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Abstract:
In this paper, the processing of the data of a 3D light de-
tection and distance measurement (LiDAR) sensor mo-
unted on a mobile robot is demonstrated, introducing an 
innovative methodology to manage the data and extract 
useful information. The LiDAR sensor is placed on a mo-
bile robot which has a modular design that permits the 
easy change of the number of wheels, was designed to 
travel through several environments, and saves energy 
by changing the number and arrangement of the whe-
els in each environment. In addition, the robot can re-
cognize landmarks in a structured environment by using 
a classification technique on each frame acquired by 
the LiDAR. Furthermore, considering the experimental 
tests, a new simple algorithm based on the LiDAR data 
processing together with the inertial data (IMU sensor) 
through a Kalman filter is proposed to characterize the 
robot’s pose by the surrounding environment with fixed 
landmarks. Finally, the limits of the proposed algorithm 
have been analyzed, highlighting new improvements in 
the future prospective development for permitting auto-
nomous navigation and environment perception with a 
simple, modular, and low-cost device.  

Keywords: mechatronics device, LiDAR sensor, measure-
ment processing, 3D object recognition, robotic imple-
mentation.  

1. Introduction 
LiDAR sensors have been firmly established as an es-
sential component of many mapping, navigation, and 
localization applications for autonomous vehicles, 
as demonstrated by the increasing number of recent 
studies focused on the usage of LiDAR data for dif-
ferent applications. This popularity is mainly due to 
the improvements in LiDAR performance in terms of 
range detection, accuracy, power consumption, and 
physical features such as dimension and weight. This 
technology is considered to be state of the art, con-
sidering that only very recent contributions permit 
us to compare different algorithms, models, meth-
odologies, and techniques for different applications 
of LiDAR in the autonomous vehicles. Goelles et al. 
present a systematic review on faults and suitable 
detection and recovery methods for automotive per-
ception sensors with a focus on LiDAR to review the 

state-of-the-art technology and identify promising 
research opportunities [1]. Raj et al. explore LiDAR 
scanning mechanisms employed in LiDAR technology 
from past research to current commercial products, 
revealing that electro-mechanical scanning is the 
most prominent technology in use today [2]. Another 
recent review provides a comprehensive survey of 
the Simultaneous Localization and Mapping (SLAM) 
used for many applications, including mobile robot-
ics, self-driving cars, unmanned aerial vehicles, or au-
tonomous underwater vehicles, focusing on solutions 
a sensor fusion between vision and LiDAR [3]. 

As demonstrated by recent reviews, applications 
of LiDAR are becoming significant, and it is important 
to acquire new ideas and algorithms related to the use 
of this data. Among the various fields of LiDAR appli-
cation,  mobile robots form an important category. 
Mobile robots often have to analyze the surrounding 
environment to get information about the presence 
of objects and the trajectory of the robot concerning 
landmarks or mobile targets. Often in applications, 
it is necessary to measure the environment in detail 
when it is difficult to identify the position by global 
navigation satellite system (GNSS) signals; in these 
cases, the generation of the three-dimensional digital 
map by LiDAR is a good solution, as shown in several 
papers [4-11]. Methods of measuring the surrounding 
environment using 2D LiDAR have been proposed for 
four-wheeled mobile robots [7-8], for an unmanned 
aerial vehicle (UAV) [7], and for mobile robots with 
a rocker-bogie mechanism [8]. Various techniques of 
processing and filtering the sensor’s data have also 
been studied and presented [12]. 

This research focuses on a simple, low-cost ro-
bot designed and introduced by Giannoccaro et al. 
in 2019, driven by ROS and realized with a modular-
ized wheel and a frame for connecting them and for 
supporting a scanning LiDAR [13]. A Lidar Hokuyo 
3D sensor, which has been increasingly used in re-
cent years, especially for mapping and operations in 
the automation field, is installed on the robot case. 
Moreover, an inertial measurement unit (IMU sensor) 
is present on the robot, and supplies the three line-
ar accelerations along the three axes [x, y, z] and the 
three angular accelerations along the same axes with 
a given sampling frequency.

The objectives of the research work are to provide 
an algorithm capable of estimating the odometry of 
the mobile robot with high reliability during the jour-
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neys made. This practice is very important in the ro-
botic field: in the literature, there are various SLAM 
algorithms and, more generally, algorithms aimed at 
reconstructing the vehicle’s trajectory. In most cas-
es, IMU sensors are used alongside either GPS data 
or, more rarely, data provided by fixed cameras that 
inspect a certain control environment to obtain the 
input data of the algorithms. It is therefore clear that 
both methodologies have limits. In the first case, the 
method would not apply to indoor environments to 
be inspected due to the difficulty of the GPS signal to 
reach the robot, while in the second case, the area to 
be inspected should be equipped with element sup-
port, such as cameras or other types of sensors, bind-
ing the research to very limited environments. Pre-
liminary results obtained by using only LiDAR data 
for the proposed robot are shown in a 2020 study 
by Giannoccaro et al. [14]. The algorithm presented 
here, on the other hand, uses the IMU sensor and the 
LiDAR sensor, with the latter being capable of pro-
viding the frames containing point cloud data with a 
defined sampling rate, thus characterizing the neigh-
boring environment. This makes it more versatile in 
eliminating critical issues, with a similar methodolo-
gy to that used for an array of ultrasonic sensors for 
scanning external environments, determining useful 
characteristics for the reconstruction of simple exter-
nal reference surfaces [15-17]. The algorithm makes 
use of a linear Kalman filter, which evaluates the dy-
namic state of a system starting from measurements 
affected by noise. In the test proposed, in the Kalman 
filter, greater weight was given to the filter correction 
phase using the LiDAR observations compared to the 
prediction phase, because the IMU model installed on 
the robot was not suitable for estimating the installa-
tion due to its noise level, as demonstrated by the first 
preliminary experimental tests. With an opportune 
preliminary sensor accuracy evaluation, the statisti-
cal proposed algorithm could be adapted and gener-
alized to every situation. 

The use of the Kalman filter for improving the fu-
sion of the data from LiDAR and other inertial sensors 
has recently become a highly used and investigated 
modality for locating and estimating the position of 
robots or mobile vehicles. Some contributions recent-
ly published show innovative procedures that use 
this strategy for specific applications. In one paper, 
the author proposes a method for autonomous cars 
localization based on the fusion of LiDAR and radar 
measurement data using the unscented Kalman filter 
for object detection; in this case, the LiDAR and rad 
fusion obtained by the Kalman filter provide pole-like 
static object pose estimations that are well suited to 
serve as landmarks for vehicle localization in urban 
environments [18]. In another paper, the authors in-
troduce an odometry procedure based on the fusion 
of LiDAR feature points with IMU data using a tightly 
coupled, iterated, extended Kalman filter to allow ro-
bust navigation in UAV flight [19]. 

In a paper by Chauchat et al., the authors propose 
a localization algorithm based upon the Kalman fil-
ter to improve smoothing on the fusion of IMU and 

LiDAR data successfully tested on an equipped car 
[20]. Muro et al. present a method for moving-object 
detection and tracking using a LiDAR mounted on a 
motorcycle and the distortion in the scanning LiDAR 
data is corrected by estimating the pose of the mo-
torcycle in a period that the LiDAR scan period using 
information from an IMU via the extended Kalman 
filter [21]. Zhang et al. introduce a multi-level sen-
sor data fusion method for real-time positioning and 
mapping [22]. In this method, coordinates are trans-
formed based on the pre-integration results of IMU 
data in data pre-processing to register the laser point 
cloud. Features of the laser point cloud are sampled 
to reduce the computation of point cloud matching. 
Next, the robot pose is obtained by combining IMU 
and LiDAR observations with an unscented Kalman 
filter algorithm to improve the loop closure detec-
tion effect. 

In another paper, the authors propose an adaptive 
pose fusion (APF) method to fuse the robot’s pose and 
use the optimized pose to construct an indoor map 
[23]. Firstly, the proposed method calculates the ro-
bot’s pose by the camera and inertial measurement 
unit (IMU), respectively. Then, the pose fusion meth-
od is adaptively selected according to the motion state 
of the robot. When the robot is in a static state, the 
proposed method directly uses the extended Kalman 
filter (EKF) method to fuse camera and IMU data, and 
when the robot is in a motive state, a weighted pose 
fusion method is used to fuse camera and IMU data. 
Next, the fusion-optimized pose is used to correct the 
distance and azimuth angle of the laser points ob-
tained by LiDAR. 

Morita et al. propose a robust model predictive 
control for the trajectory tracking of a small-scale au-
tonomous bulldozer in the presence of perturbations; 
the pose estimation, for control feedback, is based on 
sensor data fusion performed by an extended Kal-
man filter, which processes inertial measurement 
unit (IMU) and light detection and ranging (LiDAR) 
measurements [24]. In another paper, the authors 
introduce a methodology for positioning and autono-
mous navigation of Unmanned Surface Vehicle based 
on two-dimensional lidar combined with IMU to per-
ceive the surrounding environment, and the Extended 
Kalman Filter algorithm is used for the fusion of map 
matching data and IMU pre-integration data [25]. 

In this work, the use of the Kalman filter for com-
bining IMU and LiDAR data is applied to a mobile ro-
bot specifically built with the characteristics of low 
cost, modularity, and simplicity, with the aim of using 
the detection of targets (fixed vertical flat planes), of-
ten available in real scenarios. For an indoor scenar-
io, this could be the walls of rooms, or, for an outdoor 
scenario, the external walls of a building, a deposit, 
a house of tools, etc., for improving the estimation of 
the robot trajectory. The proposed procedure is sim-
ple, without relevant post-processing of the IMU and 
LiDAR data, and it uses the vertical planes to simplify 
the post-processing that requires only classical tools 
and a low computational effort also compatible with a 
low-cost solution such as the proposed one.
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This paper will deal with the following topics: in 
Section 2, a description of the mobile robot and the 
considered LiDAR and IMU sensors; in Section 3, a 
strategy for a pre-processing of the LiDAR data; in 
Section 4, the innovative algorithm based on LiDAR 
and IMU data for odometry and target recognition; in 
Section 5, the results of experimental tests; and, final-
ly, in Section 6, the conclusions of the work.

2. Description of the mobile robot and the 
analyzed LiDAR and IMU sensors

The mobile robot prototype used was entirely de-
signed and built in the laboratories of the Kyushu In-
stitute of Technology [13, 14]. It is shown in Figures 
1 and 2, and it has the specific characteristic that its 
frame has been designed so that the number of drive 
wheels can be changed according to the environment 
in which the robot is travelling. Depending on the 
environment, the robot can be easily changed by the 
user to two energy-efficient wheel versions, six-wheel 
versions with high running ability against complicat-
ed terrain, or four-wheel versions with intermediate 
capabilities [13, 14]. The aim of this modularized, 
low-cost asset was to minimize the oscillations on 
the robot and minimize the errors of acquisition of 
sensors mounted on the robot during exploration in 
unstructured environments such as a forest environ-
ment [24]. The structure has an almost cubic, hollow 
case, which houses part of the electronic components 
for the user to control the robot, as well as the bat-
tery pack and a red safety button.  In addition to the 
internal cavity, there is also a cavity on the upper 
part accessible by opening a hatch. This inlet is used 
mostly to lay the terminal with which to launch the 
various codes for the management of locomotion and 
data recording. The LiDAR sensor with which the ro-
bot is equipped is the Hokuyo XVT-35 LX 3D LiDAR 
sensor model [25]; it is installed in the front part of 
the case (Fig. 2) and housed in a structure designed 
to avoid any knocks and damage to the sensor during 
the robot’s motion [13, 14]. The solid angle that can 
be inspected with this LiDAR model is provided by a 
maximum horizontal angle of 210° and a maximum 
vertical angle of 35° (the central vertical axis is 15° 
over the horizon).  Regarding the inertial measure-
ment unit, the model MPU-6500 is installed on the ro-
bot [26]. The IMU sensor is fixed to the robot by bolt-
ing to avoid unwanted movements by the unit that 
would lead to incorrect measurements, and is located 
in the front of the case (Figure 2), near the LiDAR sen-
sor and in an area as free from vibrations as possible.

The locomotion of the robot is due to two main 
circuits: a power supply circuit and a drive wheel 
control circuit. For the robot, each of the driving 
wheels is independently powered by a D.C. motor. 
Each D.C. motor is powered by a Cytron MDD10A 
board [27]. The MDD10A board may control two 
high-current D.C. motors, supplying up to 10A con-
tinuously. As for the control circuit, the Arduino 
MEGA electronic board is used. Each power supply 
board is capable of controlling two motors; there-
fore, a total of six PWM outputs are required for 
speed control and six digital outputs are required 
for direction control. The Arduino MEGA electronic 
board is used for the control circuit. A scheme of 
connection for the controller and motors is shown 
in Figure 3; the positive board terminal is connect-
ed to an emergency stop button referred to at the 
beginning of this chapter, also known as the “mush-
room” button. During operation, the button main-
tains the continuity of the positive power cable, but, 
if pressed, immediately interrupts it, opening the 
power circuit so that the robot stops. Finally, the 
battery fitted to the prototype is a 24V 3800mAh 
Battery space Panasonic.

a)

b) 

Fig. 1. a) Six wheels configuration b) Four wheels 
configuration 
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Fig. 2. Front of the robot and protective structure for placing the LiDAR sensor and IMU sensor

Fig. 3. Scheme of connection for the locomotion and 
control system 

To control the robot, one laptop computer with 
Intel Core m5 (1.10 GHz) and Ubuntu 14.04 LTS has 
been used, placing it at the top of the robot (as shown 
in Fig. 1 a) and connecting it to the boards and sen-
sors through a USB cable. The robot operating system 
(ROS) [28] was adopted as middleware to manage 
the locomotion and control system and to acquire the 
data from the LiDAR and IMU sensors. The formats of 
the files containing IMU data and LiDAR data are dif-
ferent. For the former, a file in “.csv” format shows the 
linear acceleration data relating to the three axes in 
the first three columns and the angular velocity data 
relating to the same axes in the last three. For the lat-
ter, at first, a file with the “.bag” extension, which must 
be subsequently converted into as many “.pcd” files as 
the number of frames acquired. Each acquisition file 
includes a reference about the P.C. processor clock to 
synchronize the different files of the sensors. Finally, a 
joystick connected to the laptop through the USB gate 
has been considered to manually driving the robot 
during the experimental tests below shown.

3. Processing of the LiDAR data
The visualization of the LiDAR data scans may be 
carried out with various methodologies; one of the 
most common makes use of the A.R. Viz Virtual Stu-
dio software, with which it is possible to dynamically 
reproduce the captured frames over time [29]. This 
method has an immediate visual impact but is not 
functional for the purposes of this research work. 
Rather, it is necessary to thoroughly process the sin-
gle frame and then, at a later stage, draw conclusions 
on the entire duration of the test. To do this, a first 
code was written in a Matlab environment [30] that 
performs the rotation of the image 180° concerning 
the x-axis of the robot (this operation is necessary as 
the LiDAR is mounted upside down due to the confir-
mation of the structure in which it is housed, see Fig-
ure 2) and the plotting of the resulting Point Cloud 
Data. Moreover, the first preliminary tests were car-
ried out by moving the robot using a joystick and ac-
quiring it from the Lidar. Some frames of the path in 
Figure 4 (which coincides with the x-axis of the cho-
sen reference system, with the z-axis upward, and 
the y-axis completes the cartesian reference system) 
have been preliminarily analyzed, and one of them is 
shown in Fig. 5a. The image of a frame (PCD) shows 
many disturbances in the surrounding environment, 
including the ground reflection. To this end, a pre-
processing denoising and filtering code has been 
used to eliminate the presence of the supporting 
ground and to reduce the noise and the disturbing 
elements in the following target recognition phase. 
This operation is also of fundamental importance, 
as the data initially have different outliers that could 
compromise subsequent processing operations. The 
effect of pre-processing is evident in Fig. 5 a) and b) 
where the same frame is shown before and after the 
pre-processing process: the underlying ground and 
many disturbances of the surrounding environment 
disappear, leaving only the tree and the boulders to 
the left and right sides of the robot.
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Fig. 4. Robot path and acquired environment for pre-
processing code testing

a)

b)

Fig. 5. a) PCD before pre-processing filtering b) PCD 
after pre-processing filtering

4. Algorithm for robot odometry and target 
following based on LiDAR and IMU data

The algorithm proposed here can be categorized un-
der the category of Simultaneous Localization and 
Mapping (SLAM) algorithms, but with some substan-
tial differences: SLAM algorithms aim to estimate the 
pose of the robot and to carry out the mapping of the 
environment starting from the checks and observa-
tions performed by the robot during exploration. Both 
types of input data are affected by statistical noise, 
and this makes it necessary to use statistical filters for 
the processing of probability densities. The algorithm 
proposed here considers the use of a linear Kalman 
filter for updating the iterative process for estimat-
ing the pose and from the map. The novelty proposed 
in this research work consists of the use of a LiDAR 
sensor to perform the “observations” of the surround-
ing environment; the most common odometric tech-
niques make use of Dead Reckoning methodologies in 
which the inertial data are corrected, using a Kalman 
filter, using data acquired by GPS systems. Another 
technique is linked to the SLAM algorithms imple-
mented, considering “controls” of an inertial nature 
and “observations” of the environment performed 
with laser sensors or fixed cameras that provide the 

position of the landmarks selected as a reference. It is 
clear that both solutions have limitations; the use of a 
GPS is versatile and allows the scanning of very large 
areas without apparent significant problems, and this 
sensor is ideal for testing outdoor but could present 
several complications for indoor explorations due to 
the difficulty of receiving the signal from the satellite. 
On the other hand, even the use of laser sensors or 
fixed cameras for the recognition of features present 
in the environment is binding, as it would be neces-
sary to equip the environment with certain equip-
ment prior to the exploration phase, which could be 
difficult to implement in some cases. Furthermore, 
the inability of these devices to follow the robot’s mo-
tion limits the exploration area to the places where 
these elements are present.

The use of a LiDAR sensor to operate the robot ob-
servations partially solves the problems just outlined. 
The sensor is installed directly on the external struc-
ture of the robot, and this allows for greater flexibil-
ity in the choice of landmarks that may not even be 
selected upstream of the exploration. Furthermore, 
there is no difficulty related to the reception of exter-
nal signals, and the post-processing operations can 
also be carried out offline for all applications that do 
not require the autonomous motion of the robot.

4.1. The kinematic model for robot controls using 
inertial measurements

The controls on the installation of the robot can be 
carried out using inertial data acquired during the 
explorations by the IMU sensor that measures the 
triaxial linear and angular accelerations. A double 
integration operation must then be performed over 
time to obtain the three spatial coordinates that will 
identify the pose of the robot from the measured ac-
celerations. The system and output equations written 
for a generic dynamic system in the state space form 
(1) can be particularized for the kinematic of the ro-
bot as expressed in (2) and (3), where x,y,z, vx,vy,vz,  
ax, ay, az, are the displacement, velocity and accelera-
tion components, along with the xyz cartesian refer-
ence system.
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The model has then been discretized by using the 
forward Euler method, which is among the simplest, 
and provides a coherent model for sampling 
sufficiently high frequencies. Naming the sampling 
period Ts, the discretised kinematic model is 
expressed in (4) where [I+ATs] and B.T.s are 
expressed in (5) and (6), taking into account (2), (3). 
 
                x(k+1)=[I+A Ts ]x(k)+BTs  u(k)                       (4) 
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following based on LiDAR and IMU data 
The algorithm proposed here can be categorized 
under the category of Simultaneous Localization and 
Mapping (SLAM) algorithms, but with some 
substantial differences: SLAM algorithms aim to 
estimate the pose of the robot and to carry out the 
mapping of the environment starting from the checks 
and observations performed by the robot during 
exploration. Both types of input data are affected by 
statistical noise, and this makes it necessary to use 
statistical filters for the processing of probability 
densities. The algorithm proposed here considers the 
use of a linear Kalman filter for updating the iterative 
process for estimating the pose and from the map. 
The novelty proposed in this research work consists 
of the use of a LiDAR sensor to perform the 
"observations" of the surrounding environment; the 
most common odometric techniques make use of 
Dead Reckoning methodologies in which the inertial 
data are corrected, using a Kalman filter, using data 
acquired by GPS systems. Another technique is linked 
to the SLAM algorithms implemented, considering 
"controls" of an inertial nature and "observations" of 
the environment performed with laser sensors or 
fixed cameras that provide the position of the 
landmarks selected as a reference. It is clear that both 
solutions have limitations; the use of a GPS is versatile 
and allows the scanning of very large areas without 
apparent significant problems, and this sensor is ideal 
for testing outdoor but could present several 
complications for indoor explorations due to the 
difficulty of receiving the signal from the satellite. On 
the other hand, even the use of laser sensors or fixed 
cameras for the recognition of features present in the 
environment is binding, as it would be necessary to 
equip the environment with certain equipment prior 
to the exploration phase, which could be difficult to 
implement in some cases. Furthermore, the inability 
of these devices to follow the robot's motion limits the 
exploration area to the places where these elements 
are present. 
The use of a LiDAR sensor to operate the robot 
observations partially solves the problems just 
outlined. The sensor is installed directly on the 

external structure of the robot, and this allows for 
greater flexibility in the choice of landmarks that may 
not even be selected upstream of the exploration. 
Furthermore, there is no difficulty related to the 
reception of external signals, and the post-processing 
operations can also be carried out offline for all 
applications that do not require the autonomous 
motion of the robot. 
 
4.1. The kinematic model for robot controls 

using inertial measurements 
The controls on the installation of the robot can be 
carried out using inertial data acquired during the 
explorations by the IMU sensor that measures the 
triaxial linear and angular accelerations. A double 
integration operation must then be performed over 
time to obtain the three spatial coordinates that will 
identify the pose of the robot from the measured 
accelerations. The system and output equations 
written for a generic dynamic system in the state 
space form (1) can be particularized for the kinematic 
of the robot as expressed in (2) and (3), where x,y,z, 
vx,vy,vz, ax, ay, az, are the displacement, velocity and 
acceleration components, along with the xyz cartesian 
reference system. 
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The model has then been discretized by using the 
forward Euler method, which is among the simplest, 
and provides a coherent model for sampling 
sufficiently high frequencies. Naming the sampling 
period Ts, the discretised kinematic model is 
expressed in (4) where [I+ATs] and B.T.s are 
expressed in (5) and (6), taking into account (2), (3). 
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ciently high frequencies. Naming the sampling period 
Ts, the discretised kinematic model is expressed in 
(4) where [I+ATs] and B.T.s are expressed in (5) and 
(6), taking into account (2), (3).
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In this way, the matrices to implement the prediction 
phase of the Kalman filter through the realization of a 
kinematic model have been obtained. 
 
4.2. The algorithm model for robot pose 

evaluation using LiDAR data 
The basic principle of the proposed algorithm is 
similar to that of robot observations in SLAM 
problems, but instead of evaluating the presence and 
position of landmarks through laser transducers, they 
are evaluated by applying a specific algorithm to each 
frame acquired during the exploration by the LiDAR 
sensor. 
The algorithm is mainly efficient for indoor tests, in 
which it is possible to identify some fixed reference 
structures concerning where to identify the 
installation of the robot. In particular, it is necessary 
to be in the presence of vertical flat walls, as is the 
case for any indoor test, to evaluate the intersection 
between two of them and consider this as a landmark 
to identify the spatial coordinates of the robot's 
center of gravity. The results that will be shown below 
refer to outdoor tests, although, as previously stated, 
the algorithm proposed for robot observations is 
more efficient for indoor environments, given the 
almost certain presence of vertical walls that can be 
taken as a reference. However, an environment of this 
type is preferred to have more space available for 
exploration while still having references available to 
use. The setting chosen for the explorations is one of 
the courtyards present in the Kyushu Institute of 
Technology depicted in Fig. 6a; Fig.6b shows an image 
from above of the courtyard explored. The two 
vertical walls are highlighted in red in Fig 6b; these 
walls, in most of the acquired experimental tests, have 
been taken as a reference for the odometric 
information of the robot acquired by LiDAR. 
 

  
a)                                       b) 

Fig. 6 a) Location of the tests b) Satellite images of the 
inspected environment 
 
It is possible to trace the coordinates of the landmark 
relative to the robot, since for each pcd frame, the 
origin of the Cartesian axes coincides with the center 
of gravity of the LiDAR, which is installed on the robot 
itself. For this reason, it is legitimate to consider, 
omitting a negligible error, the origin of the axes 
centered in the center of gravity of the rover. For each 
LiDAR-acquired frame, the algorithm before performs 
the pre-processing filtering described in Section 3, 
then also removes the points present in a sphere with 
the center at the origin of the axes and a radius of 1 
meter. This operation is necessary since the LiDAR 
also “observes” some lateral protrusions of the robot 
that fall within the sensor's field of view. The post-
processing involves the recognition of two flat vertical 
walls possibly present in the pcd frame under 
examination. The function used is also, in this case, 
the “pcfitplane”, providing in input a maximum 
distance between inliers and fitting plane equal to 0.5 
meters [30]. Since, after some tests, it was noticed 
how this algorithm was not robust and could not 
capture the plans of interest, a more restrictive 
condition was inserted: the plan fitting process is 
stopped only if the mean square error of the inliers 
points of the model is less than a certain threshold. 
After this, the algorithm became more robust. In some 
cases, it is possible to insert a further condition that 
provides for the orthogonality between the two flat 
walls (the typical situation for indoor environments) 
to further strengthen the algorithm. To divide the 
points, a clustering technique aimed at homogeneous 
grouping objects starting from a set of data has been 
used. Clustering techniques are based on measures 
relating to the similarity between the elements. The 
discriminating variable for the grouping of the 
elements depends on the problem proposed; in the 
case of point cloud data, it is the distance between the 
points. In this work, the clustering has been carried 
out by using the “kmeans” function [15-17, 30]. The 
“kmeans” function takes as input the coordinates of 
the point cloud on which clustering will be performed 
and the desired number of partitions, while it outputs 
the indices of the points indicative of the assignment 
of points to one of the partitions, the coordinates of 
the centroids, and the distance of all points from each 
centroid. In this case, fixing the number of partitions 
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of gravity of the LiDAR, which is installed on the robot 
itself. For this reason, it is legitimate to consider, 
omitting a negligible error, the origin of the axes 
centered in the center of gravity of the rover. For each 
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the pre-processing filtering described in Section 3, 
then also removes the points present in a sphere with 
the center at the origin of the axes and a radius of 1 
meter. This operation is necessary since the LiDAR 
also “observes” some lateral protrusions of the robot 
that fall within the sensor's field of view. The post-
processing involves the recognition of two flat vertical 
walls possibly present in the pcd frame under 
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the “pcfitplane”, providing in input a maximum 
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cases, it is possible to insert a further condition that 
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to further strengthen the algorithm. To divide the 
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discriminating variable for the grouping of the 
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ated by applying a specific algorithm to each frame 
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structures concerning where to identify the installa-
tion of the robot. In particular, it is necessary to be in 
the presence of vertical flat walls, as is the case for any 
indoor test, to evaluate the intersection between two 
of them and consider this as a landmark to identify 
the spatial coordinates of the robot’s center of gravity. 
The results that will be shown below refer to outdoor 
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indoor environments, given the almost certain pres-
ence of vertical walls that can be taken as a reference. 
However, an environment of this type is preferred to 
have more space available for exploration while still 
having references available to use. The setting chosen 
for the explorations is one of the courtyards present 
in the Kyushu Institute of Technology depicted in Fig. 
6a; Fig.6b shows an image from above of the court-
yard explored. The two vertical walls are highlighted 
in red in Fig 6b; these walls, in most of the acquired 
experimental tests, have been taken as a reference for 
the odometric information of the robot acquired by 
LiDAR.

       

a)                                                   b)

Fig. 6. a) Location of the tests b) Satellite images of the 
inspected environment

It is possible to trace the coordinates of the land-
mark relative to the robot, since for each pcd frame, 
the origin of the Cartesian axes coincides with the 
center of gravity of the LiDAR, which is installed on 
the robot itself. For this reason, it is legitimate to 
consider, omitting a negligible error, the origin of the 
axes centered in the center of gravity of the rover. 
For each LiDAR-acquired frame, the algorithm before 
performs the pre-processing filtering described in 
Section 3, then also removes the points present in a 
sphere with the center at the origin of the axes and 
a radius of 1 meter. This operation is necessary since 
the LiDAR also “observes” some lateral protrusions 
of the robot that fall within the sensor’s field of view. 
The post-processing involves the recognition of two 
flat vertical walls possibly present in the pcd frame 
under examination. The function used is also, in this 
case, the “pcfitplane”, providing in input a maximum 
distance between inliers and fitting plane equal to 
0.5 meters [30]. Since, after some tests, it was noticed 
how this algorithm was not robust and could not cap-
ture the plans of interest, a more restrictive condition 
was inserted: the plan fitting process is stopped only 
if the mean square error of the inliers points of the 
model is less than a certain threshold. After this, the 
algorithm became more robust. In some cases, it is 
possible to insert a further condition that provides 
for the orthogonality between the two flat walls (the 
typical situation for indoor environments) to further 
strengthen the algorithm. To divide the points, a clus-
tering technique aimed at homogeneous grouping ob-
jects starting from a set of data has been used. Cluster-
ing techniques are based on measures relating to the 
similarity between the elements. The discriminating 
variable for the grouping of the elements depends on 
the problem proposed; in the case of point cloud data, 
it is the distance between the points. In this work, the 
clustering has been carried out by using the “kmeans” 
function [15-17, 30]. The “kmeans” function takes 
as input the coordinates of the point cloud on which 
clustering will be performed and the desired num-
ber of partitions, while it outputs the indices of the 
points indicative of the assignment of points to one of 
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the partitions, the coordinates of the centroids, and 
the distance of all points from each centroid. In this 
case, fixing the number of partitions at 3, it is possible 
to identify the two flat models and the robot feature, 
and it is possible to calculate the intersection point 
between these two floors and the fitting ground plane 
calculated in the pre-processing phase. An example 
of a frame processing procedure obtained while the 
robot moved in an indoor environment is shown in 
Figure 7a and 7b (first and after the preliminary pro-
cessing), and the consequent walls and landmark de-
tection is shown in Figures 8 and 9. In Figure 8 and, 
for more clearness Figure 9, the results of the pro-
posed algorithm for one frame acquired by the LiDAR 
sensor mounted on the robot: the 3 clusters identified 
through the clustering technique used are indicated 
with Cluster 1,2 and 3 and their points have been dif-
ferentiated with different symbols in Fig.7. The cen-
troids of the 3 clusters are indicated with a square; by 
checking the alignment of the individuated clusters, 
the walls points are identified and the planes 1 and 2 
are estimated by fitting the points. Finally, the land-
mark is evaluated by considering the intersection of 
the estimated planes at the level z=0.

a)

b)

Fig. 7. a) PCD indoor frame before pre-processing 
filtering b) PCD after pre-processing filtering

Fig. 8. Identification of the landmark as intersection of 
the identified walls (planes 1 and 2)

Fig. 9. Top view of the centroids of the 3 identified 
clusters and landmark estimated for robot position

This procedure may be generalised considering a 
trajectory traveled by the robot during which the suc-
cession of frames relating to different positions are 
acquired and processed with the technique shown. 
The detection of the reference point allows the recon-
struction of the position of the robot concerning the 
two walls identified in the sequence of frames during 
the movement. Taking into account the spatial coordi-
nates of the robot in the previous step, it is possible to 
calculate the displacement considering the fixed ref-
erence in the various subsequent frames. It is there-
fore possible to structure a while loop that builds the 
position matrix containing the displacements, in me-
ters, of the robot, starting from the initial position at 
step k = 1, at coordinates [0,0,0]. The output of the 
algorithm, therefore, consists of a matrix n x 3, where 
n is the number of analyzed frames, which expresses 
the odometry of the robot concerning the identified 
landmark, the intersection of the identified walls. 
However, this work aims to propose a methodology 
for integrating the information on the position of the 
robot obtained from the LiDAR, with those obtained 
from the inertial data (IMU) from the sensor mounted 
on the robot.

4.3. Integration of LiDAR and IMU data through a 
discrete Kalman filter

Considering the possibility of having odometric data 
simultaneously from LiDAR and IMU, it was decided 
to integrate the information using a discrete Kalman 
filter, in which the information of one of the sensors 
is considered an estimate of the position of the ro-
bot, while the information of the other constitutes 
the updated feedback. The prediction equation for 
the kinematic model expressed in (4)-(6) is shown in 
(7), where P(k) is the error covariance matrix at step 
k, and Q is the process noise covariance matrix. The 
correction equations are shown in (8), where R is the 
measurement noise covariance matrix, and C derives 
from the state model (1).
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For the evaluation of the system noise related to the 
inertial sensor and more generally for the calibration 
of the sensors, the results of various tests performed 
with the robot completely stopped are evaluated. 
From the trends of the measured accelerations, it can 
be seen that all channels are affected by ample noise. 
In particular, the channel relating to the y axis is the 
one with a higher standard deviation of the data and, 
therefore, the loudest. The covariance matrices of 
process noise Q and measurement noise R used for 
the tests shown in the next paragraph are reported in 
(9) and (10) and take into account the characteristics 
of the two sensors’ calibration data. 
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Given the high noise encountered during the 
calibration phase in the inertial measurement unit 
(IMU), by providing these covariance matrices as 
input, it was decided to give greater weight to the 
corrections made with LiDAR measurements. The 
matrices must therefore be adapted and chosen based 
on the characteristics of the sensors available. The 
output provided by the Kalman filter consists of the 
laying of the robot as a function of time starting from 
the inertial controls of the robot, corrected by the 
observations made by the LiDAR with a frequency of 
about 5 Hz. 
 
5. Results of experimental tests 
The tests performed are of medium duration. The 
robot, driven manually by a joystick, performs simple 
longitudinal movements with limited rotations. The 
simplicity of the tests was imposed by the quality and 
resolution of the inertial sensor, which was found to 
be very noisy. Even if using sensors with higher 

resolution and higher cost, the algorithm is valid for 
long-term tests and trajectories of any kind. The 
preliminary experiments with the robot stopped also 
found the presence of a signal offset for all three 
measurement channels of the inertial sensor. For this 
reason, it was decided to carry out all the tests by 
keeping the robot in stasis for the first 10 seconds 
from the start of data recording. Subsequently, during 
the pre-processing of the inertial data, the used 
algorithm calculates the average of the values 
recorded in the first 10 seconds by all 3 channels. 
These averages constitute the offset to be subtracted 
from the data collected for the entire duration of the 
test. The results of the experimental tests are similar; 
below is an example for demonstrating the efficiency 
of the proposed innovative approach. The proposed 
results refer to a test carried out in the Kyutech 
courtyard (shown in Figure 6), in which the robot, 
manually guided by a joystick, after the first 10 
seconds in which it was stationary in the initial 
position, moved with a straightforward movement for 
10 seconds, covering about 4 meters, and then 
stopped in the final position. For this test, the 
accelerometric data acquired by the inertial sensor 
IMU in the 3 directions x, y, and z are shown in Figure 
10 a; their elaborations, using numerical integration 
and elimination of the offset, provide the 
displacement data shown in Figure 10b. 
It is evident that the poor quality of the inertial sensor 
makes the data excessively noisy, so the trajectory 
determined on the 3 axes differs considerably from 
the actual behavior, in which the robot is stationary 
for the first 10 seconds and then moves about 4 
meters in the x-direction for the next 10, stopping 
definitively at the 20th second of the test. 
The results obtained using the proposed method of 
assessing the position are much more interesting and 
accurate, identifying, through the data obtained from 
LiDAR, a landmark at the intersection of identified 
reference walls. The LiDAR in the experimental tests 
automatically acquires with a frequency of 5 Hz, and 
all the frames are processed as shown in section 4.2, 
to evaluate, through the fixed position of the 
landmark, the position of the robot during the test. 
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calibration phase in the inertial measurement unit 
(IMU), by providing these covariance matrices as 
input, it was decided to give greater weight to the 
corrections made with LiDAR measurements. The 
matrices must therefore be adapted and chosen based 
on the characteristics of the sensors available. The 
output provided by the Kalman filter consists of the 
laying of the robot as a function of time starting from 
the inertial controls of the robot, corrected by the 
observations made by the LiDAR with a frequency of 
about 5 Hz. 
 
5. Results of experimental tests 
The tests performed are of medium duration. The 
robot, driven manually by a joystick, performs simple 
longitudinal movements with limited rotations. The 
simplicity of the tests was imposed by the quality and 
resolution of the inertial sensor, which was found to 
be very noisy. Even if using sensors with higher 

resolution and higher cost, the algorithm is valid for 
long-term tests and trajectories of any kind. The 
preliminary experiments with the robot stopped also 
found the presence of a signal offset for all three 
measurement channels of the inertial sensor. For this 
reason, it was decided to carry out all the tests by 
keeping the robot in stasis for the first 10 seconds 
from the start of data recording. Subsequently, during 
the pre-processing of the inertial data, the used 
algorithm calculates the average of the values 
recorded in the first 10 seconds by all 3 channels. 
These averages constitute the offset to be subtracted 
from the data collected for the entire duration of the 
test. The results of the experimental tests are similar; 
below is an example for demonstrating the efficiency 
of the proposed innovative approach. The proposed 
results refer to a test carried out in the Kyutech 
courtyard (shown in Figure 6), in which the robot, 
manually guided by a joystick, after the first 10 
seconds in which it was stationary in the initial 
position, moved with a straightforward movement for 
10 seconds, covering about 4 meters, and then 
stopped in the final position. For this test, the 
accelerometric data acquired by the inertial sensor 
IMU in the 3 directions x, y, and z are shown in Figure 
10 a; their elaborations, using numerical integration 
and elimination of the offset, provide the 
displacement data shown in Figure 10b. 
It is evident that the poor quality of the inertial sensor 
makes the data excessively noisy, so the trajectory 
determined on the 3 axes differs considerably from 
the actual behavior, in which the robot is stationary 
for the first 10 seconds and then moves about 4 
meters in the x-direction for the next 10, stopping 
definitively at the 20th second of the test. 
The results obtained using the proposed method of 
assessing the position are much more interesting and 
accurate, identifying, through the data obtained from 
LiDAR, a landmark at the intersection of identified 
reference walls. The LiDAR in the experimental tests 
automatically acquires with a frequency of 5 Hz, and 
all the frames are processed as shown in section 4.2, 
to evaluate, through the fixed position of the 
landmark, the position of the robot during the test. 
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Given the high noise encountered during the cali-
bration phase in the inertial measurement unit (IMU), 
by providing these covariance matrices as input, it 
was decided to give greater weight to the corrections 
made with LiDAR measurements. The matrices must 
therefore be adapted and chosen based on the charac-
teristics of the sensors available. The output provided 
by the Kalman filter consists of the laying of the robot 
as a function of time starting from the inertial con-
trols of the robot, corrected by the observations made 
by the LiDAR with a frequency of about 5 Hz.

5. Results of experimental tests
The tests performed are of medium duration. The ro-
bot, driven manually by a joystick, performs simple 
longitudinal movements with limited rotations. The 
simplicity of the tests was imposed by the quality and 
resolution of the inertial sensor, which was found to 
be very noisy. Even if using sensors with higher reso-
lution and higher cost, the algorithm is valid for long-
term tests and trajectories of any kind. The prelimi-
nary experiments with the robot stopped also found 
the presence of a signal offset for all three measure-
ment channels of the inertial sensor. For this reason, 
it was decided to carry out all the tests by keeping the 
robot in stasis for the first 10 seconds from the start 
of data recording. Subsequently, during the pre-pro-
cessing of the inertial data, the used algorithm calcu-

lates the average of the values recorded in the first 10 
seconds by all 3 channels. These averages constitute 
the offset to be subtracted from the data collected for 
the entire duration of the test. The results of the ex-
perimental tests are similar; below is an example for 
demonstrating the efficiency of the proposed inno-
vative approach. The proposed results refer to a test 
carried out in the Kyutech courtyard (shown in Figure 
6), in which the robot, manually guided by a joystick, 
after the first 10 seconds in which it was stationary 
in the initial position, moved with a straightforward 
movement for 10 seconds, covering about 4 meters, 
and then stopped in the final position. For this test, 
the accelerometric data acquired by the inertial sen-
sor IMU in the 3 directions x, y, and z are shown in 
Figure 10 a; their elaborations, using numerical inte-
gration and elimination of the offset, provide the dis-
placement data shown in Figure 10b.

It is evident that the poor quality of the inertial 
sensor makes the data excessively noisy, so the tra-
jectory determined on the 3 axes differs considerably 
from the actual behavior, in which the robot is sta-
tionary for the first 10 seconds and then moves about 
4 meters in the x-direction for the next 10, stopping 
definitively at the 20th second of the test.

The results obtained using the proposed method 
of assessing the position are much more interesting 
and accurate, identifying, through the data obtained 
from LiDAR, a landmark at the intersection of iden-
tified reference walls. The LiDAR in the experimental 
tests automatically acquires with a frequency of 5 Hz, 
and all the frames are processed as shown in section 
4.2, to evaluate, through the fixed position of the land-
mark, the position of the robot during the test.

a)

b)

Fig. 10. a) accelerations of the IMU sensor during the 
Test b) displacements integrating the IMU data 
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Fig. 11. Displacement estimated through the explained 
procedures from LiDAR frames

In this application, the odometric data obtained 
from the LiDAR (shown in Fig. 11) are, for all 3 coor-
dinates x, y, and z, much closer to the real values. For 
this reason, the choice of the position data obtained 
from the LiDAR as reference (corrective) data for the 
Kalman filter was considered by choice of the covar-
iance matrices R and Q (9-10), giving greater weight 
to the measurements made with the LiDAR.  The 
output provided by the Kalman filter, as introduced 
in this work, consists of the laying of the robot as a 
function of time starting from the inertial controls of 
the robot, corrected by the observations made by the 
LiDAR with a frequency of about 5 Hz. The x and y 
coordinates estimated from the proposed approach 
for the considered experimental test are shown in 
Figure 12a and 12b, demonstrating how the Kalman 
filter can clean the noisy and inaccurate behavior of 
the IMU data. In Figures 13 and 14, a 3-dimensional 
view of the estimated trajectory of the robot by using 
the proposed procedure is shown.

a)

b)

Fig. 12. a) x-displacement from IMU, LiDAR and Kalman 
b) y-displacement from IMU, LiDAR and Kalman

Fig. 13. Estimated robot trajectory by using the 
proposed approach 

Fig. 14. Estimated robot trajectory by using the 
proposed approach, top view

Other experimental tests, in addition to the test 
whose results are shown in Figures 10–14, have been 
carried out by successfully estimating the trajectory 
with the proposed procedure. All the tests were sim-
ilar to the proposed one, all conducted on a flat sur-
face (the courtyard floor shown earlier), with simple 
trajectories, also including rotations, which are easy 
to compare with the estimated ones. From the exper-
imental tests carried out and the results obtained we 
can conclude that the proposed methodology has been 
experimentally tested on simple paths with positive 
results. It can also be foreseen that, by appropriately 
managing the number of clusters to be identified and 
using more accurate inertial sensors, it is also possi-
ble to detect the position relative to detected objects, 
both stationary and in motion, and even to establish 
their trajectory and their movement concerning the 
robot in exploration.

6. Conclusion 
Today, odometric techniques are of great impor-
tance in the world of robotics and automation; for 
this reason, an innovative algorithm has been pro-
posed that can estimate the pose of the robot dur-
ing inspection operations. This algorithm exploits 
the potential of the Kalman filter by combining in-
ertial data with those of the LiDAR. In this paper, 
a modularized driving-wheels robot that is able to 
balance the mobile robot’s efficiency according to 
the environment has been considered together with 
an efficient algorithm using LiDAR data for robot 
self-localization and detection of mobile targets. 
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The developed robot, which has been constructed 
by combining modules, may travel through several 
environments with saving energy by changing the 
number and arrangement of the wheels according 
to the environment.

Experimental tests were carried out with the ro-
bot to inspect the environments and receive the data 
necessary for the estimate of the odometry. From the 
calibration tests, it was possible to note how the IMU 
model installed on the robot was not suitable for es-
timating the installation as it was too noisy. Besides, 
the double integration of inertial data caused the 
error to grow beyond an acceptable threshold. For 
these reasons, in the use of the Kalman filter, greater 
weight was given to the filter correction phase using 
the LiDAR observations compared to the prediction 
phase, because the IMU model installed on the ro-
bot was not suitable for estimating the installation 
due to the noise. With this foresight, the proposed 
algorithm can accurately estimate the trajectory of 
the rover. 

The particularity of the proposed approach is 
related to the simplicity of the procedure, that uses 
known tools, so it could be easily implemented, and 
uses a specific target (flat vertical fixed planes) for 
simplifying the trajectory estimation. The experimen-
tal results shown in this paper demonstrate that, in 
compatible scenarios, the proposed algorithm can ac-
curately estimate the trajectory of the rover, using a 
Kalman filter that can compensate for the difference 
in accuracy between the LiDAR and the IMU data, 
evaluated by an initial calibration.

Besides, a specific algorithm involving the use of a 
clustering technique for automatically analyzing the 
LiDAR data has been presented and tested, demon-
strating that, in specific structure scenarios, the robot 
can self-localize its position compared to fixed land-
marks.  
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