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Abstract: The large demand of reinforcement systems for the rehabilitation of existing concrete and
masonry structures, has recently increased the development of innovative methods and advanced
systems where the structural mass and weight are reduced, possibly avoiding steel reinforcements,
while using non-invasive and reversible reinforcements made of pre-impregnated fiber nets and mor-
tars in the absence of cement, commonly known as composite-reinforced mortars (CRMs). To date,
for such composite materials, few experimental studies have been performed. Their characterization
typically follows the guidelines published by the Supreme Council of Public Works. In such a context,
the present work aims at studying numerically the fracturing behavior of CRM single-lap shear tests
by implementing a cohesive zone model and concrete damage plasticity, in a finite element setting.
These specimens are characterized by the presence of a mortar whose mechanical behavior has been
defined by means of an analytical approximation based on exponential or polynomial functions. Dif-
ferent fracturing modes are studied numerically within the CRM specimen, involving the matrix and
reinforcement phases, as well as the substrate-to-CRM interface. Based on a systematic investigation,
the proposed numerical modeling is verified to be a useful tool to predict the response of the entire
reinforcement system, in lieu of more costly experimental tests, whose results could be useful for
design purposes and could serve as reference numerical solutions for further analytical/experimental
investigations on the topic.

Keywords: concrete; CRM; debonding; fiber/matrix bond; finite element analysis (FEA); interfaces

1. Introduction

In recent decades, an increased use of alternative techniques instead of traditional
retrofitting systems, such as the innovative materials involved in externally bonded rein-
forcements (EBRs), has been noticed among the scientific community. Composite strength-
ening solutions adopting fiber-reinforced polymers (FRPs) have been commonly used for
the reinforcement of masonry [1–4] and concrete [5–7] substrates. However, despite the
use of polymer (organic) adhesives, FRP composites are both incompatible with masonry
substrates and hard to remove [8,9]. Furthermore, concrete substrates are typically charac-
terized by a low tensile strength, so that strengthening effects cannot be fully employed due
to a premature debonding failure of the FRP reinforcement [10,11]. As a result, an extensive
research has been performed in the literature on the bond behavior of FRP-to-concrete joints,
leading scientists to propose a large amount of bond strength and bond-slip models [12–19].

To overcome such FRP drawbacks, inorganic binders are increasingly used in the
matrix, in the form of open-mesh textiles instead of continuous fiber sheets, as commonly
occurs in the so-called composite-reinforced mortar (CRM) [20–29]. The application of
CRM guarantees a better compatibility with masonry substrates due to the high vapor
permeability of mortar. Moreover, this system is sustainable and reversible, it can be easily
applied also on irregular substrates, on wet support, and it features better performance at
elevated temperatures.
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Differently from FRP, in which chemical bonds derived from a polymerization process
of the organic matrix at the interfacial level between the fiber and resin, the interaction
between the mortar matrix and fibers in CRMs is typically mechanical. It depends on
many factors, e.g., the mortar penetration in the mesh space and the friction at the matrix–
fiber interface during the slip stage. It is well known from the literature that CRM is
made by a rigid grid of pre-cured FRP. More specifically, composite yarns and pultruded
elements characterize the warp and the weft direction, respectively, where the composite
yarns are twisted both together and around the pultruded elements, making possible the
realization of a stable bi-directional grid and replacing the steel grid used in the ferrocement
traditional technique [30,31]. Considering the entire CRM system, the mortar is a key
member that withstands the load-carrying capacity, being fundamental for transferring the
stress between the externally bonded reinforcement and the substrate. Thus, the overall
behavior of the CRM, along with its interaction with substrates, and the possible effect of
anchors should be considered for a complete characterization of the system.

In such a context, however, the scientific literature focusing on CRM systems seems
to be quite limited, mainly because of the difficulty in defining some reliable design
procedures [27]. At the same time, there are no works in which CRMs are analyzed
computationally by three-dimensional models of single-lap shear bond tests. These tests
are commonly used to characterize the shear behavior of composite-to-substrate joints,
which dictates the sensitivity of the local and global response of the reinforcement phase
and of the overall reinforced structure. On the contrary, a large variety of works can be
found in the literature on the numerical study of fiber-reinforced cementitious mortar
(FRCM) specimens, which are similar to CRM but with a soft and dry textile sheet [32–37].

According to the national guidelines, the single-lap shear bond tests conducted on
FRCMs can have as a final result different failure modes [38] depending on the matrix
thickness, the mechanical characteristics of the composite and substrate, and the substrate
treatment: (a) debonding of the fiber at the matrix–fiber interface; (b) interlaminar failure
of the matrix; (c) detachment of the entire composite strip without damage to the substrate;
(d) debonding of the composite strip within the substrate; (e) debonding of the fiber at
the matrix–fiber interface followed by spalling of the matrix that covers the textile; and
(f) rupture of the fibers.

Based on the lacking literature, the present work aims at modeling numerically a
single-lap shear bond test by validating the model against existing predictions from the
literature. To this end, we apply a cohesive zone model (CZM), as implemented in a classical
finite element code, in order to investigate the crack initiation and propagation processes
within materials and at interfaces with a good accuracy. A nonlinear traction–separation
law describes the cohesive behavior at the interfacial level, with an ascending branch up
to the peak load, followed by a softening branch, at which the fracturing process takes
place [39]. The CZM was proposed for the first time by Barenblatt [40,41] and Dugdale [42]
for the study of singularity-driven fracture mechanics, and it was then extended in the
literature to study the fracturing process in many bi-material members [43–55], involving
different loading conditions [56–61], scales [62–66], and FRP composite films [67–73].

Another analytical tool is proposed here to simulate the damage process of our speci-
mens, namely, a concrete damage plasticity (CDP) model, which is considered as one of the
most reliable models in the literature for studying the nonlinear fracturing of most materials.
Starting from this model, and using different computational approaches, different damage
models have been increasingly developed in the literature with the aim of developing
novel stress–strain relationships both in compression and tension, or to propose innovative
functions for the definition of damage parameters in compression (dc) and tension (dt). In
the study of Lubliner et al. [67], a novel constitutive plastic model was proposed for the
nonlinear analysis of concrete materials, involving different elastic and plastic stiffness
degradation effects, in order to define a new yield criterion. The model was then validated
by means a double numerical and experimental check of results with accurate predictions.
Carol et al. [68] proposed some closed-form solutions for a correct definition of the tensile
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damage for different loading cases. At the same time, Ahmed et al. [74] introduced a novel
three-dimensional stress–strain relation based on the definition of a novel stress accounting
for the shear damage. This stress state decomposes tensile and compressive parts into
pure biaxial shear and pure tensile/compressive biaxial stresses. Through the theory of
Lubliner et al. [67], a modified version of the damage concrete model was proposed by Lee
et al. [75] for confinement purposes under uniform and non-uniform conditions. A model
that overcomes any possible limitation of pure elastic–plastic damages during unloading
phases was found by Jason et al. [76], while Grassl et al. [77] used the combination of dam-
age mechanics and plasticity flow to investigate concrete structures subjected to dynamic
loading conditions.

Based on the experimental results from the existing literature referring to single-lap
shear tests [35], the present study aims at analyzing different possibilities of crisis mode
for CRM reinforcements by evaluating comparatively the results in a systematic way
in order to determine the governing damage mode. A novel analytical model is, thus,
presented, that allows the mechanical response of the mortar to be described, and the
fracturing behavior at the fiber–matrix and matrix–substrate interfaces, while using a
classical CZM and CDP formulation. The results obtained from the numerical investigation
can provide some useful insights for the design purposes of CRM systems and their
associated engineering applications, starting from a full mechanical characterization of
such strengthening materials and allowing their global response to be predicted for any
type of material used.

After this introduction, in Section 2, we provide the main theoretical basics of the
models here proposed as valid tools to study the fracturing problem of CRM systems,
with their properties described in Section 3. The numerical investigation is discussed
comparatively in Section 4, accounting for different geometrical schemes and fracturing
mechanisms. The main findings can be found in the concluding Section 5, with valid
suggestions both from an analytical and design standpoint.

2. Theoretical Formulation

2.1. Concrete Damage Plasticity Model

In this section, we briefly recall the main theoretical basics of the models applied
herein for the study of the fracturing process in CRM single-lap shear bond tests. Due
to the nonlinear and complex behavior of the mortar phase within specimens, a concrete
damage plasticity (CDP) model is adopted, in a classical finite element environment, as
proposed in the literature by Lee and Fenves [78] for concrete materials. This model
requires the introduction of a yield function, as visible in Figure 1, where q is the Von Mises
equivalent stress, defined as q =

√
3(S : S)/2, S is the deviatoric stress tensor, p is the

hydrostatic pressure,
�
σ 2 is the maximum principal stress, and α ∈ (0.5; 1.0) is a function

that depends on the biaxial compressive strength σb0 and uniaxial compressive strength σc0.
More specifically, α is defined as α = (σb0/σc0 − 1)/(2σb0/σc0 − 1), and β is the ratio of the
second stress invariant on the tensile meridian, which affects the yield function shape in
the deviatoric plane. At the same time, the uniaxial loading conditions in compression
are described by three phases, as plotted in Figure 2, involving both the linear (step 1)
and nonlinear (step 2) ascending branch together with the descending stage (step 3) of the
constitutive relation.

In the first phase (phase 1 in Figure 2), the stress–strain relation has a linear behavior
of the type

σ1
c = E0εc (1)

At the end of this phase, the stress assumes a value of σc = 0.4 fcm according to
EC2, where fcm is the maximum compressive strength of the material and εc its relative
compressive strain.
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Figure 1. Concrete yield surface.

 

Figure 2. Constitutive relation in compression.

Once the compressive strength σc = 0.4 fcm is achieved, the material begins cracking,
according to the following nonlinear behavior (phase 2 in Figure 2):

σ2
c =

Eci
εc
fcm

−
(

εc
εc1

)2

1 +
(

Eci
εc1
fcm

− 2
)

εc
εc1

fcm (2)
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where Eci is the modulus of elasticity of mortar and εc1 is the deformation at σ1
c .

The last phase (phase 3 in Figure 2) has a softening behavior and follows the theory
proposed by Kratzig and Polling [79]:

σ3
c =

(
2 + γc fcmεc1

2 fcm
− γcεc +

ε2
cγc

2εc1

)−1

(3)

with

γc =
π2 fcmεc1

2
[

Gch
leq

− 0.5 fcm

(
εc1(1 − b) + b fcm

E0

)]2 (4)

where Gch is the fracturing energy, b = ε
pl
c /εin

c with ε
pl
c and εin

c are the plastic and inelastic
strain, respectively, and leq is the length of the mesh element.

2.1.1. Behavior in Tension

A nonlinear tensile behavior is assumed for the mortar phase, as proposed by Hordijk [80],
independently of the mesh size of the FEM-based elements, namely,

σt(w)

ftm
=

[
1 +

(
c1

w
wc

)3
]

e−c2
w

wc − w
wc

(
1 + c3

1

)
e−c2 (5)

where c1 = 3, c2 = 6.93, and wc = 5.14GF/ ftm is the critical crack opening which depends
on the fracture energy GF and the maximum tensile strength of the material.

Based on the previous formulation, a novel curve can be obtained in the stress–
displacement relation (Figure 3) through the following equation:

εt = εtm +
w
leq

(6)

where εtm is the strain at the maximum tensile strength, εt is the strain at an arbitrary
opening w, and leq is the length of the mesh element.

Figure 3. Behavior in tension.
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2.1.2. Compressive Damage and Tension Damage Component

A compressive damage variable dc is introduced to specify the compressive stiff-
ness degradation damage, by means of the plastic strain ε

pl
c and constant factor bc, with

0 ≤ bc ≤ 1

dc = 1 − σcE−1
c

ε
pl
c (1/bc − 1) + σcE−1

c
(7)

Similarly, a tension damage variable dt is defined, which depends on the plastic strain
ε

pl
t and the parameter bt, namely,

dt = 1 − σtE−1
t

ε
pl
t (1/bt − 1) + σtE−1

t

(8)

2.2. Cohesive Zone Modeling

A further theoretical tool adopted here for our numerical investigation relies on the
cohesive zone modeling, as proposed in the literature by Camanho et al. [62], to capture
the mixed-mode delamination onset and growth in composite structural components. In
such a context, a bi-linear behavior is proposed in line with Ref. [62] to define the process
zone and cohesive zone for modes I, II, and III, by means of the mechanical parameters
plotted in Figure 4.

(a)                                           (b) 

Figure 4. Pure mode constitutive laws: (a) mode II or mode III; (b) mode I.

As visible in this figure, each cohesive law requires a high initial stiffness, named as
penalty stiffness, K, in the linear elastic range (point 1, Figure 4). Once the interlaminar
tensile or shear strength is reached (point 2, Figure 4), the stiffness reduces gradually to
zero. The onset displacements are obtained as: δ0

3 = N/K, δ0
2 = S/K, and δ0

1 = T/K,
where N is the interlaminar tensile strength, whereas S and T are the interlaminar shear
strengths. As known from the literature [81], cohesive zone models are related to the
Griffith’s fracture theory when the area under the traction–separation law corresponds to
the fracture toughness (Figure 4), independently of the shape. As commented by Alfano
and Crisfield [82], for the same displacement values δ0

3 and δ
f
3 (Figure 4), a perfect brittle

failure is obtained, due to the sudden drop to zero of the load value. In this case, the
model must be able to obtain the high stress gradients at the crack tip through a sufficiently
fine mesh density or singular elements. Based on the definition of the area under the
traction–separation laws (GIC, GIIC, GIIIC for modes I, II, and III, respectively) it is possible
to define the final displacements, δ

f
3 , δ

f
2 , δ

f
1 , corresponding to the complete decohesion
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δ
f
3∫

0

τ3dδ3 = GIC (9)

δ
f
2∫

0

τ2dδ2 = GIIC (10)

δ
f
1∫

0

τ1dδ1 = GIIIC (11)

such that the final displacements are defined as δ
f
3 = 2GIC/N, δ

f
2 = 2GIIC/S, and

δ
f
1 = 2GIIIC/T, respectively.

At points 4 and 5 in Figure 4, the crack is no longer capable of transferring loads and
all the penalty stiffnesses go back to zero. At the same time, there is the necessity to avoid
any interpenetration of the crack interfaces. This is possible by reintroducing the normal
penalty stiffness when the interpenetration is detected. Camanho et al. [62] also defined
the unloading behavior of a softening point up to the origin (Figure 4). By introducing the
Macauley operator

〈x〉 =
{

0, x < 0
x, x ≥ 0

(12)

it is possible to describe the loading condition with the introduction of the maximum
relative displacement, δmax, defined as

Mode II or III : δmax
i = max{δmax

i , |δi|}, i = 1, 2 (13)

Mode I : δmax
i = max{δmax

3 , δ3}, with δmax
3 ≥ 0 (14)

and by using a loading function, F, as follows

Mode II or III : F(|δi| − δmax
i ) =

〈|δi| − δmax
i

〉
|δi| − δmax

i
, i = 1, 2 (15)

Mode I : F(δ3 − δmax
3 ) =

〈
δ3 − δmax

3
〉

δ3 − δmax
3

, with δmax
3 ≥ 0 (16)

The parameter δmax is useful to consider the irreversibility of damage, as visible in
Figure 4. Indeed, when the relative displacement is reduced, the curve decreases elastically
to zero, with a reduced stiffness (point 3, in Figure 4).

The irreversible, bi-linear, softening constitutive behavior shown in Figure 4, referred
to as single-mode loading, can be defined as follows [82–84]:

τi =

⎧⎪⎨
⎪⎩

Kδi, δmax
i ≤ δ0

i
(1 − di)Kδi, δ0

i < δmax
i < δ

f
i

0, δmax
i ≥ δ

f
i

(17)

di =
δ

f
i
(
δmax

i − δ0
i
)

δmax
i

(
δ

f
i − δ0

i

) , i = 1, 2, 3; di ∈ [0, 1] (18)

The fundamental conditions to avoid interpenetration of the crack faces are as follows:

τ3 = Kδ3, δ3 ≤ 0 (19)
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which depends on the penalty stiffness, K, the corresponding fracture toughness, GIC,
GIIC and GIIIC, and the corresponding interlaminar tensile or shear strengths, N, S or T,
respectively.

3. Bond Test and Materials

In their present state, the test methods applied to characterize CRM systems can
be considered as an adjustment of existing methods commonly used for FRP and FRCM
systems, for which many studies in the literature have already demonstrated the debonding
performances as efficient reinforcement tools for different substrates [85–88]. It is well
known from the literature that the debonding phenomenon is an undesirable brittle failure
mode for structural safety, which is dictated by strength-reducing factors, thus making
the quality and evaluation of the bond strength extremely important. In such a context,
the present investigation aims at evaluating the debonding load of masonry or concrete
elements strengthened with CRMs made of an inorganic matrix, instead of an organic
resin as in FRP systems, and featuring different adhesion properties with substrates. The
single-lap shear test, as here selected for our numerical investigation, is one of the most
common experimental tests to evaluate the interfacial properties among strengthening
systems and substrates [89,90], where a CRM reinforcement with length L, width B and
thickness t is created directly on the substrate so that the mortar matures and chemically
bonds to the surface, in line with Ref. [24]. One edge of the CRM net is pulled, while the
substrate block is pushed by means of a reaction frame (i.e., compressed), as shown in
Figure 5.

Figure 5. Single-lap direct shear test setup.
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Three different sizes and boundary conditions have been accounted for herein to
analyze the sensitivity of the fracture response, involving different possible crisis modes,
i.e., the debonding of the fiber at the matrix–fiber interface, the detachment of the entire
composite strip without damage of the substrate, and the interlaminar (delamination)
failure of the matrix. More specifically, a CZM has been applied to model the fiber–
matrix and matrix–substrate interfaces, whereas the CDP method has been applied to
model the matrix. In this case, an analytical approximation has been implemented for a
consistent modeling of the material behavior. Based on the experimental observations from
Refs. [35,72,91–93], a smooth elastic-softening behavior of mortar specimens is expected for
the load–displacement response, whose predictions can be approximated analytically by
means of an exponential or a polynomial function, as proposed hereafter. We here consider
both of them to investigate comparatively the effect of an asymptotic softening (exponential)
function on the overall ductility response in lieu of a finite polynomial function, due to the
different intrinsic mathematical nature.

Let start by considering an arbitrary exponential function of the type

f (x) = ax · e−bx + c (20)

where f (x) represents the stress state σ(ε), and x stands for the strain field ε, while a, b,
and c are unknown parameters. By defining three boundary conditions, i.e., the null value
of the function for x = 0, the initial stiffness value E0, and the maximum stress value σcu,
one obtains

σ(ε) = E0εe−[E0/(σcue)]ε (21)

Based on this equation, it is possible to describe the behavior of the mortar by defining
the stiffness value E0 = 13 GPa in the elastic phase, as well as the compression strength
σcu = 10.3 MPa and tension strength σtu = 2.2 MPa of the inorganic matrix. This definition
makes it possible to compare the mechanical behavior of the mortar described in Ref. [35]
with that defined by Equation (21), as shown in Figure 6.

 
     (a)      (b) 

Figure 6. Constitutive relations in compression (a) and tension (b) as predicted in Ref. [35] and by
our exponential approximation.

Another possible function has been chosen to approximate the mechanical response of
the mortar, with an enhanced brittle behavior. In such a case, a less pronounced softening
phase, with a steeper descending branch after the peak load, can be obtained by adopting a
fourth-order polynomial of the type

f (x) = ax(x − b)(x − b)(x − 2b) (22)
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whose lowest solution of its first derivative corresponds to the deformation εc0, i.e., the
abscissa of the peak load σc0. Through these two boundary conditions it is possible to
define the parameters a and b, such that the polynomial approximation becomes

f (x) =
σc0

33.97ε4
c0

x
(

x − 2εc0

2 −√
2

)2(
x − 4εc0

2 −√
2

)
(23)

As visible in Figure 7, this definition also makes it possible to compare the mechanical
behavior of the mortar for both loading–unloading states described by Ref. [35] and the
polynomial Equation (23), both in compression (Figure 7a) and tension (Figure 7b).

 
(a) (b) 

Figure 7. Constitutive relations in compression (a) and tension (b) as predicted in Mazzucco et al. [35]
and by our polynomial approximation.

A comparative evaluation of the constitutive relations in compression and tension is
also provided in Figure 8 for an inorganic mortar, where both approximations ensure the
same compressive and tensile maximum stress value, while varying the ductility and initial
stiffness of the material, especially in the tensile state. As expected, indeed, the softening
branch related to the exponential equation is asymptotic, while it assumes a finite value of
the total strain in the case of the polynomial approximation, with a clear increase in the
ductility within the material in the first approximation.

  
(a) (b) 

Figure 8. Analytical approximation from polynomial and exponential equations of a specimen in
compression (a) and tension (b).

Two types of textile fiber reinforcement have been employed in the numerical model
including wet or dry carbon fibers. Both types of fibers are characterized by three prin-
cipal directions 1, 2, and 3 per bundle (Figure 9). The highest stiffness is reached in the
direction of the fiber filaments (direction 1), while in the transversal directions 2 and 3,
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the stiffness is defined by the coating matrix properties associated with a cable behavior.
To reproduce this last behavior in the numerical code, an elastic orthotropic constitutive
law has been considered, introducing nine constitutive parameters: three elastic moduli Ei,
three Poisson’s ratios νi,j, and three shear moduli Gi,j—with i, j = 1, 2, 3 (see Figure 9). Both
types of fiber net have been considered to assume a perfectly elastic behavior, according to
the experimental predictions from the literature [35]. Moreover, the net is considered as a
single solid to ensure the continuity at the corners between the longitudinal and transverse
fibers (see Figure 9).

Figure 9. Detail of the fiber net in principal directions.

4. Numerical Investigation

The matrix stress–strain behavior is modeled by adopting the analytical approxima-
tions proposed in the previous section. More specifically, for the exponential approximation,
the stiffness value is assumed to be equal to E0 = 13 GPa in the elastic phase, while for
the polynomial approximation the stiffness value is considered to be E0 = 8 GPa. For
both approximations, the compression and tensile strengths are assumed to be equal to
σcu = 10.5 MPa and σtu = 2.15 MPa.

Two types of fibers were considered to define their mechanical properties. The first
type accounts for transversal isotropic fibers, as considered by Mazzucco et al. [35], associ-
ated with dry carbon fibers, while the second type refers to pre-impregnated carbon fibers
with an isotropic behavior, and a higher stiffness than the dry carbon fibers. Transversal
isotropic fibers have an elastic modulus in the longitudinal and tangential directions equal
to E1 = 68.10 GPa and E2 = E3 = 0.32 GPa, respectively, while the Poisson’s ratios are
assumed to be ν1,2 = ν2,3 = ν1,3 = 0.35.

The numerical study starts considering a reduced geometry for a small number of
independent variables and a reduced computational time, whose geometry and dimensions
are reported in Figure 10. Note that in this specimen there is only a single crossing of fibers,
which makes it possible to validate the model while analyzing the mortar–net interaction
in a critical point of the specimen. In line with the experimental predictions, for which the
crisis does not affect the substrate, only the composite reinforcement was modeled and the
matrix interface in contact with the masonry substrate was fully constrained. To reproduce
the interlaminar (delamination) failure of the matrix, in this first example, the fiber–matrix
interfaces were bundled with a tie constraint. This leads the damage to be concentrated
only in the matrix, which can be studied separately from the behavior of the fiber–mortar
interface. The mortar is here modeled with the CDP model and its mechanical properties
derive from the analytical approximations in Equations (21) and (23). In Figure 11, the
damage contour plot of the specimen is shown for both types of approximation and for
wet fibers, with the same development of damage within the specimen for the polynomial
(Figure 11a) and exponential (Figure 11b) approximations. A more extensive penetration of
the matrix damage can be noticed in the specimen when dry carbon fibers are considered
in the CRM specimen, as visible from the damage contour plots in Figure 12 (compared to
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Figure 11), with a clear presence of stress concentrations at the transversal–longitudinal
bundle joint corners. For each selected fiber, we have also evaluated the global load–slip
response, as plotted in Figure 13, for both a polynomial and exponential approximation
of the matrix mechanical properties, with a clear nonlinear behavior, where the matrix
damage gradually increases after the onset of the nonlinear response, involving the matrix
external side first, and then propagating along the fiber textile plane towards the loaded
end secondly. In more detail, Figure 13a refers to wet fibers, while Figure 13b refers to
dry carbon fibers, with a clear reduction in the peak load and initial stiffness in favor of a
higher ductility of the material. Except for the initial linear elastic branch, the polynomial
approximation of the matrix properties seems always to provide more conservative results
compared to the exponential approximation in the nonlinear ascending and descending
branches of the curves, due to the different intrinsic nature of both approximation functions.
The numerical investigation considers also the effect of the cohesive fiber–matrix interface,
as schematically shown in Figure 14, always for the reduced specimen reinforced with the
stiffest fibers. The fiber–matrix interface is modeled accounting for the cohesive properties
f1 = 0.24 MPa, f2 = f3 = 0.78 MPa for the maximum nominal stresses in the three
directions, and δ

f
1 = 0.58 mm, δ

f
2 = 0.75 mm, δ

f
3 = 0.50 mm, for the three ultimate values

of displacement at the failure stage. Furthermore, the stiffness values in the three directions
are assumed to be equal to Knn = Kss = Ktt = 2215 MPa.

Figure 10. Reduced specimen. Geometric dimensions in mm.

  
(a) (b) 

Figure 11. Matrix tensile damage contour for a polynomial (a) and exponential (b) approximation of
a reduced specimen with wet fibers.



J. Compos. Sci. 2023, 7, 329 13 of 26

  
(a) (b) 

Figure 12. Matrix tensile damage contour for a polynomial (a) and exponential (b) approximation of
a reduced specimen with dry fibers.

 
(a) (b) 

Figure 13. Comparison of the results for wet (a) and dry (b) carbon fibers.

Figure 14. Detail of the fiber–matrix cohesive interfaces.

In Figure 15, we represent the damage contour plots of the reduced specimen in dis-
placement control by applying a displacement of 0.35mm, always comparing the response
provided by a polynomial (Figure 15a) and exponential (Figure 15b) approximation of the
matrix properties, while reporting the global load–slip response in Figure 16. As visible
from Figure 15, the transverse bundle tends to contrast the longitudinal slip pushing against
the surrounding matrix, which starts becoming damaged at the transverse bundle–matrix
interfaces, due to the presence of some stress concentration.
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(a) (b) 

Figure 15. Matrix tensile damage contour for a polynomial (a) and exponential (b) approximation of
a reduced specimen with a fiber–matrix cohesive interface and wet fibers.

Figure 16. Load vs. slip response of the specimen modeled with a cohesive matrix–fiber interface.

The global response in Figure 16 seems to be slightly affected by the matrix properties,
with an oscillating behavior after the peak load during the debonding stage between the
matrix and fibers. Figure 16 clearly shows a first loss in resistance of the specimen, related
to the first peak load, due to the decohesion among the fibers and the matrix. After that,
the mortar resistance ensures a further increase in strength until the final collapse.

In the curves of Figures 13 and 16, it is possible to note that the overall response of the
specimen modeled with an exponential approximation reaches slightly higher values of
resistance due to the different maximum tensile strength, as visible in Figure 8. The same
study was carried out for a larger specimen with the same mechanical properties. In this
case, the reinforcement net has a higher number of transverse and longitudinal elements.
In more detail, the net consists of two fibers in the longitudinal direction, and four fibers in
the transverse direction. The dimensions are those shown in Figure 17.

In addition, in this case, the analysis starts considering a perfectly bonded fiber–
matrix interface, where the specimen is loaded in the longitudinal direction at one side,
while keeping fixed all the other sides. The contour plots of Figures 18 and 19 refer to a
deformed configuration of the same specimen for wet (Figure 18) or dry (Figure 19) fiber
reinforcements, with an extensive matrix cracking near the maximum peak value, which is,
in turn, responsible for the decreased applied load.
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Figure 17. Geometric properties of the specimen (dimensions in mm).

 
(a) (b) 

Figure 18. Matrix tensile damage contour for a polynomial (a) and exponential (b) approximation.

  
(a) (b) 

Figure 19. Matrix tensile damage contour for a polynomial (a) and exponential (b) approximation.
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The diagrams corresponding to the results of Figures 18 and 19 are shown in Figure 20,
which refers to the load–slip response of the CRM specimen for both types of reinforcements
and mechanical laws, with a clear overall increase in strength and ductility compared to
the previous simplified specimen. Furthermore, in this case, the softening branch is more
pronounced for wet fibers compared to the case of dry carbon fibers, while assuming a
higher value of peak load for lower values of slip, together with an increased initial stiffness.

 
(a) (b) 

Figure 20. Comparison of the results for wet (a) and dry (b) carbon fibers.

The same specimen was then modeled by applying a cohesive fiber–matrix interface,
with the same properties used for the reduced sample, whose contour plots for the traction
damage of the mortar are represented in Figure 21, with a meaningful variation in terms
of intensity and expansion compared to Figure 19. This is now more pronounced in the
transversal direction rather than the longitudinal direction, with an early collapse compared
to the perfectly bonded example, as plotted in Figure 22 for the CRM specimen with wet
fibers. In the present case, indeed, the sample undergoes a sudden break soon after the
decohesion of the fibers from the mortar, without highlighting any softening branch or a
recovery stage in terms of resistance as shown in the previous example.

Finally, a test with periodic type boundary conditions has been analyzed to evaluate
the overall response of a CRM reinforcement associated with an actual application of larger
dimensions. In particular, displacements U1 and rotations UR1 and UR3 are null in the
lateral faces of the specimen, while keeping fixed the contact interface with the substrate.
This specimen is characterized by a single longitudinal fiber and four transverse fibers,
characterized by the geometric dimensions shown in Figure 23.

  
(a) (b) 

Figure 21. Matrix tensile damage contour for a polynomial (a) and exponential (b) approximation.
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Figure 22. Load vs. slip response of the specimen modeled with a cohesive matrix–fiber interface.

Figure 23. Geometric properties of the specimen (dimensions in mm).

Once again, the tie constraint is enforced at the fiber–matrix interface for the study of
mortar damage under the twofold assumption of fiber reinforcement. The contour plots
of damage related to this example are shown in Figures 24 and 25 for fibers with a higher
and lower stiffness, respectively, whereas the overall time–history response is plotted in
Figure 26a,b for both types of fiber properties.

The sample with periodic constraints shows an overall trend similar to those previously
discussed. Differently from the specimen with two longitudinal fibers, the peak load value
in this case is four times lower, and the ultimate displacement is reduced quantitatively
by 67%. Such results cannot be fully considered for real applications, but can estimate
the degree of reinforcement given by the transverse fibers, together with the associated
different crisis modes, as suitable to tailor the reinforcement design in actual cases.

To consider the mortar–substrate interfacial crisis mode, the specimen has been mod-
eled with reduced geometric properties and cohesive properties at the interfacial level with
the substrate for a displacement control test; the details are represented in Figure 27. More
specifically, the mortar–substrate cohesive interface is characterized by the maximum nom-
inal stresses in the three directions f1 = 5 MPa, f2 = f3 = 2.5 MPa, ultimate displacement
w = 0.01 mm, and stiffness values Knn = 13000 MPa and Kss = Ktt = 5500 MPa in the
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normal and tangential directions, respectively. In addition, the interpenetration condition
is prevented by setting a ‘hard contact’ algorithm in the normal direction, as implemented
in the numerical code.

 
(a) (b) 

Figure 24. Matrix tensile damage contour for a polynomial (a) and exponential (b) approximation.

 
(a) (b) 

Figure 25. Matrix tensile damage contour for a polynomial (a) and exponential (b) approximation.

 
(a) (b) 

Figure 26. Comparison of the results for wet (a) and dry (b) carbon fibers.
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Figure 27. Detail of the matrix–substrate cohesive interfaces.

Figure 28 shows the delamination evolution of the reinforcement phase from the
substrate at four different time steps. In particular, the cohesive interface is here represented
in 2D, along with the shear stress contour plot in the loading direction. The specimen is
loaded on the right side on these plots such that the delamination spreads from the right to
the left side.

  
(a) Time step: 0.17 s (b) Time step: 0.53 s 

  
(c) Time step: 0.73 s (d) Time step: 0.94 s 

Figure 28. Contour plot evolution of the shear stress in the direction of the applied load—detail of
the cohesive interface for the reduced specimen.
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Such local evolution of damage corresponds to the global time–history response in
Figure 29, with a clear fragile response of the specimen with wet reinforcements, in total
absence of a softening branch.

Figure 29. Global response of the specimen with a cohesive matrix–substrate interface.

As a last example, we repeated the test to evaluate the influence of a different number
of fibers as reinforcement, using two longitudinal fibers and four transverse ones. The
evolution of the shear stress contour plot in the loading direction is shown in Figure 30 at
four different time steps, with a clear different localization of the maximum values of the
stress state moving from the right to the left side.

(a) Time step: −× s 

 
(b) Time step: −× s 

Figure 30. Cont.
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(c) Time step: −× s 

 
(d) Time step: −× s 

Figure 30. Contour plot evolution of the shear stresses in the direction of the applied load—detail of
the cohesive interface.

In such a case, the global load–slip response features a more ductile behavior, as visible
in Figure 31. In this case, the curve undergoes a plastic softening after the peak load, whose
value is higher in this case than the one obtained for a delaminating reduced specimen.
This post-peak behavior stems from the higher redistribution of the local stress state due to
the presence of an increased number of fibers in the transverse direction, thus justifying the
sensitivity of the mechanical response to the reinforcing distribution.

Figure 31. Global response of the specimen with a cohesive matrix–substrate interface.
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5. Conclusions

The present work has studied numerically a CRM reinforcement system for existing
structures consisting of an inorganic mortar and a pre-impregnated fibers net, as a valid
alternative to traditional reinforcements, due to its non-intrusiveness, reversibility, and
lightness of the thin mortar thickness. This study was inspired by Ref. [35], where a CRM
reinforcement system is here modeled, instead of a dry and transversely isotropic fiber
FRCM sample, whose tensile and compressive mechanical behavior has been approximated
analytically by means of two different laws, i.e., an exponential and polynomial law. Such
analytical definitions of the mechanical properties both in tension and compression have
then been implemented in the numerical finite element code for a proper description of
the nonlinear fracturing processes for the selected problem, involving the mortar, the
substrate, and the interfacial substrate–matrix system. To this end, a concrete damage
plasticity model and cohesive zone modeling are here employed as valid tools to interpret
similar fracturing problems, where two types of net have been assumed here: one dry and
transversally isotropic, in line with Ref. [35]; and another one with isotropic properties
and pre-impregnated, typical of CRM systems. A systematic analysis has considered three
different sizes of single-lap shear specimens, involving also periodic boundary conditions,
whose numerical approaches and general conclusions in terms of damage distribution and
time–history response could serve as valid tools for practical strengthening design. Based
on the numerical campaign, for each selected case, a polynomial approximation of the
matrix properties provides always more conservative results compared to an exponential
approximation in the nonlinear part of the load–slip curves, due to the different intrinsic
nature of both mathematical functions. A perfectly bonded CRM specimen rather than a
cohesive contact modeling of interfaces can be responsible for different damage and stress
distributions within specimens, thus varying not only their initial stiffness but also their
maximum strength and ductility/fragility before the complete fracture.

In general, the presence of a cohesive fiber–matrix interface seems to yield an early
collapse compared to the perfectly bonded example, soon after the decohesion of the fibers
from the mortar, without highlighting any softening branch or recovery stage in terms of
resistance. The global load–slip response assumes a more ductile behavior for specimens
with an increased number of fibers, both in the longitudinal and transverse directions
under periodic boundary conditions, due to an increased redistribution of the local stress
state within the specimen. A further expansion of the work will consider an experimental
investigation on the topic and the possible application of more advanced computational
tools, such as the extended finite element method, to predict any possible multiple crack
propagation and directions.
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