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Abstract

Following a historical overview of the development of ordinal sums, a presentation of the most relevant results for ordinal sums 
of triangular norms and copulas is given (including gluing of copulas, orthogonal grid constructions and patchwork operators). The 
ordinal sums of copulas considered here are constructed not only by means of the comonotonic copula, but also by using the lower 
Fréchet-Hoeffding bound and the independence copula. We provide alternative proofs to some results on ordinal sums, elaborate 
properties common to all or just some of the ordinal sums discussed. Also included are a discussion of the relationship between 
ordinal sums of copulas and the Markov product and an overview of ordinal sums of multivariate copulas, illustrating aspects to be 
considered when extending concepts for ordinal sums of bivariate copulas to the multivariate case.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The topic of this paper is a presentation of various types of ordinal sums, particularly of triangular norms and 
copulas. On the one hand, ordinal sums, which have roots in algebraic structures, serve as a genuine mathematical tool, 
fully characterizing continuous t-norms and helping to solve a distinguished functional equation. On the other hand, 
ordinal sums of bi- and multivariate copulas have been of great interest for the scientific community in dependence 
modeling and copula theory.

First we sketch (in Section 2) the development over the years, from ordinal sums of partially ordered sets and semi-
groups over ordinal sums of triangular norms to the ordinal sums of bivariate copulas, not only with the minimum M

as background copula, but also the lower Fréchet-Hoeffding bound W and the independence copula �, to ordinal 
sums of multivariate copulas.
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Fig. 1. Visualizations of the construction in Theorem V (left) in [52,227], and of the structure of an M-ordinal sum of triangular norms (center) 
M-(〈a1, b1, T1〉, 〈a2, b2, T2〉, 〈a3, b3, T3〉) and of a W-ordinal sum of copulas (right) W-(〈a1, b1, C1〉, 〈a2, b2, C2〉, 〈a3, b3, C3〉).

After recalling the ordinal sums of t-norms in Section 3 we discuss the various forms of ordinal sums of bivariate 
copulas. Here also other approaches to ordinal sums (such as orthogonal grid constructions and patchwork operators) 
are compared, and we pay particular attention to the geometric point of view on ordinal sums and an interpretation by 
patchwork operators in Subsection 4.1, and to the role of M-, W- and �-ordinal sums as representations of copulas 
(Subsection 4.2).

The topic of Section 5 is the relationship between ordinal sums and the Markov product of bivariate copulas and 
a study of copulas which are idempotent with respect to the Markov product. Finally, several examples and results 
for ordinal sums of d-copulas are given in Section 6, including algorithms for the simulation of Md - and �d -ordinal 
sums.

A considerable effort was made to include, when discussing the various aspects of ordinal sums, the original and 
most relevant references for each topic, leading to a list of references of a rather unusual length. On the other hand, we 
tried to preserve the flow of the presentations and have, therefore, collected a number of mathematical conventions, 
basic definitions and notations at the end of the paper in Appendix A — the readers are invited to consult them 
whenever there is a need.

2. Ordinal sums — a historical overview

To the best of our knowledge, the original source of ordinal sums was in algebra, as ordinal sums of partially 
ordered sets (posets), and the earliest traces go back at least to the 1940s. A classical reference is BIRKHOFF [24, 
Chapter VIII, 10] (compare also [242]), a more recent one is [56, Section 1, 1.24], where ordinal sums were called 
linear sums of posets (compare also [215, Definition 2.1] and [219, Example 6.8]).

2.1. Ordinal sums of semigroups

CLIMESCU [52] and CLIFFORD [46–50] worked with ordinal sums of semigroups which are special cases of the 
so-called strong bands of semigroups, also studied by Clifford [45]. For some related work see [70,122,148], and in 
[211] one finds an extensive survey describing Clifford’s contributions to various fields of algebra.

FAUCETT [93–95], WALLACE [247] and MOSTERT & SHIELDS [195] proved important results for various types of 
continuous semigroup operations, i.e., for topological semigroups. For overviews and further details concerning these 
algebraic topics we recommend some standard monographs, e.g., [24,38,51,106,111,148,205].

To get started, we present a verbatim quotation of a result for the ordinal sum of two semigroups, namely, [52, 
Theorem V] in its translated form, as it appeared in the Appendix of [227] (the structure of this ordinal sum is 
visualized in Fig. 1(left)):
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Theorem V [52,227] Let (A, F) and (B, G) be semigroups. If the sets A and B are disjoint and if U is the mapping defined on 
(A ∪ B) × (A ∪ B) by

U(x,y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(x, y), x ∈ A,y ∈ A,

x, x ∈ A,y ∈ B,

y, x ∈ B,y ∈ A,

G(x, y), x ∈ B,y ∈ B,

then (A ∪ B, U) is a semigroup.

Theorem V [52,227] can be extended to the case of arbitrary many semigroups with pairwise disjoint carriers in a 
straightforward manner. As early as in the introductory part of [46], on page 631, CLIFFORD spoke about the ordinal 
sum of a totally ordered family of semigroups (Xτ )τ∈I , where the index set (I, �) is totally (i.e., linearly) ordered 
and where each Xτ is a naturally totally ordered, commutative semigroup, i.e., the divisibility (compare [123]) ≤ on 
Sτ given by

a ≤ b if either a = b or there exists c in S such that ac = b

is a total order, and where the semigroup operation on the ordinal sum S of the Sτ is defined for all σ, τ ∈ I with 
σ ≺ τ and for all aσ ∈ Sσ , bτ ∈ Sτ by aσ bτ = bτ aσ = bτ .

Calling a naturally totally ordered, commutative semigroup ordinally irreducible if and only if it contains a proper, 
non-empty, absorbent prime ideal a (i.e., if a ∈ a and b /∈ a then ab = a), one of the main results of [46] is the 
following Theorem 1, given here as a verbatim quotation:

Theorem 1 [46] Every naturally totally ordered, commutative semigroup is uniquely expressible as the ordinal sum of a totally 
ordered set of ordinally irreducible such semigroups.

2.2. Ordinal sums of triangular norms

A particularly interesting and powerful tool are ordinal sums of triangular norms (t-norms for short). Trian-
gular norms (see Definition A.1) are binary operations on the unit interval [0, 1] which were first considered by
MENGER [180] in the context of suitable triangle inequalities in so-called probabilistic (or statistical) metric spaces
(see, e.g., [224–226,228,229,233], for probabilistic normed spaces see, e.g., [14,167,231]). Later on, triangular norms 
were widely used as representations of the conjunction in fuzzy logics [117,252], where the set of Boolean truth values 
{0, 1} is extended to the unit interval [0, 1].

Algebraically speaking, for each triangular norm T : [0, 1]2 → [0, 1] the pair ([0, 1], T ) is a fully ordered, com-
mutative semigroup with neutral element 1 and annihilator 0. A usual way to produce ordinal sums of t-norms is to 
start with an index set K , a family of non-empty, pairwise disjoint open subintervals (]ak, bk[)k∈K and a family of 
t-norms (Tk)k∈K . Using linear isomorphisms ϕk : [ak, bk] → [0, 1] the respective isomorphic images of Tk turn each 
semigroup ([0, 1], Tk) into an isomorphic semigroup ([ak, bk] , T ∗

k ). In order to construct a suitable ordinal sum of 
the semigroups (([0, 1], Tk))k∈K with carrier [0, 1], one readily sees that the family ([ak, bk])k∈K , in general, is not 
a partition of [0, 1]: the intervals may have endpoints in common, and their union may be a proper subset of the unit 
interval.

The disjointness of the carriers of the semigroups in Theorem V in [52,227] can be somehow relaxed, as one 
can see from the following result in [154] which, in turn, is a consequence of [46]. Together with the technique of 
“filling the gaps” between 

⋃
k∈K ]ak, bk[ and the unit interval [0, 1] by means of the special t-norm TM given by 

TM(x, y) = min{x, y}, Theorem 2.1 makes it possible to consider ordinal sums of t-norms.

Theorem 2.1. [154, Theorem 3.42] Let (K, �) with K �= ∅ be a linearly ordered set and (Gk)k∈K with Gk = (Xk, ∗k)

be a family of semigroups. Assume that for all k, l ∈ K with k ≺ l the sets Xk and Xl are either disjoint or that 
Xk ∩ Xl = {xkl}, where xkl is both the unit element of Gk and the annihilator of Gl , and where for each j ∈ K with 
k ≺ j ≺ l we have Xj = {xkl}.
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Put X = ⋃
k∈K

Xk and define the binary operation ∗ on X by

x ∗ y =

⎧⎪⎨⎪⎩
x ∗k y if (x, y) ∈ Xk × Xk,

x if (x, y) ∈ Xk × Xl and k ≺ l,

y if (x, y) ∈ Xk × Xl and l ≺ k.

Then G = (X, ∗) is a semigroup.

A full proof of Theorem 2.1 can be found in [154, Theorem 3.42]. The following brief description gives a good 
idea how the shortcomings of the family of intervals mentioned above (the closed intervals may have endpoints in 
common, and the union of the intervals may be a proper subset of the unit interval) can be overcome.

Let us start with a family (Tk)k∈K of triangular norms and a family (]ak, bk[)k∈K of non-empty, pairwise disjoint 
open subintervals of [0, 1]. Note first that the pairwise disjointness of the non-empty subintervals ]ak, bk[ of [0, 1]
implies that the index set K must be countable. Filling the gaps to the left and right of 

⋃
k∈K ]ak, bk[ and between any 

two neighboring intervals by intervals of maximal length, we obtain a family of pairwise disjoint closed subintervals 
(
[
aj , bj

]
)j∈J (trivial, i.e., one-point intervals are possible), where a countable index set J can be chosen (implying 

that also J ∪ K is countable) so that J ∩ K = ∅ and 
⋃

i∈J∪K

[ai, bi] = [0, 1].
Using the function s : J ∪K → [0, 1] which assigns to each interval [ai, bi] its midpoint s(i) = 1

2 (ai + bi), we can 
define a linear order � on J ∪K putting i1 � i2 ⇐⇒ s(i1) ≤ s(i2). Considering for each interval [ai, bi] with ai < bi

the linear bijection

ϕi : [ai, bi] → [0,1], ϕi(u) = u − ai

bi − ai

,

we obtain for each i ∈ J ∪ K a semigroup Hi = ([ai, bi] , �i ), where the operation �i : [ai, bi]2 → [ai, bi] is given 
by

u �i v =
{

ϕ−1
i

(
Ti(ϕi(u),ϕi(v))

)
if i ∈ K,

min{u,v} if i ∈ J.
(2.1)

Observing that u �i v = ϕ−1
i (min{ϕi(u), ϕi(v)}) whenever i ∈ J and ai < bi , the family of semigroups (Hi, �i )i∈J∪K

satisfies all the hypotheses of Theorem 2.1, and ([0, 1], T ) is a semigroup, where the binary operation T : [0, 1]2 →
[0, 1] is a triangular norm:

T (x, y) =
{

ak + (bk − ak)Tk

(
x−ak

bk−ak
,

y−ak

bk−ak

)
if (x, y) ∈ [ak, bk]2 ,

min{x, y} otherwise.
(2.2)

Moreover, note that in (2.1) one obtains, whenever Tk = TM for some k ∈ K , the following identity for the function 
�k : [ak, bk]2 → [ak, bk]:

u �k v = ϕ−1
k

(
min{ϕk(u),ϕk(v)}) = min{u,v} = TM(u, v). (2.3)

In fact, using this line of arguments we have verified the following result which sometimes is called the ordinal 
sum theorem for t-norms.

Theorem 2.2. Let (]ak, bk[)k∈K be a family of non-empty, pairwise disjoint open subintervals of [0, 1] and let (Tk)k∈K

be a family of triangular norms. Then the function T : [0, 1]2 → [0, 1] given by (2.2) is a triangular norm.

In the sequel, we shall call the t-norm T given by (2.2) the M-ordinal sum of the t-norms (Tk)k∈K , and we shall 
write T = M-(〈ak, bk, Tk〉)k∈K (compare also (4.1) below). Observe that “filling the gaps” described above has no 
influence on the ordinal sum considered there, i.e., we have

M-(〈ak, bk, Tk〉)k∈K = M-(〈ai, bi, Ti〉)i∈J∪K whenever Ti = TM for all i ∈ J . (2.4)
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Clearly, (2.4) means also that, in an arbitrary M-ordinal sum of triangular norms T = M-(〈ak, bk, Tk〉)k∈K all the 
summands of the form 〈ai, bi, TM〉 can be omitted without changing the ordinal sum T . A visualization of the structure 
of an M-ordinal sum of t-norms is given in Fig. 1 (center), and the dotted squares along the main diagonal of [0, 1]
indicate the “gaps” which were filled with the “neutral” t-norm TM. More examples and results for M-ordinal sums 
of triangular norms will be presented and discussed in Section 3.

A well-known construction tool for important classes of triangular norms (and 2-copulas) are some types of unary 
functions from [0, 1] to [0,∞], the so-called additive generators. This concept goes back to ideas by ABEL [1], and 
it was further developed in, e.g., [2,94,195,226–228].

Taking into account the representation of continuous Archimedean t-norms by means of continuous additive gen-
erators due to LING [171,172] (compare also [227], and for a generalization see [165]), it follows that associative 
bivariate copulas are exactly 1-Lipschitz triangular norms (see also [196]).

Another significant achievement in the context of triangular norms was the full characterization of the continuous 
t-norms as ordinal sums of continuous Archimedean t-norms. This result can be derived from [195] (see also [228, 
Theorem 5.38] and [154, Corollary 3.56, Theorem 5.11]).

In [132] it was pointed out that the ordinal sum theorem for t-norms (Theorem 2.2) remains valid if we replace the 
requirement that (Tk)k∈K be t-norms by the weaker requirement that they be t-subnorms (with some additional mild 
properties if necessary). Recall that a t-subnorm is a function T : [0, 1]2 → [0, 1] which satisfies the properties (i)–(iii) 
in Definition A.1 and is bounded from above by the minimum, i.e., T (x, y) ≤ min{x, y} for all (x, y) ∈ [0, 1]2, the 
latter being weaker than the boundary condition Definition A.1(iv). The t-subnorms (introduced in [128]) are slightly 
more general than the t-norms, and t-subnorms carry almost all properties of t-norms. They can be a powerful tool 
for constructing left-continuous t-norms by the so-called rotation–annihilation construction of new families of left-
continuous t-norms and other aggregation operators [131,138].

2.3. Ordinal sums of bivariate copulas (and other binary operations)

When looking back, in particular at Theorem V [52,227] and Theorem 2.1, one could think that ordinal sums are 
applicable to partially ordered sets and to semigroups only, since in all the cases considered so far, the crucial property 
to be verified for the resulting ordinal sum is the associativity of the respective binary operation.

However, ordinal sums can be constructed not only in the context of posets and semigroups, but also for other rather 
general algebraic structures like groupoids (X, ∗), where a non-empty set X is equipped with a binary operation ∗
(no additional properties may be required). The following result is formulated according to [154, Remark 3.45(i)]
(compare also [228, Definition 5.2.4]).

Theorem 2.3. Let (A, �) be a non-empty, linearly ordered index set, and (Xα, ∗α)α∈A a family of groupoids. If the 
sets Xα are pairwise disjoint and if the binary operation ∗ on 

⋃
α∈A

Xα is defined by

x ∗ y =

⎧⎪⎨⎪⎩
x ∗α y if (x, y) ∈ Xα × Xα,

x if (x, y) ∈ Xα × Xβ and α ≺ β,

y if (x, y) ∈ Xα × Xβ and β ≺ α,

(2.5)

then 
( ⋃

α∈A

Xα, ∗
)

is a groupoid.

This result allows us to consider families of groupoids with more additional properties. If we want to know whether 
the ordinal sum is also a groupoid with the same additional properties, we only have to check whether the operation ∗
given by (2.5) satisfies the additional properties, too.

Early traces of such ordinal sums can be found in SKLAR [238, Definition 5] (where ordinal sums of functions 
F : [0, 1]2 → R satisfying F(0, 0) = 0 and F(1, 1) = 1 were considered), and in Definition 5.2.4 and Theorem 5.2.5 
in the monograph [228] by SCHWEIZER & SKLAR, where they investigated ordinal sums of (associative) binary 
systems satisfying some compatibility conditions. Based on Theorem B in [195], ordinal sums of bivariate copulas 
were mentioned by FRANK in [104, Section 2, (2.7)], and in Theorem 4 a representation of associative copulas was 
given.
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In the following we mention several classes of functions from [0, 1]2 to [0, 1] which have been studied in various 
contexts, all of them being special cases of the functions considered in [238]. Their ordinal sums were introduced and 
studied under various names such as linear sums, orthogonal grid constructions, patchwork constructions, to name a 
few. As announced in Section 1, this paper will focus on ordinal sums of triangular norms and d-copulas with d ≥ 2
which will be discussed in some detail in Sections 3–4 and 6. For the sake of completeness we present here also some 
other classes of bivariate functions whose ordinal sums have been investigated either from a theoretical point of view 
or in the context of applications.

Obviously, triangular norms as well as bivariate copulas are prominent examples of both conjunctive opera-
tions [60] and of bivariate aggregation functions [114]. Triangular norms [12,132,154,157,158,172,223,225–228] can 
be seen as symmetric, associative increasing conjunctive operations, and bivariate copulas [87,183,191,192,198,222,
237–239] are 2-increasing semicopulas.

If we start with conjunctive operations on [0, 1], i.e., functions from [0, 1]2 to [0, 1] with annihilator 0 and neu-
tral element 1 (which can be considered as extensions of the Boolean conjunction on {0, 1} to the unit interval 
[0, 1]), then we find other interesting conjunctive operations satisfying one or more additional properties (see, e.g., 
[216, Definition 1.1, Remark 1.4]): semicopulas, i.e., increasing conjunctive operations (see [21,83,86]), 1-Lipschitz 
conjunctive operations [150,160–162] (see also [173,204]), and quasi-copulas, i.e., 1-Lipschitz semicopulas (see 
[13,110,213,232]).

Some early and explicit traces of ordinal sums and orthogonal grids can be found, in the case of semicopulas in [86]
and [61, Proposition 5], and in the case of quasi-copulas in [61, Proposition 6], and for W-ordinal sums in [184] and 
for �-ordinal sums in [59,60].

The purpose of aggregation functions [23,34,114] (see also [33,35,36,66,82,156,163]) is the combination of several 
(numerical) data into a single representative value. A bivariate aggregation function A : [0, 1]2 → [0, 1] is required 
to be increasing and to satisfy A(0, 0) = 0 and A(1, 1) = 1, and ordinal sums of general aggregation functions were 
presented and studied by DE BAETS & MESIAR in [66] (compare also [23,114,115,190]).

Some well-known examples of bivariate aggregation functions are, e.g., triangular conorms, i.e., duals of triangular 
norms [12,154,157,158,172,227,228], uninorms, i.e., symmetric, associative aggregation functions with a neutral ele-
ment e ∈ ]0,1[ [32,57,58,64,65,72,88,103,109,170,177,187,249,251] (for early traces, predecessors and special types 
of uninorms see [71,118,153,206,236,241,250]), nullnorms, i.e., symmetric associative aggregation functions with 
annihilator a ∈ ]0,1[ (acting on [0, a] as a triangular conorm, and on [a,1] as a triangular norm) [32,72,73,97,176], 
hoops, i.e., partially ordered commutative residuated integral monoids [6,9,25,92], and BL-chains, i.e., totally ordered 
bounded hoops [5,7,8,31,116,117,119,169].

Ordinal sums of triangular conorms can be found, e.g., in [105, Section 2], and for ordinal sums of uninorms see 
[74,185,186,188,189,240]). In the literature one finds a unique decomposition of each BL-chain into an ordinal sum 
of irreducible hoops [31], a representation of BL-chains by an ordinal sum of Wajsberg hoops [7,25,31,53], as well as 
decompositions of saturated BL-chains as ordinal sums of MV-chains, Gödel chains and PL-chains [44].

Finally we mention that many binary operations on the unit interval [0, 1] have been extended to the case of 
bounded lattices (see, e.g., [18–20,28,40,41,54,68,120,121,125,143–146,152,164,178,219,253], and ordinal sums of 
these mathematical objects were studied in several papers, e.g., [90,179,215,217,218,248].

2.4. Other ordinal sum-types of copulas

In the ordinal sums of operations on the unit interval [0, 1] mentioned so far, the function TM : [0, 1]2 → [0, 1]
given by TM(x, y) = min{x, y}, as we usually call it in the context of triangular norms, plays an important role. In 
the area of copulas, the same function is usually called M , i.e., M = TM, which is also the reason why the ordinal 
sums considered so far will be called M-ordinal sums from Section 4 onward, where also other types of ordinal sum 
constructions of copulas will be discussed which are based on the lower Fréchet-Hoeffding bound W (see (4.2)) and, 
later on, also on the independence copula � (see (4.4)–(4.6)). For the definition and relevant properties of copulas see 
Appendix A.5–A.9.

It is well-known that TM is the only triangular norm (and copula) whose set of idempotent elements equals 
[0, 1] (see, e.g., [154, Proposition 1.9]), and that the lower Fréchet-Hoeffding bound W : [0, 1]2 → [0, 1] given by 
W(x, y) = max{x + y − 1, 0} [198] is the only bivariate copula which vanishes on the opposite diagonal of [0, 1], 
i.e., W(x, 1 − x) = 0 for all x ∈ [0, 1]. Based on this observation, in [184] the concept of W-ordinal sum of copulas 
33
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Fig. 2. Structure of the �-vertical (left), �-horizontal (center) and �-diagonal (right) ordinal sum of (〈a1, b1,C1〉, 〈a2, b2,C2〉, 〈a3, b3,C3〉).

(see (4.2)) was introduced in analogy to M-ordinal sum of copulas, in a way interchanging the roles of the diagonal 
and the opposite diagonal of the unit interval [0, 1] (see Fig. 1 right).

Note, however, that there are many triangular norms which vanish on the opposite diagonal of [0, 1] and that 
W-ordinal sums, in general, do not preserve associativity or commutativity of their summands (see, e.g., [216]). 
Therefore, we have no constructions and representations for t-norms by means of W-ordinal sums, although such 
constructions and representations exist, among others, for copulas (see, e.g., Propositions 4.27 and 4.29).

Carefully analyzing formula (4.3), one sees that, starting with a point (x, y) in an appropriate square centered 
around the opposite diagonal of [0, 1]2, this argument (x, y) first undergoes some appropriate linear transformation 
yielding a transformed pair (x∗, y∗), followed by another suitable linear operation involving W(x∗, y∗). The result 
of this linear process in two steps is exactly the value of the lower Fréchet-Hoeffding bound W at the starting point 
(x, y).

The similarity between (2.3) and (4.3) suggests that there is a close relationship between M-ordinal sum of copulas 
given in (4.1) and W-ordinal sum of copulas given in (4.2). Indeed, M- and W-ordinal sum of copulas are closely 
related to each other via symmetries as specified in Proposition 4.9 (i)–(ii).

Once the associativity property was not required anymore, it became clear that the ordinal sum construction may 
gain flexibility not only in the background function, but also in the way this latter function is specified in different 
subregions of its domain. Apart from M and W , it was hence clear that other constructions could be obtained as well 
by considering. e.g., the product t-norm TP (or, equivalently, the independence copula �) as proposed by DE BAETS 
& DE MEYER [59,60] (for a visualization of �-ordinal sums see Fig. 2). These constructions have hence generalized 
in the form of orthogonal grid representation of the aggregation function in [61], where various types of conjunctive 
operations like semicopulas, quasi-copulas, and copulas are also considered. Curiously, specific examples from these 
constructions turned out to have appeared in copula theory, like the copula of the circular uniform distribution (see 
[198, section 3.1.2]) and special types of shuffles (see [198, Example 5.12]).

Focusing on copulas, ordinal sum constructions may benefit of the stochastic interpretation of these functions that 
eases the interpretation of some concepts and their multivariate extensions. In particular, the gluing method intro-
duced by SIBURG & STOIMENOV [234] has provided a flexible way to join two or more copulas starting with the 
independence case. It was hence naturally expressed as an ordinal sum construction in [181] and, later, formalized as 
�-ordinal sums in [161] (see also some related concepts discussed in [216]). A unifying viewpoint to these construc-
tions was hence provided by patchwork techniques, considered for 2-increasing aggregation functions in [84] and, 
later on, applied to copula models in [85]. Here, the main tool is to apply Sklar’s representation theorem to (locally) 
represent a 2-increasing function in terms of a copula and some suitable marginals, that turns out to be related to 
the sections of the original background copula. This idea allows also a different interpretation of copulas with given 
horizontal or vertical sections [81,151].

Using the gluing methods [234], these copula constructions have been generalized to higher dimensions also by 
adopting a measure theoretic point of view to patchwork techniques [77].

Summarizing, starting with the representation of associative functions, ordinal sums of t-norms have been consid-
ered extensively in the literature. Thanks to their link to copulas, especially highlighted by Frank t-norms, they have 
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found a way to stochastic models (i.e., copulas) and general aggregation functions. This long path is now following a 
way that was not expected in the early years of functional equations, but is continuing to be fruitful in many research 
problems where the aggregation of different structures is needed.

3. Ordinal sums of triangular norms

The history of triangular norms starts with MENGER [180] who began to construct metric spaces where the non-
negative numbers were replaced by probability distributions in order to “measure” the distance between the elements 
of such a space. The formulation of some triangle inequality in this more general setting naturally led to triangular 
norms (t-norms for short). In [180] rather weak axioms for t-norms were given, as quoted below (actually, they 
comprised also the operations known today as triangular conorms):

. . . where T (α, β) is a function defined for 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 such that
(a) 0 ≤ T (α, β) ≤ 1.
(b) T is increasing in either variable.
(c) T (α, β) = T (β, α).
(d) T (1, 1) = 1.
(e) If α > 0, then T (α, 1) > 0.
[. . . ] We shall call the function T the triangular norm of the statistical metric . . .

SCHWEIZER & SKLAR [224–226] provided the axioms of t-norms as they are used today, and an adapted definition 
by ŠERSTNEV [233] led to a rapid development of statistical (or probabilistic, as they were called after 1964) metric 
spaces [12,228,229].

Mathematically speaking, (specific) functional equations and the theory of (special topological) semigroups pro-
vided two rather independent roots for (continuous) t-norms.

Looking at semigroups, FAUCETT [94] studied compact, irreducibly connected topological semigroups and gave a 
characterization of such semigroups, where the boundary points are the only idempotents and where no nilpotent ele-
ments exist (thus providing, in the language of t-norms, a full representation of strict t-norms). MOSTERT & SHIELDS

[195] characterized all such semigroups, where the boundary points play the role of annihilator and neutral element 
(see also [205]). For t-norms, this gives a representation of all continuous t-norms.

Several construction methods from the theory of semigroups, such as (isomorphic) transformations (e.g., the addi-
tive generators mentioned above) and ordinal sums [45–50,52,227], have been successfully applied to construct whole 
families of t-norms, starting from a few given prototypical examples [227]. So three basic t-norms, the minimum TM, 
the product TP and the Łukasiewicz t-norm TL, allow us to construct all continuous t-norms using isomorphic trans-
formations and ordinal sums [172].

In the context of functional equations, t-norms are closely related to the associativity equation, and the earliest 
source in this context seems to be ABEL [1] (see also [2,29,39,124] and the monographs by ACZÉL [3,4]). Major 
achievements were the full characterization of continuous Archimedean t-norms by additive generators in LING [172]
(for the special case of strict t-norms see [226]) and the solution of a famous functional equation by FRANK [105].

Triangular norms (in particular, left continuous t-norms) are widely used as representations of the conjunction 
in fuzzy logics [117,252], were the classical two-point set of (Boolean) truth values “True” and “False” [26,27] is 
extended to the unit interval [0, 1] with the understanding, that “True” corresponds to 1 and “False” to 0.

The full definition of t-norms is presented in the Appendix A.2. In general, the properties (i)–(iv) in this definition 
do not imply any type of continuity of t-norms (see [154, Sections 1.3, 2.3–2.4, 3.4] and [159]).

There are even t-norms which are not Borel measurable (see [149, Example 2.2], [154, Example 3.75] and [159, 
Example 4.1]) and, therefore, not continuous. And KRAUSE [166] introduced a particularly interesting non-continuous 
triangular norm, the so-called Krause t-norm T K which was discussed in detail in [154, Appendix B] and which is 
neither left- nor right-continuous, but has a continuous diagonal section, thus providing a negative answer to [228, 
Problem 5.8.1] by, as one can read in [12, p. 77], “. . . constructing an intriguing and intricate counterexample, the 
so-called ‘Devil’s Terraces’, which employs classical Cantor sets.”

Non-continuous t-norms satisfying weaker forms of continuity are, e.g., TD which is right-continuous, and the 
left-continuous nilpotent minimum T nM [102,207,208] given by

T nM(x, y) = 1{(u,v)∈[0,1]2|u+v>1}(x, y) · min{x, y}.
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The t-norms T1, T2 given by

T1(x, y) = (
1 − 1]0,0.5[2(x, y)

) · min{x, y} and T2(x, y) = 1[0.5,1]2(x, y) · min{x, y}

are continuous at the border of [0, 1]2 and at the point (1, 1), respectively (see [154, Example 1.24]).
Left-continuous t-norms play an crucial role in many-valued logics on [0, 1] (fuzzy logics): they are closely related 

to residual lattices where an important type of many-valued implications exists. For the role of the left-continuous 
t-norms and the corresponding logics see, e.g., the monograph of HÁJEK [117] and [44,91,101,112,113,199], and 
for investigations and constructions of the class of left-continuous t-norms see [43,127,129–131,133–137,139–141,
174,246]. However, unlike the case of continuous t-norms (see Theorem 3.2 below), a full characterization of left-
continuous t-norms does not yet exist.

We have already mentioned that three of the four basic t-norms are also copulas, while TD is not. As a consequence 
of [197], the exact relationship between t-norms and bivariate copulas is given as follows (see [154, Corollary 9.9, 
Theorem 9.10]): A bivariate copula C is a triangular norm if and only if C is associative, while a triangular norm T is 
a copula if and only if T is 1-Lipschitz.

The Archimedean property can be defined in rather abstract algebraic structures. In the case of continuous t-norms 
we can simplify the definition: A continuous t-norm T is called Archimedean if T is either strict or nilpotent.

Recall that a continuous triangular norm is called strict if T is strictly increasing, i.e., if for all x ∈ ]0,1], y, z ∈
[0, 1] the strict inequality y < z implies T (x, y) < T (x, z), and T is called nilpotent if T has some zero divisor, i.e., 
if there exist an a ∈ ]0,1] such that T (a, b) = 0 for some b ∈ ]0,1]. The existence of a zero divisor of T is equivalent 
to the fact that the set of nilpotent elements of T equals [0,1[, i.e., for each a ∈ [0,1[ there exists an n ∈N \ {1} such 
that a(n)

T = 0, where a(n)
T is defined inductively by a(2)

T = T (a, a), and a(n)
T = T

(
a

(n−1)
T , a

)
whenever n ≥ 3.

Early traces of the following characterization of continuous Archimedean t-norms can be found in [1,2,94] in the 
strict case, and in [195] (in the framework of nilpotent compact topological semigroups). The result below follows 
from [172] (see also [228, Theorem 5.5.2] and [154, Theorem 5.1]). Observe that in [165] one can find a strengthened 
version of the theorem in [172].

Theorem 3.1. For a function T : [0, 1]2 → [0, 1] the following are equivalent:

(i) T is a continuous Archimedean t-norm.
(ii) There exists a continuous, strictly decreasing function t : [0, 1] → [0,∞] satisfying t (1) = 0, which is uniquely 

determined up to a positive multiplicative constant, such that T (x, y) = t (−1)(t (x) + t (y)) holds for all (x, y) ∈
[0, 1]2, where t (−1) is the pseudo-inverse of t .

The characterization of continuous t-norms by means of ordinal sums can be derived from [195] (compare also 
[205]), and for our formulation see [228, Theorem 5.38] and [154, Theorem 5.11]:

Theorem 3.2. For a function T : [0, 1]2 → [0, 1] the following are equivalent:

(i) T is a continuous t-norm.
(ii) T is uniquely representable as an ordinal sum of continuous Archimedean t-norms, i.e., there exists a countable 

index set K , a unique family of pairwise disjoint open subintervals (]ak, bk[)k∈K of [0, 1] and a unique family of 
continuous Archimedean t-norms (Tk)k∈K such that T = (〈ak, bk, Tk〉)k∈K .

Two continuous triangular norms T1 and T2 are called isomorphic if there exists a continuous, strictly increasing 
bijection ϕ : [0, 1] → [0, 1] such that for all (x, y) ∈ [0, 1]2 we have ϕ(T1(x, y)) = T2(ϕ(x), ϕ(y)). One of the conse-
quences of Theorem 3.2 is that (see [154, Propositions 5.9, 5.10]) a continuous t-norm T is strict if and only if it is 
isomorphic to TP, and that it is nilpotent if and only if T is isomorphic to TL.

Therefore, Theorems 3.1 and 3.2 imply that ordinal sums and isomorphic images of the three t-norms TL, TP
and TM (the latter being needed in almost each ordinal sum) are sufficient to characterize all continuous t-norms:
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Corollary 3.3. For a function T : [0, 1]2 → [0, 1] the following are equivalent:

(i) T is a continuous t-norm.
(ii) T is uniquely representable as an ordinal sum (〈ak, bk, Tk〉)k∈K of t-norms where each Tk is isomorphic to a 

t-norm in {TP, TL}.

Corollary 3.3 can be furthermore formulated in the context of 1-Lipschitz t-norms, i.e., for associative copulas, 
taking into account the following result.

Theorem 3.4. For a function T : [0, 1]2 → [0, 1] the following are equivalent:

(i) T is an associative copula.
(ii) T is uniquely representable as an ordinal sum (〈ak, bk, Tk〉)k∈K of t-norms where each Tk is an Archimedean 

copula, i.e., it is a continuous Archimedean t-norm with a convex additive generator.

Interestingly, ordinal sums of strict (or nilpotent) Archimedean copulas can approximate any associative copula in 
the topology of uniform convergence (see [155]). Moreover, in the stronger topology induced by the metric D1 studied 
in [244], (finite) ordinal sums of strict Archimedean copulas can approximate any associative copula [147, Theorem 
3.6].

Ordinal sum of some t-norms, in this case of the so-called Frank t-norms, play a crucial role in the solution of 
a famous functional equation. Recall that the family (T F

κ )κ∈[0,∞] of Frank t-norms was defined in [105, (1.7)] as 
follows:

T F
κ (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
TM(x, y) if κ = 0,

TP(x, y) if κ = 1,

TL(x, y) if κ = ∞,

logκ

(
1 + (κx−1)(κy−1)

κ−1

)
otherwise.

The Frank family (T F
κ )κ∈[0,∞] of t-norms is also a remarkable family of bivariate copulas, but for the proof of Theo-

rem 3.5 below the fact that they turn [0, 1] into a topological semigroup was an important aspect.
The following functional equation was studied in [105]. Consider the set N of all continuous bivariate functions 

F : [0, 1]2 → [0, 1] satisfying the boundary conditions F(0, x) = F(x, 0) = 0 and F(1, x) = F(x, 1) = x for all 
x ∈ [0, 1], define for each F ∈ N the function Fˆ: [0, 1]2 →R via

Fˆ(x, y) = x + y − F(x, y), (3.1)

and find all functions F ∈ N such that both F and Fˆ are associative.
Using results on topological semigroups [195,205] and transforming the problem into differential equations,

FRANK [105] provided a solution. The following is an equivalent reformulation of the solution of this problem in 
terms of the unknown function F ∈ N only (the original solution given in [105, Theorem 1.1] considered pairs of 
functions (F, G) with F ∈ N and F and G being coupled by F(x, y) + G(x, y) = x + y for all (x, y) ∈ [0, 1]2). 
Taking into account that each t-norm T equals the trivial ordinal sum (〈0, 1, T 〉) we may write:

Theorem 3.5. Let F ∈ N such that F and Fˆ as given by (3.1) are increasing in each variable. Then both F and Fˆ
are associative if and only if F is representable as an ordinal sum of members of the Frank family of t-norms.

An interesting inequality that characterizes Frank t-norms and some related ordinal sums has been recently consid-
ered in [62] (see also [220]).

4. Ordinal sums of bivariate copulas

Historically, it was clear that ordinal sums of associative copulas preserve the 2-increasing property (see, e.g., [104, 
Theorem 4]), the Frank t-norms being a prominent example of associative copulas. Moreover, as made explicit by
SKLAR in [238, Definition 5], ordinal sums of triangular norms can be naturally extended to other bivariate functions.
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The need to consider more flexible classes of aggregation functions as well as new classes of copulas for the 
description of different features of random vectors has stimulated the investigations of several ordinal sum-type con-
structions, introduced under various names, like W-ordinal sums [59,60,184], orthogonal grid constructions [59–61], 
gluing of copulas [181,234], patchwork constructions [85], �-ordinal sums [161], and also some related concepts 
discussed in [216].

In this section we focus on five different ordinal sum operations taking bivariate copulas as summand operations 
and leading again to a bivariate copula (see Appendix A.5–A.9 for the definition and relevant properties of copulas). 
In particular, we emphasize some of their common features as a result of a measure-theoretic interpretation of these 
concepts via patchwork techniques. It should be stressed that other similar constructions are possible as well, the ones 
considered being those with a closed form analytical expression.

We shall first turn to M- and W-ordinal sums. Proofs of the following proposition can be found, e.g., for the M-
ordinal sums in [61, Proposition 9] and [183, Theorem 2.1], and for the W-ordinal sums in [184, Theorem 2] and [61, 
Proposition 11]. An alternative proof will be provided in Subsection 4.2.

Proposition 4.1. Let (]ak, bk[)k∈K be a family of non-empty, pairwise disjoint open subintervals of [0, 1] and let 
(Ck)k∈K be a family of copulas. Then the following two functions MOSum, WOSum : [0, 1]2 → [0, 1] are copulas:

MOSum(x, y) =
{

ak + (bk − ak) · Ck

(
x−ak

bk−ak
,

y−ak

bk−ak

)
if (x, y) ∈ [ak, bk]2 ,

M(x, y) otherwise,
(4.1)

WOSum(x, y) =
{

(bk − ak) · Ck

(
x−ak

bk−ak
,

y+bk−1
bk−ak

)
if (x, y) ∈ [ak, bk] × [1 − bk,1 − ak] ,

W(x, y) otherwise.
(4.2)

The functions MOSum and WOSum are called the M-ordinal sum and W-ordinal sum, respectively, of the summands 
(]ak, bk[ , Ck)k∈K , and we use the notations MOSum = M-(〈ak, bk, Ck〉)k∈K and WOSum = W-(〈ak, bk, Ck〉)k∈K .

An ordinal sum D-(〈ak, bk, Ck〉)k∈K with D ∈ {M, W } will be called non-trivial if the family (]ak, bk[)k∈K does 
not consist of ]0,1[ only and Ck �= D for at least one k ∈ K .

Note that in case Ck = D for some k ∈ K , we obtain by straightforward computations that, in case D = M , for 
each (x, y) ∈ [ak, bk]2

MOSum(x, y) = ak + (bk − ak) · M(
x−ak

bk−ak
,

y−ak

bk−ak

) = M(x,y)

and, in case D = W , for each (x, y) ∈ [ak, bk] × [1 − bk,1 − ak]

WOSum(x, y) = (bk − ak) · W (
x−ak

bk−ak
,

y+bk−1
bk−ak

) = W(x,y), (4.3)

i.e., the ordinal sums coincide with M or W on the respective subdomains. As a consequence we immediately have:

Proposition 4.2. Let D-(〈ak, bk, Ck〉)k∈K with D ∈ {M, W } be an M- or W-ordinal sum as given in Proposition 4.1. 
Then D-(〈ak, bk, Ck〉)k∈K = D if and only if Ck = D for all k ∈ K .

On the other hand, choosing Ck = C for all k ∈ K , we may interpret ordinal sums as one-place mappings from C2
to C2.

Remark 4.3. For a family (]ak, bk[)k∈K of non-empty, pairwise disjoint open subintervals of [0, 1] with ]ak, bk[ �=
]0,1[ for at least one k, the unique fixed points of the following mappings from C2 to C2

C �−→ M-(〈ak, bk,C〉)k∈K and C �−→ W-(〈ak, bk,C〉)k∈K

are M and W , respectively.

In a similar way ordinal sum-type operations can also be constructed from the independence copula �. The proofs 
of the following proposition can be found, e.g., in [61, Proposition 12], [234, Theorem 2.1], [181, Proposition 2] and 
[216, Proposition 2.2, Proposition 4.2].
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Proposition 4.4. Let (]ak, bk[)k∈K be a family of non-empty, pairwise disjoint open subintervals of [0, 1] and let 
(Ck)k∈K be a family of copulas. Then the following functions �(hOSum), �(vOSum), �(dOSum) : [0, 1]2 → [0, 1] are 
copulas:

�(vOSum)(x, y) =
{

ak · y + (bk − ak) · Ck

(
x−ak

bk−ak
, y

)
if x ∈ [ak, bk] ,

�(x, y) otherwise,
(4.4)

�(hOSum)(x, y) =
{

ak · x + (bk − ak) · Ck

(
x,

y−ak

bk−ak

)
if y ∈ [ak, bk] ,

�(x, y) otherwise,
(4.5)

�(dOSum)(x, y) =
{

x · y − (x − ak) · (y − ak) + (bk − ak)
2 · Ck

(
x−ak

bk−ak
,

y−ak

bk−ak

)
if (x, y) ∈ [ak, bk]2 ,

�(x, y) otherwise.
(4.6)

The functions �(vOSum), �(hOSum) and �(dOSum) are called the �-vertical, �-horizontal and �-diagonal ordinal 
sum, respectively, of the summands (]ak, bk[ , Ck)k∈K , and we will denote them by �(vOSum) = �(v)-(〈ak, bk, Ck〉)k∈K , 
�(hOSum) = �(h)-(〈ak, bk, Ck〉)k∈K , and �(dOSum) = �(d)-(〈ak, bk, Ck〉)k∈K , respectively.

A �-ordinal sum D-(〈ak, bk, Ck〉)k∈K with D ∈ {�(v), �(h), �(d)} will be called non-trivial if the family 
(]ak, bk[)k∈K does not consist of ]0,1[ only and if Ck �= � for at least one k ∈ K .

Similarly to the case of M- and W-ordinal sums (see Remark 4.3), straightforward computations show that when-
ever Ck = � for some k ∈ K then the �-ordinal sum coincides with � on the respective subdomain. Thus, we have 
the following:

Proposition 4.5. Let D-(〈ak, bk, Ck〉)k∈K with D ∈ {�(v), �(h), �(d)} be a �-ordinal sum as given in Proposition 4.4. 
Then D-(〈ak, bk, Ck〉)k∈K = � if and only if Ck = � for all k ∈ K .

Also, for a family (]ak, bk[)k∈K of non-empty, pairwise disjoint open subintervals of [0, 1] with ]ak, bk[ �= ]0,1[
for at least one k, � is the unique fixed point of each of the following mappings from C2 to C2

C �−→ �(v)-(〈ak, bk,C〉)k∈K, C �−→ �(h)-(〈ak, bk,C〉)k∈K, and C �−→ �(d)-(〈ak, bk,C〉)k∈K.

Remark 4.6. Note that in a similar way as explained in Subsection 2.2, we may “fill the gaps” between the non-empty, 
pairwise disjoint open summand carriers ]ak, bk[ with pairwise disjoint closed intervals [ai, bi] for some additional 
countable index set J (trivial, one-point intervals are possible) in such a way that the index sets K and J are disjoint 
and we obtain 

⋃
i∈J∪K [ai, bi] = [0, 1]. As a consequence we obtain the following:

(i) If, in case D ∈ {M, W }, Ci = D for all i ∈ J or, in case D ∈ {�(v), �(h), �(d)}, Ci = � for all i ∈ J (compare 
also (2.4)) then

D-(〈ak, bk,Ck〉)k∈K = D-(〈ai, bi,Ci〉)i∈J∪K.

Thus the representation of a D-ordinal sum with D ∈ {M, W, �(v), �(h), �(d)} is, in general, not unique.
(ii) On the other hand, if, in case D ∈ {M, W }, Ci = D for all i ∈ J or, in case D ∈ {�(v), �(h), �(d)}, Ci = � for 

all i ∈ J , we may remove the summand Ci without changing the copula, i.e.,

D-(〈ak, bk,Ck〉)k∈K = D-(〈ak, bk,Ck〉)k∈K\J .

Remark 4.7. The demand for a linearly ordered index set has been essential in the introduction of ordinal sums of 
semigroups (see Section 2). The linear order can be recovered from the ordinal sums discussed here: as outlined in 
Remark 4.6, we may extend the family (]ak, bk[)k∈K of non-empty, pairwise disjoint subintervals of [0,1] to a family 
(]ai, bi[)i∈J∪K with 

⋃
i∈J∪K [ai, bi] = [0, 1]. Since both J as well as K are countable, so is their union, and hence 

J ∪ K turns into a linearly ordered index set (J ∪ K, �) where � is compatible with the usual linear order on N
(compare also Subsection 2.2).
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Moreover, the linear order on the index set J ∪K is in accordance with a suitable linear order on the set of 2-boxes 
Ri considered in each ordinal sum in the following way: For an ordinal sum D-(〈ak, bk, Ck〉)k∈K with index set K we 
put, for each k ∈ K ,

Rk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[ak, bk]2 if D ∈ {M,�(d)},
[ak, bk] × [1 − bk,1 − ak] if D = W,

[ak, bk] × [0,1] if D = �(v),

[0,1] × [ak, bk] if D = �(h),

(4.7)

and let R = {Rk | k ∈ K} be the set of all 2-boxes. For each R ∈ R, we denote by cent(R) its center. It is immediate 
that (R, �R) with

Ri �R Rj ⇐⇒ cent(Ri) ≤	 cent(Rj ),

where ≤	 is the lexicographic order on R2, is a linearly ordered set. Clearly, we also have Ri �R Rj if and only if 
i � j . Note that for the ordinal sums as introduced in Propositions 4.1 and 4.4 we additionally get

Ri ∩ Rj = ∂Ri ∩ ∂Rj

for all Ri, Rj ∈ R with Ri �= Rj , where ∂R denotes the boundary of the set R (see Appendix A.1).

Remark 4.8. From the viewpoint of the induced probability measures, the ordinal sums as introduced in Proposi-
tion 4.4 differ from the ones introduced in Proposition 4.1 in the following way:

If every Ck of the D-ordinal sum D-(〈ak, bk, Ck〉)k∈K is absolutely continuous, then so are the D-ordinal sum 
copulas �(hOSum), �(vOSum) and �(dOSum), i.e., copulas of the type (4.4), (4.5) and (4.6) (see [181, Corollary 2]).

However, in case D ∈ {M, W }, the D-ordinal sums MOSum and WOSum, i.e., copulas of the type (4.1) and (4.2), 
are absolutely continuous if every Ck is absolutely continuous and 

∑
k∈K(bk − ak) = 1. In case 

∑
k∈K(bk − ak) < 1, 

the supports of the singular components of the copulas MOSum and WOSum lie on the main and opposite diagonal of 
[0, 1]2, respectively.

We shall further mention that the ordinal sums presented here are linked to each other via suitable transformations in 
the space of the copulas, sometimes called rotation [142] or flipping [63], which are closely related to the symmetries 
of the random vector associated to a copula [107,108].

The following result proves that M- and W-ordinal sums as introduced in Proposition 4.1 are connected to each 
other by the symmetries σ1 and σ2, also termed reflections (for more details on symmetries see also Appendix A.9). 
Note that the copula Cσ2 is sometimes referred to as the y-flipping of C, whereas Cσ1 is called the x-flipping of C
(compare also [63,198] and Appendix A.9).

The proof of the following result, which can be obtained by tedious computations, can also be found in [221, 
Lemma 5.1].

Proposition 4.9. Let (]ak, bk[)k∈K be a family of non-empty, pairwise disjoint open subintervals of [0, 1] and let 
(Ck)k∈K be a family of copulas. Then the following hold:

(i)
(
W-(〈ak, bk, Ck〉)k∈K

)σ1 = M-(〈1 − bk, 1 − ak, C
σ1
k 〉)k∈K ,

(ii)
(
W-(〈ak, bk, Ck〉)k∈K

)σ2 = M-(〈ak, bk, C
σ2
k 〉)k∈K .

The �-horizontal and �-vertical ordinal sums as given in Proposition 4.4 can be connected to each other by the 
reflections σ1 and σ2 and the permutation η (compare also [221, Lemma 5.1]).

Proposition 4.10. Let (]ak, bk[)k∈K be a family of non-empty, pairwise disjoint open subintervals of [0, 1] and let 
(Ck)k∈K be a family of copulas. Then the following hold:

(i)
(
�(v)-(〈ak, bk, Ck〉)k∈K

)η = �(h)-(〈ak, bk, C
η
k 〉)k∈K ,

(ii)
(
�(v)-(〈ak, bk, Ck〉)k∈K

)σ1 = �(h)-(〈1 − bk, 1 − ak, C
σ1
k 〉)k∈K ,

(iii)
(
�(v)-(〈ak, bk, Ck〉)k∈K

)σ2 = �(h)-(〈ak, bk, C
σ2〉)k∈K .
k
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Example 4.11. Starting with the �-diagonal ordinal sum �(d)-(〈0, a1, C1〉, 〈a1, 1, C2〉) and applying the transforma-
tion induced by σ2 to it we obtain the copula

C(x, y) =

⎧⎪⎨⎪⎩
x − a2

1 · C1
(

x
a1

,
1−y
a1

)
if (x, y) ∈ [0, a1] × [1 − a1,1] ,

x − a1x − a1(1 − y) + a2
1 − (1 − a2

1) · C2
(

x−a1
1−a1

,
1−y−a1

1−a1

)
if (x, y) ∈ [a1,1] × [0,1 − a1] ,

xy otherwise,

which is an ordinal sum (with respect to the background copula �) defined on 2-boxes whose centers belong to the 
opposite diagonal of [0, 1]2.

Remark 4.12. The ordinal sums in Propositions 4.1 and 4.4 can also be used to generate copulas which, for instance, 
cover a larger range of the values of the associated measures of concordance (see, e.g., [198]). To this end, it is 
helpful to remind that a formula for calculating the Kendall’s τ and Spearman’s ρ for M-ordinal sum is given in [198, 
Exercise 5.14]. It can be easily adapted to the case of W-ordinal sums via properties of concordance measures (see 
[198, Definition 5.1.7 (5)]) thanks to the representation in Proposition 4.9. For the �-ordinal sums, similar formulas 
are obtained in [234, Theorem 3.2], [181, Proposition 3] and [80, Theorem 4.1].

We shall finally mention, and it has already been outlined also in Subsection 2.3, that ordinal sums have been 
considered for the more general classes of (aggregation) functions leading to characterizations for copulas, quasi-
copulas and semicopulas.

Proposition 4.13. Let (]ak, bk[)k∈K be a family of non-empty, pairwise disjoint open subintervals of [0, 1] and let 
(Ck)k∈K be a family of binary aggregation functions, i.e., mappings from [0, 1]2 into [0, 1], increasing in each coor-
dinate and fulfilling Ck(0, 0) = 0 and Ck(1, 1) = 1. Let C be one of the functions given by (4.1), (4.2) or (4.4)–(4.6). 
Then the following are equivalent:

(i) C is a bivariate copula.
(ii) Ck is a bivariate copula for every k ∈ K .

Proof. The implication (ii) =⇒ (i) follows from Propositions 4.1 and 4.4. For proving (i) =⇒ (ii), assume that 
C = D-(〈ak, bk, Ck〉)k∈K defined by (4.1), (4.2) or (4.4)–(4.6) is a copula. Then, for every k ∈ K , it holds:

Ck(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
bk−ak

(C(ak + (bk − ak)x, ak + (bk − ak)y) − ak) if D = M,
1

bk−ak
(C(ak + (bk − ak)x, (1 − bk) + (bk − ak)y) if D = W,

1
bk−ak

(C(ak + (bk − ak)x, y) − aky) if D = �(v),
1

bk−ak
(C(x, ak + (bk − ak)y) − akx) if D = �(h),

1
(bk−ak)

2

(
C(ak + (bk − ak)x, ak + (bk − ak)y) − ak · (bk − ak)(x + y) − a2

k

)
if D = �(d).

(4.8)

From (4.8) it follows that Ck is a copula, i.e., is 2-increasing and fulfills the boundary conditions of a copula (see, for 
instance, [183, Theorem 3.3] for D = M , [184, Proposition 2] for D = W , [181, Theorem 1] for D ∈ {�(h), �(v)}, 
and [216, Proposition 4.2] for D = �(d)). �
Remark 4.14. Note that Proposition 4.13 holds analogously for semicopulas and quasi-copulas in case of M- and 
W-ordinal sums. For �-ordinal sums, instead, the implication (i) =⇒ (ii) in Proposition 4.13 may not hold since the 
monotonicity or the 1-Lipschitz property may be violated (compare [61, Proposition 5 and 6] and [216, Example 2.4]).

Note also that results similar to Proposition 4.13 hold in the case of M-ordinal sums also for d-copulas [183] with 
d ≥ 3 (see also Section 6), and for continuous t-norms (compare Corollaries 2.8 and 3.56 and Theorem 5.11 in [154], 
for the original proof see [228, Theorem 5.38]).
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4.1. Ordinal sums — the geometric view

Different to the early definitions of ordinal sum operations whose aim has been to construct operations on 
some union of linearly ordered subdomains based on the operations on the subdomains, compare Section 2,
Propositions 4.1 and 4.4 allow a different view: defining functions by means of determining or adopting their be-
havior on subdomains Rk ⊂ [0, 1]2 and a “default behavior” on the complementary domain.

Thus, copulas are defined with some information of a geometric nature (see [198, Section 3.2]), such as the descrip-
tion of the behavior of a copula in 2-boxes Rk at particular places within [0, 1]2, i.e., along the main or the opposite 
diagonal, or on horizontal or vertical stripes (see also Figs. 1 and 2).

In order to illustrate this viewpoint, let us consider the case when the copula is modified in one single box R ⊆
[0, 1]2. The following result clarifies some basic conditions that are needed in order to redefine the values assumed by 
a copula in a specific subdomain.

Proposition 4.15. [61, Proposition 7] Let R = [a1, b1] × [a2, b2] ⊆ [0, 1]2 be a 2-box in [0, 1]2. Let C be a copula 
and let D : R → [0, 1] be a function. Then

C̃(x, y) =
{

D(x,y) if (x, y) ∈ R,

C(x, y) otherwise,
(4.9)

is a copula if and only if C and D coincide on the boundaries of R and D is 2-increasing on R.

Thus, the choice of the function D is crucial in order to define a bona fide copula C̃. Different constructions have 
provided possible answers in a specific context. For instance, [89, Theorem 2.1] uses a similar reasoning in order 
to construct different copulas with the same diagonal section. The following result (slightly reformulated from [61, 
Theorem 2]) gives another general way of selecting an appropriate function D.

Proposition 4.16. [61, Theorem 2] Let R = [a1, b1]× [a2, b2] ⊆ [0, 1]2 be a 2-box in [0, 1]2. Let C and Cf be copulas 
and let βR ≥ 0. Define the function DR : R → R by

DR(x, y) = C(x, y) − βR · Cf
(

x−a1
b1−a1

,
y−a2
b2−a2

)
.

Then

C̃(x, y) =
{

DR(x, y) + βR · C
(

x−a1
b1−a1

,
y−a2
b2−a2

)
if (x, y) ∈ R,

C(x, y) otherwise,
(4.10)

is a copula if the function DR is 2-increasing on R.

Note that the condition that DR be 2-increasing on R for C̃ to become a copula imposes restrictions on the possible 
choices of R and βR in (4.10). In the cases C = M and C = W , this condition leads to R being a square centered 
around the main and opposite diagonal, respectively, only. In the case C = �, for any 2-box R, βR can be chosen to 
be positive. From (4.10) it is clear that, if Cf = C, then also C �R= C, i.e., the copula C will not change its behavior 
on R.

Another way of determining the function D in (4.9) is provided by rectangular patchwork techniques, as introduced 
in [84] for bivariate copulas and later discussed in [77] for multivariate copulas.

Proposition 4.17. [84, Theorem 2.2] Let R = [a1, b1] × [a2, b2] ⊆ [0, 1]2 be a 2-box. Let C and CR be bivariate 
copulas, put αR = VC(R), and define the function C̃ : [0, 1]2 → [0, 1] by

C̃(x, y) =
{

αR CR

(
F 1

R(x),F 2
R(y)

) + C(x, a2) + C(a1, y) − C(a1, a2) if (x, y) ∈ R,

C(x, y) otherwise,
(4.11)

where the functions F 1, F 2 : [0, 1] → [0, 1] are given by
R R
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F 1
R(x) =

{
1

αR
VC ([a1, x] × [a2, b2]) if αR �= 0,

0 if αR = 0,
F 2

R(y) =
{

1
αR

VC ([a1, b1] × [a2, y]) if αR �= 0,

0 if αR = 0.

Then the function C̃ is a copula.

The copula C̃ is called the rectangular patchwork of (R, CR) into the background copula C and is denoted by 
C̃ = C-〈R, CR〉. Note that C̃ will be different from C if and only if CR �= C and αR �= 0 for the particular choice of 
R and background copula C.

Applying a measure-theoretic view on the copulas involved, C̃ can be equivalently expressed by

C̃(x, y) = μC (([0, x] × [0, y]) \ R) + αR CR

(
1

αR
μC ([a1, x] × [a2, b2]) , 1

αR
μC ([a1, b1] × [a2, y])

)
,

where μC is the measure induced by C on the Borel sets of [0, 1]2 (see also Appendix A.8 for additional details).

Remark 4.18. It is a matter of direct verification that M- and W-ordinal sums with one single summand (a1, b1, C1)

are represented via patchwork constructions of the type M-〈[a1, b1]2 , C1〉 and W-〈[a1, b1] × [1 − b1,1 − a1] , C1〉. 
Analogous results can be formulated for the �-ordinal sums.

Remark 4.19. By using similar arguments as in [61, Proposition 8], it can be shown that, for each copula C1 and for 
every 2-box R = [a1, b1] × [a2, b2] ⊆ [0, 1]2,

M-〈R,C1〉 =
{

M-〈[max{a1, a2},min{b1, b2}]2,C1〉 if R ∩ {(x, x) | x ∈ [0,1]} �= ∅,

M if R ∩ {(x, x) | x ∈ [0,1]} = ∅,

i.e., the only 2-boxes that can be considered in a rectangular patchwork with the background copula M are squares 
centered around the main diagonal. Thus, in some sense, the classical ordinal sum construction is the only patchwork 
construction whose background copula is M .

Analogously, the only 2-boxes that can be considered for a rectangular patchwork construction with the background 
copula W are squares centered along the opposite diagonal of [0, 1]2.

Interestingly, it can be proved that any copula C̃ of type (4.9) can be represented in terms of a suitable rectangular 
patchwork, as the following result shows (compare also [84]).

Proposition 4.20. Let R = [a1, b1] × [a2, b2] ⊆ [0, 1]2 be a 2-box. Let C be a copula and let D : R → [0, 1] be a 
function. Then C̃ in (4.9) is a copula if and only if there exists a copula CR such that C̃ = C-〈R, CR〉.

Proof. Let C̃ be a copula. We distinguish two cases.

VC(R) = 0: Then VD(R) = 0 (since C and D coincide on the boundaries of R). Moreover, in view of the monotonic-
ity of the C-volume with respect to the inclusion of sets, also VD([a1, x] × [a2, y]) = 0 for every (x, y) ∈ R. 
By the definition of the D-volume of a 2-box, it follows that

D(x,y) = D(x,a2) + D(a1, y) − D(a1, a2) = C(x, a2) + C(a1, y) − C(a1, a2).

αR = VC(R) > 0: Since C̃ is a copula, D is continuous. Thus, D̃ : R → [0, 1] defined by

D̃(x, y) = VD([a1, x] × [a2, y])

αR

(4.12)

is a continuous distribution function supported on R. Thus, in view of Sklar’s Theorem (see Theorem A.8 in 
Appendix A.7), it follows that a unique copula CR exists so that

D̃(x, y) = CR

(
VD([a1,x]×[a2,b2])

αR
,

VD([a1,b1]×[a2,y])
αR

)
.

Now, from the equality
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D(x,y) − D(x,a2) − D(a1, y) + D(a1, a2) = VD([a1, x] × [a2, y]) = αRD̃(x, y)

it follows that

D(x,y) = αRD̃(x, y) + C(x, a2) + C(a1, y) − C(a1, a2).

The reverse implication coincides with Proposition 4.17. �
Remark 4.21. Let (U, V ) be a random vector distributed according to C̃ of Proposition 4.20. Assume VC(R) > 0. 
Then D̃ of (4.12) is the conditional distribution function of (U, V ) given (U, V ) ∈ R, while CR represents its unique 
copula. Thus, CR provides information about the probability mass distribution of C̃ in the 2-box R.

The rectangular patchwork construction can also be interpreted as a patchwork operator, i.e., as a mapping that, 
starting with a background copula C, a copula CR and a 2-box R ⊆ [0, 1]2, produces another copula C̃ that coincides 
with C on the whole copula domain but in the fixed 2-box R. As such, the method allows us to change the behavior 
of C in a specific part of its domain, a feature that is particularly helpful to introduce asymmetries and fat tails (see, 
for instance, [85]).

Specifically, let R denote the set of all 2-boxes R ⊆ [0, 1]2. The mapping


 : C2 × R × C2 → C2, (C,R,CR) �−→ C̃,

where C̃ is given by (4.11), is called the patchwork operator associated with the background copula C. For a fixed C
and R, the mapping (C, R, ·) �−→ C̃ verifies the following properties:

(i) the mapping (C, R, ·) �−→ C̃ is continuous with respect to the L∞ norm in the space C2 of copulas (see [77, 
Theorem 6]);

(ii) if VC(R) > 0 then C is the unique fixed point of the mapping (C, R, ·) �−→ C̃.

For a fixed background copula C, sequences of 2-boxes (Rk)k∈{1,...,N} and corresponding copulas (Ck)k∈{1,...,N}
with N ∈ N , the patchwork operator ψ can be applied recursively, generating a sequence of copulas (C̃k)k∈{0,1,...,N}
such that for all k ∈ {2, . . . , N}

C̃0 = C,

C̃1 = 
(C,R1,C1) = C-〈R1,C1〉,
C̃k = 
(C̃k−1,Rk,Ck) = C̃k−1-〈Rk,Ck〉.

Remark 4.22. If two 2-boxes Ri and Rj , with i, j ∈ {1, . . . , N} and i �= j are such that Ri ∩ Rj = ∂Ri ∩ ∂Rj , then 
for every background copula C we have


(C-〈Ri,Ci〉,Rj ,Cj ) = 
(C-〈Rj ,Cj 〉,Ri,Ci) = C-〈(Rk,Ck)k∈{i,j}.

In other words, one can transform the values assumed by the background copula C, first in the subdomain Ri , and 
then in Rj , or the other way around, without changing the final output.

Assuming that Ri ∩ Rj = ∂Ri ∩ ∂Rj for all i, j ∈ {1, . . . , N} with i �= j and following the notation for rectangular 
patchworks as introduced in [85], it follows that C̃N = C-〈(Rk, Ck)k∈{1,...,N}〉. Such a copula C̃N is obtained by 
changing the values assumed by the background copula C in each of the 2-boxes Rk by using the information provided 
by Ck .

Note that in case of 2-boxes with overlapping interiors the order in which the patchwork operator is applied may 
lead to different results as the following example illustrates:

Example 4.23. Choose C = � as background copula. Consider the two 2-boxes R1 = [
0, 1

2

]2
and R2 = [ 1

4 , 3
4

]2
with 

corresponding copulas C1 = M and C2 = W . Clearly, R1 ∩ R2 = [ 1 , 1 ]2 �= ∂R1 ∩ ∂R2.
4 2
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Fig. 3. Applying the patchwork operator consecutively in the case of overlapping 2-boxes, leading to 
(C̃(1), R2, W) �= 
(C̃(2), R1, M) (see 
Example 4.23).

We will apply the patchwork operator in two different orders. For better readability we will denote the resulting 
copula C̃ with a subscript tuple indicating the sequence of 2-boxes (and corresponding copulas) used.

Applying first the patchwork operator 
 to � on R1 by means of M and second on R2 by W leads to the copula 
C̃(1,2) = 
(�-〈R1, M〉, R2, W).

Applying first the patchwork operator 
 to � on R2 by means of W and second on R1 by M leads to the copula 
C̃(2,1) = 
(�-〈R2, W 〉, R1, M). The copulas C̃(1), C̃(2), C̃(1,2) and C̃(2,1) are depicted along with their contour plots in 
Fig. 3. As can be seen immediately, the resulting copulas are different, i.e., C̃(1,2) �= C̃(2,1) (even outside of R1 ∩ R2).

Ordinal sums of Propositions 4.1 and 4.4 with countable index set K can be obtained by applying the mapping 

(C, Rk, Ck) (for some suitable Rk) iteratively by starting with C being one of the basic copulas M , W and � as a 
background copula. Here, the key condition is that Ri ∩ Rj = ∂Ri ∩ ∂Rj for all i, j ∈ K , i �= j . In particular, if Rk

is, for every k ∈ K , defined by (4.7), then the patchworks M-(〈Rk, Ck〉)k∈K , W-(〈Rk, Ck〉)k∈K and �-(〈Rk, Ck〉)k∈K

will correspond to the ordinal sums as introduced in Propositions 4.1 and 4.4.

Remark 4.24. The bounds for copulas expressed via patchwork representation are obtained from the Fréchet-
Hoeffding bounds for copulas. In fact, the following inequalities hold:

W ≤ W-(〈Rk,Ck〉)k∈K ≤ W-(〈Rk,M〉)k∈K,

M-(〈Rk,W 〉)k∈K ≤ M-(〈Rk,Ck〉)k∈K ≤ M,

�-(〈Rk,W 〉)k∈K ≤ �-(〈Rk,Ck〉)k∈K ≤ �-(〈Rk,M〉)k∈K.

4.2. Ordinal sum representations

Obviously, every copula C can be represented by means of the trivial ordinal sum C = (〈0,1,C〉) for each type 
of ordinal sums introduced in Propositions 4.1 and 4.4. Here we revisit some (known) representations by providing 
alternative proofs based on the patchwork techniques developed in [85].
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4.2.1. Special case: M-ordinal sum
The equivalence between the properties (i) and (iii) in the following Proposition was established, albeit with a 

different proof in [198, Theorem 3.2.1] and in [183, Theorem 3.3]. The proof below uses a characterization of 2-
increasing functions given in [85].

Proposition 4.25. Consider a copula C ∈ C2. Then the following are equivalent:

(i) There exists some a ∈ ]0,1[ such that C(a, a) = M(a, a) = a.
(ii) There exists some a ∈ ]0,1[ with C(x, y) = M(x, y) whenever a ∈ {x, y}.

(iii) C is a non-trivial M-ordinal sum, i.e., there exist at least one a ∈ ]0,1[ and some copulas C1, C2 such that

C = M-(〈0, a,C1〉, 〈a,1,C2〉).

Proof. (i) =⇒ (ii). Assume that there exists some a ∈ ]0,1[ which is an idempotent element of C, i.e., for which 
C(a, a) = a = M(a, a). Then, for every z ∈ [a,1], the following hold because of the monotonicity of C:

a = C(a, a) ≤ C(a, z) ≤ C(a,1) = a =⇒ C(a, z) = a = M(a, z),

a = C(a, a) ≤ C(z, a) ≤ C(1, a) = a =⇒ C(z, a) = a = M(z,a).

On the other hand, the 1-Lipschitz property of copulas leads, for each (x, y) ∈ [0, a]2, to

|C(a, a) − C(a, y)| ≤ |a − y| and |C(a, a) − C(x, a)| ≤ |a − x|
so that

y ≤ C(a, y) ≤ M(a,y) = y and x ≤ C(x, a) ≤ M(x,a) = x.

Summarizing, we obtain C(x, y) = M(x, y) whenever a ∈ {x, y}.
(ii) =⇒ (iii). Assume that, for some a ∈ ]0,1[, C coincides with M whenever a appears among its arguments. By a ∈
]0,1[, the domain [0, 1]2 is divided into four different subdomains R1 = [0, a]2, R2 = [a,1]2 and R3 = [0, a]× [a,1], 
R4 = [a,1] × [0, a]. Each restriction C �Rk

leads to a continuous, increasing and 2-increasing function with given 
margins determined by M . Note that for each of the subdomains we obtain:

α1 = VC(R1) = a, α2 = VC(R2) = 1 − a, α3 = VC(R3) = 0, α4 = VC(R4) = 0.

Following [85, Theorem 2.1], the restrictions of C to R3 and R4 is given by, respectively,

C �R3 (x, y) = C(x, a) + C(0, y) − C(0, a) = C(x, a) = M(x,a) = x = M(x,y),

C �R4 (x, y) = C(x,0) + C(a, y) − C(a,0) = C(a, y) = M(a,y) = y = M(x,y).

Following again [85, Theorem 2.1], for C restricted to R1 there exists a unique copula C1 such that

C �R1 (x, y) = a · C1
(

x
a
,

y
a

)
.

In an analogous way one can argue that there exists a unique copula C2 such that

C �R2 (x, y)C2

(
VC([a,x]×[a,1]

α2
,

VC([a,1]×[a,y]
α2

)
+ C(x, a) + C(a, y) − C(a, a) = a + (1 − a) · C2

(
x−a
1−a

,
y−a
1−a

)
,

showing that indeed C = M-(〈0, a, C1〉, 〈a, 1, C2〉) with the copulas C1 and C2 given by

C1(x, y) = 1
a
C(a · x, a · y) and C2(x, y) = 1

1−a
· (C(x(1 − a) + a, y(1 − a) + a) − a) .

Finally, (iii) immediately implies (i), since C(a, a) = a for any M-ordinal sum C = M-(〈0, a, C1〉, 〈a, 1, C2〉). �
Proposition 4.25 means that identifying a single idempotent element, i.e., a single point a on the diagonal where 

C acts like M , suffices for describing the copula C as a non-trivial ordinal sum of some copulas C1 and C2 which 
themselves may well be M-ordinal sums again. Note that it is essential that a is an element of the diagonal as the 
following example illustrates (compare also [198, Theorem 3.2.3]).
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Example 4.26. Let C be a copula and suppose that C(a, b) = M(a, b) with (a, b) ∈ ]0,1[2 and a �= b. Then the 
function D : [0, 1]2 → [0, 1] defined by

D(x,y) = max
{
W(x,y),M(a, b) − (a − x)+ − (b − y)+

}
with t+ = max{0, t} is a copula fulfilling D(a, b) = M(a, b) = C(a, b). However, D has no non-trivial idempotent 
element, i.e., D(x, x) �= x for all x ∈ ]0,1[: In case D(x, x) = W(x, x), D(x, x) = x holds for x ∈ {0, 1} only. In case 
D(x, x) > W(x, x), we obtain

M(a,b) − (a − x)+ − (b − x)+ =

⎧⎪⎨⎪⎩
2x − max{a, b} if x ∈ [0,min{a, b}[ ,
M(a, b) − max{a, b} + x if x ∈ [min{a, b},max{a, b}] ,
M(a, b) if x ∈ ]max{a, b},1] .

Each of these cases leads to a contradiction when D(x, x) = x is assumed. Therefore, D is not an M-ordinal sum.

4.2.2. Special case: W-ordinal sum
When considering now W-ordinal sums note that the equivalence between the properties (i) and (iii) in the following 

proposition was already established in [184, Proposition 2]. Though by applying the results on symmetries for M- and 
W-ordinal sums as outlined in Proposition 4.9 the following three equivalent statements may be obtained immediately:

Proposition 4.27. Consider a copula C ∈ C2. Then the following are equivalent:

(i) There exists some a ∈ ]0,1[ such that C(a, 1 − a) = W(a, 1 − a).
(ii) There exists some a ∈ ]0,1[ with C(a, y) = W(a, y) and C(x, 1 − a) = W(x, 1 − a) for all x, y ∈ [0, 1].

(iii) C is a non-trivial W-ordinal sum, i.e., there exist at least one a ∈ ]0,1[ and some copulas C1, C2 such that

C = W-(〈0, a,C1〉, 〈a,1,C2〉).

Proof. Consider a copula C and its transformation induced by the σ2 symmetry given by Cσ2(x, y) = x −C(x, 1 −y)

(compare Appendix A.9). Assume that there exists some a ∈ ]0,1[ with C(a, 1 − a) = W(a, 1 − a) = 0. Then

Cσ2(a, a) = a − C(a,1 − a) = a − W(a,1 − a) = a,

i.e., Cσ2 possesses a non-trivial idempotent element a and, according to Proposition 4.25, Cσ2(x, y) = M(x, y) when-
ever a ∈ {x, y} and Cσ2 = M-(〈0, a, C̃1〉, 〈a, 1, C̃2〉) for some copulas C̃1 and C̃2. As a consequence,

M(a,1 − y) = Cσ2(a,1 − y) = a − C(a, y) ⇐⇒ C(a, y) = a − M(a,1 − y) = max{a + y − 1,0} = W(a,y),

M(x, a) = Cσ2(x, a) = x − C(x,1 − a) ⇐⇒ C(x,1 − a) = x − M(x,a) = max{x − a,0} = W(x,1 − a).

By C(x, y) = x − Cσ2(x, 1 − y) we obtain from Proposition 4.1

C(x, y) =

⎧⎪⎪⎨⎪⎪⎩
x − a · C̃1

(
x
a
,

1−y
a

)
if (x, y) ∈ [0, a] × [1 − a,1] ,

x − a + (1 − a) · C̃2

(
x−a
1−a

,
1−y−a

1−a

)
if (x, y) ∈ [a,1] × [0,1 − a] ,

x − M(x,1 − y) = W(x,y) otherwise,

illustrating that C follows the required W-ordinal sum structure. Defining C1 = C̃1
σ2 and C2 = C̃2

σ2 , we obtain

x − a · C̃1
(

x
a
,

1−y
a

) = a · C1
(

x
a
,

a+y−1
a

)
,

x − a + (1 − a) · C̃2
(

x−a
1−a

,
1−y−a

1−a

) = (1 − a) · C2
(

x−a
1−a

,
y

1−a

)
,

showing that indeed C = W-(〈0, a, C1〉, 〈a, 1, C2〉). �
Similar to the case of M-ordinal sums, the property C(a, b) = W(a, b) for some b �= 1 − a is not sufficient for 

proving that C is indeed a W-ordinal sum.

Example 4.28 (Example 4.26 continued). Note that the copula D defined in Example 4.26 is a W-ordinal sum, since 
we have D(1 + a − b, b − a) = 0 whenever M(a, b) = a, and D(a − b, 1 − a + b) = 0 whenever M(a, b) = b.
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4.2.3. Special case: �-ordinal sums
Finally, we consider the case of �-horizontal and �-vertical ordinal sums. Different to M- and W-ordinal sums 

no single point on some specific subdomain of [0, 1]2 can be identified which induces the ordinal sum structure, but 
horizontal or vertical sections where the ordinal sum coincides with � are needed. Note that a proof of the following 
equivalent statements has been established already in [216, Proposition 2.2], we here provide an alternative proof 
based on the patchwork techniques discussed also in Subsection 4.1.

Proposition 4.29. Consider a copula C ∈ C2. Then the following are equivalent:

(i) There exists some a ∈ ]0,1[ with C(x, a) = �(x, a) for all x ∈ [0, 1].
(ii) C is a non-trivial �-horizontal ordinal sum, i.e., there exist some a ∈ ]0,1[ and some copulas C1, C2 such that

C = �(h)-(〈0, a,C1〉, 〈a,1,C2〉).

Proof. It is obvious that any �-horizontal ordinal sum C = �(h)-(〈0, a, C1〉, 〈a, 1, C2〉) also fulfills both

C(x, a) = a · C1(x,1) = a · x = �(x,a) and C(x, a) = a · x + (1 − a) · C2(x,0) = a · x = �(x,a).

On the other hand, assume that C(x, a) = �(x, a) for some a ∈ ]0,1[, i.e., the horizontal section of C at y = a

coincides with � and splits [0, 1]2 into the two 2-boxes R1 = [0,1] × [0, a] and R2 = [0,1] × [a,1] with

α1 = VC(R1) = a and α2 = VC(R2) = 1 − a.

Again, according to [85, Theorem 2.1] and Proposition 4.20, there exist unique copulas C1 and C2 such that

C �R1 (x, y) = a · C1
(
x,

y
a

)
for all (x, y) ∈ R1,

C �R2 (x, y) = a · x + (1 − a) · C2
(
x,

y−a
1−a

)
for all (x, y) ∈ R2,

showing that C = �(h)-(〈0, a, C1〉, 〈a, 1, C2〉). �
Using analogous arguments as in the proof of Proposition 4.29, the representation as a vertical ordinal sum can be 

shown.

Corollary 4.30. Consider a copula C ∈ C2. Then the following are equivalent:

(i) There exists some a ∈ ]0,1[ with C(a, y) = �(a, y) for all y ∈ [0, 1].
(ii) C is a non-trivial �-vertical ordinal sum, i.e., there exist some a ∈ ]0,1[ and some copulas C1, C2 such that

C = �(v)-(〈0, a,C1〉, 〈a,1,C2〉).

Obviously, any copula C with a non-trivial ordinal sum representation can either be a M-, a W-, or a �-ordinal sum, 
so these ordinal sum representations mutually exclude each other. As a consequence, �- and W-ordinal sums never 
have non-trivial idempotent elements; on the other hand �- and M-ordinal sums C fulfill C(x, 1 −x) �= W(x, 1 −x) =
0 for all x ∈ ]0,1[. M- and W-ordinal sums act like M and W , respectively, on some non-trivial subdomains of [0, 1]2, 
though in case of the �-ordinal sum the set on which the ordinal sum coincides with � may consist of horizontal or 
vertical sections only.

If a copula C coincides with � on some vertical as well as on some horizontal section it may be represented as a 
�-vertical ordinal sum of two �-horizontal ordinal sum copulas or vice-versa (compare with [151] and [85]).

5. Ordinal sums and the Markov product

In this section, we present an exemplary case where ordinal sums of copulas have appeared naturally in a purely 
probabilistic context, namely the study of Markov chains (see [168]).

DARSOW ET AL. [55] introduced the following binary operation on C2: if A and B are copulas, a new copula A ∗B

is defined via
48



F. Durante, E.P. Klement, S. Saminger-Platz et al. Fuzzy Sets and Systems 451 (2022) 28–64
(A ∗ B)(x, y) =
1∫

0

∂2A(x, t) ∂1B(t, y) dt,

which is called the Markov product of A and B . This operation has the following interpretation: let X0, X1, X2 be a 
Markov chain of continuous random variables and let A be the copula of (X0, X1) and let B be the copula of (X1, X2). 
Then A ∗ B is the copula of (X0, X2). Thus, the Markov product is able to describe the dependence among the first 
and last element of the random sequence given some partial information.

In particular, a copula C is said to be idempotent with respect to the Markov product if C ∗ C = C. The set of 
idempotent copulas will be denoted by Cid.1 Idempotent copulas are particularly important in the study of (homoge-
neous) Markov chains since, if C is idempotent, then the n-fold Markov product of C with itself remains equal to C
and, hence, the Markov chain in question is stationary.

In [55] it was recognized that the bivariate copulas � and M are idempotent, and in the same paper a further 
example was provided, for α ∈ ]0,1[, by the ordinal sum

Cα(x, y) = �(x,y)

α
1[0,α]2(x, y) + M(x,y)1[0,1]2\[0,α]2(x, y). (5.1)

These were the only examples in the literature of copulas belonging to Cid until countably generated idempotent 
copulas were introduced in [10] by exploiting the one-to-one correspondence between copulas and Markov operators.

We recall that a Markov operator in the probability space (�, F , P ) is a linear operator T : L∞ → L∞ that is (a) 
positive, i.e., Tf ≥ 0 whenever f ≥ 0, and satisfies (b) T 1 = 1, where 1 denotes the constant function f ≡ 1, and (c) 
E(Tf ) = E(f ) for every f ∈ L∞, where E(f ) = ∫

f dP . The L∞ operator norm ‖T ‖∞ of T is equal to 1; moreover 
T can be extended to L1 and its L1-norm still equals 1, i.e., ‖T ‖1 = 1.

In [201] it was shown that, when the probability space is ([0, 1], B([0, 1]), λ), where λ is the Lebesgue measure 
on the Borel sets B([0, 1]) of [0, 1], the following one-to-one correspondence exists between copulas and Markov 
operators. Given a copula C, the operator TC defined on L1 = L1([0, 1], B([0, 1]), λ) via

(TCf ) (x) = d

dx

1∫
0

∂2C(x, t)f (t) dt

is a Markov operator. Conversely, if T is a Markov operator on ([0, 1], B([0, 1]), λ), the function CT : [0, 1]2 → [0, 1]
defined by

CT (x, y) =
x∫

0

(
T 1[0,y]

)
(s) ds (5.2)

is a copula. If A and B are copulas and TA and TB are the corresponding Markov operators, then

TA ◦ TB = TA∗B, (5.3)

which implies that the operation ∗ on C2 is associative. By recourse to Pfanzagl’s characterization of conditional 
expectations [209] one can prove, see [230], that a Markov operator is a conditional expectation if and only if it is 
idempotent with respect to the composition of operators, i.e., if and only if T 2 = T ◦ T = T . It follows from (5.3) that 
the Markov operator TC is a conditional expectation if and only if the copula C is in Cid.

As a consequence, there is also a one-to-one correspondence between the set Cid ⊂ C2 and the sub-σ -algebras of 
B([0, 1]) or, equivalently, between Cid and the family of conditional expectations on ([0, 1], B([0, 1]), λ) with respect 
to sub-σ -algebras of B([0, 1]). The conditional expectation with respect to a given σ -algebra can be used to replace 
the Markov operator T in (5.2) and then to generate a copula that automatically belongs to Cid. In the following, only 
conditional expectations with respect to sub-σ -algebras of B([0, 1]) generated by a countable partition of the unit 

1 In this section the term idempotent refers to the property just introduced, while in the remainder of the paper the same term denotes a property 
of elements of [0, 1] or of [0, 1]d .
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interval [0, 1] will be considered. The points 0 = a0 < a1 < · · · < an in [0, 1], with either an = 1 or (an)n≥1 → 1, give 
rise to the partition of [0, 1]

[0,1] = [a0, a1] ∪
(⋃

k>1

]
ak, ak+1

]) ∪ {1}. (5.4)

The last element in this latter union, the singleton {1}, is missing when there are only a finite number of points ak. 
Write (ak, ak+1) to denote the interval 

]
ak, ak+1

]
for k ≥ 1 and [a0, a1] for k = 0, and F ({ak}) to denote the sub-σ -

algebra generated by the partition (5.4). Then, if f is in L1, the conditional expectation of f with respect to F ({ak})
is given by

EF ({ak})f =
∑
k≥0

1(ak,ak+1)

ak+1 − ak

ak+1∫
ak

f dλ.

If y ∈ (ak, ak+1), one easily has

EF ({ak})1[0,y] =
k−1∑
j=0

1(aj ,aj+1) + 1(ak,ak+1)

y − ak

ak+1 − ak

= 1(0,ak) + 1(ak,ak+1)

y − ak

ak+1 − ak

.

After a few easy calculations the corresponding copula is

CF ({ak})(x, y) =
{

ak + (x−ak)(y−ak)
ak+1−ak

if (x, y) ∈ [
ak, ak+1

]2
,

M(x, y) otherwise,
(5.5)

which is an ordinal sum of independence copulas, i.e., CF ({ak}) = M-(〈a0, a1, �〉, . . . , 〈ak, ak+1, �〉, . . . ) (see also 
[182, Section 5]). The following result establishes that ordinal sums of this latter type play an important role in Cid.

Theorem 5.1. [10, Theorem 2] The set of all M-ordinal sums of type M-(〈ak, bk, �〉)k∈K is dense in the set of 
idempotent copulas Cid with respect to the topology of uniform convergence in [0, 1]2.

Interestingly, under some additional conditions on the copula, M-ordinal sums of type M-(〈ak, bk, �〉)k∈K can be 
characterized in the following way.

Theorem 5.2. [235, Theorem 5.1] Let C be stochastically increasing in the first variable, i.e., u1 �→ ∂1C(u1, u2) is 
decreasing for almost all u1 ∈ [0, 1]. Then C is in Cid if and only if C = M-(〈ak, bk, �〉)k∈K .

Clearly, Theorem 5.2 also holds if C be stochastically increasing in the second variable, i.e., u2 �→ ∂2C(u1, u2) is 
decreasing for almost all u2 ∈ [0, 1].

Moreover, notice that the Markov product of C = M-(〈ak, bk, Ck〉)k∈K by itself is given (see [11]) by

(C ∗ C)(x, y) =
{

ak + (bk − ak) (Ck ∗ Ck)
(

x−ak

bk−ak
,

y−ak

bk−ak

)
if (x, y) ∈ [ak, bk]2 ,

M(x, y) otherwise.
(5.6)

Therefore, the ordinal sum C is in Cid if and only if so is the copula Ck for every k ∈ K . Notice that the copula (5.1)
is a special case of (5.6) obtained when n = 2, a1 = 0, a2 = 1, C1 = � and C2 = M . Moreover, since � is in Cid, also 
the copulas in (5.5), which are in Cid, are obtained as a special case of (5.6) by taking � for every k ∈ K .

From these aspects, the following result can be also derived by using the study about idempotent Archimedean 
copulas in [99].

Theorem 5.3. [99, Theorem 5.9] Let C be an associative copula which is represented as C = M-(〈ak, bk, Ck〉)k∈K

via Theorem 3.4. Then C is idempotent if and only if Ck = � for every k ∈ K .
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6. Ordinal sums of multivariate copulas

In order to provide a suitable definition of the M-ordinal sum construction in any dimension d ≥ 2, from a purely 
algebraic viewpoint the expression similar to (4.1) would be

C(x1, . . . , xd) =
{

ak + (bk − ak)Ck

(
x1−ak

bk−ak
, . . . ,

xd−ak

bk−ak

)
if (x1, . . . , xd) ∈ [ak, bk]d ,

min{x1, . . . , xd} otherwise.

But this latter function need not be a copula, as can be easily seen.

Example 6.1. Let the function C : [0, 1]3 → [0, 1] be defined by

C(x1, x2, x3) =
{

1
3�3(3x1,3x2,3x3) if (x1, x2, x3) ∈ [

0, 1
3

]3
,

min{x1, x2, x3} otherwise.

At the point ( 1
3 , 14 , 14 ), which lies on the boundary of the box 

[
0, 1

3

]3
, one has

1

3
�3

(
1,

3

4
,

3

4

)
= 3

16
�= 1

4
= min

{1

3
,

1

4
,

1

4

}
,

thus C is not continuous at that point and therefore cannot be a copula.

In the absence of the associativity property, which would allow to extend a bivariate operation to higher dimensions, 
an alternative idea to define ordinal sums for d-copulas (d ≥ 3) is to use some measure-theoretic arguments.

To this end, consider an M-ordinal sum copula C of type (4.1). Let denote by VC(R) the C-volume of any 2-box 
R ⊆ [0, 1]2 and by μC the probability measure that extends VC to any Borel set of [0, 1]2 via Carathéodory’s extension 
procedure [22,212]. By using the σ -additivity of the measure μC , for every (x, y) ∈ [0, 1]2 such that min{x, y} ∈
]ak, bk[ for some k ∈ K it holds

C(x, y) = μC([0, x] × [0, y])

=
∑

i∈K,i<k

μC(]ai, bi[
2) + μC([ak,min{x, bk}] × [ak,min{y, bk}])

+ μC

(
([0, x] × [0, y]) \

⋃
i∈K,i<k

]ai, bi[
2
)

=
∑

i∈K,i<k

(bi − ai) + (bk − ak)Ck

(min{x,bk}−ak

bk−ak
,

min{y,bk}−ak

bk−ak

) + λ

(
[0,min{x, y}] \

⋃
i∈K,i<k

]ai, bi[

)
= ak + (bk − ak)Ck

(min{x,bk}−ak

bk−ak
,

min{y,bk}−ak

bk−ak

)
,

where λ is the Lebesgue measure on [0, 1]; while C(x, y) = M(x, y), otherwise. The previous equality suggests the 
following expression for a d-dimensional version of M-ordinal sums.

Theorem 6.2. [183, Theorem 2.1] Let (]ak, bk[)k∈K be a family of non-empty, pairwise disjoint open subintervals of 
[0, 1] and let (Ck)k∈K be a family of d-dimensional copulas. Then the following function MOSum

d : [0, 1]d → [0, 1]
given by

MOSum
d (x1, . . . , xd) =

{
ak + (bk − ak) · Ck

(min{x1,bk}−ak

bk−ak
, . . . ,

min{xd ,bk}−ak

bk−ak

)
if min{x1, . . . , xd} ∈ [ak, bk],

Md(x1, . . . , xd) otherwise,

(6.1)

is a d-copula.
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Concerning the definition of W-ordinal sums for d-copulas (d ≥ 3), it is worth noticing that Wd is not a copula for 
d ≥ 3. Thus, a definition of Wd -ordinal sums cannot be obtained via algebraic similarity. However, in analogy with 
Proposition 4.9, one could work with the transformations on Cd that are induced by the symmetries of [0, 1]d (see 
also Appendix A.9). We start with the following preliminary example about the transformations of the copula Md .

Example 6.3. Let U = (U1, . . . , Ud) be a random vector distributed according to Md . Consider the symmetry ξ of 
[0, 1]d given by ξ = σk1 ◦ σk2 ◦ · · · ◦ σkr for {k1, . . . , kr} ⊆ {1, 2, . . . , d} with 1 ≤ r ≤ d − 1. Then (Md)ξ is the 
distribution function of the random vector V = (V1, . . . , Vd) such that Vi = 1 − Ui for every i ∈ {k1, . . . , kr}, while 
Vi = Ui , otherwise. The copula (Md)ξ is given by

(Md)ξ (x1, . . . , xd) = max
{
min{xi | i ∈ {k1, . . . , kr}} + min{xi | i /∈ {k1, . . . , kr}}

}
and corresponds to the quasi-extremal copula given in [243, Definition 4]. Such copulas are associated to random 
vectors whose pairs are either comonotonic or countermonotonic.

Definition 6.4. Consider the symmetry ξ of [0, 1]d given by ξ = σk1 ◦ σk2 ◦ · · · ◦ σkr for {k1, . . . , kr} ⊆ {1, 2, . . . , d}
with 1 ≤ r ≤ d − 1. The copula obtained as a ξ -transformation of the copula MOSum

d by (6.1) will be called an 
(Md)ξ -ordinal sum.

Clearly, (Md)ξ is the background copula associated with the (Md)
ξ -ordinal sum.

Example 6.5. Let us consider two special cases of (6.1): If K = {1} and ]a1, b1[ = ]0, b[, then

C(x1, . . . , xd) =
{

b · C1
(min{x1,b}

b
, . . . ,

min{xd ,b}
b

)
if min{x1, . . . , xd} ∈ [0, b],

Md(x1, . . . , xd) otherwise,

which coincides with the upper comonotonic copula of [42, Proposition 3]. If K = {1} and ]a1, b1[ = ]a,1[, then

C(x1, . . . , xd) =
{

a + (1 − a)C1
(

x1−a
1−a

, . . . ,
xd−a
1−a

)
if min{x1, . . . , xd} ∈ [a,1],

Md(x1, . . . , xd) otherwise,

which can be analogously used to describe a random vector that is comonotonic in the lower tail. As shown in [210], 
such cases of ordinal sum constructions may serve to change the tail of a multivariate distribution and, hence, are 
helpful in determining the unfavorable scenarios from a risk management perspective.

Remark 6.6. M-ordinal sums of copulas can be naturally extended to quasi-copulas in the sense that, if all Ck in 
formula (6.1) are quasi-copulas, but not necessarily copulas, then the function MOSum

d is a quasi-copula too (see [98, 
Definition 4] and also [17]). Moreover, if each Ck is a supermodular quasi-copula, then MOSum

d remains supermodular 
in view of [79, Proposition 5]. Notice that we cannot directly extend Definition 6.4 to d-quasi-copulas since the 
ξ -transformation of a quasi-copula (also known as flipping) may not be a d-quasi-copula (see [75]).

The concept of �-horizontal and �-vertical ordinal sums presented in Proposition 4.4, can instead be introduced 
in any dimension via the gluing methods in [234]. This leads to the following result.

Proposition 6.7. Let i ∈ {1, . . . , d}. Let (]ak, bk[)k∈K be a family of non-empty, pairwise disjoint open subintervals 
of [0, 1] and let (Ck)k∈K be a family of d-copulas. Suppose 

⋃
k∈K [ak, bk] = [0, 1]. Then the following function �(i)

d , 
defined, for every x ∈ [0, 1]d with xi ∈ [ak, bk], by

�
(i)
d (x1, . . . , xd) = ak · Ck−1(x1, . . . , xi−1,1, . . . , xd) + (bk − ak) · Ck

(
x1, . . . ,

xi−ak

bk−ak
, . . . , xd

)
(6.2)

is a d-copula.

We denote copulas of type (6.2) as �(i)
d -ordinal sum (with respect to the i-th variable). Notice that the condition ⋃

k∈K [ak, bk] = [0, 1] in Proposition 6.7 is not really restrictive compared to the bivariate case since, for d = 2, one 
can always assume that some summands fulfill Ck = �k .

By using the symmetries of [0, 1]d , various results in the spirit of Proposition 4.10 can be obtained as well.
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Remark 6.8. Notice that �-diagonal ordinal sums can be obtained in the multivariate case via patchwork techniques 
following [77].

In the study of high-dimensional copulas, it is often crucial for applications that some suitable algorithms do exist 
to generate random points in [0, 1]d according to the probability law induced by the copula (see, e.g., [175]).

The Md - and �d -ordinal sum constructions introduced above also admit a sampling algorithm that depends on the 
fact that they can be represented in terms of mixtures (i.e., convex combinations) of suitable probability distribution 
functions. To this end, it is convenient to extend the domain of a copula from [0, 1]d to Rd . Specifically, given a 
copula C, we denote by Cext the probability distribution function of the random vector U = (U1, . . . , Ud) such that 
the restriction of Cext to [0, 1]d is equal to C. The existence of such a U in a suitable probability space is guaranteed 
by Kolmogorov’s Extension Theorem.

For the Md -ordinal sums, it holds (see, e.g., [126, (4.31)]) that (6.1) can be rewritten as

C(x1, . . . , xd) =
∑
k∈K

(bk − ak)C
ext
k

(x1 − a1

b1 − a1
, . . . ,

xd − ad

bd − ad

)
+ λ

(
[0,min{x1, . . . , xd}] \

⋃
k∈K

]ak, bk[

)
, (6.3)

where λ is the Lebesgue measure. Thus, the copula C in (6.3) can be considered as a mixture (i.e., a convex sum) of 
the distribution functions

Fk(x, y) = Cext
k

(x1 − ak

bk − ak

, . . . ,
xd − ak

bk − ak

)
with weight bk − ak and the copula Md with weight 1 − ∑

k∈k(bk − ak). This can be translated into the following 
procedure.

Algorithm 1 (Simulation of an Md -ordinal sum). To generate a random number v = (v1, . . . , vd) from the copula C
in (6.3), proceed as follows:

1. Generate a random number v from the uniform distribution on [0, 1].
2. If v ∈ ]ak, bk[ for some k ∈ K , then

(a) generate (u1, . . . , ud) from the copula Ck;
(b) set vi = ai + (bi − ai)ui for i = 1, 2, . . . , d ;
else set v1 = v2 = · · · = vd = v.

3. Return v = (v1, v2, . . . , vd).

Notice that, with probability zero, v can be equal to ak or bk for some i ∈ K .

Analogously, for the function �C
d from Proposition 6.7 it follows from [69] that

�C
d (x1, . . . , xd) =

∑
k∈K

(bk − ak)C
ext
k

(
x1, . . . ,

xi − ai

bi − ai

, . . . , xd

)
.

Thus we obtain the following procedure.

Algorithm 2 (Simulation of a �d -ordinal sum). To generate a random number v = (v1, . . . , vd) from the copula in 
(6.2), proceed as follows:

1. Generate a random number v from the uniform distribution on [0, 1].
2. If v ∈ ]ak, bk[, then

(a) generate (u1, . . . , ud) from the copula Ck;
(b) set vi = ai + (bi − ai)ui ;
(c) set vk = ui for every k �= i.

3. Return v = (v1, . . . , vd).
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7. Concluding remarks

For a considerable amount of time (in one case even through thirty years) the authors of the present article have 
closely cooperated with Radko Mesiar on some of the many topics to which he has made significant contributions. We 
first mention triangular norms, copulas, and aggregation functions at large, where he addressed many of their algebraic, 
analytic and probabilistic facets, then also extensions of classical measures and non-standard integrals related to them, 
important aspects of many-valued and, particularly, fuzzy logics, as well as dependence modeling.

Dedicating this paper to him, we here have focused on ordinal sums, especially of triangular norms and copulas, in 
this way recognizing some of the major achievements of Radko Mesiar and his co-authors to these fields.
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Appendix A. Conventions, definitions and notations used in this paper

A.1. Some conventions

Many mathematical objects appear in the literature under different names, and often different symbols are used, 
too. For some mathematical terms and notations in this paper we have fixed the way how we use them.

Countable set: The term countable for the cardinality of a set will always be used in the sense of “finite or countably 
infinite”.

Characteristic function of a set: For each set A ⊆ � the characteristic function of A is the function 1A : � → R
defined by 1A(x) = 1 if x ∈ A, and 1A(x) = 0 if x /∈ A.

Dimension: The canonical symbol for an arbitrary dimension will be d , for example in Rd , [0, 1]d , d-boxes, d-
copulas, Cd , and so on. In the case d = 2, the subscript 2 is often omitted (the only exception being C2).

Restriction of functions: The restriction of a function f : �1 → �2 to a subset A ⊆ �1 is the function f �A : A →
�2 which is defined by f �A (u) = f (u) for all u ∈ A.

Monotonic functions: A function f : A → B , where A and B are partially ordered sets, will be called increasing if 
the weak inequality is preserved by f (i.e., if u ≤ v implies f (u) ≤ f (v)), and strictly increasing if the strict 
inequality is preserved by f (i.e., if u < v implies f (u) < f (v)). In analogy, f will be called decreasing if it 
reverses the weak inequality, and strictly decreasing if it reverses the strong inequality.

Boundary of a set: If (�, O) is a topological space and A ⊆ � then ∂A ⊆ � denotes the boundary of the set A, i.e., 
∂A = A \ int(A), where A denotes the (topological) closure and int(A) the (topological) interior of the set A.

Ordinal sums — index set and summands: The canonical index set of the family of summands of an ordinal sum 
will be K (in some cases, e.g., when working on the real line, K has to be countable or, equivalently, a subset of 
N). An ordinal sum D-(〈ak, bk, Fk〉)k∈K with D ∈ {M, W, �(v), �(h), �(d)} will be said to be an ordinal sum 
of (the summands) (]ak, bk[ , Fk)k∈K or an ordinal sum of (the summands) (〈ak, bk, Fk〉)k∈K or, if no confusion 
is possible, an ordinal sum of (the summands) (Fk)k∈K or, simply, an ordinal sum of (the summands) Fk .

Partial derivatives for functions in several variables: For the partial derivative of a function F : Rd → R with 
respect to the k-th component (k ∈ {1, . . . , d}) we will write briefly ∂kF (x), i.e.,

∂kF (x) = ∂F (x)
.

∂xk
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A.2. Triangular norms

The concept of triangular norms goes back to [180], and in [224–226] the axioms of t-norms as they are used today 
were provided.

Definition A.1. A function T : [0, 1]2 → [0, 1] is called a triangular norm (t-norm) if the following properties hold:

(i) T is commutative, i.e., T (x, y) = T (y, x) for all x, y ∈ [0, 1],
(ii) T is associative, i.e., T (x, T (y, z)) = T (T (x, y), z) for all x, y, z ∈ [0, 1],

(iii) T is increasing in the second component, i.e., for all x, y, z ∈ [0, 1] the inequality y ≤ z implies T (x, y) ≤
T (x, z),

(iv) T satisfies the boundary condition T (x, 1) = x for all x ∈ [0, 1].

The set of triangular norms will be denoted by T . There are infinitely many t-norms, four of them are often called the 
basic t-norms:

• the drastic product TD given by TD(x, y) = (
1 − 1[0,1[2(x, y)

) · min{x, y},
• the Łukasiewicz t-norm TL given by TL(x, y) = max{x + y − 1, 0},
• the product TP given by TP(x, y) = xy,
• the minimum TM given by TM(x, y) = min{x, y}.

Observe that TL, TP and TM are also bivariate copulas: TL and TM coincide with the lower and upper Fréchet-
Hoeffding bounds W and M , respectively, and the product TP is usually denoted by � in the context of copulas.

One immediately sees that each t-norm T ∈ T satisfies the additional boundary conditions T (1, x) = x and 
T (x, 0) = T (0, x) = 0 for each x ∈ [0, 1], and that it is increasing in both components, i.e., for all x1, x2, y1, y2 ∈ [0, 1]
we have T (x1, y1) ≤ T (x2, y2) whenever x1 ≤ x2 and y1 ≤ y2. Since the comparison of t-norms is done component-
wise, i.e., T1 ≤ T2 if and only if T1(x, y) ≤ T2(x, y) for all (x, y) ∈ [0, 1]2, we obtain TD ≤ T ≤ TM for each t-norm 
T and, in particular, TD < TL < TP < TM.

A.3. Pseudo-inverse

For continuous monotonic functions (which are not bijective, in general) their so-called pseudo-inverse plays an 
important role, e.g., in the context of additive or multiplicative generators of (Archimedean) t-norms and copulas.

Definition A.2. Let t : [0, 1] → [0,∞] be continuous and strictly decreasing with t (1) = 0. The pseudo-inverse of t
is the function t (−1) : [0,∞] → [0, 1] defined by

t (−1)(u) =
{

t−1(u) if u ∈ [0, t (0)] ,

0, if u ∈ ]t (0),∞] .

The pseudo-inverse t (−1) is continuous and decreasing (and strictly decreasing on [0, t (0)]). Moreover, we have 
t (−1) ◦ t (u) = u for all u ∈ [0, 1], while

t ◦ t (−1)(u) =
{

u if u ∈ [0, t (0)] ,

t (0) if u ∈ ]t (0),∞] ,

i.e., t ◦ t (−1)(u) = min{u, t (0)} for all u ∈ [0,∞]. If t (0) = ∞ then t (−1) = t−1.

A.4. H -volume

For functions H which are closely related to (probability) distributions (such as, e.g., copulas or quasi-copulas) 
one has to compute the H -volume of a d-box:
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Definition A.3. Let the function H : Rd →R be increasing in each argument and let ]a,b] = ]a1, b1] × · · ·× ]ad, bd ]
be a d-box. Then the H -volume VH of ]a,b] is defined by

VH (]a,b]) =
∑

v∈ver(]a,b])

sign(v)H(v),

where ver(]a,b]) = {a1, b1} × · · · × {ad, bd} denotes the set of vertices of ]a,b] and the function sign : Rd → R is 
given by

sign(v) =
{

1 if vk = ak for an even number of indices,

−1 if vk = ak for an odd number of indices.

A.5. Copulas

The concept of copulas, which link a d-dimensional distribution function with its one-dimensional margins, goes 
back to [237]:

Definition A.4. A function C : [0, 1]d → [0, 1] is called a d-copula if it satisfies the following conditions:

(i) C is grounded, i.e., C(u1, u2, . . . , ud) = 0 whenever ui = 0 for some i ∈ {1, . . . , d};
(ii) C has uniform marginals, i.e., C(1, . . . , 1, ui, 1, . . . , 1) = ui for all ui ∈ [0, 1] and all i = 1, . . . , d ;

(iii) C is d-increasing, i.e., VC(R) ≥ 0 for every d-box R = ]a, b] = ∏d
i=1 ]ai, bi] ⊆ [0, 1]d .

The set of d-copulas will be denoted by Cd .

When d = 2 we shall speak of a bivariate copula; in this case condition (iii) in Definition A.4 reads as follows:

VC(]a,b]) = C(a1, a2) − C(a1, b2) − C(b1, a2) + C(b1, b2) ≥ 0

for all a1, a2, b1, b2 in [0, 1] with a1 ≤ b1 and a2 ≤ b2.

Remark A.5. The following are properties of a copula C:

• Every d-copula C is increasing in each place.
• Every d-copula C fulfills, for all u, v ∈ [0, 1]d , the 1-Lipschitz-condition

|C(u) − C(v)| ≤
d∑

i=1

|ui − vi | = ‖u − v‖1

and is therefore uniformly continuous on [0, 1]d .
• Copulas can be compared with respect to the usual pointwise order, i.e., for C1, C2 ∈ Cd we have C1 ≤ C2 if and 

only if C1(u) ≤ C2(u) for all u ∈ [0, 1]d .
• Fréchet-Hoeffding bounds: For all copulas C ∈ Cd and all u ∈ [0, 1]d

Wd(u) = max

{ d∑
i=1

ui − (d − 1),0

}
≤ C(u) ≤ min{u1, . . . , ud} = Md(u).

Note that Wd is a copula for d = 2 only, whereas Md ∈ Cd holds for all d ≥ 2.
• In the bivariate case (i.e., d = 2) we usually will write M rather than M2, W rather than W2, and also for the 

independence or product copula �d given by �d(u1, . . . , ud) = ∏d
i=1 ui we usually write � rather than �2, in 

particular in Sections 1–5.

Remark A.6 (Alternative definition of a copula). A d-dimensional copula Cd is the restriction/concentration of a 
multivariate distribution function to/on the unit cube [0, 1]d with uniform univariate marginals on [0, 1].
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A.6. Random variables and distribution functions

Let X1, . . . , Xd be random variables on the same probability space (�, F , P ), i.e., measurable functions from �

into R = [−∞,∞], and let X = (X1, . . . , Xd) be a random vector. Its distribution function FX is, for all x ∈ R
d
, 

defined by

FX(x) = P (X1 ≤ x1, . . . ,Xd ≤ xd).

We shall write X ∼ FX. The one-dimensional marginal Fi with i ∈ {1, . . . , d}, of FX is the distribution function of 
Xi , i.e., Fi(t) = FX(∞, . . . , ∞, t, ∞, . . . , ∞). If X is a random variable (on a suitable probability space) with X ∼ F , 
then VF (]a,b]) = P (X ∈ ]a,b]). If F is continuous, VF (]a,b]) = VF ([a,b]) for every a ≤ b (see also [87, Remark 
1.2.14]).

Theorem A.7 (Invariance principle as provided in [87]). Let X1, . . . , Xd be continuous random variables on 
(�, F , P ).
Let ϕi , i = 1, . . . , d , be continuous, increasing functions on RanXi . Then the random vectors X = (X1, . . . , Xd) and 
Y = (ϕ1 ◦ X1, . . . , ϕd ◦ Xd) have the same copula, i.e.,

C(X1,...,Xd) = C(ϕ1◦X1,...,ϕn◦Xd).

Any scale-invariant dependence between the random variables Xi is therefore captured by the copula C(X1,...,Xd ). 
They are independent if and only if C(X1,...,Xd) = �.

A.7. Sklar’s theorem

A fundamental result in the theory of copulas is Sklar’s theorem [237]:

Theorem A.8 (Sklar’s theorem as provided in [87]). Let X be a random vector on a probability space (�, F , P ), let 
X ∼ H , i.e.,

H(x) = P (X ≤ x) = P (X1 ≤ x1, . . . ,Xd ≤ xd)

and let F1, . . . , Fd be its marginal distribution functions. Then there exists a copula CX such that for all x ∈R
d

H(x) = CX(F1(x1), . . . Fd(xd)).

In case of continuous marginal distributions, the copula is unique; otherwise it is unique on 
∏d

i=1 Ran(Fi).

As is not unusual for important results, Sklar’s theorem was rediscovered several times (see [67,194]), sometimes 
extended to a more general setting (see [193,202,203]), and given different proofs ([15,16,30,37,76,78,96,100,200,
214]), but see also the survey paper [245].

A.8. Stochastic measures

The concepts of d-fold stochastic measures and d-copulas are closely related:

Definition A.9. A measure μ on ([0, 1]d, B([0, 1]d)) is called d-fold stochastic if, for all A ∈ B([0, 1]) and for every 
i ∈ {1, . . . , d}

μ(π−1
i (A)) = λ(A)

where πi : [0, 1]n → [0, 1] is the i-th canonical projection πi(u) = ui , i ∈ {1, . . . , d} and λ the Lebesgue measure.

Corollary A.10 (One-to-one correspondence). Every d-copula C induces a d-fold stochastic measure μC on the 
measurable space ([0, 1]d, B([0, 1]d)) defined, for all R = ]a,b] ∈ [0, 1]d , by μC(R) = VC(]a,b]).

Conversely, to any d-fold stochastic measure μ there corresponds a unique d-copula Cμ given by Cμ(u) =
μ(]0,u]).
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Since every copula is continuous, it holds that μC(]a,b]) = μC([a,b]).

Definition A.11. The support supp(C) of a d-copula C is the support of the d-fold stochastic measure μC , i.e., the 
complement of the union of all open subsets of ([0, 1]d, B([0, 1]d)) with μC -measure zero.

Example A.12. Examples for the support of some copulas:

supp(�d) = [0,1]d , supp(Md) = {u ∈ [0,1]n | u1 = . . . = ud}, supp(W2) = {(u, v) ∈ [0,1]2 | u = 1 − v}.

A.9. Symmetries

We start by recalling that a symmetry of [0, 1]d is a bijection ξ : [0, 1]d → [0, 1]d of the form

ξ(u1, . . . , ud) = (v1, . . . , vd),

where, for each i and for every permutation (k1, . . . , kd) of (1, . . . , d), either vi = uki
or vi = 1 − uki

.
The set of all symmetries of [0, 1]d is a group under the operation of composition. Moreover, each symmetry can 

be represented as composition of the following mappings:

(i) permutations η : [0, 1]d → [0, 1]d given by η(x1, . . . , xd) = (xk1 , . . . , xkd
) for some permutation (k1, . . . , kd) of 

(1, . . . , d),
(ii) reflections σi : [0, 1]d → [0, 1]d given by σi(x1, . . . , xd) = (x1, . . . , xi−1, 1 − xi, xi+1, . . . , xd) for some i ∈

{1, . . . , d}.

A symmetry ξ can be used to transform a random vector U with [0, 1]-uniform marginals into another random vector 
U′ = ξ(U), while preserving the marginal distributions. As a byproduct, if U is distributed according to C ∈ Cd , then 
ξ(U) is also distributed according to a copula, denoted by Cξ (see, for instance, [87]). In dimension 2, the usefulness 
of this transformation for copulas is summarized in the following result, whose proof can be done by probabilistic 
arguments and is contained, for instance, in [87, Corollary 2.4.4].

Theorem A.13. For a given bivariate copula C, let (U, V ) be a random vector whose distribution function is given 
by C, and let ξ be a symmetry in [0, 1]2. Then the distribution function Cξ of ξ(U, V ) is again a copula. In particular, 
the following equalities hold for all x, y ∈ [0, 1]:

(i) Cη(x, y) = C(y, x),
(ii) Cσ2(x, y) = x − C(x, 1 − y),

(iii) Cσ1(x, y) = y − C(1 − x, y),
(iv) Cσ1◦σ2(x, y) = x + y − 1 + C(1 − x, 1 − y).

Note that the copula Cσ2 is sometimes also referred to as y-flipping of C; whereas Cσ1 is called the x-flipping of C

(compare also [63,198]). The copula Cσ1◦σ2 is known as the survival copula associated with C [198].

Example A.14. For each of the basic bivariate copulas M , � and W the permutation and basic reflections lead to:

Mη = M, �η = �, Wη = W,

Mσ1 = Mσ2 = W, �σ1 = �σ2 = �, Wσ1 = Wσ2 = M,

Mσ1◦σ2 = Mσ2◦σ1 = M, �σ1◦σ2 = �σ2◦σ1 = �, Wσ1◦σ2 = Wσ2◦σ1 = W.
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