
Discrete Mathematics 347 (2024) 114070
Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Flag-transitive, point-imprimitive symmetric 2-(v, k, λ)

designs with k > λ (λ − 3) /2

Alessandro Montinaro

Dipartimento di Matematica e Fisica “E. De Giorgi”, University of Salento, Lecce, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 December 2023
Received in revised form 30 April 2024
Accepted 30 April 2024
Available online 9 May 2024

Dedicated to Mauro Biliotti, professor 
emeritus at the University of Salento

Keywords:
Symmetric design
Automorphism group
Flag-transitive design

Let D = (P,B) be a symmetric 2-(v, k, λ) design admitting a flag-transitive, point-
imprimitive automorphism group G that leaves invariant a non-trivial partition � of P . 
Praeger and Zhou [42] have shown that, there is a constant k0 such that, for each B ∈ B
and � ∈ �, the size of |B ∩ �| is either 0 or k0. In the present paper we show that, if 
k > λ (λ − 3) /2 and k0 � 3, D is isomorphic to one of the known flag-transitive, point-
imprimitive symmetric 2-designs with parameters (45, 12, 3) or (96, 20, 4).

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction and main result

A 2-(v, k, λ) design D is a pair (P, B) with a set P of v points and a set B of blocks such that each block is a k-subset 
of P and each two distinct points are contained in λ blocks. We say D is non-trivial if 2 < k < v , and symmetric if v = b. 
All 2-(v, k, λ) designs in this paper are assumed to be non-trivial. An automorphism of D is a permutation of the point 
set which preserves the block set. The set of all automorphisms of D with the composition of permutations forms a group, 
denoted by Aut(D). For a subgroup G of Aut(D), G is said to be point-primitive if G acts primitively on P , and said to be 
point-imprimitive otherwise. In this setting, we also say that D is either point-primitive or point-imprimitive, respectively. A 
flag of D is a pair (x, B) where x is a point and B is a block containing x. If G � Aut(D) acts transitively on the set of flags 
of D, then we say that G is flag-transitive and that D is a flag-transitive design.

Flag-transitive symmetric designs are widely studied. If λ = 1, that is, D is a projective plane of order n, Kantor 
[26] proved that either D is Desarguesian and P S L3(n) � G , or G is a sharply flag-transitive Frobenius group of order 
(n2 + n + 1)(n + 1), and n2 + n + 1 is a prime. In both cases, the action of G is point-primitive. For λ > 1, flag-transitive 
point-imprimitive symmetric designs do exist. In 1945 Hussain [21] and, independently, in 1946 Nandi [39] discovered 
that there are exactly three symmetric 2-(16, 6, 2)-designs. In 2006, O’Reilly Regueiro [44] showed that, if λ � 4 then the 
parameters of D are (16, 2, 2), (45, 12, 3), (15, 8, 4), (96, 20, 4) and that exactly two of the three 2-designs discovered by 
Hussain and Nandi are flag-transitive and point-imprimitive. In 2006, Praeger and Zhou [42] proved that there is exactly 
one flag-transitive, point-imprimitive symmetric 2-(15, 8, 3) design, in 2007 Praeger [40] showed that there is exactly one 
flag-transitive, point-imprimitive symmetric 2-(45, 12, 3) design, and in 2009, Law, Praeger and Reichard [29] proved that 
there are exactly four flag-transitive point-imprimitive symmetric 2-(96, 40, 4) designs. Apart from two possible numerical 
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exceptions, the classification of the flag-transitive point-imprimitive symmetric 2-designs has been recently extended to 
λ � 10 by Mandić and Šubasić [34].

It is worth noting that one of the four 2-(96, 40, 4) designs is a special case of a beautiful, general construction of flag-
transitive, point-imprimitive symmetric 2-designs due to Cameron and Praeger [8] based on a previous work of Sane [45]. 
It is an open problem whether the remaining three 2-designs arise or not from the Cameron-Praeger construction.

An upper bound on k, when D is flag-transitive and point-imprimitive, was given by O’Reilly Regueiro in [44] and 
subsequently refined by Praeger and Zhou in [42]. Among the other results, the authors determined the parameters of D as 
functions of λ when k > λ (λ − 3) /2. Recently, the flag-transitive 2-designs with λ = 2 have been investigated by Devillers, 
Liang, Praeger and Xia in [12], where, it is shown that, apart from the two known symmetric 2-(16, 6, 2) designs, G is 
primitive of affine or almost simple type.

The present paper is a contribution to the problem of classifying flag-transitive, point-imprimitive symmetric 2-(v, k, λ)

designs. In particular, we classify those with k > λ (λ − 3) /2 and such that a block of the 2-design intersects a block of 
imprimitivity in at least 3 points. More precisely, our result is the following.

Theorem 1.1. Let D = (P,B) be a symmetric 2-(v, k, λ) design admitting a flag-transitive point-imprimitive automorphism group G
that leaves invariant a non-trivial partition � of P . If k > λ(λ − 3)/2 and there is block of D intersecting an element of � in at least 3
points, then one of the following holds:

(1) D is isomorphic to the 2-(45, 12, 3) design as in [40, Construction 4.2].
(2) D is isomorphic to one of the four 2-(96, 20, 4) designs as in [29].

The outline of the proof is as follows. The group G preserves a set of imprimitivity � on the point set of D consisting of 
d classes each of size c. By [42], each block B of D intersects any block of imprimitivity either in 0 or in a constant number 
k0 of points. In Lemma 2.1 we show that the number of blocks intersecting a block of imprimitivity in the same k0-set of 
points is constant and is independent on the choice of the block of D and of the element of �. We call such a number the 
overlap number of D and we denote it by θ .

If k0 � 3, in Theorems 2.3 and 2.4 we show that the blocks of imprimitivity have the structure of flag-transitive 
2-(c, k0, λ/θ) designs, where (c, k0) is either (λ2, λ), or (λ + 6, 3) with λ ≡ 1, 3 (mod 6). Moreover, in Lemma 2.6 we 
prove that, such 2-designs are also point-primitive. Flag-transitive, point-primitive 2-(λ2, λ, λ/θ) designs are classified in 
[35,37,38], whereas flag-transitive, point-primitive 2-(λ + 6, 3, λ/θ) designs are shown to be embedded in D only for λ = 3
by using [7,36]. Finally, we complete the proof of Theorem 1.1 by combining the previous information on the structure of 
the blocks of imprimitivity with the constraints on the action of G on D given in [28] and on the structure of G essentially 
provided in [3].

2. The overlap number of D

Let D = (P,B) be a symmetric 2-(v, k, λ) design admitting a flag-transitive point-imprimitive automorphism group G
that leaves invariant a non-trivial partition � of P with d classes each of size c. Then there is a constant k0 such that, for 
each B ∈ B and �i ∈ �, i = 1, ..., d, the size |B ∩ �i | is either 0 or k0 by [42, Theorem 1.1]. If we pick two distinct points 
x, y in a block of imprimitivity, then there are exactly λ blocks of D incident with them. Thus k0 � 2. Moreover, v > k since 
D is non-trivial, and hence k0 < c by [42, (4) and (7)]. Therefore, 2 � k0 < c. If k0 = 2, then the flag-transitivity of G on D
implies the 2-transitivity of G�i

�i
on �i for each i = 1, ..., d.

Let Bi = {B ∈ B : B ∩ �i �= ∅}, where i = 1, ..., d. For any B ∈ Bi define

Bi(B) = {
B ′ ∈ Bi : B ′ ∩ �i = B ∩ �i

}
and θ(i, B) = |Bi(B)| .

Clearly, 1 � θ(i, B) � λ.

Lemma 2.1. θ(i, B) = θ( j, B ′) for each i, j ∈ {1, ...,d} and for each B ∈ Bi and B ′ ∈ B j .

Proof. Let B ∈ Bi and B ′ ∈ B j , where i, j ∈ {1, ...,d}, and let x ∈ B ∩ �i and x′ ∈ B ′ ∩ � j . Then there is γ ∈ G such that 
(x, B)γ = (x′, B ′) since G is flag-transitive. Hence, (B ∩ �i)

γ = B ′ ∩ � j .
Let C ∈ Bi(B). Then C ∩ �i = B ∩ �i , and hence

Cγ ∩ � j = (C ∩ �i)
γ = (B ∩ �i)

γ = B ′ ∩ � j .

Thus Cγ ∈ B j(B ′), and hence θ(i, B) � θ( j, B ′). Now, switching the role of B and B ′ in the previous argument, we get 
θ( j, B ′) � θ(i, B). Thus θ(i, B) = θ( j, B ′), which is the assertion. �

In view of the previous lemma, we may denote θ(i, B) simply by θ and call it the overlap number of D.
2
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Corollary 2.2. Let B ∈Bi and x ∈ B ∩ �i , then θ = ∣∣Gx,B∩�i : Gx,B
∣∣.

Proof. Let B ∈ Bi and x ∈ B ∩ �i , then Gx,B � Gx,B∩�i . Thus, 
∣∣Gx,B∩�i : Gx,B

∣∣ � θ .
Let B ′ ∈ Bi(B). Then there is ϕ ∈ Gx such that Bϕ = B ′ . Thus (B ∩ �i)

ϕ = B ′ ∩ �i = B ∩ �i , and hence ϕ ∈ Gx,B∩�i and 
Gx,Bϕ ⊆ Gx,B∩�i . Therefore 

∣∣Gx,B∩�i : Gx,B
∣∣ � θ , and hence 

∣∣Gx,B∩�i : Gx,B
∣∣ = θ . �

Theorem 2.3. If k0 � 3, then Di = (�i, B∗
i ), where B∗

i = {B ∩ �i : B ∈ Bi}, is a non-trivial 2-(c,k0, λ/θ) design with θ | λ admitting 
G�i

�i
as a flag-transitive automorphism group.

Proof. Clearly, the number of points in Di is c and each element of B∗
i contains k0 points of �i . Let x1, x2 ∈ �i with 

x1 �= x2, then there are precisely λ blocks of D incident with them, say B1, ..., Bλ . For each B j there are precisely θ blocks 
among B1, ..., Bλ whose intersection set with �i is B j ∩ �i , hence there are exactly λ/θ distinct elements of B∗

i incident 
with x1 �= x2. Thus, Di is a 2-(c,k0, λ/θ) design. Also, Di is non-trivial since k0 < c by [42, (4) and (7)] and k0 � 3 by our 
assumption. Finally, the flag-transitivity of G on D implies the flag-transitivity of G�i

�i
on Di . �

The following theorem is an improvement of [42, Theorem 1.1] on the basis of Theorem 2.3.

Theorem 2.4. Let D = (P, B) be a symmetric 2-design admitting a flag-transitive point-imprimitive automorphism group G that 
leaves invariant a non-trivial partition � = {�1, ...,�d} of P such that |�i | = c for each i = 1, ..., d. Then the following hold:

I. There is a constant k0 such that, for each B ∈B and �i ∈ �, the size |B ∩ �i | is either 0 or k0 .
II. There is a constant θ such that, for each B ∈ B and �i ∈ � with |B ∩ �i | > 0, the number of blocks of D whose intersection set 

with �i coincides with B ∩ �i is θ .
III. If k0 = 2, then G�i

�i
acts 2-transitively on �i for each i = 1, ..., d.

IV. If k0 � 3, then Di =
(

�i, (B ∩ �i)
G

�i
�i

)
is a flag-transitive non-trivial 2-(c,k0, λ/θ) design for each i = 1, ..., d.

Moreover, if k > λ(λ − 3)/2 then one of the following holds:

V. k0 = 2 and one of the following holds:
1. D is a symmetric 2-(λ2(λ + 2), λ(λ + 1), λ) design and (c,d) = (

λ + 2, λ2
)
.

2. D is a symmetric 2-
((

λ+2
2

)(
λ2−2λ+2

2

)
, λ2

2 , λ
)

design, (c,d) =
(

λ+2
2 , λ2−2λ+2

2

)
, and either λ ≡ 0 (mod 4), or λ = 2u2

with u odd, u � 3 and 2(u2 − 1) square.
VI. k0 � 3 and one of the following holds:

1. D is a symmetric 2-(λ2(λ +2), λ(λ +1), λ) design, d = λ +2, and Di is a 2-(λ2, λ, λ/θ) design with θ | λ for each i = 1, ..., d.

2. D is a symmetric 2-((λ + 6) λ2+4λ−1
4 , λλ+5

2 , λ) design with λ ≡ 1, 3 (mod 6), d = λ2+4λ−1
4 , and Di is a 2-(λ + 6, 3, λ/θ)

design with θ | λ for each i = 1, ..., d.

Proof. The assertion follows from [42, Theorem 1.1] and Theorem 2.3. �
From now on we assume that k > λ(λ − 3)/2 and k0 � 3. Hence, we will focus on the symmetric 2-designs in (VI.1) and 

(VI.2) of Theorem 2.4, and we will refer to them as 2-designs of type 1 and 2, respectively.

Lemma 2.5. λ � 3.

Proof. If λ = 2, then k0 = 2 by [42, Corollary 1.3 and Table 1], which is contrary to our assumption. Thus, λ � 3. �
Lemma 2.6. If k > λ(λ − 3)/2 and k0 � 3, then G�i

�i
acts point-primitively on Di .

Proof. The assertion follows from [10, 2.3.7.(c)] or [23, Theorem 4.8.(i)]. �
Lemma 2.7. Let N be a minimal normal subgroup of G. Then one of the following holds:

(1) � is the N-orbit decomposition of the point set of D;
(2) N acts point-transitively on D;

or, for c = λ2 and d = λ + 2 the following additional possibility arises:
3
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(3) The N-orbit decomposition of the point set of D is a further G-invariant partition �′ =
{
�′

1, ...,�
′
λ2

}
such that the following 

hold:
(a)

∣∣∣�′
j

∣∣∣ = λ + 2 for each j = 1, ..., λ2;

(b) For each B ∈ B and �′
j ∈ �′ , the size 

∣∣∣B ∩ �′
j

∣∣∣ is either 0 or 2;

(c) For each �i ∈ � and �′
j ∈ �′ , 

∣∣∣�i ∩ �′
j

∣∣∣ = 1.

(d) G
�′

j

�′
j

acts 2-transitively on �′
j for each j = 1, ..., λ2 .

Proof. Let N be a minimal normal subgroup of G . Assume that G�i N acts point-transitively on D. Then N acts transitively 
on �. If there is j0 ∈ {1, ...,d} such that N

� j0
� j0

= 1, then N� j0
� G(� j0 ) . Hence, N�i � G(�i) for each i since G acts transitively 

on � and N � G . Thus, the point set of D is split into c′ orbits under N each of length d′ , where (c′, d′) = (d, c), since N acts 
transitively on �. Hence, �′ = {

�′
1, ...,�

′
c

}
, where �′

j = xN
j for each j = 1, ..., c, is a set of imprimitivity for G . Moreover, 

Nxi = N(�i) for each xi ∈ �i and i = 1, ..., c. By Theorem 2.4, there is a constant k′
0 such that for each B ∈ B and �′

i ∈ �′ , 
the size 

∣∣B ∩ �′
i

∣∣ is either 0 or k′
0.

If k′
0 = 2, then either 

(
c′,d′) = (

λ + 2, λ2
)
, or 

(
c′,d′) =

(
λ+2

2 , λ2−2λ+2
2

)
and either λ ≡ 0 (mod 4), or λ = 2u2, where 

u is odd, u � 3, and 2(u2 − 1) is a square by Theorem 2.4. On the other hand, we know that (c′, d′) = (d, c) and either 
(d, c) = (λ + 2, λ2), or 

(
λ2+4λ−1

4 , λ + 6
)

and λ ≡ 1, 3 (mod 6) again by Theorem 2.4 since k0 � 3. By comparing the values 

of (c′, d′), we see that the unique admissible value is (c′, d′) = (d, c) = (λ + 2, λ2), and we obtain (3a) and (3b).
Let �i ∈ � and �′

j ∈ �′ . Since Nxi = N(�i) for each xi ∈ �i and i = 1, ..., λ + 2, and �′
j is a N-orbit for each j = 1, ..., λ2, 

it follows that 
∣∣∣�i ∩ �′

j

∣∣∣ = 1. Also, G
�′

j

�′
j

acts 2-transitively on �′
j ∈ �′ since k′

0 = 2. Thus, we get (3c) and (3d).

If k′
0 � 3, then either 

(
c′,d′) = (

λ2, λ + 2
)
, or 

(
c′,d′) =

(
λ + 6, λ2+4λ−1

4

)
and λ ≡ 1, 3 (mod 6) by Theorem 2.4. On the 

other hand, we know that (c′, d′) = (d, c) and either (d, c) = (λ + 2, λ2), or 
(

λ2+4λ−1
4 , λ + 6

)
and λ ≡ 1, 3 (mod 6). By 

comparing the values of (c′, d′) no admissible λ’s arise since λ ≥ 3 by Lemma 2.5.
Assume that N�i

�i
�= 1 for each i = 1, ..., d. Hence, N�i

�i
acts point-transitively on Di for each i = 1, ..., d since G�i

�i
acts 

point-primitively on Di by Lemma 2.6. Therefore, N acts point-transitively on D, as N acts transitively on �, which is (2).
Assume that G�i N acts point-intransitively on D. Hence, G�i N �= G . Then �i ⊆ �′′

i , where �′′
i = xG�i N = �N

i and x ∈ �i . 
Also, �′′ =

{(
�′′

i

)g : g ∈ G
}

is a set of imprimitivity for G by [14, Theorem 1.5A]. If B ∈ B is such that B ∩ �′′
i �= ∅, then 

k′′
0 = ∣∣B ∩ �′′

i

∣∣ � |B ∩ �i | = k0 � 3, and hence we may apply Theorem 2.4 referred to the set of imprimitivity �′′ , and 

we obtain that D′′
i = (�′′

i , 
(

B ∩ �′′
i

)G
�′′

i
�′′

i ) is a flag-transitive non-trivial 2-(c′′, k′′
0, λ/θ ′′) design. Moreover, either c′′ = λ2 or 

c′′ = λ + 6 since k > λ(λ − 3)/2. It is easily seen that c′′ = c since c | c′′ , being �′′
i = �N

i . Thus �i = �′′
i , and hence N � G�i

for each i = 1, ..., d. If there i0 ∈ {1, ..., d} such that N fixes a point in �i0 , then N fixes each point of D since N � G
and G acts point-transitively on D, and we reach a contradiction. Thus, N�i �= 1 for each i = 1, ..., d, and hence N acts 
point-transitively on Di since N�i � G�i

�i
and G�i

�i
acts point-primitively on Di by Lemma 2.6. Therefore, � is the orbit 

decomposition of the point set of D under N , which is (1). �
Let � ∈ � and x ∈ �. Since G(�) � G� and G(�) � Gx it is immediate to verify that (G�)� = (G�)� and 

(
G�

�

)
x = (Gx)

� . 
Hence, (G�)� and 

(
G�

�

)
x will simply be denoted by G�

� and G�
x , respectively.

3. The case where D is of type 1

In this section, we assume that D is of type 1. Hence, D is a symmetric 2-(λ2(λ + 2), λ(λ + 1), λ) design with d = λ + 2. 
Moreover, Di is a 2-(λ2, λ, λ/θ) design with θ | λ admitting G�i

�i
as a flag-transitive point-primitive automorphism group for 

each i = 1, ..., d. Our aim is to prove the following result.

Theorem 3.1. If D is of type 1, then one of the following holds:

(1) D is isomorphic to the 2-(45, 12, 3) design as in [40, Construction 4.2].
(2) D is isomorphic to one of the four 2-(96, 20, 4) designs as in [29].

Proposition 3.2. G induces a 2-transitive group on �.
4
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Proof. It is clear that G acts transitively on �. Let B be any block of D and define �(B) = {�i ∈ � : �i ∩ B �=∅}. Then 
|�i ∩ B| = λ for each �i ∈ �(B). Further, |�(B)| = λ + 1 and � \ �(B) = {

�i0

}
for some i0 ∈ {1, ..., λ + 2} since k = λ(λ + 1)

and |�| = λ + 2. Since G B acts transitively on B and preserves �, it follows that G B acts transitively on �(B). Thus G B
preserves �i0 , and hence G B � G�i0

. Therefore G�i0
acts transitively on � \ {

�i0

}
, and hence G induces a 2-transitive 

group on �. �
Lemma 3.3. If G(�i) �= 1, then either the primes dividing the order of G(�i) divide λ, or Di is a translation plane.

Proof. Assume that G(�i ) �= 1. Let W be any Sylow w-subgroup of G(�i ) , where w is a prime not dividing λ. Clearly, W

fixes the λ2

θ
(λ + 1) blocks of Di . Let B be any block of D such that B ∩ �i is a block of Di . Then W preserves B ∩ �i

and there are θ blocks of D whose intersection set with �i is B ∩ �i . Therefore W fixes at least one of these θ blocks, 
as w � λ and θ | λ, and hence W fixes at least λ2

θ
(λ + 1) blocks of D. Then any non-trivial element of W fixes at least 

λ2

θ
(λ + 1) points of D by [28, Theorem 3.1], and hence λ2

θ
(λ + 1) � λ

k−√
(k−λ)

v by [28, Corollary 3.7]. Since k = λ(λ + 1) and 

v = λ2(λ + 2), it follows that λ2

θ
(λ + 1) � λ(λ + 2). Thus θ = λ, and hence Di is a 2-(λ2, λ, 1) design, that is, an affine plane. 

Then Di is a translation plane by [51] since G�i
�i

acts flag-transitively on Di . �
The following theorem classifies the flag-transitive 2-(λ2, λ, λ/θ) designs Di .

Theorem 3.4. If Di is a 2-(λ2, λ, λ/θ) design admitting a flag-transitive automorphism group G�i
�i

, then one of the following holds

(1) G�i
�i

is almost simple and one of the following holds:

(a) Di is isomorphic to the 2-(62, 6, 2) design constructed in [35], θ = 3 and P S L2(8) � G�i
�i

� P�L2(8).

(b) Di is isomorphic to one of the three 2-(62, 6, 6) designs constructed in [35], θ = 1 and G�i
�i

∼= P�L2(8).

(c) Di is isomorphic to the 2-(122, 12, 3) design constructed in [37], θ = 4 and G�i
�i

∼= P S L3(3).

(d) Di is isomorphic to the 2-(122, 12, 6) design constructed in [37], θ = 2 and G�i
�i

∼= P S L3(3) : Z2 .

(2) G�i
�i

= T : G�i
0 , λ = pm, p prime, m � 1, and one of the following holds:

(a) Di is a translation plane of order pm, θ = pm, and one of the following holds:
(i) Di ∼= AG2(pm) and the possibilities G�i

0 are given [15,32].

(ii) Di is the Lüneburg plane of order 2m, m ≡ 2 (mod 4), m � 6, and Sz(2m/2) � G�i
0 �

(
Z2m/2−1 × Sz(2m/2)

)
.Zm/2;

(iii) Di is the Hall plane of order 32 and the possibilities for G�i
0 are given [16];

(iv) Di is the Hering plane of order 33 and G�i
0

∼= S L2(13).

(b) Di is a 2-(p2m, pm, pm−t) design, θ = pt , where 0 � t � m, the blocks are subspaces of AG2m(p) and G�i
0 � �L1(p2m);

(c) Di is isomorphic to one of the following 2-design constructed in [38]:
(i) D is a 2-(p2m, pm, pm/2) design, m is even, θ = pm/2 and either S L2(pm) � G�i

0 � (Z pm/2−1 ◦ S L2(pm)).Z(2,pm−1).Zm, 
or S L2(5) � G�i

0 �
(〈−1〉 .S−

5

) : Z2 for p = 3 and m = 2.

(ii) Di is a 2-(p3m, p3m/2, pm) design, p odd and m even, θ = pm/2 and SU3(pm/2) � G�i
0 � (Z pm/2−1 × SU3(pm/2)).Zm.

(iii) Di is a 2-(p4m, p2m, p2m) design, θ = 1 and Sp4(pm) � G�i
0 � �Sp4(pm).

(iv) Di is one of the four 2-(24m, 22m, λ) designs with λ = 2m, 22m−1, 22m, 22m respectively, m > 1 is odd, and Sz(2m) �
G0 �

(
Z2m−1 × Sz(2m)

)
.Zm. Further, θ = 2m, 2, 1, 1 respectively.

(v) Di is a 2-(26m, 23m, 23m) design, θ = 1 and G2(2m) � G�i
0 � (Z2m−1 × G2(2m)) : Zm.

(vi) Di is one of the two 2-(26, 23, 22)-designs, θ = 1 and G�i
0 is either one of the groups 31+2 : Q 8 , 31+2 : Z8 or 31+2 : S D16 , 

or 31+2 : Z8 � G�i
0 � P SU3(3).

(vii) Di is a 2-(26, 23, 23)-design, θ = 1 and G�i
0 is one of the groups 31+2 : Q 8 , 31+2 : Z8 , 31+2 : S D16 , 

(
31+2 : Q 8

) : Z3 :
Z2 .

See [35,37,38] for a proof.

Proposition 3.5. G�i
�i

is of affine type and λ = pm.

Proof. Assume that G�i
�i

is almost simple. Then either P S L2(8) � G�i
�i

� P�L2(8) and λ = 6, or P S L3(3) � G�i
�i

� P S L3(3) :
Z2 and λ = 12 by Theorem 3.4.

Assume that the former occurs. Since G� acts 2-transitively on � by Proposition 3.2, and |�| = 8, one of the following 
holds by [25, Section 2, (A) and (B)]:
5
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(1) AGL1(8) � G� � A�L1(8);
(2) G� ∼= E8 : S L3(2);
(3) P S L2(7) � G� � P GL2(7);
(4) A8 � G� � S8.

Assume that (4) holds. Since G(�)G(�i) � G�i and A7 � G�
�i

� S7, either G(�i) � G(�) or G(�i)/(G(�i) ∩ G(�)) contains a 
subgroup isomorphic to A7. The latter is ruled out by Lemma 3.3 since λ = 6, whereas the former implies that a quotient 
group of G�i

�i
is isomorphic to A7, which is impossible since P S L2(8) � G�i

�i
� P�L2(8). Thus, (4) is ruled out.

Assume that one of (1)–(3) occurs. Since G(�)G(�i) � G�i and P S L2(8) � G�i
�i

� P�L2(8), either G(�) � G(�i) or 
P S L2(8) � G(�)/(G(�) ∩ G(�i)). The former implies G�i

�i
∼= G�

�i
/G�

(�i)
and hence a quotient group of G�

�i
has a subgroup 

isomorphic to P S L2(8), but this is clearly impossible. So P S L2(8) � G(�)/(G(�) ∩ G(�i)) and A7 � G�
�i

. Hence, if W is any 
Sylow 7-subgroup of G�i , 7

2 | |W |. Then 7 | |W (�i)|, since P S L2(8) � G�i
�i

� P�L2(8), but this contradicts Lemma 3.3.

Assume that P S L3(3) � G�i
�i

� P S L3(3) : Z2 and λ = 12. Since G� acts 2-transitively on � with |�| = 14, one of the 
following holds by [25, Section 2, (A) and (B)]:

(1) P S L2(13) � G� � P GL2(13);
(2) A14 � G� � S14.

We may proceed as the P S L2(8)-case to rule out (1) and (2), this time W is a Sylow 13-subgroup of G�i . �
Lemma 3.6. The following hold:

(1) G(�i) � G(�) � G�i for each i = 1, ..., pm + 2.
(2) G(�i) ∩ G(� j) = 1 for each i, j = 1, ..., pm + 2 with i �= j.

Proof. Since G�i acts transitively on � \ {�i} by Proposition 3.2, and since G(�i ) � G�i , it follows that � \ {�i} is union 
of G(�i )-orbits of the equal length z, where z is a divisor of pm + 1 by Proposition 3.5. Assume that z > 1. Then Di is a 
translation plane of order pm by Lemma 3.3. Let U be a Sylow u-subgroup of G(�i ) , where u is a prime divisor of z. Arguing 
as in Lemma 3.3, with U in the role of W , we see that U fixes at least pm(pm + 1) blocks of D and each of these intersects 
�i in pm points, since D is a translation plane and θ = pm . Let B be any of such blocks. Then U preserves �i and at least 
one the pm elements of � \ {�i} intersecting B , say � j . Then 

∣∣∣�G(�i )

j

∣∣∣ is coprime to u, whereas 
∣∣∣�G(�i )

j

∣∣∣ = z and u | z. Thus 
G(�i) preserves each element of � and hence G(�i ) � G(�) . Actually, G(�i ) � G(�) as G(�) � G�i .

Let γ ∈ G(�i) ∩ G(�i) , with i �= j, then γ fixes 2p2m points of D. If γ �= 1 then 2p2m � pm(pm + 2) by [28, Corollary, 3.7]. 
So λ = pm � 2, which is contrary to Lemma 2.5. Thus γ = 1 and hence G(�i ) ∩ G(� j) = 1 for i �= j. �
Corollary 3.7. G(�) �= 1.

Proof. Suppose that G(�) = 1. Then G(�) = 1 for each � ∈ � by Lemma 3.6(1), and hence Soc(G�) is elementary abelian 
of order p2m by Proposition 3.5. Then � \ {�} is partitioned in Soc(G�)-orbits of equal length ph with h > 0 since G� acts 
transitively on � \ {�}, Soc(G�) � G� and G(�) = 1. Then p divides |� \ {�}|, thus contradicting |� \ {�}| = pm + 1. �
Proposition 3.8. Let V be a minimal normal subgroup of G contained in G(�) .

(1) V �i ∼= Soc(G�i
�i

) for each i = 1, ..., pm + 2.

(2) V is an elementary abelian p-group of order p2m+t , where 0 � t � 2m.
(3) CG(V ) ∩ G(�) is an elementary abelian p-group order p2m+y , where t � y � 2m, containing V .

Proof. Let V be a minimal normal subgroup of G contained in G(�) . Then V acts transitively on �i for each i = 1, ..., pm +2

by Lemma 2.7. Moreover, V �i � G�i
�i

. If R is a minimal normal subgroup of G�i
�i

contained in V �i , then Soc(G�i
�i

) = R � V �i

by [14, Theorem 4.3B(i)] since G�i
�i

acts primitively on �i by Lemma 2.6 and since Soc(G�i
�i

) is an elementary abelian 
group of order p2m by Proposition 3.5. Thus V �i contains a normal subgroup isomorphic to Soc(G�i

�i
), and hence V is an 

elementary abelian p-group, since V is a minimal normal subgroup of G . Therefore V �i ∼= Soc(G�i
�i

), which is (1).

It follows from (1) that 
∣∣V �i

∣∣ = p2m . Let pt =
∣∣∣V (�i0 )

∣∣∣ with t � 0 for some i0, then 
∣∣V (�i)

∣∣ = pt for each i = 1, ..., pm + 2

since V � G and G acts transitively on �. Moreover, it follows from Lemma 3.6(2) that, V (�s) ∩ V (�s′ ) = 1 for each s, s′ =
1, ...pm + 2 with s �= s′ . Thus, V (�s) is isomorphic to a subgroup of V �s′ . Therefore pt � p2m , and hence 0 � t � 2m. So 
|V | = p2m+t with 0 � t � 2m, and we obtain (2).
6
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Set C = CG(V ) and K = G(�) and recall that G is permutationally isomorphic to a subgroup of G�
� � G� by [41, Theorem 

5.5]. Since

C ∩ K �
∏
�∈�

(C ∩ K )� �
∏
�∈�

C K �(V �) =
∏
�∈�

V �,

it follows C ∩ K is an elementary abelian p-group. By repeating the final part of the argument in (2) with C ∩ K in the role 
of V , we see that the order of C ∩ K is p2m+y with t � y � 2m since V � C , and we obtain (3). �
Remark 3.9. The proof of (3) is a slight modification of an argument contained in the proof of [29, Lemma 3.2]: here we 
consider a minimal normal subgroup of G instead of O p(G(�)), the largest normal p-subgroup of G(�) . In this way G/CG (V )

is an irreducible subgroup of GL(V ), and this will play an important role in completing the proof of Theorem 3.1.

Corollary 3.10. Let � ∈ � and x ∈ �, then G�
� is isomorphic to a quotient group of G�

x .

Proof. It follows from Lemma 3.6(1) and Proposition 3.8(1) that G� = G(�)Gx with G(�) � G(�),x . Thus

G�
�

∼= Gx/G(�),x ∼= G�
x /G�

(�),x (3.1)

which is the assertion. �
Lemma 3.11. Let u = pm + 2 with u prime and u � 5. If u divides pz − 1 for some 0 < z � 4m, then either (pm, u, z) = (3, 5, 4) or 
(pm, u, z) = (9, 11, 5).

Proof. Clearly z > m. Set z = m + w , where w > 0. Then u divides pw(pm + 2) − 2pw − 1 and hence 2pw + 1. Then 
pw � pm/2 + 1/2, and hence w = m + y for some y � 0, as p is odd. Thus u divides 2p y(pm + 2) − (4p y − 1), and hence 
4p y − 1. Then either pm + 2 = 4p y − 1, or 2(pm + 2) � 4p y − 1. The former yields p y = 3, pm = 32 and hence (pm, u, z) =
(9, 11, 5), the latter implies p y � pm/2 + 5/4 and hence y = m + x for some 0 � x � 2m since z � 4m. Therefore u divides 
(4pm +8)px − (8px +1), and hence 8px +1. Thus a(pm +2) = 8px +1 for some a � 1. If x < m, then (apm−x −8)px +2a −1 =
0. Therefore apm−x < 8, and hence either a = 1 and pm−x = 3, 5 or 7, or a = 2 and pm−x = 3 since p is odd. It is easy to 
verify that no solutions arise in these cases since u is a prime. Thus x = m, and hence (8 − a)pm = 2a − 1 with 1 � a < 8. 
Thus either a = 3 and pm = 3, or a = 7 and pm = 13. However, the latter cannot occur since u = pm + 2 and u is a prime, 
hence (pm, u, z) = (3, 5, 4). �
Proposition 3.12. One of the following holds:

(1) CG(V ) � G(�) .
(2) CG(V ) = V × U , where U is a minimal normal subgroup of G of order uh, with u prime and h � 1, satisfying the following 

properties:
(a) uh = pm + 2;

(b) The U -orbit decomposition of the point set of D is a G-invariant partition �′ =
{
�′

1, ...,�
′
p2m

}
such that 

∣∣∣�′
j

∣∣∣ = pm + 2 for 

each j = 1, ..., p2m and the following hold:

(i) For each B ∈ B and �′
j ∈ �′ , the size 

∣∣∣B ∩ �′
j

∣∣∣ is either 0 or 2.

(ii)
∣∣∣�i ∩ �′

j

∣∣∣ = 1 for each �i ∈ � and �′
j ∈ �′;

(iii) G
�′

j

�′
j

acts 2-transitively on �′
j for each �′

j ∈ �′;

(iv) U�′
j = Soc(G

�′
j

�′
j
) for each �′

j ∈ �′ .

Proof. Let C = CG (V ) and assume that C � G(�) . Then 1 �= C� � G� . Thus Soc(G�) � C� , as G� acts 2-transitively on �. 
Therefore, C� acts transitively on �.

Assume that (C�)�1 �= 1, where �1 ∈ �. Then V < C�1 as V � C ∩ G(�) by Proposition 3.8(3). So C�1 = Cx V , and hence 
Cx � G(�1) since V acts transitively on �1 and C = CG(V ). Therefore, Cx � G(�) by Lemma 3.6(1). So C�1 � G(�) , and hence 
(C�)�1 = 1, a contradiction.

Assume that (C�)�1 = 1. Thus C� acts regularly on �, and hence C� = Soc(G�) since Soc(G�) � C� . Therefore C/(C ∩
G(�)) ∼= Soc(G�), where 

∣∣Soc(G�)
∣∣ = pm + 2, with pm + 2 �≡ 0 (mod 4) since pm � 3 by Lemma 2.5. Thus Soc(G�) is an 

elementary abelian group of order uh for some prime u and some integer h � 1 since G� acts 2-transitively on �. Therefore 
uh = pm + 2 and hence u �= p. Then C = X : U , where X = C ∩ G(�) and U is an elementary abelian of order uh , by 
[18, Theorem 6.2.1] since C/(C ∩ G(�)) ∼= Soc(G�) and since X is an elementary abelian p-group by Proposition 3.8(3). In 
7
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particular U � GL(X). Then X = X1 ⊕ · · · ⊕ X	 , with 	 � 1, where the Xs ’s, s = 1, ..., 	, are irreducible U -invariant subspaces 
of X by [18, Theorem 3.3.1]. Moreover, for each s = 1, ..., 	 there is a subgroup of Us of U of index at most u, fixing Xs
pointwise by [18, Theorem 3.2.3] since U is elementary abelian.

Assume that V < X . Then there is Xs0 containing an element, say x, such that x /∈ V . If h > 1, let ψ be an element of 
Us0 , ψ �= 1. Then ψ centralizes V , 〈x〉 and hence V ⊕ 〈x〉. Now V ⊕ 〈x〉 acts on �1, and since it contains p2m+1 elements, 
there is an element α ∈ V ⊕ 〈x〉, α �= 1, such that α ∈ G(�1) and α and ψ commute. On the other hand U acts regularly 
on � since U� = C/(C ∩ G(�)) ∼= Soc(G�) with C ∩ G(�) a p-group by Proposition 3.8(3). Hence, ψ maps �1 onto �e for 
some e > 1. So α ∈ G(�1) ∩ G(�e) with α �= 1 since α and ψ commute, but this contradicts Lemma 3.6(2). Thus h = 1 and 
hence U ∼= Zu . If U fixes an element in X \ V , we reach a contradiction by using the previous argument. Thus U does not 
fix points in X \ V and hence u | p2m+y − p2m+t with 0 � t < y � 2m by Lemma 3.8(2),(3), since V < X . Then u | p y−t − 1
with 0 < y − t � 2m, which is impossible for Lemma 3.11. Thus X = V , and hence C = V × U with U is elementary abelian 
of order uh and uh = pm + 2. Moreover U � G as C � G .

Let U∗ be a minimal normal subgroup of G contained in U . The set �′ of all point-U∗-orbits is G-invariant partition 
of the point set of D. If either �′ = � or U∗ acts point-transitively on D, then c or v is a power of u respectively. 
However both these cases lead to a contradiction since c = p2m , v = p2m(pm + 2) and u �= p. Thus, �′ =

{
�′

1, ...,�
′
p2m

}
, 

with 
∣∣∣�′

j

∣∣∣ = pm + 2 = uh for each j = 1, ..., p2m , by Lemma 2.7. Hence U∗ = U and we obtain (2a). Moreover, for each B ∈ B

and �′
j ∈ �′ , the size 

∣∣∣B ∩ �′
j

∣∣∣ is either 0 or 2, G
�′

j

�′
j

acts 2-transitively on �′
j and U�′

j = Soc(G
�′

j

�′
j
). Finally, 

∣∣∣�i ∩ �′
j

∣∣∣ = 1 for 

each �i ∈ � and �′
j ∈ �′ . Thus (2b.i)–(2b.iv) follow. �

The Diophantine equation in Proposition 3.12(2.a) is a special case of the Pillai Equation (e.g. see [47]). It has at most 
one solution in positive integers (m, h) by [47, Theorem 6]. Moreover, p > 3 for h > 1, and (pm, uh) = (52, 33) for h > 1 and 
m even by [47, Lemmas 2 and 4].

4. Reduction to the case CG (V ) � G(�)

In this section, we show that only (1) of Proposition 3.12 occurs. Hence, assume that CG (V ) = V × U , where U is a 
minimal normal elementary abelian u-subgroup of G of order uh , with uh = pm + 2, satisfying properties (2b.i)–(2b.iv) of 
Proposition 3.12.

Lemma 4.1. Let � ∈ � and �′ ∈ �′ and let x be their intersection point. Then the following hold:

(1) G acts faithfully on �;
(2) G�′

x is isomorphic to a quotient group of Gx.

Proof. Let �i ∈ � and �′
j ∈ �′ and let xij be their (unique) intersection point. Since G(�) � G(�) by Lemma 3.6(1), it follows 

that G(�) preserves each �i . On the other hand, G(�) preserves each �′
j since these ones intersect � in a unique point and 

�′ is a G-invariant partition of the point set of D. Thus G(�) fixes each xij , and hence G(�) fixes D pointwise. Therefore 
G(�) = 1, which is (1). Finally, assertion (2) holds since G(�′) � Gx . �
Lemma 4.2. The following hold:

(1) pm

θ
(pm + 1) divides |Gx|;

(2) θ(pm + 2)(pm + 1) divides 
∣∣∣G�′

�′
∣∣∣.

Proof. Let � ∈ � and �′ ∈ �′ and let x be their intersection point. The replication number r = pm

θ
(pm + 1) of Di divides 

|Gx| since Di is a flag-transitive 2-(p2m, pm, pm

θ
) design, hence (1) holds.

Since G�′
�′ acts 2-transitively on �′ and U�′ = Soc(G�′

�′ ) with U�′
elementary abelian of order pm + 2, by Proposi-

tion 3.12(2a), (2.b.iii) and (2.b.iv), it follows that (pm + 2)(pm + 1) divides 
∣∣∣G�′

�′
∣∣∣.

Let B be any block of D such that x ∈ B . Then B ∩ �′ = {x, y} for some y �= x by Proposition 3.12(2.b.i). Let γ ∈ Gx,B∩� ∩
G(�′) . Then Bγ ∩� = B ∩�, and y ∈ Bγ since B ∩�′ = {x, y}. Thus (B ∩ �)∪ {y} ⊆ Bγ ∩ B with y /∈ B ∩�, as y ∈ �′ , y �= x, 
and � ∩ �′ = {x}. Therefore 

∣∣Bγ ∩ B
∣∣ � λ + 1, and hence Bγ = B . So γ ∈ Gx,B , as xγ = x. Thus Gx,B∩� ∩ G(�′) � Gx,B , and 

hence θ divides 
∣∣∣(Gx,B∩�

)�′
�′

∣∣∣ since 
∣∣Gx,B∩� : Gx,B

∣∣ = θ by Corollary 2.2. So, θ divides 
∣∣∣G�′

�′
∣∣∣. Hence, θ(pm +2)(pm +1) |

∣∣∣G�′
�′

∣∣∣, 
which is (2), since θ | pm and (pm + 2)(pm + 1) divides 

∣∣∣G�′
�′

∣∣∣. �
Theorem 4.3. CG(V ) � G(�) .
8
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Proof. Let �i ∈ � and �′ ∈ �′ and let xi be their intersection point. Recall that Di is isomorphic to one of the 2-designs 
listed in Theorem 3.4. Since pm + 2 = uh with u prime by Proposition 3.12(2.a) and pm � 3 by Lemma 2.5, it follows that 
p > 2. Thus, cases (2.a.ii) and (2.c.iv)–(2.c.vii) of Theorem 3.4 are ruled out.

Assume that h > 1. If Di is as in case (2.c.i) of Theorem 3.4, then (pm, uh) = (52, 33) or (112, 53) by [47, Lemma 4] since 
m is even. Further, either S L3(u) � G�

� � �L3(u), or G�
� � �L1(u3) by [25] since G� is an affine group acting 2-transitively 

on � by Propositions 3.2 and 3.12. However, no cases occur by Corollary 3.10. Case (2.c.iii) of Theorem 3.4 is ruled out 
similarly.

Assume that case (2.c.ii) of Theorem 3.4 occurs. Then p3m/2 + 2 = uh with p odd and m even, and hence u is odd and 
u �= 5, 7, 11, 23, 29, 59 for h = 2 and uh �= 34, 36. Then either G�

� contains one of the groups S Lh(u) or Sph(u) as a normal 
subgroup, or G�

� � �L1(u3) by [25] since G� is an affine group acting 2-transitively on �. Again, we reach a contradiction 
by Corollary 3.10 since p3m/2 + 1 divides the order of G�

� .

Assume that h = 1. Hence, G�′
�′ ∼= AGL1(u) by Proposition 3.12(2.b.iii). Then θ = 1 by Lemma 4.2(2), and hence 

(2.a.iii)–(2.a.iv) and in (2.c.v) of Theorem 3.4 are ruled out. Therefore, bearing in mind Lemma 4.1(1), one of the follow-
ing holds:

(i). Di is a 2-(p2m, pm, pm−s) design, p > 2 and pm �= 32, 33, θ = ps with 0 � s � m, and the blocks are subspaces of 
AG2m(p) and Gxi � �L1(p2m).

(ii). Di is a 2-(p4m, p2m, p2m) design, θ = 1 and Sp4(pm) � Gxi � �Sp4(pm)

Assume that (i) occurs. Then pm−s divides the order of Gxi by Lemma 4.2(1). On the other hand, ps divides the order 
of G�′

xi
, and hence 

∣∣Gxi

∣∣ by Lemmas 4.1(2) and 4.2(2). Therefore pa divides the order of Gxi , and hence 
∣∣�L1(p2m)

∣∣, where 
a = max{s, m − s} � m/2. So pm/2 � m, which is a contradiction since p is odd.

Assume that (ii) occurs. Then G�
�

∼= GL1(u), with u = pm + 2 is isomorphic to a quotient group of Gxi with Sp4(pm) �
Gxi � �Sp4(pm). Hence pm + 2 | (pm − 1)m, which is not the case since p is odd. Thus (2) of Proposition 3.12 is ruled out, 
and hence the assertion follows. �
5. Proof of Theorem 3.1

In this section, we complete the proof of Theorem 3.1. In the sequel, CG (V ) and G/CG (V ) will simply be denoted by C
and H , respectively.

Proposition 5.1. H is an irreducible subgroup of GL2m+t(p) with 0 � t � 2m.

Proof. Since V is a minimal normal elementary abelian subgroup of G of order p2m+t with 0 � t � 2m by Proposition 3.8(2), 
the assertion follows. �

For each divisor n of 2m + t the group �Ln(p(2m+t)/n) has a natural irreducible action on V . By Proposition 5.1 we may 
choose n to be minimal such that H � �Ln(p(2m+t)/n) in this action and write q = p(2m+t)/n .

Let a, e be integers. A divisor w of ae − 1 that is coprime to each ai − 1 for 1 � i < e is said to be a primitive divisor, 
and we call the largest primitive divisor �∗

e (a) of ae − 1 the primitive part of ae − 1. One should note that �∗
e (a) is strongly 

related to cyclotomy in that it is equal to the quotient of the cyclotomic number �e(a) and (e, �e(a)) when e > 2. Also, 
�∗

e (a) > 1 for a � 2, e > 2 and (a, e) �= (2, 6) by Zsigmondy’s Theorem (for instance, see [43, P1.7]).
Since G� is a 2-transitive group by Proposition 3.2, either G� is of affine type or an almost simple group. We analyze 

the two cases separately.

5.1. G� is of affine type

In this subsection, we assume that G� is of affine type. Hence, Soc(G�) is an elementary abelian u-group for some 
prime u. Let uh be the order of Soc(G�), then uh = pm + 2 since |�| = pm + 2. In the sequel, U will denote the pre-image 
of Soc(G�) in G .

Lemma 5.2. The following hold:

(1) A quotient group of H has a 2-transitive permutation representation of degree pm + 2.
(2) (pm + 1) 

(
pm + 2

) | |H |. In particular, �∗
2m(p) | |H |.

(3) Either �∗
2m(p) > 1, or (pm, uh) = (3, 5) or (7, 9).

Proof. Since C � G(�) by Theorem 4.3 and G� acts 2-transitively on � by Proposition 3.2, a quotient group of H is isomor-
phic to G� . Thus, (1) and (2) follow.
9
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Suppose that �∗
2m(p) = 1, then either m = 1 and q is a Mersenne prime, or (p, m) = (2, 3) by [43, P1.7]. The latter 

is ruled out since pm + 2 = 10 in this case, the former yields uh = pm + 2 = 2y + 1, for some prime y � 0. Then either 
(pm, uh, y) = (7, 9, 3), or h = 1 by [43, B1.1]. If h = 1 then u is a Fermat prime, hence y = 2 since y is a prime, and we 
obtain (uh, y) = (5, 2). Therefore, either (pm, uh) = (3, 5) or (pm, uh) = (7, 9). �

From now on, we assume that �∗
2m(p) > 1. The cases (pm, uh) = (3, 5), (7, 9) are tackled at the end of this subsection.

Lemma 5.3. n > 1.

Proof. Suppose that n = 1. Then H � �L1(q), and hence (pm + 2)�∗
2m(p) | (p2m+t − 1) · (2m + t). Then 2m | 2m + t by [27, 

Proposition 5.2.15(i)], and hence either t = 0 or t = 2m since 0 � t � 2m. If t = 0, then pm + 2 | (p2m − 1) · 2m, and hence 
pm + 2 | 3m, which is impossible since pm > 3 by our assumption. Thus t = 2m, and hence (pm + 2) | (p4m − 1) · 4m. So 
pm + 2 | 15m, and hence pm = 3, but this contradicts our assumption. �
Proposition 5.4. Let H∗ = H ∩ GLn(q), then �∗

2m(p)
pm+2

(pm+2,(2m+t)/n)
| |H∗|.

Proof. By Lemma 5.2(2), one has �∗
2m(p)(pm+2)

(�∗
2m(p)(pm+2),(2m+t)/n)

| |H∗|. Assume that (�∗
2m(p), (2m + t)/n)) > 1. Then there is a 

primitive prime divisor w of p2m − 1 dividing (2m + t)/n. So w | 2m + t . On the other hand, w = 2ma + 1 for some a � 1 by 
[27, Proposition 5.2.15(ii)]. Hence (2ma +1)s = 2m + t for some s � 1 and hence t = s = a = 1. So w = n = 2m +1 and q = p, 
whereas w | (2m + 1)/n, a contradiction. Thus (�∗

2m(p), (2m + t)/n)) = 1, and the assertion follows since (�∗
2m(p), pm + 2) =

1. �
Proposition 5.5. n = 4m, q = p and one of the following holds:

(1) H � GL2m(p) � Z2 and H preserves a sum decomposition V = V 1 ⊕ V 2 with dim V 1 = dim V 2 = 2m.
(2) H � GL2(p) ◦ GL2m(p), m > 1, and H preserves a tensor decomposition V = V 1 ⊗ V 2 with dim V 1 = 2 and dim V 2 = 2m.

Proof. Assume that Y � H , where Y is isomorphic to one of the groups S Ln(q), Spn(q) for n even, SUn(q1/2) for q square, 
or 
ε

n(q) with ε = ± for n even, and ε = ◦ for nq odd by [3, Theorem 3.1]. Then H � (Z ◦ Y ).O ut(Ȳ ), where Z = Z(GLn(q))

and Ȳ = Y /(Y ∩ Z), and hence |H/Y | | (q − 1) 
∣∣O ut(Ȳ )

∣∣.
Let X be the pre-image of Y in G . Then X � G , and hence X� � G� . Either X� = 1 or U� � X� since G� acts 2-

transitively on � and since U� = Soc(G�). The latter implies that U� is isomorphic to a normal subgroup of X/(X ∩ G(�)), 
with C � X ∩ G(�) by Theorem 4.3. So X/(X ∩ G(�)) is a quotient group of the classical group Y and contains a normal 
elementary abelian group of order uh . Then C � X ∩ G(�) � W , where W is the pre-image of Z(Y ) in G , and hence the 
normal elementary abelian subgroup of order uh of X/(X ∩ G(�)) is contained in W /(X ∩ G(�)). Thus, uh divides |Z(Y )|
and hence q − 1, which is impossible since uh = qm + 2 � 5 by Lemma 5.2. Therefore X� = 1, and hence X � G(�) . Thus, 
Y � G(�)/C by Theorem 4.3. On the other hand, we have G� ∼= H/(G(�)/C), where H/(G(�)/C) is a quotient group of H/Y . 
Thus 

∣∣G�
∣∣ divides the order of H/Y , and hence 

∣∣G�
∣∣ | (q − 1) 

∣∣O ut(Ȳ )
∣∣.

Note that, 
∣∣O ut(Ȳ )

∣∣ | 4 · n · μ(2m + t)/n, where μ = 2 or 3 according to whether X is isomorphic or not to 
+
8 (q), 

respectively. Then

�∗
2m(p)(pm + 2) | μ

(
p

2m+t
n − 1

)
(2m + t) (5.1)

since �∗
2m(p)(pm + 2) divides the order G� by Proposition 3.2 and �∗

2m(p) and p are odd. Let w be a primitive prime 
divisor of pm + 1. If w | p

2m+t
n − 1, then 2m | 2m+t

n by [27, Proposition 5.2.15(i)], and hence n = 2 and t = 2m since t � 2m
and n > 1 by Lemma 5.3. Thus μ = 2 and pm + 2 | m 

(
pm − 1

)
, and hence pm + 2 | 3m since p is odd, which is impossible 

by pm � 3. Thus, w | μ (2m + t).
If μ = 2, then w | 2m + t . If μ = 3 then n = 8, and hence m � 2 since n | 2m + t with t � 2m. Moreover, w ≡ 1 (mod 2m)

by [27, Proposition 5.2.15(ii)], and hence w �= 3. Thus, w | 2m + t also in this case. Again from [27, Proposition 5.2.15(ii)], it 
results that w = 2m + 1 and t = 1. Moreover, n = 2m + 1, and hence q = p since n | 2m + 1 with 2m + 1 prime and n > 1
by Lemma 5.3. Then �∗

2m(p)(pm + 2) | (p − 1)μn by (5.1) with n dividing �∗
2m(p), hence pm + 2 | 3μ, which is impossible 

since p is odd and pm �= 7 by our assumption. Thus Y � H , and hence H lies either in a member of Ci(�) for some i such 
that 1 � i � 7, or is a member of S(�), where � denotes �Ln(q), by the Aschbacher’s Theorem (see [27]).

Assume that H lies in S(�). Then S � H/(H ∩ Z) � Aut(S), where S is a non-abelian simple group and Z is the center
of GLn(q). Then the pre-image N of S in H is absolutely irreducible and is not a classical group over a subfield of G F (q) in 
its natural representation. Let M and Q be the pre-images in G of N and of Z(N), respectively. Since M, U � G , we may use 
the above argument with M , Q , N and Z(N) in the role of X , W , Y and Z , respectively, to obtain that either a quotient of 
Z(N) contains a normal elementary subgroup of order uh , or M � G(�) and 

∣∣G�
∣∣ | (q − 1) |O ut(S)|. The former implies that 
10



A. Montinaro Discrete Mathematics 347 (2024) 114070
there is a subgroup of the Schur multiplier of S containing a normal elementary subgroup of order uh . Then h = 1 by [27, 
Theorem 5.1.4]. Let ψ be an element of Z(N) of order u. Then ψ does not fix non-zero vectors of V , and so u | p2m+t − 1, 
with 0 < 2m + t � 4m. Thus, pm = 9 by Lemma 3.11 since pm > 3 by our assumption, and hence u = 11 divides |Z(N)|
and n � 4m = 8. Also, H is an irreducible subgroup of �Ln(3(4+t)/n) of order divisible by 55 by Lemma 5.2(2). Then either 
t = 1, n = 5, q = 3 and H = N with N is isomorphic to P S L2(11) or M11, or t = 2, n = 6, q = 3 and H = N ∼= Z2.M12 by [6, 
Tables 8.2, 8.4, 8.9, 8.19. 8.25, 8.36 and 8.43]. However, 11 does not divide the order Z(N) in any of these groups, and hence 
they are ruled out. Thus M � G(�) . Moreover, 1 �= M�i � G�i

�i
for each �i ∈ � since C � M , M ∩ G(�i) � Q for each �i ∈ �

and M/Q ∼= N/Z(N) ∼= S with S non-abelian simple. Hence, M�i = T : (M�i )0 and a quotient group of M�i is non-abelian 
simple.

Since M�i is non-solvable and pm + 2 = uh with u prime and pm > 3, one of the following holds by Theorem 3.4:

(1) S L2(pm) � (M�i )0 � �L2(pm);
(2) SU3(pm/3) � (M�i )0 � (Z pm/3−1 × SU3(pm/3)).Z2m/3, m ≡ 0 (mod 3);
(3) Sp4(pm/2) � (M�i )0 � �Sp4(pm/2), m even;
(4) (M�i )0 � (Q 8 ◦ D8).S5 and pm = 9.

Note that, in the previous list some automorphism groups of non-isomorphic 2-designs listed in Theorem 3.4 are brought 
together. Indeed, the group in (2.c.i) of Theorem 3.4 is a subgroup of �L2(pm) as well as that is (2.c.i) for pm = 9 is a 
subgroup of the full translation complement of the Hall plane of order 9, which is (Q 8 ◦ D8).S5 by [33, Theorem II.8.3]. 
Either S ∼= P S L2(pm), or S ∼= P SU3(pm/3) or S ∼= P Sp4(pm/2), or S ∼= P S L2(5) for pm = 9 since M�i ∼= M/(M ∩ G(�i)), 
M ∩ G(�i) � Q and M/Q ∼= N/Z(N) ∼= S with S non-abelian simple. However, both cases are ruled out since they violate∣∣G�

∣∣ | (q − 1) |O ut(S)|, being 
∣∣G�

∣∣ divisible by pm + 2 with pm > 3. Thus, H lies in a member of Ci(�) for some i such that 
1 � i � 7.

The group H does not lie in a member of C1(�) since H is irreducible subgroup of � by Proposition 5.1 and subsequent 
remark, and does not lie in a member of C3(�) by the definition of q. Also, H does not lie in a member of C5(�). Indeed, if 
not so, then n < 4m since q = p for n = 4m. Then H∗ lies in a member of C5(GLn(q)), but this is impossible by [3, Theorem 
3.1] since �∗

2m(p) | |H∗| by Proposition 5.4. Assume that H lies in a member of C2(�). Then H stabilizes a decomposition of 
V = V 1 ⊕ · · · ⊕ Vn0 with n0 > 1 and dim V 1 = · · · = dim Vn0 = m0 � 1. Thus n = m0n0, and hence H∗ � GLm0 (q) � Sn0 .

If n < 4m, then m0 = 1, n0 = n, q = p, and either pm = 32 and n � 7, or pm = 33, 53, and n � 11 by [3, Theorem 3.1] since 
�∗

2m(p) | |H∗| and p is odd. Then u = 11, 29 or 127, respectively. Since u does not divide the order of the corresponding 
GL1(q) � Sn , then u does not divide the order of H∗ , whereas u must divide it by Proposition 5.4. Indeed, in each of these 
cases (u, (2m + t)/n) = 1 since u a prime such that u > 4m � (2m + t)/n. Hence, these cases are ruled out.

If n = 4m, then q = p and hence H = H∗ � GLm0 (p) � Sn0 . Let w be a prime divisor of p2m − 1. Then w divides either the 
order of GLm0(p) or that of Sn0 . The former yields 2m � m0 by [27, Proposition 5.2.15(i)]. Therefore (2m)n0 � m0n0 = n =
4m, and hence n0 = 2 and m0 = 2m since n0 > 1.

The case where w divides the order of Sn0 yields w = 2m + 1 since w ≡ 1 (mod 2m) by [27, Proposition 5.2.15(ii)]
since n0 � 4m. Actually, n0 = 4m and m0 = 1 since n0 | 4m and n0 � w = 2m + 1 > 2. Note that, n0 = 2 and m0 = 2m
is clearly not compatible with n0 = 4m and m0 = 1. Hence, in the latter case, �∗

2m(p) = (2m + 1)s for some s � 1 is a 
divisor of n0!. Then s < n0−1

2m < 4m/2m = 2 by [14, Exercise 2.6.8], and hence �∗
2m(p) = 2m + 1. Thus pm = 32, 33, 53 by [3, 

Lemma 6.1.(i)], and hence pm + 2 = 11, 29, 127, respectively. Then pm + 2 does not divide the order of the corresponding 
H since H � GL1(p) � S4m , and hence these cases are ruled out by Lemma 5.2(2). Therefore n0 = 2 and m0 = 2m, hence 
H � GL2m(p) � S2 preserves a decomposition V = V 1 ⊕ V 2, which is (1).

Assume that H lies in a member of C4(�). Then H preserves a tensor decomposition V = V 1 ⊗ V 2, with dim V i = ni

and 1 � n1 < n2. Therefore, H∗ � GLn1(q) ◦ GLn2 (q). No cases arise for n < 4m by [3, Theorem 3.1] since �∗
2m(p) | |H∗|. Thus 

n = 4m and q = p, hence H = H∗ � GL2(p) ◦ GL2m(p), and we obtain (2).
Assume that H lies in a member of C6(�). Then H lies in the normalizer in �Ln(q) of an absolutely irreducible symplectic 

type s-group R , with s �= p. Hence n = sy for some y � 1 by [27, Definition (c) at p. 150.]
If n < 4m, then (q, n) = (3, 4) or (3, 8) by [3, Theorem 3.1] since �∗

2m(p) | |H∗| and uh = qn/2 + 2 with q odd. Thus, h = 1. 
Moreover, n = 2m + t since q = p, and therefore (m, t) = (2, 2) for (q, n) = (3, 4), and (m, t) = (3, 2), (4, 0) for (q, n) = (3, 8)

since n < 4m. A similar argument to that of the S-case yields u | 32m+t− f − 1 with 0 < 2m + t − f � 4m, where 3 f is the 
number of fixed points of an element of order u of H . Either m = 1 and 2 + t − f = 4, or m = 2 and 4 + t − f = 5 by 
Lemma 3.11, whereas m = 2 or 3, 4, respectively. Thus, H does not lie in a member of C6(�) for n < 4m.

If n = 4m, then q = p and hence s = 2 and y � 2 as n = sy . Therefore, m = 2y−2. Let w be a primitive prime divisor of 
p2m − 1. Then w = 2y−1 j + 1 = 2mj + 1 for some j � 1 by [27, Proposition 5.2.15(ii)]. On the other hand, w divides the 
order of H , where H/(H ∩ Z) is a subgroup of one of the groups given in [27, Table 4.6.A] for s = 2, and Z is the center of 
GL4m(p). It follows that w divides the order of Sp2y(2), and hence it divides either 2i − 1 or 2i + 1 for some 1 � i � y. Then 
either w = 2y−1 + 1 = 2m + 1 or w = 2y + 1 = 2(2m) + 1, respectively, and hence �∗

2m(p) is either 2m + 1 or 2(2m) + 1, 
or (2m + 1) (2(2m) + 1). Then pm = 32, 33, 53, 39 or 173 by [3, Lemma 6.1] since q = p and p is odd. Actually, pm �= 39, 173

since they do not fulfill uh = pm + 2, whereas h = 1 in the remaining cases. Then u | p4m− f − 1, and arguing as above we 
11
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obtain pm = 32, u = 11 and f = 3 and n = 8. Since q = p = 3, it follows that Z(R) ∼= Z2, R ∼= D8 ◦ Q 8, and hence n = 2 by 
[27, Definition (c) and Table 4.6.B at p. 150]. However, it is ruled out since it contradicts n = 8.

Assume that H lies in a member of C7(�). Then H stabilizes a decomposition of V = V 1 ⊗ · · · ⊗ Vn0 with dim V 1 =
· · · = dim Vn0 = m0. Hence, n = mn0

0 with m0 � 1 and n0 � 2, and H∗ � (GLm0 (p) ◦ · · · ◦ GLm0(p)).Sn0 . If m0 < 3, then H
lies in a member of C8(�) (see remark before Proposition 4.7.3 in [27]), which is not the case. Hence, m0 � 3. No cases 
arise for n < 4m by [3, Theorem 3.1] since �∗

2m(p) | |H∗| by Proposition 5.4. Thus n = 4m and q = p, and hence H = H∗ . A 
prime divisor w of p2m − 1 divides either the order of GLm0 (p) or that of Sn0 . Since w ≡ 1 (mod 2m) by [27, Proposition 
5.2.15(ii)], the latter implies n0 � 2m + 1, and hence 32m+1 � m2m+1

0 � 4m, a contradiction. Thus, w divides the order of 
GLm0 (p). Then 2m � n0 by [27, Proposition 5.2.15(i)], and hence (2m)n0 � mn0

0 = n = 4m. So n0 = m0 = 2, and we reach a 
contradiction as m0 � 3. This completes the proof. �
Lemma 5.6. The following hold in case (1) of Proposition 5.5:

(1) H
V j
V j

acts irreducibly on V j for j = 1, 2;

(2) �∗
2m(p)

pm+2
(pm+2,3)

|
∣∣∣H

V j
V j

∣∣∣ for j = 1, 2;

(3) H
V j
V j

contains a normal subgroup Q j of order divisible by pm+2
(pm+2,3)

and such that �∗
2m(p) |

∣∣∣H
V j
V j

: Q j

∣∣∣ for j = 1, 2.

Proof. The length of V G
(�i)

is pm + 2 since G acts transitively on � and V � G . Then the length of V H
(�i )

is pm + 2 since 
C = CG(V ). Let w be a primitive prime divisor of p2m − 1, and since G�i

�i
acts flag-transitively on Di , let W i be a Sylow 

w-subgroup of G preserving �i . Then W i normalizes V (�i ) . Moreover, W i acts faithfully on V inducing a Sylow w-subgroup 
of H since C is a p-group by Proposition 3.8(3) and Theorem 4.3.

Assume that (W i)(V 1) �= 1. Then (W i)(V 1) acts irreducibly on V 2. If it is not so, there is ζ ∈ (W i)(V 1) , ζ �= 1, fixing V 2
pointwise since dim V 2 = 2m and ζ is a w-element with w a primitive prime divisor of p2m − 1. Then ζ ∈ C , and hence ζ
is a p-element since C is a p-group, whereas ζ is a non-trivial w-element with w �= p. Clearly, (W i)(V 1) preserves 〈x1〉⊕ V 2
for each x1 ∈ V 1, x1 �= 0. Since dim 〈x1〉 ⊕ V 2 = 2m + 1 and dim V (�i) = 2m, it follows that V (�i) ∩ (〈x1〉 ⊕ V 2) �= 0. Let 
μ ∈ G F (p) and x2 ∈ V 2 such that μx1 + x2 ∈ V (�i) ∩ (〈x1〉 ⊕ V 2). If x2 �= 0, there is a non-trivial α ∈ (W i)(V 1) such that 
xα

2 �= x2. Then μx1 + xα
2 ∈ V (�i) ∩ (〈x1〉 ⊕ V 2) since (W i)(V 1) , and hence α, preserves V (�i) ∩ (〈x1〉 ⊕ V 2). Hence, xα

2 − x2 is a 
non-zero element of V (�i ) ∩ V 2 since xα

2 − x2 = (μx1 + xα
2 ) − (μx1 + x2) and xα

2 �= x2. Thus V (�i ) = V 2 since (W i)(V 1) acts 
irreducibly on V 2 and preserves V (�i) . So, pm + 2 = 2 since the length of V H

(�i)
is pm + 2 and H switches V 1 and V 2, and 

we reach a contradiction. Thus x2 = 0, μ �= 0 and μx1 ∈ V (�i) ∩ V 1. Then V (�i) = V 1, and hence 
∣∣∣V H

(�i)

∣∣∣ = pm + 2 = 2, which 
is a contradiction. Thus, W i acts faithfully and irreducibly on V 1. Similarly, we prove that W i acts faithfully and irreducibly 
on V 2. Thus, H

V j
V j

acts irreducibly on V j , which is (1), and �∗
2m(p) |

∣∣∣H
V j
V j

∣∣∣.
Recall that U is the pre-image of Soc(G�). Let S be a Sylow u-subgroup of U , where uh = pm + 2. Then S acts faithfully 

on V inducing a Sylow u-subgroup of H since C is a p-group. Assume that S(V 1) �= 1. Since (pm + 2, p2m − 1) | 3, there is a 
subgroup of Y of S(V 1) such that 

∣∣S(V 1) : Y
∣∣ � (3, u) fixing an non-zero element z2 of V 2. Then Y fixes V 1 ⊕ 〈z2〉 pointwise. 

Since V (�i) ∩ (V 1 ⊕ 〈z2〉) �= 0 for each i = 1, ..., pm , there is an element of vi ∈ V (�i) , vi �= 0, fixed by Y for each i = 1, ..., pm .
Assume that Y � G(�) . Then there are η ∈ Y and i0 ∈ {

1, ..., pm + 2
}

such that 
[
vi0 , η

] = 1 and �η
i0

�= �i0 . Then vi0 ∈
V(

�i0

) ∩ V(
�

η
i0

) with vi �= 0, whereas V(
�i0

) ∩ V(
�

η
i0

) = 0 by Lemma 3.6(2) since �η
i0

�= �i0 . Thus Y � G(�) , and hence ∣∣S(V 1) : S(V 1) ∩ G(�)

∣∣ � (3, u). Similarly, we have 
∣∣S(V 2) : S(V 2) ∩ G(�)

∣∣ � (3, u). Then

∣∣∣S V j

∣∣∣ = |S|∣∣S(V j)

∣∣ � |S|
(3, u)

∣∣S(V 2) ∩ G(�)

∣∣ � |S|
(3, u)

∣∣S ∩ G(�)

∣∣ =
∣∣U�

∣∣
(3, u)

= pm + 2

(pm + 2,3)
,

since U = G(�) S . Then pm+2
(pm+2,3)

| ∣∣S V j
∣∣ since uh = pm + 2 and S V j is a u-group, and hence �∗

2m(p)
pm+2

(pm+2,3)
|
∣∣∣H

V j
V j

∣∣∣ since 

we have already proven that �∗
2m(p) |

∣∣∣H
V j
V j

∣∣∣. Therefore, we get (2). Moreover S V j � Q j � H V j , where Q j = (U/C)V j , since 

C � G(�) � U by Theorem 4.3. Hence, the order of Q j is divisible by pm+2
(pm+2,3)

. Also, since G� acts 2-transitively on �, it 
follows that �∗

2m(p) divides 
∣∣G� : U�

∣∣ and hence |G : U |. Then �∗
2m(p) divides |H : U/C |, since C � U and C is a p-group, 

and hence 
∣∣∣H

V j
V j

: Q j

∣∣∣ for each j = 1, 2, which is (3). �
Lemma 5.7. The following hold in case (2) of Proposition 5.5:

(1) H V 2 acts irreducibly on V 2;
(2) �∗ (p)

pm+2
m | ∣∣H V 2

∣∣;
2m (p +2,3)

12
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(3) H V 2 contains a normal subgroup Q 2 of order divisible by pm+2
(pm+2,3)

and such that �∗
2m(p) | ∣∣H V 2 : Q 2

∣∣.
Proof. Set M = GL2(p) ◦ GL2m(p). Let w be primitive prime divisor of p2m − 1 and let W be a Sylow w-subgroup of H . 
Then W V 1 � H V 1 , and hence W V 1 = 1 since m > 1 by Proposition 5.5(2). Therefore, W V 2 ∼= W since V = V 1 ⊗ V 2 and 
W ∩ Z(M) = 1, being Z(M) � Z p−1. Thus H V 2 acts irreducibly on V 2, which is (1), and �∗

2m(p) | ∣∣H V 2
∣∣.

Let S be a Sylow u-subgroup of U , where U ∼= Soc(G�). Then S acts faithfully on V inducing a Sylow u-subgroup of 
H with uh = pm + 2 and p odd since C is a p-group by Proposition 3.8(3) and Theorem 4.3. Note that, S V 1 is a subgroup 
of GL2(p) of order at most 9 since (pm + 2, (p − 1)2) | 9. Hence, S = S(V 1) or 

∣∣S : S(V 1)

∣∣ � 9 according to whether 3 does 
not divide or does divide the order of Z(M). Thus, 

∣∣S V 2
∣∣ � |S|

(pm+2,3)
since S(V 1) ∩ S(V 2) � Z(M) � Z p−1. Then pm+2

(pm+2,3)
| ∣∣S V 2

∣∣
since uh = pm + 2 and S V 2 is a u-group, hence �∗

2m(p)
pm+2

(pm+2,3)
| ∣∣H V 2

∣∣, which is (2).

Since C � G(�) � U by Theorem 4.3, let Q 2 = (U/C)V 2 . Then the order of Q 2 is divisible by pm+2
(pm+2,3)

since S V 2 � Q 2 �
H V 2 . Now, a similar argument to that used in the proof of Lemma 5.6(3) can be applied here to obtain that �∗

2m(p) divides ∣∣H V 2 : Q 2
∣∣. Thus, we get (3). �

Remark 5.8. In view of Lemmas 5.6 and 5.7, there is a quotient group X of a subgroup of H in (1) and in (2) of Proposi-
tion 5.5 with the following properties:

(1) X is an irreducible subgroup of GL(V 2) of order divisible by �∗
2m(p)

pm+2
(pm+2,3)

;

(2) X contains a normal subgroup Q of order divisible by pm+2
(pm+2,3)

and such that �∗
2m(p) | |X : Q |;

(3) pm + 2 = uh , where u is a prime and h � 1.

We are going to show that a quotient group of H with such constraints does not exist. We derive from this fact that 
�∗

2m(p) = 1, hence (pm, uh) = (3, 5), (7, 9) by Lemma 5.2(3).

For each divisor 	 of 2m the group �L	(p2m/	) has a natural irreducible action on V 2. By Proposition 5.1 we may choose 
	 to be minimal such that X � �L	(p2m/	) in this action and write a = p2m/	 .

Lemma 5.9. The following hold

(1) 	 > 1;
(2) Q � Z(GL	(a)).

Proof. Suppose that 	 = 1. Then X � �L1(a), and hence �∗
2m(p)

pm+2
(pm+2,3)

| (p2m −1) · (2m). Then we obtain (1) by proceeding 

as in Lemma 5.3 (for t = 0) with pm+2
(pm+2,3)

in the role of pm + 2 and bearing in mind that pm �= 7.

Suppose the contrary. Then pm+2
(pm+2,3)

| p2m/	 − 1, and hence pm + 2 | 9. So, (pm, uh) = (7, 9) since pm � 3 by Lemma 2.5, 
but this case is ruled out since it contradicts the assumption �∗

2m(p) > 1. Thus, we obtain (2). �
Let X∗ = X ∩ GL	(a). Then �∗

2m(p) divides the order of X∗ since (�∗
2m(p), 	) = 1 by [27, Proposition 5.2.15.(ii)], being 

	 | 2m. Then one of the following holds by [3, Theorem 3.1] and by the minimality of 	:

(i). X∗ contains a normal subgroup Y isomorphic either to group S L	(a) with 	 � 2, or to Sp	(a), or to 
−
	 (a) with 	 even 

and 	 � 2, or to SU	(a1/2) � X with a square, 	 odd and 	 � 3.
(ii). X∗ � (D8 ◦ Q 8).S5 and (	, a) = (4, 3).

(iii). X∗ is nearly simple, that is, S � X∗/ (X∗ ∩ Z) � Aut(S), where Z is the center of GL	(a) and S is a non-abelian simple 
group. Moreover, if Y is the pre-image of S in X∗ , then Y is absolutely irreducible on V and Y is not a classical group 
defined over a subfield of G F (a) in its natural representation.

Theorem 5.10. (pm, uh) = (3, 5), (7, 9).

Proof. Assume that (i) occurs. Then X � (Z ◦ X∗).O ut( X̄∗) with X̄∗ = X∗/(X∗ ∩ Z), where Z = Z(GL	(a)). It follows that 
X∗ � Q by Lemma 5.9(2) since Q � X . Then �∗

2m(p) | (a − 1) |O ut(X∗)|, since �∗
2m(p) | |X : Q | by Remark 5.8(3), and hence 

�∗
2m(p) | (p2m/	 − 1)2m. However, this impossible by [27, Proposition 5.2.15] since 	 > 1 by Lemma 5.9(1).

Case (ii) is ruled out since a	/2 + 2 = 11 does not divide the order of X
Assume that case (iii) occurs. Suppose that S ∼= As , s � 5 and that V 2 is the fully deleted permutation module for As . 

Then a = p, n = 2m, As � X∗ � Ss × Z , where Z is the center of GL2m(p), and either s = 2m + 1 or s = 2m + 2 according 
13
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Table 1
Admissible S and corresponding 
�.

S 	 a �

P SL2(7) 6 3 29
6 5 127
3 9 29
3 52 127

P SL2(13) 6 3 29
P SL3(22) 6 3 29
P SU3(3) 6 5 127

to whether p does not divide or does divide s, respectively, by [27, Lemma 5.3.4]. Moreover, pm = 32, 33, 53 by [3, Theorem 
3.1] since p is odd, and hence pm + 2 = 11, 29, 127 respectively. However, such values of pm + 2 do not divide |X |, and 
hence they are ruled out (see Remark 5.8).

Assume that S ∼= As , s � 5 and V 2 is not the fully deleted permutation module for As . Then (	, a) = (4, 7), Z2.A7 � H �
Z2.S7 × Z3 and V 2 = V 4(7) by [3, Theorem 3.1] since p is odd. However, it is ruled out since 72 + 2 does not divide the 
order of X .

Assume that S is sporadic. Then S ∼= J2 and (	, a) = (6, 5) by [3, Theorem 3.1], since p is odd. However, a	/2 + 2 = 127
does not divide the order of X , and hence this case is excluded.

Assume that S is a Lie type simple group in characteristic p′. Then S is given in [3, Theorem 3.1] and recorded in Table 1. 
Since a	/2+2

(a	/2+2,3)
| |X | and since S � X∗/ (X∗ ∩ Z) � Aut(S), it follows that

� = a	/2 + 2(
a	/2 + 2,3(a − 1) |Aut(S)|)

must divide the order of S . However, the order of S is divisible by the corresponding � in none of the cases listed in Table 1. 
Hence, all the groups in Table 1 are excluded.

Assume that S is a Lie type simple group in characteristic p. Then p = 2 by [3, Theorem 3.1], whereas p must be odd, 
and hence no cases arise. Thus �∗

2m(p) = 1, and hence (pm, uh) = (3, 5), (7, 9) by Lemma 5.2(3). �
Theorem 5.11. If G� is of affine type, then D is isomorphic to the 2-(45, 12, 3) design as in [40, Construction 4.2].

Proof. It follows from Theorem 5.10 that (pm, uh) = (3, 5) or (7, 9), and in the former case the assertion follows by [40, 
Corollary 4.2]. Hence, in order to complete the proof we need to rule out (pm, uh) = (7, 9). We are going to prove this in a 
series of steps.

(1). Let �i ∈ � and xi ∈ �i . Then G� ∼= AGL1(9), G�i
xi

∼= Z3 j × Z16 and G�i
(�),xi

∼= Z3 j × Z2 where j = 0, 1.

G�
�i

∼= Z8, Q 8, S D16, S L2(3), GL2(3) by [25, Section 2, (B)] since G� is an affine group acting 2-transitively on � by 
Proposition 3.2. On the other hand, since Di ∼= AG2(7) by Theorem 3.4 and m = 1, it follows from [15, Theorem 1’ 
and Table II] that either S L2(7) � G�i

xi
� GL2(7), or G�i

xi
� �L1(72), or G�i

xi
∼= S L2(3).Z2. Moreover, if G�i

xi
� �L1(72), 

it is not difficult to see that G�i
xi

∼= Z3 j × Z16, Z3 j × Q 16, Z3 j × S D32, with j = 0, 1. Using (3.1) in Corollary 3.10 with 
G�

�i
∼= Z8, Q 8, S D16, S L2(3), GL2(3), we see that the unique possibilities are G�

�i
∼= Z8 and either G�i

xi
∼= Z16 and G�i

(�),xi
∼= Z2, 

or G�i
xi

∼= Z48 and G(�)
�i
xi

∼= Z8. Thus G� ∼= AGL1(9), G�i
xi

∼= Z3 j × Z16 and G�i
(�),xi

∼= Z3 j × Z2 with j = 0, 1.

(2). G(�i) � E72 : (Z3 j × Z2) for each i = 1, ..., 9.

Since G(�i) � G(�) and G(�i) ∩ G(�s) = 1 for each s ∈ {1, ...,9}, s �= i, by Lemma 3.6(2), it follows that G(�i ) is isomorphic 
to a normal subgroup of G�s

(�) . On the other hand, G�s
(�)

∼= E72 : Z3 j × Z2 with j = 0, 1 since G(�) = G(�),xs V by Proposi-

tion 3.8(1)(3) and G�s
(�),xs

∼= Z3 j × Z2 with j = 0, 1 by (1). Thus, G(�i ) � E72 : Z3 j × Z2.

(3). G is solvable.

It follows from (2) that G(�i ) is solvable. Thus G(�),xi is solvable since G�i
(�),xi

∼= Z3 j × Z2 by (1), and hence G(�) is solvable 
since G(�) = G(�),xi V . Therefore, G is solvable since G� ∼= AGL1(9).

(4). H is a solvable irreducible subgroup of GL4(7).
14
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Recall that H is an irreducible subgroup of GL2+t(7) with t � 2 by Proposition 5.1, and let R be the pre-image of H ∩
S L2+t(7) in G . Then R � G . Therefore R� � G� , and hence either R� = 1, or E9 � R� since G� ∼= AGL1(9). The former 
implies R � G(�) and hence 9 | |G/R|. Then 9 divides the index of S L2+t(7) in GL2+t(7) since G/R ∼= H/(H ∩ S L2+t(7)), 
which is a contradiction. Thus E9 � R� , and hence a quotient group of H ∩ S L2+t(7) contains a normal subgroup isomorphic 
to E9 since C is a 7-group by Proposition 3.8(2) and Theorem 4.3.

Let M be the pre-image of H ∩ Z(GL2+t(7)) in G . Clearly, M � G . Therefore M� � G� , and hence either M� = 1, or 
9 | ∣∣M�

∣∣ since G� ∼= AGL1(9). The latter implies 9 | |M/C | since C is a 7-group, whereas M/C = H ∩ Z(GL2+t(V )) � Z6. 
Thus M� = 1, and hence M � G(�) .

Set A = (H ∩ S L2+t(7))/(H ∩ Z(S L2+t(7))), then A is isomorphic to a solvable subgroup of P S L2+t(7). Moreover, a quo-
tient group of A contains E9 as a normal subgroup since A ∼= R/M , E9 � R� and M � G(�) . Thus, t �= 0.

Assume that t = 1. Since Z16 � G�i
xi

, then H contains 2-elements of order at least 16, and hence A contains elements of 
order at least 8. Hence, A is isomorphic to a solvable subgroup of P S L3(7) of order divisible by 72. Then A ∼= E9 : Q 8 by [9], 
whereas A contains elements of order at least 8. Thus t �= 1, and hence the claim follows from (3) and from Proposition 5.1.

(5). G = C : (Q : J ), where |Q | = 32+ j , with 0 � j � 1, and J ∼= Z16.

Let S be a Sylow 7-subgroup of G containing C . Since G� ∼= AGL1(9), it follows that S � G(�) . Since G�i
�i

∼= E72 : (Z3 j ×
Z16) and G(�i ) � E72 : (Z3 j × Z2) by (1) and (2), it follows that |S| � 74. On the other hand, 74 � |C | � |S| by (4) and 
Proposition 3.8(3). Hence, S = C � G . Moreover, |H | = 24+e · 32+ f , where e � 1 and j � f � 2, again by (1) and (2). Then 
G = C : K , where K is a group of order 24+e · 32+ f , by [18, Theorem 6.2.1(i)].

Since K � ∼= AGL1(9), it results 
∣∣K(�)

∣∣ = 21+e · 3 f with e � 1 and j � f � 2. Let S be a Sylow w-subgroup of K(�) with 
w ∈ {2, 3}. If either e = 1 or f = 2, assume that w is 2 or 3, respectively. Then Z w � S(�i) for each i ∈ {1, ..., 9} since 
|S| = w2 and G�i

(�),xi
∼= Z3 j × Z2, with j = 0, 1, for each i ∈ {1, ..., 9} by (1). Then S(�i) ∩ S(�i′ ) �= 1 for some i, i′ ∈ {1, ..., 9}, 

with i �= i′ since the number of cyclic subgroup of Q (�) is w + 1, which is at most 4, and |�| = 9. However, this case is 
excluded since it contradicts Lemma 3.6(2). Thus e = 0, f � 1, and hence |K (�)| = 2 · 3 f . From this fact and K � ∼= AGL1(9), 
it results that the pre-image P in K of Z3 × Z3 is Q : Z2, where Q a Sylow 3-subgroup of K . Moreover, the Frattini’s 
argument implies K = NK (Q )P , and hence K = Q : J with J is a Sylow 2-subgroup of K . Finally, J ∼= Z16 since J is of 
order 16 and G�i

xi
∼= Z3 j × Z16 by (1).

(6). Q is abelian.

Suppose the contrary. Then j = 1, and hence Q is extraspecial. If there is an element φ in Q of order 9, then F ix(φ2) �= 1
since V = V 4(7). Then K preserves F ix(φ2) since 

〈
φ2

〉 = Z(Q ), whereas K acts irreducibly on V by (4) since K = G/C = H . 
Thus, Q is of exponent 3. Now, Z(Q ) � K(�) since K � ∼= AGL1(9), therefore Z(Q ) preserves each �i in �. Hence, Z(Q )

normalizes V (�i ) . Thus, Z(Q ) is a reducible subgroup of GL4(7). Then Q is reducible by [18, Theorem 3.4.1]. Then either 
V = X1 ⊕ X2 ⊕ X3 ⊕ X4, where Xs , s = 1, 2, 3, 4, is a Q -invariant 1-dimensional subspace of V and K � GL1(7) � S4, or 
V = Y1 ⊕ Y2, where Y1, Y2 are Q -invariant 2-dimensional subspaces of V and K � GL2(7) � Z2. In each case, there is a 
Q -invariant subspace of V fixed pointwise by a non-trivial normal subgroup of Q since the order of Q is 33. Also, such a 
group contains Z(Q ). So, F ix(Z(Q )) is a H-invariant subspace of V of dimension at least 1 since Z(Q ) � K , and we reach 
a contradiction since K acts irreducibly on V . Thus, Q is abelian.

(7). The final contradiction.

Q acts reducibly on V by [18, Theorem 3.2.3] since Z3 × Z3 � Q , hence K acts transitively on a Q -invariant decomposition 
of V in subspaces of equal dimension by [18, Theorem 3.4.1] since K acts irreducibly on V . Therefore, either K � GL1(7) � S4, 
or K � GL2(7) � Z2. However, the former does not contain cyclic subgroups of order 16. Hence, K � GL2(7) � Z2 and Q =
〈α〉 × 〈β〉 × 〈

γ
〉
, where o(α) = 3 j and o(β) = o(γ ) = 3. Also α ∈ Z(K ), whereas NK (〈δ〉) ∼= Z3 : Z4 for each δ ∈ Q \ 〈α〉.

Let V = V 1 ⊕ V 2 be the decomposition preserved by K . Clearly, J V 1
∼= Z8 acts faithfully on V 1 since J ∼= Z16 switches 

V 1 and V 2. Also, Q preserves V 1 and Q (V 1) �= 1. If Q (V 1) is of order 9, then Q (V 1) ∩ Q (V 2) �= 1 since Q � K , the order of Q
is 32+ f with f � 1 and K switches V 1 and V 2. However, this is impossible since it contradicts Lemma 3.6(2). Thus Q (V 1)

is of order 3, and hence (Z3 × Z3) : Z8 � K V 1
V 1

� GL2(7), which is also impossible. So, this case is ruled out and the proof is 
completed. �
5.2. G� is an almost simple group

In this subsection, we assume that Soc(G�) is a non-abelian simple group.

Proposition 5.12. One of the following holds:
15
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I. pm = 4 and D is isomorphic to one of the four 2-(96, 20, 4) designs constructed in [29].
II. pm = 9 and G� ∼= P S L2(11), M11 .

III. pm = 16 and G� ∼= P S L2(17).

Proof. Suppose that G� is almost simple and let S = Soc(G�
�). Since G� acts 2-transitively on � and |�| = pm + 2, one of 

the following holds v:

(1) S ∼= Apm+2 and pm � 3;

(2) S ∼= P S Lh(u) with h � 2, (h, u) �= (2, 2), (2, 3) and uh−1
u−1 = pm + 2;

(3) S ∼= P SU3(u) with u �= 2 and u3 + 1 = pm + 2;
(4) S ∼= Sz(22t+1) with t � 1, and 24t+2 + 1 = pm + 2;
(5) S ∼= 2G2(32t+1)′ with t � 1 and 36t+3 + 1 = pm + 2;
(6) S ∼= Sp2n(2) with n � 3 and 22n−1 ± 2n−1 = pm + 2;
(7) S ∼= P S L2(11), M11 and pm = 9;
(8) S ∼= A7 and pm = 13.

Assume that (1) occurs. Let �i ∈ � and xi ∈ �i , then Apm+1 � G�
�i

� S pm+1, and hence a quotient group of G�i
xi

contains 
Apm+1 by Corollary 3.10. Thus, one of the following holds by Theorem 3.4:

(i) G�i
xi

� �L2(pm);

(ii) G�i
xi

� (Q 8 ◦ D8).S5 and pm = 9;

(iii) G�i
xi

∼= S L2(13) and pm = 27;

(iv) G�i
xi

� (Z pm/3−1 × SU3(pm/3)).Z2m/3, with m ≡ 0 (mod 3).

(v) Sp4(pm) � G�i
xi

� �Sp4(pm), with m even.

(vi) Sz(2m/2) � G�i
xi

�
(

Z2m/2−1 × Sz(2m/2)
)
.Zm/2, with m ≡ 2 (mod 4);

(vii) G2(2m/3)′ � G�i
xi

�
(

Z2m/3−1 × G2(2m/3)
)
.Zm/3, with m ≡ 0 (mod 3).

Cases (i)–(vii) bring together some of the automorphism groups of the 2-designs listed in Theorem 3.4. For instance, 
�L2(pm) contains G�i

xi
when this one is as in (2.a.i), (2.a.iii) or in (2.c.i) of Theorem 3.4, (Q 8 ◦ D8).S5 contains G�i

xi
when 

this one is as in (2.a.iii) or in (2.c.i) for pm = 9 and the group in case (vii) contains the groups in (2.c.v) or (2.c.vi) for pm = 8
(the non solvable case) of Theorem 3.4.

It is easy to check that only groups in (i) for pm = 2, 3, 4, 5 and in (vi) admit a quotient group containing A pm+1 as a 
normal subgroup. Actually, pm �= 2 by Lemma 2.5, and pm �= 5 since A6 occurs only in (i) for pm = 9 and in (vi) for pm = 4. 
If pm = 3, then G is solvable by [40], and this case is ruled out. Thus pm = 4, and hence the assertion (I) follows from [29].

Assume that (2) occurs. Thus [uh−1] : S Lh−1(u) � G�
�i

(e.g. see [27, Proposition 4.1.17(II)]), and hence a quotient group of 
G�i

xi
contains [u f (h−1)] : S Lh−1(u f ) as a normal subgroup by Corollary 3.10. This is clearly impossible for h � 3, hence h = 2. 

Then u f = pm + 1. By [43, B1.1], either (pm, u f ) = (23, 32), or f = 1, p = 2 and u is a Fermat prime, or m = 1, u = 2 and 
p is a Mersenne prime. In each case, G�

�i
contains a normal Frobenius group of order (pm + 1)

pm

(pm,2)
with kernel of order 

pm + 1 and complement of order pm

(pm,2)
. Since a quotient group of G�i

xi
is isomorphic to G�

�i
by Corollary 3.10, it follows 

from Theorem 3.4 that either Di ∼= AG2(pm), where pm is either 8, or 22e
with e � 1, or a Fermat prime, or Di is as in 

(2.b), or Di is as in (2.c.i) of Theorem 3.4.
Assume that Di ∼= AG2(pm), where pm is either 8, or 22e

with e � 1, or a Fermat prime. Then either G�i
xi

� �L1(p2m), or 
S L2(pm) � G�i

xi
, or pm = 5 and S L2(3) � G�i

xi
by [15,32].

If S L2(pm) � G�i
xi

, then (pm + 1)
pm

(pm,2)
divides 

∣∣�L2(pm) : S L2(pm)
∣∣, and hence (pm − 1)m, since a quotient group of G�i

xi

contains a normal Frobenius group of order (pm + 1)
pm

(pm,2)
. This is clearly is impossible. Case pm = 5 and S L2(3) � G�i

xi
is 

ruled out similarly. Thus G�i
xi

� �L1(p2m), and hence (pm + 1)
pm

(pm,2)
divides the order of �L1(p2m). Then pm

(pm,2)
| 2m, and 

hence pm = 4, 16 since pm � 3 by Lemma 2.5.
Case (2.c.i) of Theorem 3.4 is ruled out by the previous argument since S L2(pm) � G�i

xi
� (Zqm/2−1 ◦ S L2(pm)).Zm , and 

we obtain pm = 4, 16 for Di as in (2.b) of Theorem 3.4 since G�i
xi

� �L1(p2m) in this case. Hence, pm = 4, 16 in each case. 
If pm = 4, then A5 � G� � S5, and hence the assertion (I) follows from [29] in this case.

Assume that pm = 16. Then P S L2(17) � G� � P GL2(17). If G� ∼= P GL2(17), then a quotient group of G�i
xi

is isomorphic 
to Frobenius group of order 17 · 16. However, this is impossible since G�i

x � �L1(28). Thus G� ∼= P S L2(17), which is (III).

i

16
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Cases (3), (4) and (5) yield an equation of type ui = pm +1, with i = 3, 2, 3 respectively. Only (4) is admissible with m = 1
and u = 2 by [43, B1.1(2)], however it is ruled out since u �= 2 in (4). Case (6) cannot occur since 22n−1 ± 2n−1 = pm + 2
with n � 3 has no solutions. In (7), G� ∼= P S L2(11), M11 by [9], and hence (II) holds.

Finally, assume that (8) occurs. Then G� ∼= A7 by [9]. Moreover, Di ∼= AG2(13) and G�i
xi

� GL2(13) by Theorem 3.4. On 
the other hand, a quotient group of G�i

xi
contains P S L2(7) by Corollary 3.10 since P S L2(7) � G�

�i
, being |�| = 15, and we 

reach a contradiction. This completes the proof. �
Theorem 5.13. If G� is almost simple, then pm = 4 and D is isomorphic to one of the four 2-(96, 20, 4) designs constructed in [29].

Proof. Assume that Case (II) of Proposition 5.12 occurs. Then H is an irreducible subgroup of GL8+t(2) with t � 8 by 
Lemma 5.1. Moreover, a quotient group of H is isomorphic either to P S L2(11) or to M11, since C � G(�) by Theorem 4.3. 
From [6, Tables 8.18–8.19, 8.25–8.26, 8.35–8.36, 8.44–8.45], it follows that either H = G� and t = 1, 2, or H ∼= S L2(11) <
Z2.M12 for t = 2. However, the action of H on V 4+t(3) is irreducible only for t = 1 by [54]. Therefore G(�) = C and hence 
G�

(�),x = 1 for � ∈ � and x ∈ �. It follows that G�
�

∼= G�
x by (3.1) of Corollary 3.10. Thus, G�

(�),x is isomorphic either to A5 or 
to M10 according to whether H is isomorphic to P S L2(11) or M11, respectively, by [9]. On the other hand, G�

x is contained 
in one of the groups �L2(9), G Sp4(3), or (D8 ◦ Q 8) .S5 according to whether either one of (2.a.i) or (2.c.i), or (2.c.iii), or 
one of (2.a.iii) or (2.c.vi) occurs, respectively, by Theorem 3.4 since pm = 9 and G�

x is non-solvable. However, none of these 
groups contains A5 or M10 (see [6, Tables 8.12–8.13]), and hence Case (II) is ruled out.

Assume that Case (III) occurs. Then H is an irreducible subgroup of GL8+t(2), with t � 8, by Lemma 5.1. Moreover, a 
quotient group of H is isomorphic to P S L2(17) since C � G(�) by Theorem 4.3. If t < 8, then t = 0 and H ∼= P S L2(17) by [3, 
Theorem 3.1] since �∗

8(2) = 17 divides the order of H . Thus |G| = 212 ·32 ·17, and hence |Gx| = 23 ·17 since v = 29 ·32. Then 
this case is excluded since k = 24 ·17 does not divide the order of Gx . Therefore t = 8, and hence C = V by Proposition 3.8(3). 
It is easy to verify that H is not a geometric subgroup of GL16(2) by using [27, Section 4]. Thus, H is a nearly simple 
subgroup of GL16(2), and hence H ∼= P S L2(17) by [54].

Let Q be a Sylow 17-subgroup of G . Simple computations with the aid of GAP [17] show that Q preserves a decompo-
sition of V = V 1 ⊕ V 2, where V 1 and V 2 are the unique Q -invariant proper subspaces of V . Moreover, V H

1 and V H
2 are two 

distinct orbits each of length 18, and 
∣∣V 2 ∩ V η

1

∣∣ = 23 for each η ∈ H \ H V 1 and 
∣∣V 1 ∩ V σ

2

∣∣ = 23 for each σ ∈ H \ H V 2 .
The group Q fixes a point x of D since v = 217 · 32. Thus Q preserves the unique element � of � containing x, and 

hence normalizes V (�) , being V x = V (�) . Then V x is either V 1 or V 2 since V 1 and V 2 are the unique Q -invariant proper 
subspaces of V . Dualizing, Q preserves a block B of D, and hence also V B is either V 1 or V 2. Actually, (V x, V B) is either 
(V 1, V 2) or (V 2, V 1) since 

∣∣G B : G B,x
∣∣ = 24 · 17 and Gx/V x ∼= G B/V B ∼= F136. In particular, x and B are the unique point and 

block of D fixed by Q respectively. Moreover, |B ∩ �| = 0 and |B ∩ �| = 24 for each �′ ∈ � \ {�} since Q acts regularly on 
� \ {�}.

Assume that (V x, V B) = (V 1, V 2). Then V H
1 = {V (�′) : �′ ∈ �}, and hence 

∣∣V B ∩ V (�′)
∣∣ = 23 for each �′ ∈ � \ {�}. On 

the contrary, V B = V B∩�′ , and hence 
∣∣V B ∩ V (�′)

∣∣ = 24 for each �′ ∈ � \ {�} since V B preserves each element of � \ {�}, 
|V B | = 28 and 

∣∣B ∩ �′∣∣ = 24. So, we obtain a contradiction, and hence this case is excluded. The case (V x, V B) = (V 2, V 1) is 
ruled out similarly, and the proof is thus completed. �
6. The case where D is of type 2

In this section, we assume that D is of type 2. Hence, D is a symmetric 2-((λ + 6) λ2+4λ−1
4 , λλ+5

2 , λ) design with λ ≡ 1, 3
(mod 6) admitting a flag-transitive automorphism group G preserving a partition � of the point set of D in λ2+4λ−1

4

classes each of size λ + 6. Then Di is a 2-(λ + 6, 3, λ/θ) design with θ | λ admitting G�i
�i

as a flag-transitive point-primitive 

automorphism group for each i = 1, ..., λ
2+4λ−1

4 by Theorem 2.4. Our aim is to prove the following result, thus completing 
the proof of Theorem 1.1.

Theorem 6.1. If D is of type 2, then D is isomorphic to the 2-(45, 12, 3) design as in [40, Construction 4.2].

6.1. Hypothesis

If λ = 3, the assertion follows from [40, Corollary 1.2]. Therefore, in the sequel, we assume that λ > 3.

Lemma 6.2. Let γ ∈ G, γ �= 1, then 
∣∣Fix(γ )

∣∣ <
3(λ2+4λ−1)

4 .

Proof. Let γ ∈ G , γ �= 1, then

∣∣Fix(γ )
∣∣ � λ√ · (λ + 6)

λ2 + 4λ − 1
<

3(λ2 + 4λ − 1)
λ(λ + 5)/2 − λ(λ + 5)/2 − λ 4 4

17



A. Montinaro Discrete Mathematics 347 (2024) 114070
by [28, Corollary 3.7] since c = λ + 6, d = λ2+4λ−1
4 and λ > 3. �

Lemma 6.3. Let x be any point of D, then G(�),x is a {2,3}-group. Moreover, 
∣∣G(�) : G(�),x

∣∣ | λ + 6.

Proof. Let x be any point of D and let ϕ be any w-element of G(�),x with w a prime and w �= 2, 3. Then ϕ fixes at least a 
block B of D by [28, Theorem 3.1]. Then ϕ fixes B pointwise since B intersects each element of � in either 0 or 3 points. 
Therefore, ϕ fixes at least k blocks of D again by [28, Theorem 3.1]. Let B ′ and B ′′ be further blocks fixed by ϕ . We may 
repeat the previous argument with B ′ and B ′′ in the role of B , thus obtaining that ϕ fixes B ′ and B ′′ pointwise, respectively. 
Then ϕ fixes at least 3(k − λ) points of D, and hence |Fix(ϕ)| � 3 (k − λ). Then

3

(
λ

λ + 5

2
− λ

)
� |Fix(ϕ)| < 3(λ2 + 4λ − 1)

4

by Lemma 6.2, and we reach a contradiction. Thus, G(�),x is a {2,3}-group.
Assume that G(�) �= G(�),x and let � be the element of � containing x. Then G(�) �= G(�) since G(�) � Gx . Thus G(�)� �=

1, and hence Soc(G)�� � G(�)� by Lemma 2.6 and [14, Theorem 4.3B(i)]. Therefore, G(�) acts transitively on �, and hence ∣∣G(�) : G(�),x
∣∣ = λ + 6. �

Lemma 6.4. Let � ∈ �, then each prime divisor of 
∣∣G(�)

∣∣ divides λ(λ − 1)(λ − 2)(λ − 3)(λ − 4).

Proof. Let � ∈ � and γ be a w-element of G(�) with w a prime such that w � λ. Let B(�) = {B ∩ � �= ∅ : B ∈ B}. Then 
(�, B(�)) is a non-trivial 2-(λ + 6,3, λ/θ) design by Theorem 2.4(VI.2). In particular, if B ∩� is any fixed element of B(�), 
θ is a constant number denoting the number of blocks of D whose intersection set with � coincides with B ∩ �. Now, γ
preserves each of the (λ+6)(λ+5)

6
λ
θ

elements of B(�) since γ fixes � pointwise, and hence γ fixes at least μ(λ+6)(λ+5)
6

λ
θ

blocks of D with μ ≡ θ (mod w). Here, μ � 1 since θ | λ but w � λ. Therefore,

μ
λ

θ

(λ + 6)(λ + 5)

6
� |Fix(ϕ)| < 3(λ2 + 4λ − 1)

4

by [28, Theorem 3.1] and Lemma 6.2. Thus μλ
θ

� 4, and hence λ
θ

is either 1 or 3 since λ is odd. In the former case λ = θ , 
μ � 4 and μ ≡ λ (mod w), whereas θ = λ

3 , μ = 1 and λ ≡ 3 (mod w) in the latter. Therefore, in both cases, the assertion 
holds. �

Throughout the remainder of the paper we will make use of the following fact:

G�
�

G�
(�)

∼= G�

G(�)G(�)

∼= G�
�

G�
(�)

. (6.1)

6.2. The 2-design D�

In this section, we show that � can be endowed with the structure of a 2-design admitting G� as a flag-transitive 
point-primitive automorphism group by using [7]. Moreover, G� is either almost simple or affine by [55].

For each block B of D define B ′ = {� : � ∩ B �= ∅} and B′ = {B ′ : B ∈ B}. Now, define the following equivalence relation 
on B′ ×B′:

R = {(B ′
1, B ′

2) ∈ B′ × B′ : B ′
1 = B ′

2}.

Denote by B� the equivalence class determined by the block B of D, and by B� the quotient set {B� : B ∈ B}. Finally, we 
define

I = {(�, B�
) ∈ � × B� : � ∈ B ′ for each B ′ ∈ B�}

Now, consider the incidence structure D� = (�, B�, I). Then the following hold:

Proposition 6.5. D� = (�, B�, I) is a 2-
(

λ2+4λ−1
4 ,

λ(λ+5)
6 ,

(λ+6)2λ
9η

)
design with η = ∣∣B�

∣∣ admitting G� as a flag-transitive auto-

morphism group. In particular, λ ≡ 3 (mod 6).

Proof. By [7, Proposition 2.3] and since λ ≡ 1, 3 (mod 6), either the assertion follows, and hence λ ≡ 3 (mod 6), or D� is a 
symmetric 1-design with λ2+4λ−1

4 points and λ2+4λ−1
4 − 1 points on any block. In the latter case, one has λ2+4λ−1

4 = λ(λ+5)
6 , 

and hence λ = 3, which is contrary to our assumptions. �

18
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Remark 6.6. In the sequel, we will denote the replication number of D� and (λ+6)2λ
9η by r� and λ� , respectively. Further, 

we set R = r�

(r�,λ�)
.

Lemma 6.7. Let B be any block of D, then G B � G B ′ and η = |G B ′ : G B |.

Proof. Let B be any block of D, then G B � G B ′ since B ′ = {� : � ∩ B �= ∅}. Thus, η � |G B ′ : G B |. Now, let C be any other 
block of D such that C ′ = B ′ . Then B g = C for some g ∈ G since G acts blocks-transitively on D. Therefore (B ′)g = C ′ = B ′ , 
and hence g ∈ G B ′ . Thus η � |G B ′ : G B |, and hence η = ∣∣B�

∣∣ = |G B ′ : G B |. �
Proposition 6.8. Either η = 1 or η = λ + 6.

Proof. Assume that η > 1. Hence, G B �= G B ′ by Lemma 6.7. Further, G B ′ �= G since η | (λ+6)2λ
9 by Proposition 6.5 and 

|G : G B | = (λ + 6) λ2+4λ−1
4 . Then � = �G , where � = BG B′ , is a G-invariant point-partition for D′ = (B, P), the dual of D, 

by [14, Theorem 1.5A]. Hence, D′ is a symmetric 2-design with the same parameters of D admitting G as a flag-transitive 
automorphism group preserving the point-partition � with d′ classes each of size c′ = η. Then η is as in Theorem 2.4. If 
η = λ + 2, then 9(λ + 2) | (λ + 6)2λ and hence 9(λ + 2) | 32, a contradiction. Similarly, one has η �= λ+2

2 . If η = λ2, then 
9λ2 | (λ + 6)2λ and hence 9λ | (λ + 6)2. Thus λ | 6, and hence λ = 3 since λ is odd. However, this contradicts the assumption 
λ > 3. Therefore η = λ + 6, which is the assertion. �
Corollary 6.9. If η = 1, then G(�) = 1.

Proof. If η = 1 then G(�) � G B ′ = G B for any block B of D, and hence G(�) = 1 by [28, Theorem 3.1]. �
Lemma 6.10. Let � ∈ �, then the following hold:

(1) R = λ+5
2 and R > |�|1/2;

(2) R divides the length of any non-trivial point-G�
�-orbit on D� .

Proof. Since r� = (λ+5)
2

(λ+6)λ
3η and λ� = (λ+6)2λ

9η , and η = 1 or λ + 6 by Lemma 6.8, it follows that (r�, λ�) = (λ+6)λ
3η . Thus 

R = λ+5
2 , and hence (1) follows.

Let � ∈ � and let B�
� be the set of blocks of D� incident with �. Now, let �0 ∈ � \ {�}, then 

(
B�

�,�
G�

�

0

)
with the 

incidence relation inherited from that of D� is a 1-design by [10, 1.2.6] since G� acts flag-transitively on D� , and hence 

r� |
∣∣∣∣�G�

�

0

∣∣∣∣λ� . Thus R |
∣∣∣∣�G�

�

0

∣∣∣∣, which is (2). �

Theorem 6.11. G� acts primitively on �. Moreover, Soc(G�) is either non-abelian simple or an elementary abelian w-group for some 
odd prime w.

Proof. Since λ2+4λ−1
4 − 1 = (

λ+5
2

) (
λ−1

2

)
and λ(λ+5)

6 − 1 =
(

λ+6
3

)(
λ−1

2

)
, it follows that

(
λ2 + 4λ − 1

4
− 1,

λ (λ + 5)

6
− 1

)2

=
(

λ − 1

2

)2

� λ2 + 4λ − 1

4
− 1,

and hence G� acts primitively on � by [55, Lemma 2.7]. Further, since |�| is odd, Soc(G�) is either non-abelian simple or an 
elementary abelian w-group for some odd prime w , or G� is a rank 3 group and there is an integer x > 1 such that |�| = x2

by [55, Theorem 1.1]. In the latter case, (λ+2)2−5
4 = x2 since |�| = λ2+4λ−1

4 = (λ+2)2−5
4 . Hence (λ + 2 − 2x) (λ + 2 + 2x) = 5, 

which does not have admissible solutions for x > 1. �
Corollary 6.12. λ �= 9, 21, 75, 723.

Proof. Assume that λ = 9, 21 or 75. Then d = 29, 131 or 1481, respectively, and in all these cases d is a prime. By The-
orem 6.11 and [19, Theorem 1], either Ad � G� � Sd and Ad−1 � G�

� � Sd−1, or G� � AGL1(d). In the latter case, λ(λ+5)
6

divides 
∣∣G�

∣∣, and hence |AGL1(d)|, since G� acts flag-transitively on D� . However, this is impossible since λ(λ+5)
6 is 21, 91, 

or 103 according as d = 29, 31, and 1481, respectively. Thus, Ad � G� � Sd and Ad−1 � G�
� � Sd−1. Further, either G�

(�) = 1

or G�/G� � Z2.
� (�)

19
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Note that, λ+5
2 divides the order G�

� by Theorem 2.3, and λ+5
2 is 7, 13 or 40 according as d = 29, 31, and 1481, respec-

tively. On the other hand, 
∣∣∣G�

(�)

∣∣∣ divides 
∣∣G(�)

∣∣ and hence divides (λ + 6) 
∣∣G(�),x

∣∣ with G(�),x a {2,3}-group by Lemma 6.3. 

Therefore 7, 13 or 5 divides the order of G�
�/G�

(�) according as d = 29, 31 or 1481, respectively. Thus 7, 13 or 5 divides the 
order of G�

�/G�
(�) , respectively, by (6.1), and this forces G�

(�) = 1. Therefore, Ad−1 � G�
�/G�

(�) again by (6.1) since Ad−1 � G�
� . 

Then λ + 6 = |�| � d − 1 since the minimal non-trivial transitive permutation representation degree of Ad−1 is d − 1, which 
is not the case.

Assume that λ = 723. Then d = 5 · 41 · 641. Note that, λ(λ+5)
6 = 22 · 7 · 13 · 241 divides the order of G� since G� acts 

flag-transitively on D� by Proposition 6.5. Let U be a Sylow 241-subgroup of G . Then U � G� for some � ∈ � since 
(d, 241) = 1, and hence F ix�(U ), the set of the elements of � fixed by U , is of size 60 + 241t for some t � 0 since d ≡ 60
(mod 241). Actually, t = 0 by Lemma 6.2.

Let �′ ∈ F ix�(U ) \ {�}, then G� = NG�
(U )G(�) and G�,�′ = NG�,�′ (U )G(�∪�′) by the Frattini argument since G(�) � G�

and G(�∪�′) � G�,�′ . Hence,

∣∣G� : G�,�′
∣∣ =

∣∣∣NG�(U ) : NG�,�′ (U )

∣∣∣ · ∣∣G(�) : G(�∪�′)
∣∣

∣∣∣NG(�)
(U ) : NG(�∪�′) (U )

∣∣∣ .

Now, λ+5
2 = 22 · 7 · 13 divides 

∣∣∣G�
� : G�

�,�′
∣∣∣ by Lemma 6.10(2), and hence 7 · 13 divides 

∣∣G� : G�,�′
∣∣ by Lemma 6.3. On the 

other hand, 13 is coprime to 
∣∣G(�)

∣∣ by Lemma 6.4. Therefore, 13 |
∣∣∣NG�

(U ) : NG�,�′ (U )

∣∣∣, and hence 13 |
∣∣∣(�′)NG�

(U )
∣∣∣ with 

(�′)NG�
(U ) ⊆ F ix�(U ) \ {�}. So, 13 | |F ix�(U )| − 1 Since F ix�(U ) \ {�} is a disjoint union of NG�

(U )-orbits, but this is 
impossible since |F ix�(U )| = 60. �
6.3. 2-designs Di

The aim of this section is to prove the following result by analyzing the structure of the 2-designs Di defined in Theo-
rem 2.4(VI.2):

Theorem 6.13. One of the following holds:

(1) λ = zh−1
z−1 − 6, where z a power of 2, z − 1 | h − 6, h is even for z ≡ 2 (mod 3) and divisible by 3 for z ≡ 1 (mod 3). In particular, 

h > 3 and (h, z) �= (4, 2). Moreover, the following facts hold:

(a) λ+5
2 = z

2
zh−1−1

z−1 is divisible by a primitive prime divisor of zh−1 − 1;
(b) G(�) = 1;
(c) G�

� is divisible by a primitive prime divisor of zh−1 − 1;
(d) Soc(G) is non-abelian simple and P S Lh(z) � Soc(G)�� � P�Lh(z).

(2) λ = 3h − 6, h > 4 and h �= 6, G�
� is of affine type and the following facts hold:

(a) λ+5
2 = 3h−1

2 admits a primitive prime divisor;
(b) G(�) is a {2, 3}-group;
(c) G�

�/G�
(�)

is divisible by a primitive prime divisor of 3h − 1;

(d) Either G�
�/G�

(�) is solvable and G�
� � A�L1(3h), or a quotient group of G�

�/G�
(�) is an almost simple group with socle 

isomorphic either to P S Lh/e(3e) with h/e � 2 or to P Sph/e(3e) with h/e even and h/e � 2. Moreover, in both cases, (h/e, e) �=
(2, 1), (2, 2), (3, 2), (6, 1).

Theorem 6.13 relies on the following theorem, which is an immediate consequence of the classification of the flag-
transitive 2-(v, k, λ) designs with v ≡ 6 (mod λ) and λ ≡ 1, 3 (mod 6) admitting a flag-transitive automorphism group 
provided in [36].

Theorem 6.14. Let Di be a 2-(λ + 6, 3, λ/θ)-design with λ ≡ 3 (mod 6) and λ > 3 admitting a flag-transitive automorphism group 
G�i

�i
. Then one of the following holds:

(1) Di is a 2-(3h, 3, λ/θ) design and G�i
�i

is a primitive 3/2-transitive rank 3 subgroup of A�L1(3h).

(2) Di is a 2-
(

zh−1
z−1 ,3, z − 1

)
design as in [36, Example 1.3(1)] with z even, z − 1 | h − 6, h even for z ≡ 2 (mod 3) and h divisible 

by 3 for z ≡ 1 (mod 3). Moreover, one of the following holds:
(a) P S Lh(z) � G�i

�i
� P�Lh(z);

(b) G�i ∼= A7 and (h, q) = (4, 2).
�i
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(3) Di ∼= AGh(3), h � 2, and G�i
�i

is a 2-transitive group of affine type.

Proof. It is an immediate consequence of [36] since λ ≡ 3 (mod 6) by Proposition 6.5. �
Proof of Theorem 6.13. Let � ∈ � and assume that G�

� is non-abelian simple. Then λ + 5 = z zh−1−1
z−1 and P S Lh(z) � G�

� �
P�Lh(z) with z even, z − 1 | h − 6, h even for z ≡ 2 (mod 3) or h divisible by 3 for z ≡ 1 (mod 3) by Theorem 6.14. 
Moreover, (h, z) �= (3, 4), (4, 2) since λ �= 9, 21 by Lemma 6.12. If h = 2 then λ + 5 = z, and hence z > 2, but this is in 
contrast to z − 1 | h − 6 and z even. Thus h � 3. Now, if h = 3, then z = 4 since z − 1 | h − 6, a contradiction. Therefore, 
h − 1 � 3. Further, if z = 2 then h is even, and hence h − 1 �= 6. Thus, λ+5

2 admits a primitive prime divisor by [27, Theorem 
5.2.14]. This proves (1.a).

Note that, either G(�) � G(�) , or Soc(G�
�) � G�

(�) by Lemma 2.6 since G(�) � G� . In the latter case, one has Soc(G�
�)x �

G�
(�),x , where x ∈ �. Therefore Soc(G�

�)x is solvable since G(�),x , and hence G�
(�),x , is a {2, 3}-group by Lemma 6.3. Then 

h = 2 by [27, Proposition 4.1.17(II)], whereas h > 3. Thus G(�) � G(�) , and hence G(�) = 1 since G(�) � G and G acts 
transitively on �. This proves (1.b). Now, (1.a) and (1.b) together with (6.1) and P S Lh(z) � G�

� � P�Lh(z) imply (1.c).
Let L = Soc(G). Then L acts point-transitively on D by Lemma 2.7 since G(�) = 1. Further, L is non-abelian simple by 

Theorem 6.11 since |�| = λ + 6 is divisible by 3, whereas |�| = λ2+4λ−1
4 is coprime to 3. Moreover, P S Lh(z) � L�

� � P�Lh(z)
by Lemma 2.6 with (h, z) fulfilling the above listed properties, and so we obtain (1.d).

Assume that G�
� is of affine type. Hence, λ = 3h − 6 with h > 4 and h �= 6 by Theorem 6.14 and Lemma 6.12 since λ > 3. 

Then (2.a) and (2.b) follow from [27, Theorem 5.2.14] and Lemma 6.3, respectively. Again by Theorem 6.14, either G�
� is a 

primitive 3/2-transitive subgroup of A�L1(3h) of rank 3 and the first part of (2.d) holds by (6.1), or G�
� acts 2-transitively 

on � by Theorem 6.14. In both cases, G�
� is divisible by a primitive prime divisor of 3h − 1, hence (2.c) follows from (2.b) 

and (6.1). Further, if G�
� acts 2-transitively on �, one of the following holds by [25, (B)] since h > 4 and h �= 6:

(i) G�
x � �L1(3h);

(ii) S Lh/e(3e) � G�
x � �Lh/e(3e) and h/e � 2;

(iii) Sph/e(3e) � G�
x � �Sph/e(3e) and h/e is even, h/e � 2;

Now, (i) implies the first part of (2.d) again by (6.1). In (ii) and (iii), G�
�/G�

(�)
is non-solvable since G�

(�)
is {2, 3}-group by 

(2.b), and hence G�
�/G�

(�) is non-solvable by (6.1). Now, a quotient group of G�
�/G�

(�) is an almost simple group with socle 
isomorphic either to P S Lh/e(3e) with h/e � 2, or to P Sph/e(3e) with h/e even and h/e � 2 by (ii) and (iii), respectively, 
again by (6.1). Moreover, in both cases (h/e, e) �= (2, 1), (2, 2), (3, 2), (6, 1) since h > 4 and h �= 6. Therefore the second part 
of (2.d) follows, and hence the proof is completed. �
Remark 6.15. Cases (1) and (2) of Theorem 6.13 have no common values of λ. Indeed, if it is not so there would be integers 
h1, h2 > 3 such that zh1 −1

z−1 = 3h2 with z a power of 2, which is contrary to [43, A8.5(2)].

6.4. The case where G� is of affine type

In this section, we assume that the socle of G� is an elementary abelian w-group for some odd prime w acting regularly 
on �. Set T = Soc(G�), then � can be identified with a t-dimensional G F (w)-vector space V in a way that T is the 
translation group of V and G� = T : G�

� � AGL(V ) since G� acts point-primitively on D� . Hence, |�| = |T | = wt . Further, 
λ = 3h − 6 and G�

� is of affine type by Theorem 6.13. Hence,

32h − 8 · 3h + 11

4
= |�| = wt. (6.2)

Lemma 6.16. The following hold:

(1) t is odd, w ≡ 2 (mod 3) and w � 17.
(2) (w, λ − j) = 1 for each j = 0, ..., 4.
(3) |G�|w = ∣∣G�

�

∣∣
w .

Proof. Rewriting (6.2), we obtain 
(
3h − 4

)2 − 4wt = 5. If t is even, then(
3h − 4 − 2wt/2

)(
3h − 4 + 2wt/2

)
= 5,

and hence 3h − 4 − 2wt/2 = 1 and 3h − 4 + 2wt/2 = 5. Therefore, 4wt = 4, whereas w is a prime. Thus, t is odd.
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Clearly, w > 3. Further, both 32h − 8 · 3h + 11 = 4wt and 32h − 8 · 3h + 11 ≡ 2 (mod 3) imply wt ≡ 2 (mod 3) and hence 
w ≡ 2 (mod 3). Moreover, if w = 5 then 

(
3h − 4

)2 − 4 · 5t = 5. Therefore 25 | (3h − 4
)2

, and hence t = 1 and h = 2, whereas 
λ > 3. Thus, w � 11 since w ≡ 2 (mod 3). If w = 11, then 32h − 8 · 3h ≡ 0 (mod 11), and hence 3h ≡ 8 (mod 11). However, 
this is impossible since the residues of 3h modulo 11 are 1, 3, 4, 5, or 9. Thus w > 11, and hence w � 17 since w ≡ 2
(mod 3). This proves (1).

Assume that λ ≡ j (mod w) for some j = 0, 1, 2, 3 or 4. Then j2 + 4 j − 1 ≡ 0 (mod w) since λ2+4λ−1
4 = wt . Then 

(w, j) = (11, 2), (5, 3) or (31, 4) since w is odd, but these are ruled out by (1). Thus, we obtain (2).
Finally, both (2) and Corollary 6.4 imply 

∣∣G(�)

∣∣
w = 1. Thus, |G�|w = ∣∣G�

�

∣∣
w . �

For each divisor m of t the group �Lm(wt/m) has a natural irreducible action on U ∼= Vm(wt/m). Now, G�
� acts irreducibly 

on V = Vt(w) since G� primitively on V by Lemma 6.11, so choose m to be minimal such that G0 � �Lm(wt/m) and write 
s = wt/m . Thus, G0 � �Lm(s) where sm = wt . Note that, m is odd, s is coprime to 3 and s � 17 by Lemma 6.16(1).

Lemma 6.17. m > 1.

Proof. Assume that m = 1, then G�
� � �L1(wt). Further λ/3 divides 

∣∣G�
�

∣∣, and hence 
∣∣�L1(wt)

∣∣, since G� acts flag-
transitively on D� and λ is odd. So 3h−1 − 2 | (wt − 1)t , and hence 3h−1 − 2 | 5t since

wt − 1 = |�| − 1 = (3h − 1)(3h − 7)

4
.

Therefore

32h − 8 · 3h + 11 = 4wt � 3
3h−1−2

5

by (6.2), which does not have admissible solutions since h > 4 by Theorem 6.13(2). This completes the proof. �
Lemma 6.18. G�

� does not contain any of the classical groups S Lm(s), Spm(s), SUm(s1/2), or 
ε
m(s) as a normal subgroup.

Proof. Let X be any of the classical groups S Lm(s), Spm(s), SUm(s1/2) or 
ε
m(s), and assume that X � G�

� . Actually, X
is neither Spm(s) nor 
±

m(s) since m is odd. In the remaining cases, we have X � G�
� � N�Lm(s)(X), and hence there 

are no quotient groups of G�
� containing P S Lh/	(3e) or P Sph/e(3e) as a normal subgroup since h/e � 2, (h/e, e) �=

(2, 1), (2, 2), (3, 2), (6, 1) and s is coprime to 3. Thus G�
� � A�L1(3h) by Theorem 6.13(2.d) since we saw that G�

� is of 
affine type. Then sm(m−1)/2, sm(m−1)/4 or s(m−1)2/4 divides 

∣∣G�
�

∣∣, and hence 
∣∣A�L1(3h)

∣∣, by Lemma 6.16(3), according as X is 
S Lm(s), SUm(s1/2) or 
m(s), respectively. Thus, s(m−1)2/4 | (3h − 1)h in each case. Actually, s(m−1)2/4 | h by (6.2). Therefore,

3s(m−1)2/4 � 3h = λ + 6 < |�| = sm (6.3)

since λ > 5. However, (6.3) does not have admissible solutions since m is odd, m > 1 and s � 17. �
6.5. Aschbacher’s theorem

Recall that G�
� � �, where � = N�Lm(s)(X) and X is any of the classical groups S Lm(s), Spm(s), SUm(s1/2) or 
ε(s). 

The case where X � G�
� is excluded in Lemma 6.18, hence, in the sequel, we assume that G�

� does not contain X . Now, 
according to [2], one of the following holds:

(I) G�
� is geometric, that is, it lies in a maximal member of one the geometric classes Ci of �, i = 1, ..., 8;

(II) (G�
�)(∞) is a quasisimple group, and its action on Vm(s) is absolutely irreducible and not realizable over any proper 

subfield of G F (s).

Description of each class Ci , i = 1, ..., 8, can be found in [27, Chapter 4].

Theorem 6.19. G�
� is not geometric.

Proof. The group G�
� does not lie in a maximal member of type C1 since G�

� acts irreducibly on Vm(s). Moreover, by the 
definition of s, G�

� does not lie in a maximal member of type C3. Further, G�
� does not lie in a maximal member of type C8

by Lemma 6.18.
Assume that G�

� lies in a maximal C2-subgroup of �. Then G0 preserves a sum decomposition of V = Va(s) ⊕· · ·⊕ Va(s)

with m/a � 2, and hence 
⋃m/a V ∗

a (s) is a union of G0-orbits. Then R | m (sa − 1) by Lemma 6.10(2) since the size of 
i=1 a
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⋃m/a
i=1 V ∗

a (s) is m
a (sa − 1). Then sm/2 < m

a (sa − 1) since R > sm/2 by Lemma 6.10(1), but no admissible solutions arise since 
s � 17, m is odd and m > 1 by Lemmas 6.16(1) and 6.17.

Assume that G�
� lies in a maximal member of type C4 or C7 of �. Then either V = Vt(w) = Va1 (w) ⊗ Va2 (w), t = a1a2

with 2 � a1 � a2, and G�
� � NGLt (w)(GLa1 (w) ◦ GLa2 (w)) in its natural action on V , or V = Vt(w) = Va(w) ⊗ · · · ⊗ Va(w), 

t = aμ , and G0 � NGLt (w)(GLa(w) ◦ · · · GLa(w)), respectively. Assume that the latter occurs with μ � 3. The non-zero vectors 

of the form x1 ⊗ · · · ⊗ xμ form a union of G�
�-orbits, of size 

(
wa−1

)μ
(w−1)μ−1 , and this number is therefore divisible by R . Then 

waμ/2 <

(
wa−1

)μ
(w−1)μ−1 since R > waμ/2, and hence a = 2 and μ = 3. So t is even, but this contradicts Lemma 6.16(1). Thus, 

V = Vt(w) = Va1 (w) ⊗ Va2 (w), t = a1a2 with 2 � a1 � a2 and G�
� � NGLt (w)(GLa1 (w) ◦ GLa2 (w)). As in the previous proof, 

R divides the number of non-zero vectors of the form x1 ⊗ x2, which is 2(wa1 −1)(wa2 −1)
(w−1)

. This must be greater than wa1a2/2. 
Thus, a2 � 3, and hence a1 = a2 = 3 since t is odd and 2 � a1 � a2. Then R divides ((w3 − 1)2/(w − 1), w9 − 1), hence 
divides 3(w3 − 1), which is less than w9/2. This contradicts Lemma 6.10(1).

Assume that G�
� lies in a maximal member of type C5 of �. Then G0 � N�(GLw (w0)) with w = w	

0 and 	 > 1; but this 
normalizer lies in a subgroup of GL	(w0) ◦ GLm(w0) of GL	m(s0) � GLt(w), and hence G0 lies in a maximal member of 
type C4 or C7 of GLt(w), which is not the case by the above argument.

Finally, assume that G�
� lies in a maximal C6-subgroup of �. Hence, G�

� lies in the normalizer in GLm(s) of a symplectic 
type σ -group with σ �= s. As shown in [2, Section 11], we may assume that G0 contains the σ -group, otherwise lies in some 
other families Ci , which is not the case since these have been previously ruled out. Then G�

� � Zs−1 ◦ σ 1+2y · Sp2a(σ ) · t/m, 
m = σ y and σ | s − 1 since t is odd. Now, we may use the argument of [32, Lemmas 3.7–3.8] with s, σ and R in the role of 
q, s and r, respectively, to obtain t = 2 or 4, and hence a contradiction since t is odd by Lemma 6.16(1). �
Theorem 6.20. If λ > 3, then G� is not of affine type.

Proof. Assume that (G�
�)(∞) is quasi-simple. Let Z = G�

� ∩ GLm(s) and denote the socle of (G�
�)(∞) Z/Z by S . Then S is 

non-abelian simple and S � G�
�/Z � Aut(S). Then either S � G�

(�) Z/Z , or G�
(�) � Z since G�

(�) Z/Z � G�
�/Z .

Assume that G�
(�) � Z . Then G�

�/Z is isomorphic to a quotient group of G�
�/G�

(�) , and hence G�
�/G�

(�) is non-solvable. 
Then a quotient group of G�

�/G�
(�)

is an almost simple group with socle isomorphic either to P S Lh/e(3e) with h/e �
2 and (h/e, e) �= (2, 1), (2, 2), or to P Sph/e(3e) with h/e even, h/e � 2 and (h/e, e) �= (2, 1), (2, 2) by Theorem 6.13(2.d), 
forcing S to be isomorphic to one of these groups since S is non-abelian simple and S � G�

�/Z � Aut(S). Thus, (G�
�)(∞)

is isomorphic either to P S Lh/e(3e) with h/e � 2 and (h/e, e) �= (2, 1), (2, 2), or to P Sph/e(3e) with h/e even, h/e � 2 and 
(h/e, e) �= (2, 1), (2, 2), or to a covering group of any of them since (G�

�)(∞) is quasi-simple (see [27, p. 173]). Then either 
m � 3h−e − 1 � 3h/2 − 1 or m � 3h/2−1

2 by [27, Theorem 5.3.9] for h/e > 2 since s is coprime to 3. On the other hand, 
sm/2 < λ+5

2 = 3h−1
2 by Lemma 6.10(1). Then

17
3h/2−1

4 <
λ + 5

2
<

3h − 1

2

since s � 17, and no admissible solutions arise since h > 4 by Theorem 6.13(2). Thus h/e = 2, and hence S ∼= P S L2(3e) ∼=
P Sp2(3e) with e � 2. Actually, e �= 2 by Lemma 6.12. Then m � 3e−1

2 by [27, Theorem 5.3.9], and hence 17
3e−1

4 < λ+5
2 <

32e−1
2 , a contradiction.

Assume that S � G�
(�) Z/Z . Then 

(
G�

�/Z
)
/ 
(

G�
(�) Z/Z

)
is isomorphic to a quotient group O ut(S), and hence 

(
G�

�/Z
)
/(

G�
(�) Z/Z

)
is solvable. Therefore G�

�/G�
(�) Z is solvable since G�

�/G�
(�) Z ∼= (

G�
�/Z

)
/ 
(

G�
(�) Z/Z

)
, and hence the group (

G�
�/G�

(�)

)
/ 
(

G�
(�) Z/G�

(�)

)
is solvable since 

(
G�

�/G�
(�)

)
/ 
(

G�
(�) Z/G�

(�)

) ∼= G�
�/G�

(�) Z . Therefore, G�
�/G�

(�) is solvable since 

G�
(�)

Z/G�
(�)

∼= Z/(Z ∩ G�
(�)

) is solvable. Then G�
� � A�L1(3h) by Theorem 6.13(2.d) since G�

� is of affine type.

We know that λ(λ+5)(λ+6)
6 | ∣∣G�

�

∣∣ since G� acts flag-transitively on D� and r� = (λ+5)
2

(λ+6)λ
3η with η = 1 or λ + 6 by 

Proposition 6.8. Then λ(λ+5)(λ+6)
6η | (s − 1) |Aut(S)|. Now, s − 1 | sm − 1 and hence s − 1 | 1

4 (λ + 5) (λ − 1) since sm = |�| and 

|�| − 1 = 1
4 (λ + 5) (λ − 1). Thus, 3h

η (3h−1 − 2) | |Aut(S)|, with η = 1 or 3h since λ + 6 = 3h .

Assume that S is sporadic. Then h � 113 by [27, Table 5.1.C] since 3h−1 − 2 | |Aut(S)|. On the other hand, h > 4 by 
Theorem 6.13(2). Now, easy computations show that (6.2) is fulfilled only for h = 12, 16, 25, 28, 48 or 79, and in each of 
these cases wt = sm is a prime. So, m = 1, but this contradicts Lemma 6.17.

Assume that S is alternating of degree 	. If η = 1 then 3h | |Aut(S)|, and hence 	 > 2h by [14, Exercise 2.6.8]. Thus 	 � 9
since h > 4, and hence t � m � 	 − 2 > 2h − 2 by [27, Proposition 5.3.7(i)] since sm = wt with m | t . On the other hand 
w > 9 by Lemma 6.16(1), and this implies |�| � 32t . Thus h � t + 1 by (6.2), and hence t > 2h − 2 � 2t , a contradiction.
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Assume that η = λ +6. Then D� is symmetric, and hence D� is the development of 
(

λ2+4λ−1
4 ,

λ(λ+5)
6 ,

(λ+6)λ
9

)
-difference 

set by [4, Theorem VI.1.6]. If −1 ∈ G�
� then D� is reversible, and hence w = 2 by [4, Theorem VI.14.39(a)], a contradiction. 

Thus, −1 /∈ G�
� . We have seen that there are no admissible solutions for h � 113, this forces 	 > 16. Therefore (G�

�)(∞) ∼= A	

by [27, Theorem 5.1.4(i)], and 	 > 16.
If V is the fully deleted permutation module for A	 , then s = w and G�

� has one orbit on V of length either (w − 1)	 or 
(w − 1)	(	 − 1)/2 according to whether w � 	 or w | 	, respectively. Then either (w − 1)	 > w(	−1)/2 or (w − 1)	(	 − 1)/2 >
w(	−1)/2, respectively, by Lemma 6.10, but both cases give an immediate contradiction. Thus V is not the fully deleted 
permutation module for A	 , and hence m � 	(	 − 5)/4 by [22, Theorem 7]. Then (s − 1) (	!)w ′ > s	(	−5)/8 by Lemma 6.10, 
which leads to 	 � 16 and hence to a contradiction.

Assume that S is a simple Lie group in characteristic w . Let U be any Sylow w-subgroup of G�
� . Then U is isomorphic 

to a Sylow w-subgroup of G� since G(�) is a {2, 3}-group by Theorem 6.13(2.b) and w > 3. Then U is isomorphic to a 
Sylow w-subgroup of G�

� since |G�|w = ∣∣G�
�

∣∣
w by Lemma 6.16(3). Hence, U is isomorphic to a w-subgroup of �L1(3h)

since G�
� � A�L1(3h) and w �= 3. Now, (w, 3h − 1) = 1 since 3h − 1 | wt − 1 by (6.2). Therefore w | h, and hence U is cyclic. 

Then S ∼= P S L2(w) by [5, Theorem 1 and its proof]. Therefore (3h−1 − 2)(3h − 1) divides 6(w − 1) |P GL2(w)|, and hence 
t = 3 and 3h − 1 | 6(w − 1) since (3h − 7)(3h − 1) = 4(wt − 1) with t is odd by Lemma 6.16(1) and t > 1 by Lemma 6.17. At 
this point, we reach a contradiction since w > 17.

Assume that S is a simple Lie group in characteristic w ′ . We know that m > R w ′ (S), the smallest degree of a faithful 
projective representation of S over a field of w ′-characteristic. Lower bounds for R w ′ (S) are given in [27, Theorem 5.3.9]. 
Also we have R divides 

∣∣G�
�

∣∣ and hence (s − 1) |Aut(S)|w ′ . Thus

(s − 1) |Aut(S)|w ′ > R > sm/2 � sR w′ (S)/2,

and hence S is one of the numerical groups listed in [27, Lemma 7.1]. Thus h � 55 since 3h−1 − 2 | |Aut(S)|, and we have 
seen that no admissible cases occur for such values of h. �
6.6. The case where G� is almost simple

In this section, we assume that the socle of G� is a non-abelian simple group acting primitively on �. We will denote 
by L the pre-image of Soc(G�) in G .

Lemma 6.21. The following facts hold:

(1) |�| is coprime to 6;

(2)
∣∣L�

∣∣ � 3 
∣∣L�

�

∣∣2 ∣∣O ut(L�)
∣∣;

(3)
∣∣∣G�

�/G�
(�)

∣∣∣ | ∣∣O ut(L�)
∣∣ ∣∣∣L�

�/(L�
� ∩ G�

(�))

∣∣∣.
Proof. Assertion (1) is immediate since λ ≡ 3 (mod 6) by Lemma 6.5.

Since 
∣∣G�

�

∣∣ is divisible by r� = λ(λ+6)
3η

λ+5
2 with η = 1 or λ + 6, it follows that 3 

∣∣G�
�

∣∣ > |�| = ∣∣G� : G�
�

∣∣, and hence ∣∣G�
∣∣ � 3 

∣∣G�
�

∣∣2
.

Since G�
� acts primitively on � and L� � G� , it follows that 

∣∣G� : G�
�

∣∣ = ∣∣L� : L�
�

∣∣. Then 
∣∣G�

� : L�
�

∣∣ = ∣∣G� : L�
∣∣, and hence ∣∣G�

� : L�
�

∣∣ | ∣∣O ut(L�)
∣∣. Thus, 

∣∣L�
∣∣ � 3 

∣∣L�
�

∣∣2 ∣∣O ut(L�)
∣∣, which is (2).

Clearly, 
∣∣∣G�

�/G�
(�) : L�

�G�
(�)/G�

(�)

∣∣∣ =
∣∣∣G�

� : L�
�G�

(�)

∣∣∣. Thus, it divides 
∣∣G�

� : L�
�

∣∣ and hence 
∣∣O ut(L�)

∣∣. Then 
∣∣∣G�

�/G�
(�)

∣∣∣ |∣∣O ut(L�)
∣∣ ∣∣∣L�

�/(L�
� ∩ G�

(�))

∣∣∣ since L�
�/(L�

� ∩ G�
(�)) ∼= L�

�G�
(�)/G�

(�) , which is (3). �
Remark 6.22. We have seen that λ+5

2 is divisible by a primitive prime divisor of zh−1 − 1 or 3h − 1 according as case (1) or 
(2) of Theorem 6.13 occurs, respectively. Throughout the remainder of the paper we denote such primitive prime divisor by 
ϑ for both cases, it will be clear from the context to which case we refer to. Moreover, we simply say that ϑ is a primitive 
prime divisor of λ+5

2 .

Lemma 6.23. ϑ � 2h + 1.

Proof. In case (1) of Theorem 6.13, h > 3, h is even and h �= 4 when z = 2 and h is divisible by 3 when z = 4. Now, 
h − 1 | ϑ − 1 by [27, Proposition 5.2.15(ii)]. Then ϑ � 3h − 2 by [20, Theorem 3.9(b)(c)]. In particular, ϑ � 2h + 1 since h > 3.

In case (2) of Theorem 6.13, h > 4 and h �= 6. Further, h | ϑ − 1 by [27, Proposition 5.2.15(ii)]. Then ϑ � 2h + 1 by [20, 
Theorem 3.9(b)]. �
Lemma 6.24. ϑ does not divide 

∣∣O ut(L�)
∣∣.
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Proof. Assume that ϑ | ∣∣O ut(L�)
∣∣. Then either ϑ | f , or L� ∼= P S Ln(q) and ϑ | (n, q − 1), or P SUn(q) and ϑ | (n, q + 1) by 

[27, Table 5.1.B].
Assume that the former occurs. Note that, f � ϑ � 2h + 1 by Lemma 6.23. Then q = p f � p2h+1 � 3h p, and hence 

|�| <
(λ+2)2

4 � (q/p+2)2

4 . Therefore, P (L�) � |�| <
(q/p+2)2

4 , where P (L�) denotes the minimal degree of the non-trivial 
transitive permutation representations of L� . Then L� ∼= P S L2(q) with q > 11 by [27, Theorem 5.2.2] and [48–50] since 
f � 2h +1 and h > 3 in cases (1) and (2) of Theorem 6.13. Now, if G�

� is the stabilizer of a point of P G1(q), then |�| = q +1, 
and hence λ−1

2 · λ+5
2 = |�| − 1 = q, which is not the case since 

(
λ−1

2 , λ+5
2

) = 1 being λ ≡ 0 (mod 3). Then q is odd and L�
�

is dihedral, A4, S4, A5 or P GL2(q1/2) by [30]. For each of these groups, it is easy to check |�| = ∣∣L� : L�
�

∣∣ is greater than 
(q/p+2)2

4 since q is odd and q > 11. Thus, ϑ � f .
Assume that L� ∼= P S Ln(q) and ϑ | (n, q − 1). Then n � 2h + 1 and q > 2h + 1 by Lemma 6.23. Moreover, h > 3 by 

Theorem 6.13. Then

qn−1 <
qn − 1

q − 1
� |�| < λ2 (6.4)

by [27, Theorem 5.2.2]. In case (1) of Theorem 6.13, L = L� ∼= P S Ln(q), P S Lh(z) � L�
� with h > 3 and (h, z) �= (4, 2) and 

λ < zh . Then [30] together [27, Propositions 4.1.17(II), 4.1.22(II), 4.2.9(II) and 4.5.3(II)] force L� to be parabolic and q = z. 
However, this is impossible since λ < zh , n � 2h + 1 and (6.4) imply q2h � qn−1 < z2h and hence q < z.

In case (2) of Theorem 6.13, one has λ < 3h . Hence, (6.4) implies 72h < q2h < qn−1 < 32h since n � 2h + 1 and q > 2h + 1
with h > 3, which is clearly impossible.

Finally, the case L� ∼= P SUn(q) and ϑ | (n, q + 1) is ruled out similarly. Indeed, n � 2h + 1 > 7 and q > 2h − 1 > 5 since 
h > 3, and hence P (L�) > qn by [27, Theorem 5.2.2]. �
Proposition 6.25. The following facts hold:

(1) ϑ divides 
∣∣∣L�

�/(L�
� ∩ G�

(�)
)

∣∣∣;
(2) Each L�

�-orbit on � \ {�} is divisible by ϑ .

Proof. It follows from Theorem 6.13(1.c),(2.c) that ϑ divides 
∣∣∣G�

�/G�
(�)

∣∣∣. Then (1) immediately follows from Lemma 6.21(3) 

since ϑ does not divide 
∣∣O ut(L�)

∣∣ by Lemma 6.24.

Let �′ ∈ � \ {�}. Then 
∣∣∣(�′)L�

�

∣∣∣ divides 
∣∣∣(�′)G�

�

∣∣∣ since L�
� � G�

� , and the ratio is a divisor of 
∣∣G�

� : L�
�

∣∣. We have seen in 

the proof Lemma 6.21(2) that 
∣∣G�

� : L�
�

∣∣ divides 
∣∣O ut(L�)

∣∣. Thus, 
∣∣∣(�′)G�

�

∣∣∣ divides 
∣∣∣(�′)L�

�

∣∣∣ ∣∣O ut(L�)
∣∣. This fact implies (2) 

since ϑ divides 
∣∣∣(�′)G�

�

∣∣∣ by Lemma 6.10(2) and ϑ does not divide 
∣∣O ut(L�)

∣∣ by Lemma 6.24. �
Lemma 6.26. L� in neither sporadic nor alternating.

Proof. Assume that L� is sporadic and let � ∈ �. If L�
� is non-maximal in L� , then G� = L�.Z2 and both G� and G�

�

are listed in [52, Table 1] (see also [53]). However, none of them fulfills (|�| ,6) = 1, and hence they are ruled out by 
Lemma 6.21(1). Thus, |�| = ∣∣L� : L�

�

∣∣ with L�
� maximal in �. Now, it is easy to check in [9,53,13] that there are no sporadic 

groups with a primitive permutation representation degree of the form (3h−4)2−5
4 , or with a quotient group of a maximal 

subgroup containing P S Lh(z) with z power of 2, h > 3 and (h, z) �= (4, 2), (5, 2) as a normal subgroup. Thus, L� is not 
sporadic since it contradicts Theorem 6.13.

Assume that L� is alternating. Then either Ax × Ad−x � G�
� � Sx × Sd−x with 1 � x < d/2, or A y � Ad/y � G�

� � S y � Sd/y

with y, d/y > 1 by [30] since (|�| ,6) = 1. In both cases, no quotient group of G�
� contain P S Lh(z) with z a power of 2, 

h > 3 and (h, z) �= (4, 2) as a normal subgroup. Then λ = 3h − 6, h > 4, and a quotient group of G�
� is either solvable and 

divisible by a primitive prime divisor of 3h − 1, or contains a normal subgroup isomorphic to P S Lh/e(3e) with h/e � 2
and (h/e, e) �= (2, 2) or P Sph/e(3e) with h/e even, h/e � 2 and (h/e, e) �= (2, 2) by Theorem 6.13. Clearly, both cases cannot 
occur. �
Lemma 6.27. L� is not isomorphic to P S L2(q).

Proof. Assume that L� ∼= P S L2(q). The same argument used in Lemma 6.24 shows that q is odd and L�
� is dihedral, A4, 

S4, A5 or P GL2(q1/2). In each of these cases p divides 
∣∣L� : L�

�

∣∣, and hence p divides |�|. Then p > 3 by Lemma 6.21(1). 
Actually, L� cannot be any of the groups A4, S4 and A5 by Lemma 6.23 and Proposition 6.25(1).
�
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Assume that L�
�

∼= P GL2(q1/2). If P S L2(q1/2) � L�
� ∩G�

(�) , then L�
�/(L�

� ∩G�
(�)) � Z2 is not divisible by ϑ , thus contradict-

ing Proposition 6.25(1). Therefore, L�
�/(L�

� ∩ G�
(�)) ∼= P GL2(q1/2), and hence P GL2(q1/2) � G�

�/G�
(�) since L�

�/(L�
� ∩ G�

(�)) ∼=
L�
�G�

(�)/G�
(�) � G�

�/G�
(�) . However, this is impossible by Theorem 6.13 since p > 3 and h > 3.

Assume that L�
� is dihedral. Then

q(q2 − 1)

2
� 3 · (q ± 1)2 · 2 f ,

by Lemma 6.21(2). Thus q(q2 − 1) � 12 f (q ± 1)2, and hence q � 24 f . Thus either q = 25, or q = p � 23 since q is odd and 
q > 3. However, none of these cases yields a |�| of the form λ2+4λ−1

4 with λ = 3h − 6 and h > 4. �
Lemma 6.28. L�

� does not lie in a maximal C1-subgroup of L�.

Proof. Assume that L�
� is contained in maximal parabolic subgroup M of L� . Suppose that L� is not isomorphic to one of 

the following groups:

(1) P S Ln(q);
(2) P
+

n (q) with q even and n/2 odd, and M ∼= Pn/2, Pn/2−1;
(3) E6(q).

Then q is even by [30]. Moreover, there is a unique M-orbit O of size a power of 2 by [46, Lemma 2.6 and its proof]. 
Clearly, � /∈ O and O is a union of some non-trivial L�

�-orbits. The ϑ divides |O| by Proposition 6.25(2), a contradiction. 
Thus, L� is isomorphic to any of the groups P S Ln(q), P
+

n (q) with q even and n/2 odd, or E6(q). Now, we may apply the 
same argument as in [46, (1.a) in Section 5, (1) in Section 7 and Section 8] for linear spaces with our |�| and R and in the 
role of v and r, respectively, by Lemma 6.10, and we see that only the following cases are admissible:

(a) L� ∼= P S Ln(q) and one of the following holds:
(i) M = P1 and |�| = qn−1

q−1 . Moreover, G� is a point-2-transitive automorphism group of D�;

(ii) M = P2, n is odd, |�| =
(
qn−1

)(
qn−1−1

)
(q−1)

(
q2−1

) and R = q
(
qn−2−1

)
t(q−1)

(
q + 1, n−3

2

)
with t � 2q. Moreover, G� is a primitive 

point-rank 3 automorphism group of D� .

(b) L� ∼= P
+
10(q), |�| = (q4 + 1)(q3 + 1)(q2 + 1)(q + 1) and R = q(q5−1)

q−1 .

Assume that case (a.i) holds. If η = λ + 6 then D� is symmetric, and hence D� ∼= P Gn−1(q) and B� is the set of 
hyperplanes of P Gn−1(q) by [24]. Thus k� = qn−1−1

q−1 , and hence qn−1
q−1 < 3

2
qn−1−1

q−1 since |�| < 3
2 k� , being |�| = (λ2+4λ−1)

4

and k� = λ(λ+5)
6 . Therefore (2q − 3)qn−1 − 5 < 0, which does not have admissible solutions since (q, n) �= (2, 2), being L�

non-abelian simple. Thus η = 1, and hence G� = G by Corollary 6.9.
Assume that case (1) of Theorem 6.13 occurs. Then z = q and h = n − 1 by [27, Proposition 4.1.17(II)]. Therefore ϑ divides 

|�| − 1 = λ+5
2

λ−1
2 = q qn−1−1

q−1 , and hence 2(n − 1) + 1 � n − 1 by Lemma 6.23 and [27, Proposition 5.2.15(i)], a contradiction.

Assume that case (2) of Theorem 6.13 occurs. Then G�
� contains (Z3)

h , h > 4, as a normal subgroup. On the other 
hand, G� contains a normal subgroup H isomorphic to 

[
qn−1

] : S Ln−1(q) and G�/H is isomorphic to a quotient group of 
Zq−1.Z(n,q−1).Z f by [27, Proposition 4.1.17(II)]. It follows that h � 3, whereas h > 4.

Assume that case (a.ii) holds. If η = λ + 6, then D� is symmetric. However, this is impossible by [11] since L� ∼= P S Ln(q)

with n is odd. Thus η = 1, and hence G� = G by Corollary 6.9.
Assume that case (1) of Theorem 6.13 occurs. Then z = q and h = n − 2 by [27, Proposition 4.1.17(II)] since h > 3. 

Therefore ϑ divides

|�| − 1 = (qn − 1)(qn−1 − 1)

(q − 1)(q2 − 1)
− 1 = q

(
qn−2 − 1

)
(q + 1) (q − 1)2

(
(q − 1) (q + 1)2 + q3(qn−3 − 1)

)
,

and hence 2(n − 2) + 1 � 2 by Lemma 6.23 and [27, Proposition 5.2.15(i)]. So n = 2, which is not the case since n is odd.
Assume that case (2) of Theorem 6.13 occurs. As above, G�

� contains (Z3)
h , h > 4, as a normal subgroup. On the other 

hand, G� contains a normal subgroup K isomorphic to 
[
q2(n−2)

] : (S L2(q) ◦ S Ln−2(q)), and G�/K is isomorphic to a quotient 
group of (Zq−1 × Zq−1).Z(n,q−1).Z f by [27, Proposition 4.1.17(II)], and this leads to a contradiction since h > 4.

In case (b), since R = λ+5
2 = q(q5−1)

q−1 and |�| = λ2+4λ−1
4 , one has

|�| = R2 − 3R + 1 =
(

q(q5 − 1) − 5

)2

− 3

(
q(q5 − 1) − 5

)
+ 1,
q − 1 q − 1

26
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which compared to |�| = (q4 + 1)(q3 + 1)(q2 + 1)(q + 1) leads to q9 + 2q8 + 2q7 + 3q6 −q5 − 2q4 − 3q3 − 3q2 − 4q = 0, which 
does not have admissible solutions.

Finally, assume that L� is one of the groups P Spn(q), P SUn(q) or P
ε
n(q), and that L�

� is a non-degenerate subspace 
of P Gn(q). Again, Lemma 6.10 allows us to argue as in [46, Sections 3–6] with |�| and R and in the role of v and r, 
respectively, and we see that the unique admissible case is L� ∼= P SUn(q), L�

� is the stabilizer of a non-isotropic point of 
P Gn−1(q2), |�| = qn−1(qn−(−1)n)

q+1 and R | (q + 1)(qn−1 − (−1)n−1). Actually, n is odd since both |�| and q are odd. Further, 

R | |�| − 1 and hence R | ((q + 1)(qn−1 − 1), |�| − 1
)
. Then R | qn−1−1

q+1 since |�|− 1 = qn−1−1
q+1 (qn + q + 1), but this contradicts 

R2 > |�|. �
Lemma 6.29. L�

� does not lie in a maximal Ci -subgroup of L� with i = 2, 5.

Proof. Assume that L�
� ∈ C2(L�) ∪ C5(L�) and let M be a maximal group of L� containing L�

� . Note that, p is odd by [30]. 
Further, p | |�| by Lemma 6.28 and [46, Lemma 2.3], and hence p > 3 by Lemma 6.21(1).

Assume that L�
� ∈ C5(L�). Then L�

� normalizes a classical group over G F (q1/m) with m. Also, 
∣∣L�

∣∣ � 3 |M|2 ∣∣O ut(L�)
∣∣ �

|M|3 by Lemma 6.21(2), and hence one of the following holds by [1, Propositions 4.7, 4.17, 4.27 and 4.23]:

(1) L� ∼= P S Ln(q) and M is a C5-subgroup of type GLn(q1/3);
(2) L� ∼= P SUn(q) and M is a C5-subgroup either of type GUn(q1/3).

In case (1), we have

qn2−2 �
∣∣L�

∣∣ � 3 |M|2 ∣∣O ut(L�)
∣∣ �

6(q − 1,n) f (q − 1)2
∣∣P GLn(q1/3)

∣∣2

(q − 1,n)2
(

q1/3 − 1,
q−1

(q−1,n)

)2
(6.5)

by [27, Proposition 4.5.3(II)] and by [1, Corollary 4.3(i)], hence qn2−2 < 6 f q
2n2

3 +2 again by [1, Corollary 4.3(i)]. Then 
p f n2−12

3 � 6 f , and hence n = 3 since n > 2 by Lemma 6.27, f is divisible by 3, f � 1 and p > 3. Now, it is easy to 
verify that (6.5) is not fulfilled for n = 3.

In case (2), we may assume that n � 3 since P SU2(q) ∼= P S L2(q) cannot occur by Lemma 6.27. Then

qn2−3 �
∣∣L�

∣∣ � 3 |M|2 ∣∣O ut(L�)
∣∣ �

6(q + 1,n) f (q + 1)2
∣∣P GUn(q1/3)

∣∣2

(q + 1,n)2
(

q1/3 + 1,
q+1

(q+1,n)

)2
(6.6)

by [27, Proposition 4.5.3(II)] and [1, Corollary 4.3(ii)], and hence qn2−3 � 6 f q
2(n2−1)

3 +3 again by [1, Corollary 4.3(ii)]. Then 
q

n2−16
3 � 6 f , and hence n = 3 or 4 since n � 3 and f is divisible by 3, f > 1 and p > 3. Actually, (6.6) is not fulfilled for 

n = 4, hence n = 3. In this case, 
∣∣L�

∣∣ � 3 |M|2 ∣∣O ut(L�)
∣∣ becomes

q3(q3 + 1)(q2 − 1) � 6 f (q + 1,3)4q2(q + 1)2(q1/3 − 1)2

and hence q(q2 − q + 1)(q2/3 + q1/2 + 1) � 486 f , which has no admissible solutions since f is divisible by 3, f > 1 and 
p > 3.

Assume that L�
� ∈ C2(L�). Again by [1, Propositions 4.7, 4.17, 4.27 and 4.23], and bearing in mind that p > 3, and the 

L�
�-invariant decomposition of consists of non-degenerate isometric subspaces when L� is not P S Ln(q) by [30], one of the 

following holds:

(1) L� ∼= P S Ln(q) and M is a C2-subgroup of type GLn/t(q) � St , where t = 2, or t = 3 and either q = 5 and n odd, or 
(n, q) = (3, 11);

(2) L� ∼= P SUn(q) and M is a C2 subgroup of type GUn/t(q) � St , where t = 2, or t = 3 and either q = 5 and (n, 6) = 3, or 
q = 7 and n odd, or q = 13 and (n, 14) = 1, or t = n = 4 and q = 5;

(3) L� ∼= P Spn(q) and M is a C2 subgroup of type Spn/t(q) � St , where either t � 3, or (t, n) = (4, 8);
(4) L� ∼= P
ε

n(q) and M is a C2 subgroup of type O ε′
n/t(q) � St , where t = 2, or t = n = 7 and q = 5.

Note that, L� ∼= P
+
4 (5) is ruled out by Lemma 6.21(1), hence L�

� = M in the remaining cases of (1)–(4) by [27, Tables 
3.5.H–3.5.I].

Suppose that L�
�/(L�

� ∩ G�
(�)) is solvable. Then only (1) or (2) holds with ϑ | (q ∓1, n/2), respectively, by [27, Propositions 

4.2.9(II)–4.2.11(II)] since ϑ divides 
∣∣∣L�

�/(L�
� ∩ G�

(�)
)

∣∣∣ by Proposition 6.25(1). Now, ϑ | (q ∓ 1, n/2) implies ϑ | ∣∣O ut(L�)
∣∣, 

which is contrary to Lemma 6.24.
27
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Suppose that L�
�/(L�

� ∩ G�
(�)) is non-solvable. Then G�

�/G�
(�) is non-solvable by since L�

�/(L�
� ∩ G�

(�)) ∼= L�
�G�

(�)/G�
(�) �

G�
�/G�

(�) . Then a quotient group of G�
�/G�

(�) is almost simple with socle isomorphic either to P S Lh(z) with h > 3 and 
z even or to P S Lh/e(3e) with h/e � 2, or to P Sph/e(3e) with h/e even and h/e � 2 by Theorem 6.13(1.d),(2.d). Further, 
(h/e, e) �= (2, 1), (2, 2), (3, 2), (6, 1) in both latter cases. However, the above three possibilities for G�

�/G�
(�)

are excluded by 
[27, Propositions 4.2.9(II)–4.2.11(II)] since p > 3. �
Lemma 6.30. L� is not a simple exceptional group of Lie type.

Proof. Assume that L� = L(q) is a simple exceptional group of Lie type. Let M be a maximal group of L� containing L�
� . By 

[30], either M = NL�(L(q1/s)) with s an odd prime, or M is one of the groups listed in [30, Table 1] since L�
� is not contained 

in a maximal parabolic subgroup of L� by Lemma 6.28. In the former case, 
(
L�, M

)
is either (E6(q), NE6(q)(E6(q1/3))) or 

(2 E6(q), N2 E6(q)(
2 E6(q1/3))) by [1, Theorem 5] since 

∣∣L�
∣∣ � 3 |M|2 ∣∣O ut(L�)

∣∣ � |M|3 by Lemma 6.21(2). However, in none of 
the cases L� � 6(3, q ±1)s |M|2 is fulfilled. Thus, M is one of the groups listed in [30, Table 1]. Again, Lemma 6.21(2) implies 
L� � |M|3, and hence we may preliminary filter the groups in [30, Table 1] with respect [1, Theorem 5]. The admissible 
groups are then filtered respect to L� � 3 |M|2 ∣∣O ut(L�)

∣∣, and we obtain the following admissible cases:

(1) L� ∼= E7(q) and M ∼= 2 · (P S L2(q) × P
+
12(q)

) · 2;

(2) L� ∼= 2 E6(q) and M ∼= (4, q + 1). 
(

P
−
10(q) × q+1

(3,q+1)(4,q+1)

)
.(4, q + 1);

(3) L� ∼= 3 D4(q) and M ∼= G2(q);
(4) L� ∼= 2G2(q), q = 3m , m odd and m > 1, and M ∼= Z2 × P S L2(q);
(5) L� ∼= G2(q) and M ∼= S L3(q) : Z2 or SU3(q) : Z2 according as q ≡ ±1 (mod 4)

(6) L� ∼= G2(3) and M ∼= 23.S L3(2);
(7) L� ∼= F2(q) and M ∼= 2.
9(q);
(8) L� ∼= F2(q) and M ∼= 22.P
+

8 (q).S3;

Note that, case L� ∼= E6(q) and (4, q − 1). 
(

P
+
10(q) × q−1

(3,q−1)(4,q−1)

)
.(4, q − 1) � G�

� with G�
� containing a graph auto-

morphism of order 2 is excluded from the previous list. Indeed, in this case, L�
� = (4, q −1). 

(
P
+

10(q) × q−1
(3,q−1)(4,q−1)

)
.(4, q −

1) lies in a maximal parabolic subgroup of E6(q) of type D5, and this is impossible by Lemma 6.28.
Case (2) is ruled out by Lemma 6.21(1). Indeed,

|�| = ∣∣L� : L�
�

∣∣ = q16 q9 + 1

q + 1
(q8 + q4 + 1)

which is divisible by 3. Now, consider cases (1) and (3)–(8). Then L�
� = M by [31]. Note that, L�

� does not contain a quotient 
group as in Theorem 6.13(1). Thus λ = 3h − 6 with h > 4 and h �= 6 Theorem 6.13(2).

Let ϑ a primitive prime divisor of λ+5
2 , then ϑ divides 

∣∣∣L�
�/(L�

� ∩ G�
(�))

∣∣∣ by Proposition 6.25(1). Thus L�
�/L�

(�) is non-

solvable in (1) and (3)–(8). Then G�
�/G�

(�) is non-solvable, and hence a quotient subgroup of G�
�/G�

(�) is almost simple 
with socle isomorphic to one of the groups P S Lh/e(3e) or P Sph/e(3e) with h/e � 2 and (h/e, e) �= (2, 1), (2, 2) as a normal 
subgroup by Theorem 6.13(2.d) since q is odd. Then a quotient subgroup of L�

�/(L�
� ∩ G�

(�)) contains one of the groups 
P S Lh/e(3e) or P Sph/e(3e) with h/e � 2 and (h/e, e) �= (2, 1), (2, 2) as a normal subgroup since G�

�/L�
� is solvable (see the 

proof of Lemma 6.21(3)). Then only (1) and (4) are admissible, and both with q = 3m . Therefore q | ∣∣L� : L�
�

∣∣, and hence q
divides |�|, which is not the case by Lemma 6.21(1). �
Theorem 6.31. If λ > 3, then G� is not almost simple.

Proof. Assume that G� is almost simple. Then G� is one of the groups listed in [30]. However, only the following cases are 
admissible as consequence of Lemmas 6.26–6.30:

(1) L� is P
7(q) or P
+
8 (q), q is prime and q ≡ ±3 (mod 8), L�

� is 
7(2) or 
+
8 (2), respectively;

(2) L� ∼= P
+
8 (q), q is prime and q ≡ ±3 (mod 8), G� contains a triality automorphism of L� and L�

� is 23 · 26 · P S L3(2);
(3) L� ∼= P SU3(5) and L�

�
∼= M10.

Assume that L� is P
7(q), q prime and q ≡ ±3 (mod 8), and L�
� is 
7(2). Then Lemma 6.21(2) implies

1
q21 < |P
7(q)| � 3 |
7(2)|2 · 2 = 219 · 39 · 52 · 72
4

28
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by [1, Corollary 4.3(iv)] since q is a prime. Hence q = 3 since q ≡ ±3 (mod 8). However, |�| = |P
7(3) : 
7(2)| = 35 · 13 is 
excluded since it is divisible by 3. The remaining cases in (1) and in (2) are ruled out similarly.

Finally, assume that L� ∼= P SU3(5) and L�
�

∼= M10. Then |�| = λ2+4λ−1
4 = 52 · 7, a contradiction. �

Proof of Theorem 6.1. Proposition 6.5 and Theorems 6.11, 6.20 and 6.31 force λ = 3. At this point, the assertion follows 
from [40, Corollary 1.2]. �
Proof of Theorem 1.1. The result is an immediate consequence of Theorems 3.1 and 6.1. �
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