99 99
5 118 127 132 122 132 132 109 108
6 79 108 108 107 97 108 106 73
7 117 140 141 115 141 141 140 140
8 81 65 82 82 82 82 80 80

20 1 324 507 509 509 385 509 507 254
2 117 174 172 174 169 174 174 129
3 301 350 359 312 360 360 264 262
4 245 266 280 251 280 280 223 222
5 338 363 390 357 390 390 321 320
6 262 359 359 346 305 359 354 228
7 222 260 260 194 261 262 258 253
8 263 296 329 328 287 329 324 240

50 1 872 1260 1289 1286 1009 1289 1279 712
2 779 1010 1017 928 1008 1022 926 776
3 1194 1380 1437 1306 1437 1441 1198 1130
4 1267 1394 1463 1311 1463 1466 1202 1179
5 1083 1185 1252 1124 1254 1254 994 991
6 883 1232 1230 1147 1090 1235 1225 832
7 836 1083 1082 938 1031 1089 1081 860
8 670 875 905 902 768 905 896 606

+∞ * 3643 4591 4570 4295 4521 4581 4297 3781

where 𝑛𝑢𝑚+
𝑖 and 𝑛𝑢𝑚−

𝑖 , respectively, denote the number of positive
reviews and negative reviews of PoI, with 𝑖 ∈ 𝑉 . We considered the
eight most cited places in the Twitter dataset as starting positions in
the Apulian territory, as showed in Fig. 5.

Instances are defined by the following parameters:

• number of itineraries 𝑚 = 1, 2, 3, 4, 5, 6, 7;
• starting tourist position (i.e. its latitude and longitude);
• a radius 𝑟 = 10, 20, 50,+∞ km for the spherical neighbourhood
𝑟(𝑖𝑠1) around the starting tourist position.

The maximum itinerary duration 𝐶𝑚𝑎𝑥 has been fixed to 12 hours.
Every PoI have 0, 1 or 2 opening time-windows depending on current
weekday.

Table 7 summarizes for any radius-position pair:

• the number of PoIs in the spherical neighbourhood 𝑟(𝑖𝑠1);
• 𝐷𝑖 the number of PoIs opened during day 𝑖 (𝑖 = 1,… , 𝑚 = 7, from

Monday to Sunday).

When 𝑟 is set equal to +∞ (last table line) no filter is applied and all
3643 PoIs in the dataset are candidates for insertion. Complete data
about instances is available upon request from the authors.

Computational results are showed in Table 8, while Table 9 reports
results obtained with PoI-clustering enabled. Each row represents the
average value of the eight instances, with the following headings:

• DEV: the ratio between total score for the solution and the best
known solution;

• TIME: execution time in seconds;
• PoIs: number of PoIs;
• |𝑆|: number of walking subtours;
• SOL: number of improved solutions;
• IT: total number of iterations;
• IT𝑓 : number of iterations without improvements w.r.t. the incum-

bent solution;
• 𝑇 𝑑 : total driving time divided by 𝑚 ⋅ 𝐶𝑚𝑎𝑥;
• 𝑇𝑤: total walking time divided by 𝑚 ⋅ 𝐶𝑚𝑎𝑥;
• 𝑇 : total service time divided by 𝑚 ⋅ 𝐶𝑚𝑎𝑥;

• 𝑊 : total waiting time divided by 𝑚 ⋅ 𝐶𝑚𝑎𝑥.

https://www.openstreetmap.org
https://www.graphhopper.com/

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.
Fig. 5. Starting positions.
Table 8
Computational results.
𝑚 𝑟 DEV [%] TIME [s] PoIs |𝑆| SOL IT IT𝑓 𝑇 𝑑 [%] 𝑇𝑤 [%] 𝑇 [%] 𝑊 [%]

1 10 16.5 0.8 18.3 1.9 2.1 155.0 150.0 13.2 6.9 78.7 1.2
20 9.3 1.7 19.4 2.5 2.4 157.3 150.0 17.0 7.4 74.9 0.7
50 3.4 7.0 19.8 2.4 3.6 162.5 150.0 20.9 7.2 70.9 1.0
+∞ 2.7 37.5 19.5 1.3 2.6 157.1 150.0 22.8 8.2 68.1 0.9

2 10 26.7 2.0 33.4 3.0 2.8 159.8 150.0 15.5 5.8 77.3 1.4
20 16.8 5.3 35.0 5.1 4.5 165.8 150.0 19.5 6.0 73.2 1.3
50 5.0 27.5 38.3 4.5 8.1 183.3 150.0 20.6 6.9 71.6 0.9
+∞ 1.8 60.0 38.6 4.3 5.3 89.5 74.0 24.3 6.8 67.8 1.0

3 10 31.6 3.4 46.8 5.0 4.0 176.3 150.0 14.2 5.4 78.6 1.8
20 19.2 10.0 50.8 7.1 5.1 170.8 150.0 19.6 5.7 73.4 1.3
50 3.2 50.5 56.0 7.8 9.6 178.3 134.3 22.3 6.5 69.9 1.4
+∞ 0.7 60.0 56.5 7.9 9.0 53.6 27.5 25.6 5.6 67.8 1.0

4 10 35.0 4.9 58.9 7.8 3.1 175.1 150.0 14.5 5.0 78.8 1.6
20 21.7 16.0 65.5 9.5 7.1 190.1 150.0 20.1 5.1 73.2 1.5
50 3.2 58.7 72.5 11.5 8.3 127.0 90.1 23.6 6.2 69.0 1.3
+∞ 1.2 60.0 72.6 10.6 8.9 36.5 13.8 26.7 6.0 66.1 1.2

5 10 38.4 5.6 70.4 8.5 5.4 166.5 150.0 14.7 4.3 79.1 1.9
20 24.4 25.4 78.8 11.3 6.3 197.5 150.0 19.6 5.0 73.7 1.7
50 2.6 60.0 89.3 13.1 7.6 88.9 59.8 23.0 6.0 69.7 1.3
+∞ 1.3 60.0 89.4 12.3 6.9 26.3 11.8 24.4 5.9 68.3 1.4

6 10 41.5 7.3 80.0 9.9 4.1 191.8 150.0 14.2 4.3 78.9 2.5
20 27.2 27.6 90.8 13.9 5.6 184.6 150.0 20.4 4.8 73.0 1.8
50 4.6 60.0 102.6 16.0 7.3 67.3 44.9 24.4 5.7 68.6 1.3
+∞ 2.0 60.0 103.9 15.5 7.6 21.8 8.4 26.7 5.8 65.9 1.5

7 10 44.1 8.0 88.1 12.9 4.5 194.4 150.0 14.1 3.9 78.4 3.6
20 28.4 34.3 104.5 15.0 6.0 180.1 150.0 19.5 4.9 73.5 2.2
50 4.2 60.0 118.0 18.1 8.0 56.1 23.5 24.8 5.5 68.1 1.6
+∞ 3.2 60.0 117.4 18.9 7.5 18.4 5.4 27.6 5.2 65.8 1.4

AVG 15.0 31.2 65.5 9.2 5.8 133.3 108.7 20.5 5.8 72.2 1.5
Since the territory is characterized by a high density of POIs, radius
𝑟 = 50 km was sufficient to build high-quality tours. ILS was stopped
after 150 consecutive iterations without improvements or a time limit
of one minute is reached.

We note that the clustering-based ILS greatly improved the execu-
tion times of the algorithm, without compromising the quality of the
final solution. In particular, the results obtained for increasing 𝑚 show
that, when clustering was enabled, the ILS was able to do many more
13
iterations, thus discovering new solutions and improving the quality of
the final solution. When the radius value 𝑟 was lower than or equal to
50 Km and PoI-clustering was enabled, the algorithm stopped mainly
due to the iteration limit with 𝑚 not greater than 5 itineraries.

The ILS approach is very efficient. The results confirm that the
amount of time spent waiting is very small. Itineraries are well-
composed with respect to total time spent travelling (without exhaust-
ing the tourist). On average, our approach builds itineraries with about

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.
Table 9
Computational results with clustering.
𝑚 𝑟 DEV [%] TIME [s] PoIs |𝑆| SOL IT IT𝑓 𝑇 𝑑 [%] 𝑇𝑤 [%] 𝑇 [%] 𝑊 [%]

1 10 16.7 0.6 18.3 1.9 2.1 155.9 150.0 13.7 6.5 78.6 1.2
20 9.7 0.9 19.4 2.4 2.8 157.3 150.0 16.5 6.9 75.7 0.8
50 4.5 2.1 19.8 2.5 3.6 161.9 150.0 19.4 7.9 71.4 1.3
+∞ 2.7 9.7 19.5 1.4 2.3 154.6 150.0 22.5 8.6 67.7 1.2

2 10 26.5 1.8 33.4 4.0 4.4 176.6 150.0 15.5 5.6 77.8 1.2
20 16.8 2.5 35.4 4.3 3.3 164.8 150.0 18.0 6.8 73.6 1.6
50 5.3 6.6 38.4 5.1 4.6 167.8 150.0 21.5 6.7 70.5 1.3
+∞ 1.5 35.5 38.9 4.3 5.4 176.5 150.0 22.0 7.6 69.5 1.0

3 10 31.5 3.1 47.0 5.5 3.8 185.0 150.0 13.5 5.7 78.7 2.1
20 19.2 4.9 51.3 7.1 4.4 192.0 150.0 19.2 5.8 73.5 1.5
50 3.9 14.3 56.3 8.3 9.5 183.9 150.0 22.6 6.3 70.1 1.0
+∞ 1.5 59.8 56.4 6.8 7.5 156.8 111.4 23.9 6.4 68.5 1.2

4 10 34.7 3.9 59.4 8.3 4.1 167.9 150.0 13.9 4.9 79.4 1.8
20 22.0 7.6 64.9 9.1 5.1 191.6 150.0 19.8 5.3 73.3 1.6
50 3.1 23.4 72.9 11.8 9.1 177.8 150.0 23.6 6.3 68.9 1.1
+∞ 1.0 60.0 72.9 10.8 7.9 96.1 66.0 25.1 5.9 67.8 1.2

5 10 38.4 7.0 70.5 9.6 4.6 211.5 150.0 14.5 5.0 78.6 1.9
20 24.7 10.0 78.9 10.6 5.1 187.9 150.0 19.3 5.2 73.9 1.6
50 3.2 37.2 89.1 13.9 10.3 195.3 150.0 23.2 6.3 69.1 1.4
+∞ 1.3 60.0 88.4 13.4 7.9 66.6 40.9 27.2 5.4 66.4 1.1

6 10 41.6 6.0 80.1 11.0 3.6 186.0 150.0 15.0 4.6 78.4 2.1
20 27.1 14.0 91.5 12.6 6.5 212.8 150.0 19.9 5.1 72.9 2.1
50 3.3 49.7 104.9 16.3 10.9 187.6 131.5 24.0 5.9 68.8 1.3
+∞ 1.3 60.0 105.6 17.0 10.3 51.0 29.8 26.5 5.7 66.5 1.3

7 10 44.2 8.3 88.0 12.6 4.1 209.6 150.0 13.8 4.4 78.0 3.8
20 28.4 14.4 104.3 16.6 4.8 169.3 150.0 19.5 4.7 73.8 2.0
50 3.8 57.5 118.5 18.6 9.6 174.6 91.0 24.2 6.0 68.5 1.4
+∞ 1.0 60.0 119.8 19.0 9.4 42.5 17.5 26.8 5.3 66.3 1.7

AVG 15.0 22.2 65.8 9.4 6.0 162.9 129.9 20.2 6.0 72.4 1.5
o
o
b
p
o
b
t
e
i
v
P
c
l
s

C

F
L
a
v
M

2 walking subtours per day. In particular total walking time and total
driving time corresponds respectively to about 6% and 20% of the
available time. On average the visit time corresponds to about the
70% of the available time. Whilst the waiting time is on average
less than 1.5%. It is worth noting that by increasing the value 𝑟, the
search execution times significantly increase with and without PoI-
clustering. With respect to tour quality, clustered ILS was able to
improve the degree of diversification on the territory, without remain
trapped in high-profit isolated areas. We finally note that, in Table 9
when 𝑚 = 2, the clustered ILS consistently solves instances within the
time limits. This finding suggests that for larger instances, efficiency
can be improved by partitioning the insertion evaluation into ⌊

𝑚
2 ⌋

subproblems and allocating the respective workload among multiple
processors or cores. This approach enhances scalability of the proposed
approach.

8.2. User evaluation results

To assess user satisfaction, the proposed algorithm has been in-
tegrated as a Rest-API service within a Telegram chatbot prototype.
The evaluation trials were conducted in June 2022 by involving 38
participants, primarily students and permanent residents who were
well-acquainted with the attractions in Apulia. Participants were asked
to use the chatbot prototype to plan hypothetical half-day, two-day,
and seven-day tours, starting from their preferred locations. The tests
focused on evaluating the meaningfulness of the recommended tours.
User evaluations were assessed according to the ISO/IEC 25010 quality-
in-use section (ISO/IEC 25010, 2011). Specifically, user feedback was
collected through post-usage questionnaires based on the Likert scale
(Likert, 1932). The responsiveness of the algorithm, measured in terms
of computational time, received positive reviews from all participants.
This aligns with the findings of the computational campaign discussed
in the previous section. In accordance with the ISO/IEC 25010 stan-
dard, metrics were defined to evaluate the effectiveness and efficiency
14

of the recommended tours. User feedback was positive regarding both i
effectiveness (attractiveness of selected Points of Interest) and effi-
ciency (number of walking sub-tours, total waiting time, total driving
time). Considered that Apulia is renowned for its scenic coastline,
participants suggested enhancing user satisfaction by assigning a pop-
ularity score to arcs in addition to nodes. This would enable the
incorporation of scenic driving paths into the recommended tours.

9. Conclusions

In this paper we have dealt with the tourist trip design problem in
a walk-and-drive mobility environment, where the tourist moves from
ne attraction to the following one as a pedestrian or as a driver
f a vehicle. Transport mode selection depends on the compromise
etween travel duration and tourist preferences. We have modelled the
roblem as a Team Orienteering Problem with multiple time windows
n a multigraph, where tourist preferences on transport modes have
een expressed as soft constraints. To the best of our knowledge this is
he first contribution introducing the TTDP in a walk-and-drive mobility
nvironment. We have also devised an adapted ILS coupled with an
nnovative approach to evaluate neighbourhoods in constant time. To
alidate our solution approach, realistic instances with thousands of
oIs have been tested. The proposed approach has succeeded in cal-
ulating customized trips of up to 7 days in real-time. Future research
ines will consider additional aspects, such as traffic congestion and PoI
core dependency on visit duration.

RediT authorship contribution statement

Tommaso Adamo: Conceptualization, Methodology, Validation,
ormal analysis, Data curation, Writing – original draft, Software.
ucio Colizzi: Conceptualization, Methodology, Validation, Formal
nalysis, Data curation, Writing – original draft, Software, Super-
ision, Funding acquisition. Giovanni Dimauro: Conceptualization,
ethodology, Validation, Formal analysis, Writing – review & edit-
ng. Gianpaolo Ghiani: Conceptualization, Methodology, Validation,

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.

G

G

G

G

H

H

H

I

K

K

K

K

L

L

L

L

L

M

R

R

R

R

R

Formal analysis, Writing – review & editing. Emanuela Guerriero:
Conceptualization, Methodology, Validation, Formal analysis, Writing
– original draft, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This research was supported by Regione Puglia (Italy) (Progetto
Ricerca e Sviluppo CBAS CUP B54B170001200007 cod. prog.
LA3Z825). This support is gratefully acknowledged.

References

Adamo, T., Calogiuri, T., Ghiani, G., Grieco, A., Guerriero, E., & Manni, E. (2016).
Neighborhood synthesis from an ensemble of MIP and CP models. In Learning and
intelligent optimization: 10th international conference (pp. 221–226). Springer.

Amarouche, Y., Guibadj, R. N., Chaalal, E., & Moukrim, A. (2020). Effective neighbor-
hood search with optimal splitting and adaptive memory for the team orienteering
problem with time windows. Computers & Operations Research, 123, Article 105039.

Archetti, C., Feillet, D., Hertz, A., & Speranza, M. G. (2009). The capacitated team
orienteering and profitable tour problems. Journal of the Operational Research
Society, 60(6), 831–842.

Archetti, C., Speranza, M. G., & Vigo, D. (2014). Chapter 10: Vehicle routing problems
with profits. In Vehicle routing: problems, methods, and applications (2nd Ed.). (pp.
273–297). SIAM.

Balas, E. (1989). The prize collecting traveling salesman problem. Networks, 19(6),
621–636.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. JournaL of
Machine Learning Research, 3(Jan), 993–1022.

Borràs, J., Moreno, A., & Valls, A. (2014). Intelligent tourism recommender systems: A
survey. Expert Systems with Applications, 41(16), 7370–7389.

Boussier, S., Feillet, D., & Gendreau, M. (2007). An exact algorithm for team
orienteering problems. 4or, 5(3), 211–230.

Chao, I.-M., Golden, B. L., & Wasil, E. A. (1996). The team orienteering problem.
European Journal of Operational Research, 88(3), 464–474.

CiteDrive, I. (2023). 17 Really useful things to know before visiting Puglia. https://
www.alongdustyroads.com/posts/useful-tips-puglia-italy. (Accessed: 02 September
2023).

Dang, D.-C., Guibadj, R. N., & Moukrim, A. (2013). An effective PSO-inspired algorithm
for the team orienteering problem. European Journal of Operational Research, 229(2),
332–344.

Dell’Amico, M., Maffioli, F., & Värbrand, P. (1995). On prize-collecting tours and the
asymmetric travelling salesman problem. International Transactions in Operational
Research, 2(3), 297–308.

Divsalar, A., Vansteenwegen, P., & Cattrysse, D. (2013). A variable neighborhood search
method for the orienteering problem with hotel selection. International Journal of
Production Economics, 145(1), 150–160.

Expósito, A., Mancini, S., Brito, J., & Moreno, J. A. (2019a). A fuzzy GRASP for
the tourist trip design with clustered POIs. Expert Systems with Applications, 127,
210–227.

Expósito, A., Mancini, S., Brito, J., & Moreno, J. A. (2019b). Solving a fuzzy tourist
trip design problem with clustered points of interest. In Uncertainty management
with fuzzy and rough sets (pp. 31–47). Springer.

Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problems with profits.
Transportation Science, 39(2), 188–205.

Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5(6),
345.

Garcia, A., Vansteenwegen, P., Arbelaitz, O., Souffriau, W., & Linaza, M. T. (2013).
Integrating public transportation in personalised electronic tourist guides. Computers
& Operations Research, 40(3), 758–774.

Gavalas, D., Kasapakis, V., Konstantopoulos, C., Pantziou, G., Vathis, N., & Zaroliagis, C.
(2015). The eCOMPASS multimodal tourist tour planner. Expert Systems with
Applications, 42(21), 7303–7316.

Gavalas, D., Konstantopoulos, C., Mastakas, K., & Pantziou, G. (2014a). Mobile
recommender systems in tourism. Journal of Network and Computer Applications,
39, 319–333.
15
Gavalas, D., Konstantopoulos, C., Mastakas, K., & Pantziou, G. (2014b). A survey on
algorithmic approaches for solving tourist trip design problems. Journal of Heuristics,
20(3), 291–328.

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Tasoulas, Y. (2013).
Cluster-based heuristics for the team orienteering problem with time windows. In
International symposium on experimental algorithms (pp. 390–401). Springer.

avalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Vathis, N. (2015).
Heuristics for the time dependent team orienteering problem: Application to
tourist route planning. Computers & Operations Research, 62, 36–50. http://dx.
doi.org/10.1016/j.cor.2015.03.016, URL https://www.sciencedirect.com/science/
article/pii/S0305054815000817.

avalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Vathis, N. (2015).
Heuristics for the time dependent team orienteering problem: Application to tourist
route planning. Computers & Operations Research, 62, 36–50.

Gedik, R., Kirac, E., Milburn, A. B., & Rainwater, C. (2017). A constraint programming
approach for the team orienteering problem with time windows. Computers &
Industrial Engineering, 107, 178–195.

olden, B. L., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval Research
Logistics, 34(3), 307–318.

ündling, F., & Witzel, T. (2020). Time-dependent tourist tour planning with adjustable
profits. In 20th symposium on algorithmic approaches for transportation modelling,
optimization, and systems. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

amid, R. A., Albahri, A., Alwan, J. K., Al-qaysi, Z., Albahri, O., Zaidan, A., Alnoor, A.,
Alamoodi, A., & Zaidan, B. (2021). How smart is e-tourism? A systematic review
of smart tourism recommendation system applying data management. Computer
Science Review, 39, Article 100337.

an, B., Zhang, W., Lu, X., & Lin, Y. (2015). On-line supply chain scheduling for single-
machine and parallel-machine configurations with a single customer: Minimizing
the makespan and delivery cost. European Journal of Operational Research, 244(3),
704–714.

utto, C., & Gilbert, E. (2014). Vader: A parsimonious rule-based model for sentiment
analysis of social media text. In Proceedings of the international AAAI conference on
web and social media, Vol. 8, no. 1 (pp. 216–225).

SO/IEC 25010 (2011). ISO/IEC 25010:2011, systems and software engineering -
systems and software quality requirements and evaluation (SQuaRE) - system and
software quality models.

arabulut, K., & Tasgetiren, M. F. (2020). An evolution strategy approach to the team
orienteering problem with time windows. Computers & Industrial Engineering, 139,
Article 106109.

ataoka, S., & Morito, S. (1988). An algorithm for single constraint maximum collection
problem. Journal of the Operations Research Society of Japan, 31(4), 515–531.

e, L., Archetti, C., & Feng, Z. (2008). Ants can solve the team orienteering problem.
Computers & Industrial Engineering, 54(3), 648–665.

hodadadian, M., Divsalar, A., Verbeeck, C., Gunawan, A., & Vansteenwegen, P.
(2022). Time dependent orienteering problem with time windows and service time
dependent profits. Computers & Operations Research, 143, Article 105794.

aporte, G., & Martello, S. (1990). The selective travelling salesman problem. Discrete
Applied Mathematics, 26(2–3), 193–207.

i, J., Nguyen, T. H. H., & Coca-Stefaniak, J. A. (2021). Coronavirus impacts on
post-pandemic planned travel behaviours. Annals of Tourism Research, 86, Article
102964.

ikert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology,
55.

in, S.-W., & Yu, V. F. (2012). A simulated annealing heuristic for the team orienteering
problem with time windows. European Journal of Operational Research, 217(1),
94–107.

in, S.-W., & Yu, V. F. (2015). A simulated annealing heuristic for the multiconstraint
team orienteering problem with multiple time windows. Applied Soft Computing, 37,
632–642.

ontemanni, R., Weyland, D., & Gambardella, L. (2011). An enhanced ant colony
system for the team orienteering problem with time windows. In 2011 international
symposium on computer science and society (pp. 381–384).

ighini, G., & Salani, M. (2009). Decremental state space relaxation strategies and
initialization heuristics for solving the orienteering problem with time windows
with dynamic programming. Computers & Operations Research, 36(4), 1191–1203.

uiz-Meza, J., Brito, J., & Montoya-Torres, J. R. (2021a). A GRASP to solve the multi-
constraints multi-modal team orienteering problem with time windows for groups
with heterogeneous preferences. Computers & Industrial Engineering, 162, Article
107776.

uiz-Meza, J., Brito, J., & Montoya-Torres, J. R. (2021b). A GRASP to solve the multi-
constraints multi-modal team orienteering problem with time windows for groups
with heterogeneous preferences. Computers & Industrial Engineering, 162, Article
107776.

uiz-Meza, J., & Montoya-Torres, J. R. (2021). Tourist trip design with heterogeneous
preferences, transport mode selection and environmental considerations. Annals of
Operations Research, 305(1), 227–249.

uiz-Meza, J., & Montoya-Torres, J. R. (2022). A systematic literature review for the
tourist trip design problem: Extensions, solution techniques and future research
lines. Operations Research Perspectives, Article 100228.

http://refhub.elsevier.com/S0957-4174(23)01959-0/sb1
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb1
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb1
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb1
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb1
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb2
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb2
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb2
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb2
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb2
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb4
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb4
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb4
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb4
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb4
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb5
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb5
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb5
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb6
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb6
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb6
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb7
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb7
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb7
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb8
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb8
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb8
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb9
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb9
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb9
https://www.alongdustyroads.com/posts/useful-tips-puglia-italy
https://www.alongdustyroads.com/posts/useful-tips-puglia-italy
https://www.alongdustyroads.com/posts/useful-tips-puglia-italy
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb12
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb12
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb12
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb12
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb12
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb13
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb13
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb13
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb13
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb13
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb14
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb14
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb14
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb14
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb14
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb16
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb16
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb16
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb17
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb17
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb17
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb18
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb18
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb18
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb18
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb18
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb19
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb19
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb19
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb19
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb19
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb21
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb21
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb21
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb21
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb21
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb22
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb22
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb22
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb22
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb22
http://dx.doi.org/10.1016/j.cor.2015.03.016
http://dx.doi.org/10.1016/j.cor.2015.03.016
http://dx.doi.org/10.1016/j.cor.2015.03.016
https://www.sciencedirect.com/science/article/pii/S0305054815000817
https://www.sciencedirect.com/science/article/pii/S0305054815000817
https://www.sciencedirect.com/science/article/pii/S0305054815000817
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb24
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb24
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb24
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb24
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb24
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb25
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb25
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb25
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb25
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb25
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb26
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb26
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb26
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb27
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb27
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb27
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb27
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb27
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb28
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb28
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb28
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb28
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb28
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb28
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb28
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb29
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb29
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb29
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb29
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb29
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb29
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb29
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb30
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb30
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb30
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb30
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb30
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb31
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb31
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb31
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb31
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb31
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb32
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb32
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb32
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb32
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb32
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb33
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb33
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb33
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb34
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb34
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb34
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb35
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb35
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb35
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb35
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb35
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb36
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb36
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb36
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb37
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb37
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb37
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb37
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb37
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb38
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb38
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb38
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb39
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb39
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb39
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb39
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb39
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb41
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb41
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb41
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb41
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb41
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb42
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb42
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb42
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb42
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb42
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb43
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb43
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb43
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb43
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb43
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb43
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb43
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb44
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb44
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb44
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb44
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb44
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb44
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb44
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb45
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb45
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb45
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb45
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb45
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb46
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb46
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb46
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb46
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb46

Expert Systems With Applications 237 (2024) 121457T. Adamo et al.

Y

Y

Z

Z

Z

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations Research, 35(2), 254–265.

Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., & Van Oudheusden, D. (2013a).
The multiconstraint team orienteering problem with multiple time windows.
Transportation Science, 47(1), 53–63. http://dx.doi.org/10.1287/trsc.1110.0377.

Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., & Van Oudheusden, D. (2013b).
The multiconstraint team orienteering problem with multiple time windows.
Transportation Science, 47(1), 53–63.

Stirparo, D., Penna, B., Kazemi, M., & Shashaj, A. (2022). Mining tourism experience
on Twitter: A case study. arXiv.

Tang, H., & Miller-Hooks, E. (2005). A TABU search heuristic for the team orienteering
problem. Computers & Operations Research, 32(6), 1379–1407.

Tang, L., & Wang, X. (2006). Iterated local search algorithm based on very large-scale
neighborhood for prize-collecting vehicle routing problem. International Journal of
Advanced Manufacturing Technology, 29(11), 1246–1258.

Toth, P., & Vigo, D. (2014). Vehicle routing: problems, methods, and applications, Vol. 18.
Siam.

Tricoire, F., Romauch, M., Doerner, K. F., & Hartl, R. F. (2010). Heuristics for the multi-
period orienteering problem with multiple time windows. Computers & Operations
Research, 37(2), 351–367.

Vansteenwegen, P., & Gunawan, A. (2019). Orienteering problems. In EURO advanced
tutorials on operational research. Springer.
16
Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D. (2009). Iterated
local search for the team orienteering problem with time windows. Computers &
Operations Research, 36(12), 3281–3290.

Verbeeck, C., Vansteenwegen, P., & Aghezzaf, E.-H. (2014). An extension of the arc
orienteering problem and its application to cycle trip planning. Transportation
Research Part E: Logistics and Transportation Review, 68, 64–78.

Warshall, S. (1962). A theorem on boolean matrices. Journal of the ACM, 9(1), 11–12.
u, Q., Fang, K., Zhu, N., & Ma, S. (2019). A matheuristic approach to the orienteering

problem with service time dependent profits. European Journal of Operational
Research, 273(2), 488–503.

u, V. F., Jewpanya, P., Ting, C.-J., & Redi, A. P. (2017). Two-level particle swarm
optimization for the multi-modal team orienteering problem with time windows.
Applied Soft Computing, 61, 1022–1040.

heng, W., Ji, H., Lin, C., Wang, W., & Yu, B. (2020). Using a heuristic approach
to design personalized urban tourism itineraries with hotel selection. Tourism
Management, 76, Article 103956.

heng, W., & Liao, Z. (2019). Using a heuristic approach to design personalized tour
routes for heterogeneous tourist groups. Tourism Management, 72, 313–325.

ografos, K. G., & Androutsopoulos, K. N. (2008). Algorithms for itinerary planning in
multimodal transportation networks. IEEE Transactions on Intelligent Transportation
Systems, 9(1), 175–184.

http://refhub.elsevier.com/S0957-4174(23)01959-0/sb47
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb47
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb47
http://dx.doi.org/10.1287/trsc.1110.0377
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb49
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb49
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb49
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb49
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb49
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb50
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb50
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb50
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb51
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb51
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb51
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb52
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb52
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb52
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb52
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb52
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb53
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb53
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb53
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb54
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb54
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb54
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb54
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb54
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb55
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb55
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb55
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb56
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb56
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb56
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb56
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb56
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb57
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb57
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb57
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb57
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb57
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb58
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb59
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb59
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb59
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb59
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb59
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb60
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb60
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb60
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb60
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb60
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb61
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb61
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb61
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb61
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb61
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb62
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb62
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb62
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb63
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb63
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb63
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb63
http://refhub.elsevier.com/S0957-4174(23)01959-0/sb63

	A multi-modal tourist trip planner integrating road and pedestrian networks
	Introduction
	 Literature Review
	Problem definition
	Modelling transfer

	Problem-solving method
	Local Search
	Solution Perturbation

	Constant time evaluation framework
	Feasibility check
	Basic insertion
	Advanced insertion

	 Updating an itinerary
	Insert and Update
	Remove and Update
	A numerical example

	Lifting ILS performance through unsupervised learning
	 Experimental campaign
	Computational results
	 User evaluation results

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

