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Abstract: Arsenic (III) is a toxic contaminant in water bodies, especially in drinking water reservoirs,
and it is a great challenge to remove it from wastewater. For the successful extraction of arsenic (III),
a nanocomposite material (ZnO–CuO/g–C3N4) has been synthesized by using the solution method.
The large surface area and plenty of hydroxyl groups on the nanocomposite surface offer an ideal
platform for the adsorption of arsenic (III) from water. Specifically, the reduction process involves
a transformation from arsenic (III) to arsenic (V), which is favorable for the attachment to the –OH
group. The modified surface and purity of the nanocomposite were characterized by SEM, EDX,
XRD, FT–IR, HRTEM, and BET models. Furthermore, the impact of various aspects (temperatures,
pH of the medium, the concentration of adsorbing materials) on adsorption capacity has been
studied. The prepared sample displays the maximum adsorption capacity of arsenic (III) to be 98%
at pH ~ 3 of the medium. Notably, the adsorption mechanism of arsenic species on the surface of
ZnO–CuO/g–C3N4 nanocomposite at different pH values was explained by surface complexation
and structural variations. Moreover, the recycling experiment and reusability of the adsorbent indicate
that a synthesized nanocomposite has much better adsorption efficiency than other adsorbents. It is
concluded that the ZnO–CuO/g–C3N4 nanocomposite can be a potential candidate for the enhanced
removal of arsenic from water reservoirs.

Keywords: arsenic removal; ZnO–CuO/g–C3N4 nanocomposite; solution combustion; kinetic
studies; adsorption

1. Introduction

Arsenic (III) is the most toxic and portable contaminant in nature, creating numer-
ous environmental pollution problems worldwide as it can be effectively solubilized in
groundwater [1,2]. Arsenic in water remains both in an organic as well as an inorganic state,
whereas it mostly remains as arsenate (H2AsO4

−) and oxyanions: arsenite (H2AsO3
−) [3–7].
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Several studies suggest that arsenic pollution can contribute to the development of different
diseases, such as keratosis, melanosis, edema, and cancers of the skin, lungs, and bladder.
Additionally, it has been implicated in contributing to the enlargement of the liver, kidneys,
and spleen [8–11]. Consequently, the World Health Organization (WHO) has suggested
that safe potable drinking water should have concentrations of arsenic no greater than
10 µg L−1 [12,13]. However, concentrations of arsenic in polluted water have reached levels
of 100–300 µg L−1, which is 10–30 times higher than the maximum level recommended
by WHO. This has the potential to cause severe damage to people’s health [8,14], which is
10–30 times higher than the safety limitation and will seriously damage people’s health. As
a result, removing arsenic from contaminated water is a critical factor.

Up to now, different methods have been tested for the filtration of arsenic, such as re-
verse osmosis, adsorption, ultrafiltration, chemical precipitation, ion exchange, etc. [15–18].
Among said protocols, adsorption has many desired options for As filtration because of its
effortlessness and huge efficacy [19]. However, sometimes, this protocol can be costly due
to the preservation of adsorbent media. Nanotechnology solved these problems to a greater
extent by providing cheap nano adsorbents with large surface areas and more specificity.
Extensive efforts have been made for the adsorption of As on metal oxide nanoparticles,
i.e., MgO [20], Fe3O4 [21], α-Fe2O3 [22], CeO2 [23], aluminium oxides [24], etc. Moreover, it
has been acknowledged that the good adsorption ability of adsorbents is due to desirable
active sites and large surface areas. For instance, the main limitations associated with
these oxides are their agglomeration during the reaction and lesser stability, affecting
their efficacy to a greater extent [25]. Cao et al. prepared a CuO nanomaterial that was
applied for As adsorption but, unfortunately, they obtained a low level of As adsorption,
i.e., 5.7 mg/g [26]. Therefore, it is the need of the present and the future to introduce such
nanomaterials which have high efficiency and are more economical for the disintegration of
arsenic. At present, metal oxides (CuO, TiO2, NiO, ZnO, etc.) and their combination with
effective support (MCM–41, g–C3N4, etc.) have attracted great attention from researchers
in water remediation purposes because of their easy preparations, huge surface areas, and
well-organized porous structures [27]. These nanomaterials have special characteristics
such as high reactivity, large surface areas, regeneration capabilities, and high selectivities,
which are very important for environmental remediation [28]. Various nanoparticle-based
materials, for example, zinc oxide, manganese oxide, ferric oxides, and titanium oxide, are
listed as effective nano adsorbents that perform well as compared to other adsorbents used
for the arsenic elimination from drinking water [29–33]. From this perspective, high reactiv-
ity, vast surface area, and a greater number of active sites could help remove contaminants
from wastewater effectively. However, their toxicity despite affordable prices, including
environmental concerns, remain major problems [34,35]. Additionally, excellent adsorption
efficiency and reusing the nano adsorbent are other basic requirements for efficient and
selective nanomaterials that can make them an efficient candidate for removing arsenic
from wastewater. The literature survey suggests a better affinity of a different metal oxide-
containing adsorbent towards the elimination of arsenic due to its better selectivity and
high adsorption capability for both inorganic states of arsenic As(V) and As(III) from aque-
ous solutions [36,37]. On the other hand, the drawback related to these nano adsorbents is
accumulation owing to its low energy barrier, which greatly decreases mobility, availability,
and transfers to the polluted site for in situ adsorptions. Therefore, this shortcoming can
be overcome by the impregnation method, surface coating, or doping on the surface of
these nano adsorbents, which could be a superior choice for the elimination of arsenic and
its derivatives from polluted water. Recently, carbon nitride (g–N3C4) and its composite
with metal oxides have shown better performance because of their chemical, photophysical,
and catalytic properties, simple synthesis, and high stability under harsh conditions for a
variety of applications, especially with photo-/electro-catalysis, sensors, and bioimaging,
etc. [38–41]. Therefore, we planned to design a metal-coated nanocomposite with g–C3N4
for As removal from waste water resources.
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We have prepared ZnO–CuO/g–C3N4 nanocomposites in the present contribution. A
new precipitation protocol was used for the synthesis of the said nanomaterial. The syn-
thesized nanosheets were applied as an adsorbent for As adsorption. ZnO and CuO were
individually synthesized by the same protocol and used for As adsorption. Results showed
that ZnO–CuO/g–C3N4 nanocomposites have several times higher As removal efficiency
than their individual counterparts. The impacts of various parameters (pH, temperature,
material concentration) on the efficiency of ZnO–CuO/g–C3N4 nanocomposites were also
studied. Kinetics studies and adsorption isotherm models were investigated to best explain
the adsorption. Finally, the detailed mechanism of arsenic adsorption was also studied.

2. Experimental Section
2.1. Synthesis of ZnO–CuO Heterostructure

Initially, the ZnO–CuO heterostructure was synthesized through a solution combustion
method. Initially, 20 mL of Cu(NO3)2.3H2O at a 0.1 M concentration was mixed in a
beaker with 100 mL of 0.1 M Zn(NO3)2.6H2O and stirred for up to 30 min at an ambient
temperature. After that, 10 mL of 2 M sucrose solution was added as fuel into the beaker
and heated at 250 ◦C. Finally, the hot mixture was burnt after dehydration with a flame to
obtain a delicate CuO–ZnO composite powder.

2.2. Synthesis of g–C3N4 and ZnO–CuO/g–C3N4 Composite

Graphitic resembling C3N4 was manufactured via thermal polymerization from
melamine. Typically, to obtain a yellowish powder of g–C3N4, a particular amount of
melamine was placed in an alumina crucible and annealed at 550 ◦C for roughly 2 h in an
air atmosphere. In a beaker, 1 g of g–C3N4 and 0.2 g ZnO–CuO was mixed in 70 mL water
and stirred for 3 h. After 3 h, the sample was filtered and dried at 80 ◦C for 12 h to obtain
the new material ZnO–CuO/g–C3N4.

2.3. Batch Adsorption Experiments

We used sodium arsenite as a primary arsenic source to test the synthesized composite
adsorption characteristics in the trials. The influence of interfering ions (nitrate, phosphate,
carbonate, chloride, and sulfate), pH, temperature, and time interval on the adsorption
amount was determined through a batch experiment. At the same time, the kinetic reactions
were additionally investigated. Initially, the pH of the reaction mixture was balanced from
around 2–10, utilizing HCl (0.1 M) and NaOH (0.1 M) solutions, whereas 50 µg/L, 100 µg/L,
and 150, 200 µg/L concentrations of the sodium arsenite solutions were used. Following
the state of the consolidation of meddling ions with 50 µg/L, 100 µg/L, and 150 µg/L, the
impact of prepared contents on the penetration of sodium arsenite with a combination of
100 µg/L was determined. Likewise, to investigate the absorption dynamism, 50 µg/L,
100 µg/L, and 150 µg/L of sodium arsenite-concentrated chemicals were checked by fixing
different sampling time durations at temperatures ranging from 20 to 80 ◦C. The absorption
equilibrium record of sodium arsenite at a starting concentration of about 20 µg/L to
200 µg/L was examined through ZnO–CuO/g–C3N4 at various temperatures (20 to 80 ◦C).
The adsorbent was cleaned thoroughly with 50 mL of 0.1 M NaOH solutions, washed many
times with distilled water, and dried up in an oven at 60 ◦C for three hours to recover the
synthesized adsorbent. Finally, the removal rate R(%) and adsorption quantity (qe (µg/L)
of arsenic through the adsorbent was determined as follows:

qe = (C0 − Ce)V/m (1)

%R = (1 − Ce/C0) × 100 (2)

Here, Ce (µg/L) and C0 (µg/L) are the equilibrium concentration and the liquid phase
initial of arsenic, m is the weight of the adsorbent utilized, and V is the volume of the liquid
solution. The data obtained were processed for standard deviation and ANOVA in Excel to
analyze the arsenic adsorption.
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3. Results and Discussions
3.1. XRD and FT-IR Analysis

Figure 1a shows the X-ray diffraction (XRD) pattern of obtained samples. From these
patterns, it can be seen that the peaks situated at 2θ = 31.82◦, 34.43◦, 36.22◦, 47.61◦, 56.61◦,
63.01◦, and 67.98◦ resemble the (100), (002), (101), (102), (110), (103), and (112) planes
which can be readily indexed to hexagonal wurtzite structure of ZnO (JCPDS 36-1451),
respectively [42]. On the other hand, the peaks at 13.3◦ (100) and 27.4◦ (002) are ascribed to
the crystal structure of g–C3N4. Consequently, the XRD spectrum of the ZnO–CuO/g–C3N4
results incorporated all the common peaks of g–C3N4, ZnO, and CuO. Additionally, CuO
shows some noticeable peaks at 35.7◦, 38.6◦, and 67.5◦, corresponding to the (002), (200),
and (311), in accordance with (JCPDS card no. 89-5899). Furthermore, the peak strength
intensity of the typical g–C3N4 was continuously increased with an increase in the quantity
of g–C3N4, indicating a decrease in the intensity of ZnO and CuO peaks, respectively. For
the ZnO–CuO/g–C3N4 sample, the XRD pattern exhibited no basic pick for g–C3N4, which
can be credited to the low substance of the g–C3N4 in the composite. This result provides
more explicit evidence that no extra peaks were seen in all the patterns, which indicated
the high purity of the synthesized materials.
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For further analysis of a composite’s surface functional groups and functional elements,
we performed FT–IR spectroscopy. Figure 1b shows the FT–IR spectra of g–C3N4 and
synthesized ZnO–CuO/g–C3N4 composite. The upper-level peak at around 810 cm−1 in
the g–C3N4 test is associated with the twisting vibration attributes of heptazine moiety.
At the same time, the peak observed at 3200 cm−1 reveals the O–H stretching vibration,
suggesting the presence of moisture particles in CuO and ZnO materials. The broad
group about 1200–1700 cm−1 in the g–C3N4 test is concerned with the ordinary stretching
mode of C–N heterocycles, while another wideband about 3200 cm−1 in a similar case is
associated with the extending vibration mode of the amine group [43]. In a composite
ZnO–CuO/g–C3N4, the broad double peaks at 1631 and 1563 cm−1 are associated with C–
N stretching vibration modes, whereas the peaks at 1251, 1323 and 1420 cm−1 are assigned
to the aromatic C–N stretching. The broad peak around 3000 to 3500 cm−1 in the sample is
associated with the adsorbed H2O and N–H vibrations of the amine groups [44].
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3.2. HR-TEM Analysis

The structure of the as-prepared samples was observed by HRTEM, as depicted in
Figure 2. The HRTEM examination of ZnO–CuO shows that ZnO and CuO have sphere
morphology, control size, and are highly dispersed in nature, which consistently aligns
with the XRD results, as shown in Figure 2a. As per Figure 2b, the HRTEM picture of ZnO–
CuO/g–C3N4 indicates its covered platelet-like morphology and plain paper-fold diluent
sheet, which is identical to the design of the nanosheets of graphene [45]. The ZnO and
CuO particles are dispersed uniformly with a small size on the face of g–C3N4 nanosheets.
It confirms the successful synthesis of ZnO–CuO/g–C3N4 heterostructure composite [46].
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3.3. SEM and EDX Analysis

To test the fluctuation in material morphology in response to CuO and ZnO charg-
ing, EDX and SEM studies were applied to perceive the external structure and chemical
configuration of ZnO–CuO/g–C3N4. Figure 3a represents the structure of the g–C3N4
as having sheet-like morphology with a large size and a higher degree of aggregation,
whereas in the case of the ZnO–CuO/g–C3N4 composite, the tiny nanoparticles of ZnO
and CuO are dispersed on the surface of the thin sheets to overcome the aggregation and
enhance the surface area of the composite [47], as shown in Figure 3b. To validate the purity
of the synthesized composite further, the EDX study was conducted. Figure 3c depicts
that the existence of Zn, Cu, C, O, and N in the nanocomposite ensures the purity of the
synthesized composite.

3.4. Nitrogen Adsorption-Desorption Study

Figure 4 depicts the N2 adsorption-desorption isotherms and the Barrett-Joyner-
Halenda pore-size dispersion bends of ZnO–CuO/g–C3N4 nanosheets. The Brunauer-
Emmett-Teller (BET) explicit surface territory for CuO nanosheets ZnO–CuO/g–C3N4 is
268 m2 g−1. The pore-size dispersions are at a maximum for the nanosheets and are about
4 nm each. The highly specific area of ZnO–CuO/g–C3N4 nanosheets might be because of
the porous structure of nanosheets, which is good for electrochemical applications. ZnO–
CuO/g–C3N4 nanosheets yield a large, exposed surface area designed for the adsorption of
particles and charge transfer reactions. Figure 4B illustrates the pore size distribution of the
synthesized ZnO–CuO/g–C3N4 nanomaterial. It is clear from the figure that most of the
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pores have a diameter between 8–12 nm, which corresponds to the mesoporous structure
of the material [48].
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(b) their pore size distribution.

XPS Examination

XPS was applied to study the type of bonding and % age weight of each element
present in the sample. Figure 5a,b represent the XPS analysis of ZnO and CuO, respectively.
The result illustrated (Figure 5a) that two well-examined peaks are present at 1021.6 eV and
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1034.3 eV, corresponding to Zn 2p3/2 and 2p1/2, respectively. The two very intense peaks
originating at 933.7 eV and 953.8 eV are suggested for Cu 2p3/2 and 2p1/2, respectively
(Figure 5b). Similarly, the XPS also confirmed the % weight of Zn and Cu, which are 26.7%
and 31.22%, respectively.
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3.5. Batch Adsorption Experiment

The water pH may impact the expulsion of arsenic by adsorbent material. To enhance
the evacuation effectiveness of synthesized compounds in an actual application, the ad-
sorption of three different samples of sodium arsenite (150, 100, 50 µg/L) was investigated
under a range of pH, as it appears in Figure 6a. The shifting pattern of the curves revealed
that acidic environments are beneficial for the removal of arsenic by ZnO–CuO/g–C3N4
material. In contrast, adsorption decreases at high pH levels, which is aligned with the prior
studies [49]. It is additionally crucial that the expected pH value of the sodium arsenite
solution is around 8; when the underlying pH is adapted to about 2.8, the adsorption
capacity reports a total increasing tendency with a bit of increment adequacy. This is
because, under corrosive conditions, an enormous quantity of H+ ions can make adsorptive
surfaces protonated and positively charged. Thus, it is easier to enhance the elimination of
arsenic radicals by electrostatic forces. Although, when the pH ranged from basic up to
10, the adsorption capacity declined significantly. After being prewetted with water, the
−OH ions may acquire the adsorption site with arsenite. The hydroxides of metal ions
are created after adoption, which would stop the response from carrying on. In this way,
examining pH supports choosing the ideal adsorbent in a reasonable application.

Taking into consideration the complicated chemical characteristics of normal water,
the impacts of a few ordinary interfering ions (PO4

3−, NO3
−, SO4

2−, CO3
2− and Cl−) with

three initial dilutions (50, 100, 150 µg/L) on As(III) elimination by ZnO–CuO/g–C3N4 were
tested, as can be observed in Figure 6b. Undoubtedly, the snooping of the five common
ions decreased the adsorption limit, and the higher the number of active ions, the more
significant the influence on adsorption capacity. Chloride ions have a minimal impact on
the adsorption amount due to the additional framing of Cl− ions by spheric complexes with
a heterostructure composite. By correlation, the nearness of sulfate and carbonate affects
the adsorption amount, particularly in the description that sulfate ions and carbonate
ions convey progressively extra negative charges and occupy additional adsorption sites,
which eventually decrease the removal proficiency of arsenic. Nitrate conveys a smaller
amount of negative charge; therefore, its impacts on arsenic adsorption are firmly trailed by
that of chloride ions. However, with high concentrations of conjunction anion quantities,
seriously good adsorption develops stronger. Moreover, it is evident from the graph in
Figure 6b that phosphate has the potential to interfere, and its existence seriously decreases
the adsorption amount. In this examination, the concentration of contending anions was
set much higher than those experienced in natural water. Consequently, even though
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confronting anions concentrations used in these experiments are unusually higher, they
still have the adsorption ability for arsenic exclusion. Recyclability is one of the significant
records to assess the application of adsorbents. Subsequently, the following study showed
a sodium arsenite solution with a starting concentration of 50 µg/L as the trial object, and
the adsorbent was 10 mg of ZnO–CuO/g–C3N4 that adsorbed in 24 h.
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On the other hand, a 0.1 M NaOH solution was used for the desorption of adsorbed
materials, and the recycling experiments were repeated five times for the arsenic removal
rate, as shown in Figure 6c, examining the reusability and stability of the prepared materials.
Latterly, it tends to be the case that the exclusion percentage of the first cycle is as elevated as
90%. Still, the proficiency of the second exclusion cycle is reduced to about 80% because of
several adsorption sites being filled and not desorbed. Furthermore, the elimination rates of
the previous three cycles were not significantly different, showing that physio-adsorption
may be dominant for the time being. The fifth cycle’s As(IV) elimination rate can still
reach above 60%, demonstrating that the synthesized materials, ZnO–CuO/g–C3N4, have
excellent stability and recyclability and are projected to be functional in water purification.

3.6. Effect of Physical Parameters on the Adsorption of Arsenic

The effect of various physical parameters such as time, the concentration of nanoma-
terial, and temperature on the adsorption of arsenic was also examined at multiple time
intervals in the presence of ZnO, CuO, and ZnO–CuO/g–C3N4 nanocomposites (Figure 7a).
It was noticed that the adsorption capability of said nanomaterial improved with a rise in
time by fixing the temperature at 50, pH at 4, and concentration of nanomaterial at 7 mg.
98% adsorption of As, which was achieved after 70 min of stirring.
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The arsenic adsorption capability of the as-synthesized ZnO, CuO, and ZnO–CuO/g–
C3N4 nanocomposites were assessed at various nanomaterial amounts, i.e., 2 to 12 mg, as
depicted in (Figure 7b). The result showed that As adsorption is directly related to the
amount of nanomaterial used and a percent decrease (50–98%) of arsenic was observed from
2–7 mg of the nanomaterial used. Further, an increase in the amount of ZnO–CuO/g–C3N4
nanocomposites at specific optimized conditions does not affect the adsorption of arsenic
because almost all arsenic is adsorbed at lower concentrations of the said nanomaterial.
Less than 70% As was adsorbed by individual ZnO and CuO even at a concentration of
12 mg. Temperature also significantly affects As adsorption. In Figure 7c, the result showed
that with an increase in temperature from 20 to 50 ◦C, the adsorption capability of the
synthesized nanomaterials increases. However, beyond 50 ◦C, the adsorption capability of
nanomaterials decreases sharply, which may be due to chemisorption fruitfully occurring
at 50 ◦C. As adsorption also occurs at a lower temperature, physisorption also occurs
side by side with chemisorption. All these results are well proven by Freundlich and
Langmuir isotherms.

3.7. Adsorption Isotherms

To study the relationship between adsorption capacity and equilibrium concentration
at different temperatures (20 to 80 ◦C), adsorption experimentation of sodium arsenite
solution with starting concentration of 20–150 µg/L was performed for one day with an
equimolar mass of adsorbent. On this premise, the popular Freundlich and Langmuir
adsorption isotherm was utilized to fit the tested experimental data and to know the
type of adsorption and higher arsenic adsorption ability; the results are shown in the
form of the adsorption isotherm in Figure 8. Langmuir’s calculations are dependent on
the following perceptions: (1) The adsorbate accumulates on the upper surface of the
adsorbent in the form of a monolayer; (2) limited adsorbent adsorption capacity; (3) the
adsorbed particles do not interact with one another because they have the same reactive
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sites. The Freundlich model depicts multilayer adsorption and displays the variability of
the adsorbent surface. The associated equations of the two models can be determined from
Equations (3) and (4) [50,51].

Qe = QmKLCe/1 + KLCe (3)

Qe = KFC1/n e (4)
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Figure 8. Freundlich and Langmuir isotherms of As(III) adsorption on ZnO–CuO/g–C3N4.

Here, Ce (µg/L) is the equilibrium concentration of adsorbate, Qm (mg/g) and
Qe (mg/g) is the quantity of adsorbent absorbed at an equilibrium stage of Ce and the
theoretical highest adsorption capacity, respectively; KF (mg/g) and KL (µg/L) (µg/L)
1/n is the Freundlich constant and the Langmuir constant, correspondingly; and n is the
heterogeneity factor. It tends to be naturally seen from Figure 8 that every one of the
three curves displays a rising trend; however, there is no eternal ascending pattern. When
the curve rises to a definite level, it could be flat due to the adsorption saturation. Ad-
ditionally, the temperature also has a high impact on the adsorption ability. At a similar
starting concentration, a temperature change can cause a difference in equilibrium con-
centration, affecting adsorption capabilities, and the law states that low temperatures are
more favorable for adsorption. The boundaries of the Langmuir and Freundlich models
are determined by association with Equation (1). Contrasting the R2 of the two models,
the R2 fit by Langmuir (0.989) was higher than the R2 fit by Freundlich (0.973), implying
that the Langmuir model adequately exhibited the adsorption isotherms. The findings of
this study revealed that arsenite was attached on the outside with confined and uniform
sites, with a monolayer adsorption site. It can be naturally observed that acidic or neutral
water is helpful for the adsorption of arsenic, which might be correlated with the diverse
compositions of the prepared materials. Moreover, a comparison of different adsorbents
with our designed ZnO–CuO/g–C3N4 adsorbent for arsenic removal is summarized in Ta-
ble 1. The consequences recommended that ZnO–CuO/g–C3N4 was not just economically
cheaper and ecologically safe in cases of raw ingredients, but also had a higher proficiency
for arsenic removal.
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Table 1. Comparison of the maximum arsenic adsorption capacity among the prepared ZnO–CuO/g–
C3N4 nanocomposite and other adsorbents.

Adsorbents Adsorption Capacity References

As (mg·g−1)
Reduced graphene oxide-supported
mesoporous Fe2O3/TiO2 nanoparticles 99.5 [52]

CuFe2O4 foam 85.4 [53]
Zirconium nanoscale carbon 110 [54]
(Layered double hydroxides/graphene oxide)
nanocomposites 183.11 [55]

MnFe2O4 90 [56]
CoFe2O4 74 [56]
GO–MnFe2O4 207 [57]
Fe3O4 116.56 [58]
Ce–Fe Oxide–carbon nanotubes 30.96 [33]
Cellulose-based composites 83 [59]
Copper oxide (II) nanoparticles 88.3 [44]
ZnO–CuO/g–N3C4 97.56 Current work

3.8. Adsorption Kinetics

In adsorption kinetics, the relationship between the adsorption limit and time is
investigated for various starting concentrations and temperatures of sodium arsenite
solution. Moreover, Figure 9a displays the outcomes of adsorption amounts fluctuating
at a certain temperature (70 ◦C) following the combination of a sodium arsenite solution
with an underlying dilution of 150 µg/L consumed by a specific quantity of adsorptive
material. Furthermore, it tends to be naturally observed that the adsorption volume
expanded quickly in the initial 60 min and gradually expanded after the fixed 60 min.
Still, the curve bends inclined toward the plane after 120 min. Since there were countless
adsorption positions bringing adsorption from the start, arsenite particles responded to
cupric oxide until the surface was fully occupied with plenty of hydroxyl functional clusters
for adhesion. The place could be filled progressively with a gradual increase in adsorption
quantity until all the sites were entirely occupied, leading to a saturated state. Likewise,
various temperatures reported diverse adsorption capacities under similar conditions, and
the standard is 70 ◦C, which is reliable with the above-stated results of the adsorption
isotherm. Figure 9b shows the determined results for the change of adsorption quantity
versus time intervals under multiple starting dilutions of 50 µg/L, 100 µg/L, and 150 µg/L
at a temperature of 70 ◦C. At the start, the capacity of adsorption abruptly increases with
time. It later slowly improves to the equilibrium state, and adsorption capability is larger
for the higher concentration than for the lower concentration. It can be concluded that
the capacity of adsorption increases at changing the degree of temperature and starting
concentration with time. Adsorption kinetics may give valuable evidence for the entire
adsorption method. For a deeper understanding of the impact of varying temperatures
and to start focusing on the adsorption velocity, pseudo-first-order kinetics (Equation (5))
and 2nd-order kinetics (Equation (6)) were chosen to examine the experimental results
extensively. Moreover, the kinetic equation of pseudo-first-order and pseudo-second-order
is represented as follows:

ln(Qe − Qt) = lnQe − K1t (5)

t Qt = t Qe + 1 K2Q2 e (6)
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The quantities of As(III) adsorbed by adsorbents at equilibrium and at time t, re-
spectively, are Qe and Qt (mg/g), and the rate constants for the pseudo-first-order and
pseudo-second-order models, respectively, are k1 (1/min) and k2 (g/(mg min).

The value of R2 shows that adsorption capacity was reported in a good arrangement in
the presence of a pseudo-second-order dynamic model, where the connection temperature
was already adjusted to 70 ◦C, and the starting focus of sodium arsenite was fixed at
50 µg/L and 100 µg/L. The outcome demonstrates that copper oxide is engaged with
the reaction. The R2 achieved via pseudo-first-order and pseudo-second-order dynamics
are prominently dissimilar, demonstrating that typical adsorption is also found, primarily
because of the copper oxide. Furthermore, a visible decline is seen in the constant rate of
the pseudo-first-order kinetics model (K1) and the pseudo-second-order kinetics model
(K2) with an increase in the temperature of the reaction. This demonstrates that either
chemical or physical adsorption prevails, and the required time to bring the equilibrium
in adsorption could increase in response to a rise in reaction temperature. In contrast,
adsorption efficiency is improved at a lower temperature. On account of altering the
starting concentrations, the constant rate of the pseudo-first-order kinetic model (K1) is
reported as 0.044 correspondingly, indicating that the concentration fluctuation has a
slight impact on the typical adsorption process. The study of adsorption kinetic gives
essential and valuable information to examine the process of adsorption efficiency and
physicochemical responses.

3.9. Statistical Analysis

All the adsorption data were analyzed statistically to check the accessibility of the
applied adsorption model and the efficiency of the synthesized adsorbent (ZnO–CuO/g–
C3N4). A two-tailed t-test at a 5% significance level was used to confirm the optimum pH,
and a Paired t-test was used to check the experiment’s success.

3.9.1. Hypothesis Confirming Optimum pH of Adsorption of Arsenic (III)

Two hypotheses, null and alternate, were assumed to confirm the optimum pH by a
two-tailed t-test at a 5% level. The maximum adsorption at various pH is given in Table 2.



Nanomaterials 2022, 12, 3984 13 of 17

Table 2. Maximum removal of arsenic (III) at various pH.

n pH % Removal (Xi) (Xi − Xavg)2

1 3 98 915.06

2 4 92 588.06

3 5 84 264.06

4 6 73 27.56

5 7 65 7.56

6 8 61 45.56

7 9 43 612.56

8 10 26 1743.06

Xavg = 67.75 ∑(Xi − Xavg)2 = 4203.48

Null Hypothesis = Optimum pH is equal to 3
Alternate Hypothesis = Optimum pH is not equal to 3
Tobserved was calculated using Equation (7):

tobserved =
Xavg − µ

σs/√n
(7)

In Equation (8), µ is the optimum pH, whereas σs is the standard deviation, and it was
calculated by using Equation (8).

σs =
√
[ ∑

(
Xi – Xavg )2 /(n− 1)

]
(8)

Tobserved was found to be 0.92 and was compared with ttabulated (2.306). As tobserved is
less then ttabulated, the null hypothesis is accepted, and optimum pH = 3 for maximum
adsorption is confirmed.

3.9.2. Hypothesis to Confirm the Success of the Experiment Using ZnO–CuO/g–C3N4
as Adsorbent

The success of the experiment was confirmed by proving that the concentration of
arsenic (III) changes during the adsorption process. A Paired t-test was applied to the data
given in Table 3 to test.

Table 3. Change in concentration of arsenic(III) during adsorption.

n Xi (Arsenic Initial
Concentration in ppm)

Xf (Arsenic Final
Concentration in ppm) Di = Xi − Xf (Di − Davg)2

1 20 3.5 16.5 1054.95

2 40 4.7 35.3 187.14

3 60 6.8 53.2 17.80

4 80 14.7 65.3 266.34

5 100 25.4 74.6 656.38

Davg = 48.98 ∑(Di − Davg)2 = 2182.6

Hypothesis. The two hypotheses were:
Null Hypothesis: No change in adsorbate concentration.
Alternate Hypothesis: During adsorption, adsorbate concentration changes.

tcalculated =
Davg

σdi f f

√n (9)
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σdi f f =

√[
∑ (Di − Davg)

2
]
n

n− 1
(10)

σdi f f was calculated by Equation (5) 26.11 was found. In addition, the t value was
calculated by Equation (4) which comes out to be 4.19, and it was compared with t tabulated
(2.77). As tcalculated is greater than the tabulation, the null hypothesis is rejected and the
alternate hypothesis, arsenic (III) concentration changes during adsorption, is accepted.

3.10. Mechanism of As(III) Removal

The method of arsenic adsorption by material ZnO–CuO/g–C3N4 depends on the
combined impact of redox reaction and physical interaction, and Scheme 1 shows the
graphic design for the removal mechanism of arsenic. The preparation of a single CuO
can result in severe accumulation, mainly decreasing the efficiency of the substance, but
g–C3N4 based as the substrate not only resolved the environmental challenges affected by
the single CuO and ZnO but also resolved the faults of accumulation, thus significantly
enhancing the reactivity of materials and the adsorption proficiency. Moreover, the surface
of g–C3N4 has plenty of –OH groups, which are beneficial for connecting copper ions.
In the case of aqueous media, the progression of the hydrothermal process may result
in copper ions formation, which can mostly create a CuO layer on the upper surface of
g–C3N4 as per the “Seed growth method”. Therefore, the g–C3N4 is an essential support
for the CuO and ZnO to attain the highest proficiency. During the reactions, when the
adsorbent comes in cross-contact with the arsenite ion, CuO oxidizes the arsenic trivalent
(As (III)) into the arsenic pentavalent (As (V)). In the FT–IR spectra, the peak depth for –OH
and CuO decreases, and enlightening hydroxyl is used during the adsorption. Accordingly,
the partly oxidized arsenate ion might come in contact with the surface and respond with a
–OH substitution, or it might be that As (III) directly attaches to the –OH. Convincingly, the
determination of the mechanism indicates that the prepared ZnO–CuO/g–C3N4 can extract
As from both physical and chemical reactions, and the combined impact of g–C3N4, ZnO,
and CuO highly enhance the proficiency of arsenic removal. Another proposed mechanism
is producing reactive oxygen species (ROS) in visible light on the surface of CuO and ZnO.
The ROS produced may be hydroxyl radicals or superoxides. These ROS are easily obtained
in the presence of ZnO, CuO, and g–C3N4 because all of these have shallow band gaps,
and the ground electrons are easily subjected to an excited state even in ordinary visible
light. After producing these oxygen species, they reacted with arsenic and adsorbed on the
synthesized nanomaterial surface.
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4. Conclusions

In brief, ZnO–CuO/g–C3N4 nanomaterial was synthesized by grafting ZnO–CuO
onto g–C3N4. The shape, surface area, morphology, and stability of the synthesized nanos-
tructures were confirmed by different analytical techniques. The result showed that the
synthesized nanostructure could effectively remove arsenic from the water solution. Vari-
ous factors affecting the adsorption efficiency of the said nanomaterials were also explored.
The adsorption of arsenic increases with a decrease in pH, nanomaterials’ concentration,
and temperature (50 ◦C) was noted. Beyond this temperature, the adsorption efficacy of
the as-synthesized nanomaterials decreased. Additionally, ZnO–CuO/g–C3N4 showed en-
hanced recycling activity in five consecutive cycles. The adsorption isotherm results showed
that experimental data matches the Langmuir model well, suggesting that the adsorption
approach is specific to a suitable site. The adsorption kinetic data exhibited that the maxi-
mum adsorption capacity of the as-synthesized composite by Langmuir and Freundlich
was observed as 0.989 and 0.973 mg g−1, respectively. Among the pseudo-second-order
kinetic model and the pseudo-first-order kinetic model, there was no discernible difference
in R2. Consequently, our designed ZnO–CuO/g–C3N4 composites are a promising material
for actual application in environmental remediation.
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