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Abstract: We introduce multidimensional congestion games, that is, congestion games whose set of
players is partitioned into d + 1 clusters C0, C1, . . . , Cd. Players in C0 have full information about all
the other participants in the game, while players in Ci, for any 1 ≤ i ≤ d, have full information only
about the members of C0 ∪Ci and are unaware of all the others. This model has at least two interesting
applications: (i) it is a special case of graphical congestion games induced by an undirected social
knowledge graph with independence number equal to d, and (ii) it represents scenarios in which
players have a type and the level of competition they experience on a resource depends on their
type and on the types of the other players using it. We focus on the case in which the cost function
associated with each resource is affine and bound the price of anarchy and stability as a function of d
with respect to two meaningful social cost functions and for both weighted and unweighted players.
We also provide refined bounds for the special case of d = 2 in presence of unweighted players.

Keywords: congestion games; pure Nash equilibrium; potential games; price of anarchy; price
of stability

1. Introduction

Congestion games [1–4] are, perhaps, the most famous class of non-cooperative games due to
their capability to model several interesting competitive scenarios, while maintaining nice properties.
In these games, there is a set of players sharing a set of resources. Each resource has an associate cost
function which depends on the number of players using it (the so-called congestion). Players aim at
choosing subsets of resources so as to minimize the sum of the resource costs.

Congestion games were introduced by Rosenthal in Reference [2]. He proved that each such a
game admits a bounded potential function whose set of local minima coincides with the set of pure
Nash equilibria [5] of the game, that is, strategy profiles in which no player can decrease her cost by
unilaterally changing her strategic choice. This existence result makes congestion games particularly
appealing especially in all those applications in which pure Nash equilibria are elected as the ideal
solution concept.

In these contexts, the study of inefficiency due to selfish and non-cooperative behavior has
affirmed as a fervent research direction. To this aim, the notions of price of anarchy [6] and price of
stability [7] are widely adopted. The price of anarchy (resp. stability) compares the performance of the
worst (resp. best) pure Nash equilibrium with that of an optimal cooperative solution.

Congestion games with unrestricted cost functions are general enough to model the Prisoner’s
Dilemma game, whose unique pure Nash equilibrium is known to perform arbitrarily bad with
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respect to the solution in which all players cooperate. Hence, in order to deal with significative
bounds on the prices of anarchy and stability, some kind of regularity needs to be imposed on the
cost functions associated with the resources. To this aim, lot of research attention has been devoted to
the case of polynomial cost functions [8–17], and more general latency functions verifying some mild
assumptions [10,18,19]. Among these, the particular case of affine functions occupies a predominant
role. In fact, as shown in References [20–22], they represent the only case, together with that (perhaps
not particularly meaningful) of exponential cost functions, for which weighted congestion games [20],
that is the generalization of congestion games in which each player has a weight and the congestion of
a resource becomes the sum of the weights of its users, still admit a potential function.

1.1. Motivations

Traditional (weighted) congestion games are defined under a full information scenario—each player
knows all the other participants in the game as well as their available strategies. These requirements,
anyway, become too strong in many practical applications, where players may be unaware about even
the mere existence of other potential competitors. This observation, together with the widespread
of competitive applications in social networks, has drawn some attention on the model of graphical
(weighted) congestion games [23–25].

A graphical (weighted) congestion game (G, G) is obtained by coupling a traditional (weighted)
congestion game G with a social knowledge graph G expressing the social context in which the players
operate. In G, each node is associated with a player of G and there exists a directed edge from node
i to node j if and only if player i has full information about player j. A basic property of (weighted)
congestion games is that the congestion of a resource r in a given strategy profile σ is the same for all
players. The existence of a social context in graphical (weighted) congestion games, instead, makes the
congestion of each resource player dependent. In these games, in fact, the congestion presumed by
player i on resource r in the strategy profile σ is obtained by excluding from the set of players choosing
r in σ those of whom player i has no knowledge. Clearly, if G is complete, then there is no difference
between (G, G) and G. In all the other cases, however, there may be a big difference between the cost
that a player presumes to pay on a certain strategy profile and the real cost that she effectively perceives
because of the presence of players she was unaware of during her decisional process (We observe that
the model of graphical congestion games is sufficiently powerful to describe an alternative scenario in
which players never perceive their real costs, which are perceived and evaluated by a central entity
only. In such case, the central entity aims at evaluating the global and real impact on the performance
of the game caused by the players’ strategic behaviour).

Graphical congestion games have been introduced by Bilò et al. in Reference [24]. They focus
on affine cost functions and provide a complete characterization of the cases in which existence of
pure Nash equilibria can be guaranteed. In particular, they show that equilibria always exist if and
only if G is either undirected or directed acyclic. Then, for all these cases, they give bounds on the
price of anarchy and stability expressed as a function of the number of players in the game and of the
maximum degree of G. These metrics are defined with respect to both the sum of the perceived costs
and the sum of the presumed ones.

Fotakis et al. [25] argue that the maximum degree of G is not a proper measure of the level of
social ignorance in a graphical congestion game and propose to bound the prices of anarchy and
stability as a function of the independence number of G, denoted by δ(G). They focus on graphical
weighted congestion games with affine cost functions and show that they still admit a potential
function when G is undirected. Then, they prove that the price of anarchy is between δ(G)(δ(G) + 1)
and δ(G)(δ(G) + 2 +

√
δ(G)2 + 4δ(G))/2 with respect to both the sum of the perceived costs and the

sum of the presumed ones, and that the price of stability is between δ(G) and 2δ(G) with respect to
the sum of the perceived costs.
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1.2. Our Contribution and Significance

The works of Bilò et al. [24] and Fotakis et al. [25] aim at characterizing the impact of social
ignorance in the most general case, that is, without imposing any particular structure on the
social knowledge graphs defining the graphical game. Nevertheless, real-world-based knowledge
relationships usually obey some regularities and present recurrent patterns: for instance, people tend
to cluster themselves into well-structured collaborative groups (cliques) due to family memberships,
mutual friendships, interest sharing, business partnerships.

To this aim, we introduce and study multidimensional (weighted) congestion games, that is, (weighted)
congestion games whose set of players are partitioned into d + 1 clusters C0, C1, . . . , Cd. Players in
C0 have full information about all the other participants in the game, while players in Ci, for any
1 ≤ i ≤ d, have full information only about the members of C0 ∪ Ci and are unaware of all the
others. It is not difficult to see (and we provide a formal proof of this fact in the next section) that
each multidimensional (weighted) congestion game is a graphical (weighted) congestion game whose
social knowledge graph G is undirected and verifies δ(G) = d. In addition, G possesses the following,
well-structured, topology: it is the union of d + 1 disjoint cliques (each corresponding to one of the
d + 1 clusters in the multidimensional (weighted) congestion game) with the additional property that
there exists an edge from all the nodes belonging to one of these cliques (the one corresponding to
cluster C0) to all the nodes in all the other cliques.

We believe that the study of graphical games restricted to some prescribed social knowledge
graphs like the ones we consider here, may be better suited to understand the impact of social ignorance
in non-cooperative systems coming from practical and real-world applications. Moreover, the particular
social knowledge relationships embedded in the definition of multidimensional (weighted) congestion
games perfectly model the situation that generates when several independent games with full
information are gathered together by some promoting parties so as to form a sort of “global
super-game”. The promoting parties become players with full information in the super-game,
while each player in the composing sub-games maintains full information about all the other players
in the same sub-game, acquires full information about all the promoting parties in the super game,
but completely ignores the players in the other sub-games. Such a composing scheme resembles, in a
sense, the general architecture of the Internet, viewed as a self-emerged network resulting from the
aggregation of several autonomous systems (AS). Users in an AS have full information about anything
happening within the AS, but, at the same time, they completely ignore the network global architecture
and how it develops outside their own AS, except for the existence of high-level network routers.
High-level network routers, instead, have full information about the entire network.

Furthermore, multidimensional (weighted) congestion games are also useful to model games in
which players belong to different types and the level of competition that each player experiences on
each selected resource depends on her type and on the types of the other players using the resource.
Consider, for instance, a machine which is able to perform d different types of activities in parallel
and a set of tasks requiring the use of this machine. Tasks are of two types: simple and complex.
Simple tasks take the machine busy on one particular activity only, while complex tasks require the
completion of all the d activities. Hence, complex tasks compete with all the other tasks, while simple
ones compete only with the tasks requiring the same machine (thus, also with complex tasks). A similar
example is represented by a facility location game where players want to locate their facilities so as
to minimize the effect of the competition due to the presence of neighbor competitors. If we assume
that the facilities can be either specialized shops selling particular products (such as perfumeries,
clothes shops, shoe shops) or shopping centers selling all kinds of products, we have again that the
shopping centers compete with all the other participants in the game, while specialized shops compete
only with shops of the same type and with shopping centers.

In this paper, we focus on multidimensional (weighted) congestion games with affine cost
functions. In such a setting, we bound the price of anarchy and the price of stability with respect to
the two social cost functions, which are the sum of the perceived costs and the sum of the presumed
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costs. In fact, when multidimensional (weighted) congestion games are viewed as graphical (weighted)
congestion games with highly clustered knowledge relationships, the sum of the perceived costs is
more appropriate to define the overall quality of a profile: players decide according to their knowledge,
but then, when the solution is physically realized, their cost becomes influenced also by the players
of which they were not aware. Hence, under this social cost function, the notions of price of anarchy
and price of stability effectively measure the impact of social ignorance in the system. On the other
hand, when multidimensional (weighted) congestion games are used to model players belonging to
different types, the perceived cost of a player coincides with the presumed one since there is no real
social ignorance, even if the fact that players can be of different types allows for a reinterpretation
of the model as a special case of graphical (weighted) congestion games. Hence, in such a setting,
the inefficiency due to selfish behavior has to be analyzed with respect to the sum of the presumed costs.

We determine general upper bounds for the price of anarchy and the price of stability as a function
of d. For the sum of the presumed costs, we show that the price of anarchy and stability of weighted

games are at most (
√

d+4+
√

d)(
√

d
√

d+4+d+4)
4
√

d+4
≤ d + 2 and 2, respectively. Instead, for the sum of the

perceived costs, the results of Reference [25] yield upper bounds of d(d + 2 +
√

d2 + 4d)/2 and 2d for
the price of anarchy and the price of stability, respectively.

Then, we investigate the case of unweighted games with d = 2 (i.e., bidimensional congestion
games) in higher depth and provide refined bounds. In particular, we prove that price of anarchy
is 119/33 ≈ 3.606 with respect to the sum of the presumed costs and it is 35/8 = 4.375 with respect
to the sum of the perceived ones, and that the price of stability is between (1 +

√
5)/2 ≈ 1.618

and 1 + 2/
√

7 ≈ 1.756 for the sum of the presumed costs as social cost function, and between
(5 +

√
17)/4 ≈ 2.28 and 2.92 for the sum of the perceived ones. These results are derived by exploiting

the primal-dual method developed in Reference [11].
A preliminary version of this paper has been presented at SIROCCO 2012 [26].

1.3. Paper Organization

Next section contains all formal definitions and notation. In Section 3 we discuss the existence of
pure Nash equilibria in multidimensional weighted congestion games. In Sections 4 and 5, we present
our bounds for the price of anarchy and the price of stability, respectively. Finally, in the last section,
we give some concluding remarks and discuss open problems.

2. Model and Definitions

For an integer n ≥ 2, we denote [n] := {1, 2, . . . , n}. In a weighted congestion game G, we have
n players and a set of resources R, where each resource r ∈ R has an associated cost function `r.
The set of strategies for each player i ∈ [n], denoted as Si, can be any subset of the powerset of R,
that is, Si ⊆ 2R. Each player i ∈ [n] is associated with a positive weight wi > 0. Given a strategy
profile σ = (σ1, . . . , σn), the congestion of resource r in σ, denoted as nr(σ), is the total weight of
players choosing r in σ, that is, nr(σ) = ∑i∈[n]:r∈σi

wi. The perceived cost paid by player i in σ is
ci(σ) = ∑r∈σi

`r(nr(σ)). An unweighted congestion game (congestion game, for brevity) is a weighted
congestion game in which all players have unitary weights. An affine weighted congestion game is a
weighted congestion game such that, for any r ∈ R, it holds that `r(x) = αrx + βr, with αr, βr ≥ 0;
the game is linear if βr = 0 for any r ∈ R.

For any integer d ≥ 2, a d-dimensional weighted congestion game (G, C) consists of a weighted
congestion game G whose set of players is partitioned into d + 1 clusters C0, C1, . . . , Cd. For a player
i, we denote by f (i) ∈ {0, . . . , d} the cluster she belongs to. We say that players in C0 are omniscient
and that players in Ci, for any i ∈ [d], are ignorant. Given a strategy profile σ, we denote by nr,j(σ) the
total weight of players belonging to Cj who are using resource r in σ. The presumed cost of a player
i in σ is ĉi(σ) = ∑r∈σi

`r(nr, f (i)(σ) + nr,0(σ)) if she is ignorant and ĉi(σ) = ∑r∈σi
`r(∑d

j=0 nr,j(σ)) =
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∑r∈σi
`r(nr(σ)) = ci(σ) if she is omniscient. A d-dimensional weighted affine congestion game is a pair

(G, C) such that G is an affine weighted congestion game.
Given a strategy profile σ and a strategy s ∈ Si for a player i ∈ [n], we denote with (σ−i, s) the

strategy profile obtained from σ by replacing the strategy σi played by i in σ with s. A pure Nash
equilibrium is a strategy profile σ such that, for any player i ∈ [n] and for any strategy s ∈ Si, it holds
that ĉi(σ−i, s) ≥ ĉi(σ).

Let Σ be the set of all possible strategy profiles which can be realized in (G, C). We denote with
NE(G, C) ⊆ Σ the set of pure Nash equilibria of (G, C). Let SF : Σ → R≥0 be a social cost function
measuring the overall quality of each strategy profile in Σ. We denote with σ∗ a social optimum of
(G, C) with respect to SF, that is, a strategy profile minimizing the social cost function SF. We consider
two social cost functions, namely, the (weighted) sum of the presumed costs of all players and the
(weighted) sum of their perceived ones denoted, respectively, as Pres and Perc. Technically, they assume
the following expressions:

Pres(σ) = ∑
i∈[n]

wi ĉi(σ)

= ∑
i∈C0

wi ∑
r∈σi

(αrnr(σ) + βr) + ∑
i/∈C0

wi ∑
r∈σi

(
αr

(
nr, f (i)(σ) + nr,0(σ)

)
+ βr

)
= ∑

r∈R

(
αrnr,0(σ)

d

∑
j=0

nr,j(σ) + βrnr,0(σ)

)

+ ∑
r∈R

(
αrnr,0(σ)

d

∑
j=1

nr,j(σ) + αr

d

∑
j=1

nr,j(σ)
2 + βr

d

∑
j=1

nr,j(σ)

)

= ∑
r∈R

(
αr

(
d

∑
j=0

nr,j(σ)
2 + 2nr,0(σ)

d

∑
j=1

nr,j(σ)

)
+ βr

d

∑
j=0

nr,j(σ)

)

and
Perc(σ) = ∑

i∈[n]
wici(σ) = ∑

i∈[n]
wi ∑

r∈σi

(αrnr(σ) + βr) = ∑
r∈R

(
αrnr(σ)

2 + βrnr(σ)
)

.

For a fixed social cost function SF, the price of anarchy of (G, C), denoted by PoA(G, C), is the ratio
between the social value of the worst pure Nash equilibrium of (G, C) and that of a social optimum,
that is, PoA(G, C) = maxσ∈NE(G,C)

SF(σ)
SF(σ∗) . The price of stability, denoted by PoS(G, C), considers the

best case, so that PoS(G, C) = minσ∈NE(G,C)
SF(σ)
SF(σ∗) .

3. Existence of Pure Nash Equilibria

In this section, we prove that multidimensional unweighted (resp. weighted affine) congestion
games are graphical unweighted (resp. weighted affine) congestion games defined by an underlying
undirected social knowledge graph. This allows us to use a result in Reference [24] (resp. [25]) stating
that these games are potential games, thus admitting pure Nash equilibria.

A graphical weighted congestion game (G, G) consists of a weighted congestion game G and a directed
graph G = (N, A) such that each node of N is associated with a player in G and there exists a directed
edge from node i to node j if and only if player i has full information about player j. The congestion
presumed by player i on resource r in the profile σ is ñr,i(σ) = ∑p∈N:r∈σp ,(i,p)∈A wp + wi and the
presumed cost paid by player i in σ is c̃i(σ) = ∑r∈σi

`r(ñr,i(σ)). A graphical weighted affine congestion
game is a pair (G, G) such that G is an affine weighted congestion game. The independence number δ(G)

of (G, G) is the cardinality of a maximum independent set of graph G.
A function Φ : Σ→ R is a weighted potential function for a graphical weighted congestion game

(G, G), if for any profile σ, any player i ∈ [n] and any strategy s ∈ Si, it holds that Φ(σ)−Φ(σ−i, s) =
ai(c̃i(σ) − c̃i(σ−i, s)) for some ai > 0; if ai = 1, Φ is an exact potential function. In Reference [24]
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(resp. [25]), it is shown that each graphical unweighted (resp. weighted affine) congestion game (G, G)

such that G is undirected admits an exact potential function (resp. weighted potential function).
The following result shows that d-dimensional weighted congestion games are a subclass of

graphical weighted congestion games.

Proposition 1. Each d-dimensional weighted congestion game is a graphical weighted congestion game whose
social knowledge graph is undirected.

Proof. Fix a d-dimensional weighted congestion game (G, C). We define a graph G = (N, A) such that
each node in N is associated with a player in G and there is an undirected edge {u, v} ∈ A if and only
if either u, v ∈ Ci for some 0 ≤ i ≤ d or u ∈ C0. We show that, for any strategy profile σ of G and for
any i ∈ [n], ĉi(σ) = c̃i(σ).

Consider first an omniscient player i ∈ C0. In (G, C), it holds that

ĉi(σ) = ∑
r∈σi

`r(nr(σ)) = ∑
r∈σi

`r

 ∑
p∈[n]:r∈σp

wp

 ,

while in (G, G), it holds that

c̃i(σ) = ∑
r∈σi

`r(ñr,i(σ)) = ∑
r∈σi

`r

 ∑
p∈N:r∈σp ,{i,p}∈A

wp + wi

 = ∑
r∈σi

`r

 ∑
p∈[n]:r∈σp

wp

 ,

where the last equality follows from the fact that, by construction of G, it holds that {i, p} ∈ A, for any
p ∈ [n] with p 6= i.

Next, consider an ignorant player i ∈ Cj for some j ∈ [d]. In (G, C), it holds that

ĉi(σ) = ∑
r∈σi

`r(nr, f (i)(σ) + nr,0(σ)) = ∑
r∈σi

`r

 ∑
p∈C0∪Cj :r∈σp

wp

 ,

while in (G, G), it holds that

c̃i(σ) = ∑
r∈σi

`r(ñr,i(σ)) = ∑
r∈σi

`r

 ∑
p∈N:r∈σp ,{i,p}∈A

wp + wi

 = ∑
r∈σi

`r

 ∑
p∈C0∪Cj :r∈σp

wp

 ,

where the last equality follows from the fact that, by construction of G, for any p ∈ [n] with p 6= i,
it holds that {i, p} ∈ A if and only if p ∈ C0 ∪ Cj.

Each game admitting an exact or weighted potential function always admits pure Nash equilibria.
Hence, by Proposition 1 and the existence of an exact (resp. weighted) potential function for graphical
unweighted (resp. weighted affine) congestion games with undirected social knowledge graphs,
we have that d-dimensional unweighted (resp. weighted affine) congestion games always admit pure
Nash equilibria.

For weighted affine games, the potential function assume the following expression:

Φ(σ) = ∑
r∈R

αr

 ∑
i∈[n]:r∈σi

w2
i + ∑

{i,p}∈A:r∈σi∩σp

wiwp

+ βr ∑
i∈[n]:r∈σi

wi


=

1
2 ∑

r∈R

αr

 d

∑
j=0

nr,j(σ)
2 + ∑

i∈[n]:r∈σi

w2
i + 2nr,0(σ)

d

∑
j=1

nr,j(σ)

+ 2βr

d

∑
j=0

nr,j(σ)

 . (1)
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4. Bounds for the Price of Anarchy

In this section, we provide an upper bound for the price of anarchy of multidimensional weighted
affine congestion games as a function of d.

Fix a pure Nash equilibrium σ and a social optimum σ∗, thus fixing the congestions nr,i(σ) and
nr,i(σ

∗) for each i ∈ [n] and r ∈ R. The pure Nash equilibrium condition implies that no player lowers
her presumed cost by deviating to the strategy she uses in σ∗. For any player i ∈ C0, this yields

∑
r∈σi

(αrnr(σ) + βr)− ∑
r∈σ∗i

(αr(nr(σ) + wi) + βr) ≤ 0, (2)

that is a necessary condition satisfied by any pure Nash equilibrium (The equilibrium condition
yields the stronger inequality ∑r∈σi\σ∗i (αrnr(σ) + βr) − ∑r∈σ∗i \σi

(αr(nr(σ) + wi) + βr) ≤ 0, so that
inequality ∑r∈σi

(αrnr(σ) + βr)−∑r∈σ∗i
(αr(nr(σ) + wi) + βr) ≤ 0 is a relaxation of the equilibrium

condition.). For weighted games, by using wi ≤ nr,0(σ
∗) for any r ∈ R and i ∈ [n] such that r ∈ σi,

by multiplying (2) for wi and summing it for each i ∈ C0, we get

∑
r∈R

(
αrnr,0(σ)

d

∑
j=0

nr,j(σ) + βrnr,0(σ)− αrnr,0(σ
∗)

(
nr,0(σ

∗) +
d

∑
j=0

nr,j(σ)

)
− βrnr,0(σ

∗)

)
≤ 0, (3)

that is a further necessary condition satisfied by any pure Nash equilibrium. For unweighted games,
we simply fix wi = 1 for any i ∈ [n] and sum the inequality for each i ∈ C0, thus getting

∑
r∈R

(
αrnr,0(σ)

d

∑
j=0

nr,j(σ) + βrnr,0(σ)− αrnr,0(σ
∗)

(
1 +

d

∑
j=0

nr,j(σ)

)
− βrnr,0(σ

∗)

)
≤ 0. (4)

For any player i ∈ Cj, with j ∈ [d], the equilibrium condition yields

∑
r∈σi

(
αr
(
nr,j(σ) + nr,0(σ)

)
+ βr

)
− ∑

r∈σ∗i

(
αr
(
nr,j(σ) + nr,0(σ) + wi

)
+ βr

)
≤ 0.

For weighted games, again, by using wi ≤ nr,0(σ
∗) for any r ∈ R and i ∈ [n] such that r ∈ σi,

by multiplying this inequality for wi, and by summing it for each i ∈ Cj, we get

∑
r∈R

(
αrnr,j(σ)

(
nr,j(σ) + nr,0(σ)

)
+ βrnr,j(σ)− αrnr,j(σ

∗)
(

nr,j(σ) + nr,0(σ) + nr,j(σ
∗)
)
− βrnr,j(σ

∗)
)
≤ 0.

By further summing for each j ∈ [d], we obtain

∑
r∈R

(
d

∑
j=1

(
nr,j(σ)

(
αr(nr,j(σ) + nr,0(σ) + βr

))
−

d

∑
j=1

(
nr,j(σ

∗)
(
αr(nr,j(σ) + nr,0(σ) + nr,j(σ

∗)) + βr
)))
≤ 0. (5)

For unweighted games, by setting wi = 1, and by summing the equilibrium constraint for any i ∈ [n]
and j ∈ [d], we analogously get

∑
r∈R

 d

∑
j=1

(
nr,j(σ)

(
αr(nr,j(σ) + nr,0(σ) + βr

))
−

d

∑
j=1

(
nr,j(σ

∗)
(

αr(nr,j(σ) + nr,0(σ) + 1) + βr

)) ≤ 0. (6)

In the sequel, for the sake of conciseness, we adopt kr,j and lr,j as short-hands for nr,j(σ) and
nr,j(σ

∗), respectively.
Theorem 1 provides an upper bound for the price of anarchy of multidimensional weighted affine

congestion games with respect to social cost function Pres.
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Theorem 1. For each d-dimensional weighted affine congestion game (G, C),

PoA(G, C) ≤ (
√

d + 4 +
√

d)(
√

d ·
√

d + 4 + d + 4)
4
√

d + 4
≤ d + 2

under the social cost function Pres.

Proof. Let σ and σ∗ be a worst-case equilibrium and a social optimum of (G, C), respectively. Let kr =

(kr,0, . . . , kr,d), lr = (lr,0, . . . , lr,d), and let P = (pi,j)i,j∈[d]∪{0} be the (d + 1)× (d + 1) binary matrix such
that: (i) pi,j = 1 if either i = j, or i = 0, or j = 0; (ii) pi,j = 0 otherwise. By summing inequalities (3)
and (5), we get the following compact inequality involving the product between vectors, matrices,
and scalars:

∑
r∈R

(
αr(kr · P · kT

r ) + βr

d

∑
j=0

kr,j − αr(lr · P · kT
r + lr · lT

r )− βr

d

∑
j=0

lr,j

)
≤ 0 (7)

Let Q = (qi,j)i,j∈[d]∪{0} be the (d + 1)× (d + 1) matrix such that: (i) qi,j =
√

d if i = j; (ii) qi,j = 1 if
either i = 0, or j = 0, with (i, j) 6= (0, 0); (iii) qi,j = 0 otherwise. As 0 ≤ pi,j ≤ qi,j for any i, j we
have that

lr · P · kT
r ≤ lr ·Q · kT

r . (8)

We have that matrix Q is a symmetric positive-semidefinite matrix (see Lemma A1 in the Appendix A
for the proof of this fact), thus, the following inequality holds for any u > 0:

0 ≤
(√

u · kr −
1

2
√

u
· lr

)
·Q ·

(√
u · kr −

1
2
√

u
· lr

)T
= u · kr ·Q · kT

r +
1

4u
· lr ·Q · lT

r − lr ·Q · kT
r . (9)

Finally, as 0 ≤ qi,j ≤
√

d · pi,j for any i, j, we have that

x ·Q · xT ≤
√

d · x · P · xT (10)

for any vector x = (x0, . . . , xd) of non-negative real numbers. By exploiting (7), (9), and (10), for any
fixed u > 0 we get

Pres(σ) = ∑
r∈R

αr(kr · P · kT
r ) + βr

d

∑
j=0

kr,j


≤ ∑

r∈R

αr(lr · P · kt
r + lr · lT

r ) + βr

d

∑
j=0

lr,j

 (11)

≤ ∑
r∈R

αr(lr · P · kT
r + lr · P · lT

r ) + βr

d

∑
j=0

lr,j


≤ ∑

r∈R

αr

(
u · kr ·Q · kT

r +
1

4u
· lr ·Q · lT

r + lr · P · lT
r

)
+ βr

d

∑
j=0

lr,j

 (12)

≤ ∑
r∈R

αr

(
√

d · u · kr · P · kT
r +

(√
d

4u
+ 1

)
· lr · P · lT

r

)
+ βr

d

∑
j=0

lr,j

 (13)

≤
√

d · u · ∑
r∈R

αr(kr · P · kT
r ) + βr

d

∑
j=0

kr,j

+

(√
d

4u
+ 1

)
· ∑

r∈R

αr(lr · P · lT
r ) + βr

d

∑
j=0

lr,j


=
√

d · u · Pres(σ) +
(√

d
4u

+ 1

)
· Pres(σ∗), (14)
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where (11), (12), and (13), come from (7), (9), and (10), respectively (Inequalities (11)–(14) can be
stated within the smoothness framework of Roughgarden [19], and show that multidimensional
weighted affine congestion games are (λ, µ)-smooth with λ =

√
d

4u + 1 and µ =
√

d · u for any u > 0.).
Finally, by manipulating (14), we get

PoA(G, C) = Pres(σ)

Pres(σ∗)
≤ inf

u>0

√
d

4u + 1

1−
√

d · u
=

(
√

d + 4 +
√

d)(
√

d ·
√

d + 4 + d + 4)
4
√

d + 4
, (15)

thus showing the claim. A simpler upper bound of d+ 2 can be obtained by setting u = 1
2
√

d
in (15).

Relatively to the social cost function Perc, the following upper bound is derived as a corollary of a
result in Reference [25].

Corollary 1. For each d-dimensional affine congestion game (G, C), PoA(G, C) ≤ d(d + 2 +
√

d2 + 4d)/2
under the social cost function Perc.

Proof. Theorem 2 of Reference [25] states that δ(G)(δ(G) + 2 +
√

δ(G)2 + 4δ(G))/2 is an upper
bound for the price of anarchy of any graphical congestion having independence number δ(G).
As the graphical congestion game equivalent to (G, C) has independence number equal to d,
the claim follows.

5. Bounds for the Price of Stability

In order to bound the price of stability with respect to the social cost function Pres, we consider
a pure Nash equilibrium that minimizes the potential function Φ defined in (1), which leads to the
following upper bound.

Theorem 2. For each d-dimensional weighted affine congestion game (G, C), PoS(G, C) ≤ 2 under the social
cost function Pres.

Proof. Let σ and σ∗ be a pure Nash equilibrium minimizing the potential function Φ defined in (1),
and let σ∗ be a social optimum. We have that

Pres(σ) = ∑
r∈R

(
αr

(
d

∑
j=0

k2
r,j + 2kr,0

d

∑
j=1

kr,j

)
+ βr

d

∑
j=0

kr,j

)

≤ ∑
r∈R

αr

 d

∑
j=0

k2
r,j + ∑

i∈[n]:r∈σi

w2
i + 2kr,0

d

∑
j=1

kr,j

+ 2βr

d

∑
j=0

kr,j


= 2 ·Φ(σ) (16)

≤ 2 ·Φ(σ∗) (17)

= ∑
r∈R

αr

 d

∑
j=0

l2
r,j + ∑

i∈[n]:r∈σ∗i

w2
i + 2lr,0

d

∑
j=1

lr,j

+ 2βr

d

∑
j=0

lr,j

 (18)

≤ ∑
r∈R

(
αr

(
2

d

∑
j=0

l2
r,j + 2lr,0

d

∑
j=1

lr,j

)
+ 2βr

d

∑
j=0

lr,j

)

≤ 2 ∑
r∈R

(
αr

(
d

∑
j=0

l2
r,j + 2lr,0

d

∑
j=1

lr,j

)
+ βr

d

∑
j=0

lr,j

)
= 2 · Pres(σ∗), (19)
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where (17) holds since σ minimizes Φ, and (16) and (18) hold by exploiting (1). By (19), we get
PoS(G, C) ≤ Pres(σ)

Pres(σ∗) ≤ 2, and the claim follows.

Relatively to the social cost function Perc, the following upper bound is derived as a corollary of a
result in Reference [25].

Corollary 2. For each d-dimensional affine congestion game (G, C), PoS(G, C) ≤ 2d under the social cost
function Perc.

Proof. Theorem 6 of Reference [25] states that 2δ(G) is an upper bound for the price of stability of any
graphical congestion game having independence number δ(G). As the graphical congestion game
equivalent to (G, C) has independence number equal to d, the claim follows.

6. Bounds for Bidimensional Unweighted Games

In this section, we investigate in more detail the case of unweighted affine games with d = 2,
that is, bidimensional affine congestion games, and provide refined bounds for the price of anarchy
and the price of stability under both social cost functions. The technique we adopt is the primal-dual
framework introduced in Reference [11].

6.1. Price of Anarchy

We first consider the price of anarchy. Let (G, C) be an arbitrary d-dimensional unweighted
congestion game, and let σ and σ∗ be a worst-case equilibrium and a social optimum of (G, C),
respectively. For SF = Pres, we get the following primal linear program LP(Pres, σ, σ∗) in variables
(αr, βr)r∈R, whose optimal solution provides an upper bound to PoA(G, C):

max ∑
r∈R

(
αr

(
d

∑
j=0

k2
r,j + 2kr,0

d

∑
j=1

kr,j

)
+ βr

d

∑
j=0

kr,j

)
s.t.

∑
r∈R

(
αrkr,0

d

∑
j=0

kr,j + βrkr,0 − αrlr,0

(
1 +

d

∑
j=0

kr,j

)
− βrlr,0

)
≤ 0

∑
r∈R

(
d

∑
j=1

(
kr,j
(
αr(kr,j + kr,0 + βr

))
−

d

∑
j=1

(
lr,j
(
αr(kr,j + kr,0 + 1) + βr

)))
≤ 0

∑
r∈R

(
αr

(
d

∑
j=0

l2
r,j + 2lr,0

d

∑
j=1

lr,j

)
+ βr

d

∑
j=0

lr,j

)
= 1

αr, βr ≥ 0 ∀r ∈ R.

The optimal solution of the above linear program is an upper bound to the price of anarchy as the
objective function is equal to Pres(σ), the first two constraints are the pure Nash equilibrium conditions
derived in (4) and (6), respectively (which are necessary conditions satisfied by any equilibrium),
and the last normalization constraint imposes without loss of generality that Pres(σ∗) = 1 (When
applying the primal dual method, we observe that, once σ and σ∗ are fixed, the coefficients (αr)r∈R
and (βr)r∈R are chosen in such a way that the value Pres(σ) = Pres(σ)/Pres(σ∗) is maximized,
thus getting an upper bound on the price of anarchy. We also observe that (αr)r∈R and (βr)r∈R are the
unique variables in the considered LP formulation, and the other quantities (e.g., the congestions) are
considered as fixed parameters (w.r.t. the LP formulation). See Reference [11] for further details on
the primal-dual method and how to apply it to measure the performance of congestion games under
different quality metrics.).
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By associating the three dual variables x, y and γ, with the three constraints of LP(Pres, σ, σ∗),
the dual formulation DLP(Pres, σ, σ∗) becomes

min γ

s.t.

x

(
kr,0

d

∑
j=0

kr,j − lr,0 − lr,0

d

∑
j=0

kr,j

)
+ y

d

∑
j=1

(
kr,j(kr,j + kr,0)− lr,j(kr,j + kr,0 + 1)

)
+γ

(
d

∑
j=0

l2
r,j + 2lr,0

d

∑
j=1

lr,j

)
≥

d

∑
j=0

k2
r,j + 2kr,0

d

∑
j=1

kr,j ∀r ∈ R

x(kr,0 − lr,0) + y
d

∑
j=1

(kr,j − lr,j) + γ
d

∑
j=0

lr,j ≥
d

∑
j=0

kr,j ∀r ∈ R

x, y ≥ 0.

By the Weak Duality Theorem, each feasible solution for DLP(Pres, σ, σ∗) provides an upper bound
to the optimal solution of LP(Pres, σ, σ∗), that is on the price of anarchy achievable by the particular
choice of σ and σ∗. Anyway, if the provided dual solution is independent of this choice, we obtain an
upper bound on the price of anarchy for any possible game.

For the case of the social cost function Perc, we only need to replace the objective function and the
third constraint in LP(Pres, σ, σ∗), respectively, with

∑
r∈R

αr

(
d

∑
j=0

kr,j

)2

+ βr

d

∑
j=0

kr,j

 and ∑
r∈R

αr

(
d

∑
j=0

lr,j

)2

+ βr

d

∑
j=0

lr,j

 = 1.

This results in the following dual program DLP(Perc, σ, σ∗):

min γ

s.t.

x

(
kr,0

d

∑
j=0

kr,j − lr,0 − lr,0

d

∑
j=0

kr,j

)
+ y

d

∑
j=1

(
kr,j(kr,j + kr,0)− lr,j(kr,j + kr,0 + 1)

)
+γ

(
d

∑
j=0

lr,j

)2

≥
(

d

∑
j=0

kr,j

)2

∀r ∈ R

x(kr,0 − lr,0) + y
d

∑
j=1

(kr,j − lr,j) + γ
d

∑
j=0

lr,j ≥
d

∑
j=0

kr,j ∀r ∈ R

x, y ≥ 0.

Note that the second constraint is the same in both DLP(Pres, σ, σ∗) and DLP(Perc, σ, σ∗). For the sake
of conciseness, in the sequel, we shall drop the subscript r from the notation; moreover, when fixed a
dual solution, we shall denote the first and second constraint of a given dual program as g1(k, l) ≥ 0
and g2(k, l) ≥ 0, respectively, where we set k = (k0, . . . , kd) and l = (l0, . . . , ld).

When d = 2, we exploit an equivalent, but nicer, representation of the dual inequalities. With this
aim, we set kr := nr(σ) and lr := nr(σ∗) and replace kr,0 and lr,0 with kr − kr,1 − kr,2 and lr − lr,1 − lr,2,
respectively. By substituting and rearranging, DLP(Pres, σ, σ∗) becomes
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min γ

s.t.
x ((kr − kr,1 − kr,2)kr − (lr − lr,1 − lr,2)(kr + 1))
+y (kr,1(kr − kr,2)− lr,1(kr − kr,2 + 1) + kr,2(kr − kr,1)− lr,2(kr − kr,1 + 1))

+γ
(

l2
r − 2lr,1lr,2

)
≥ k2

r − 2kr,1kr,2 ∀r ∈ R

x(kr − kr,1 − kr,2 − lr + lr,1 + lr,2) + y(kr,1 + kr,2 − lr,1 − lr,2) + γlr ≥ kr ∀r ∈ R
x, y ≥ 0.

Similarly, the dual program DLP(Perc, σ, σ∗) can be rewritten as:

min γ

s.t.
x ((kr − kr,1 − kr,2)kr − (lr − lr,1 − lr,2)(kr + 1))
+y (kr,1(kr − kr,2)− lr,1(kr − kr,2 + 1) + kr,2(kr − kr,1)− lr,2(kr − kr,1 + 1)) + γl2

r ≥ k2
r ∀r ∈ R

x(kr − kr,1 − kr,2 − lr + lr,1 + lr,2) + y(kr,1 + kr,2 − lr,1 − lr,2) + γlr ≥ kr ∀r ∈ R
x, y ≥ 0.

In the following theorem we provide upper bounds for the price of anarchy of bidimensional affine
congestion games under social cost functions Pres and Perc.

Theorem 3. For each bidimensional affine congestion game (G, C), PoA(G, C) ≤ 119
33 under the social cost

function Pres and PoA(G, C) ≤ 35
8 under the social cost function Perc.

We now show the existence of two matching lower bounding instances (the proof is deferred to
the Appendix B).

Theorem 4. There exist two bidimensional linear congestion games (G, C) and (G ′, C ′) such that PoA(G, C) ≥
119
33 under the social cost function Pres and PoA(G ′, C ′) ≥ 35

8 under the social cost function Perc Appendix B.

6.2. Price of Stability

In order to bound the price of stability, we can use the same primal formulations exploited
for the determination of the price of anarchy with the additional constraint Φ(σ) ≤ Φ(σ∗),
which, by Equation (1), becomes

∑
r∈R

(
αr

(
d

∑
j=0

(
k2

r,j + kr,j − l2
r,j − lr,j

)
+ 2kr,0

d

∑
j=1

kr,j − 2lr,0

d

∑
j=1

lr,j

)
+ 2βr

d

∑
j=0

(kr,j − lr,j)

)
≤ 0.
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Hence, the dual program for the social cost function Pres becomes the following one.

min γ

s.t.

x

(
kr,0

d

∑
j=0

kr,j − lr,0 − lr,0

d

∑
j=0

kr,j

)
+ y

d

∑
j=1

(
kr,j(kr,j + kr,0)− lr,j(kr,j + kr,0 + 1)

)
+z

(
d

∑
j=0

(
k2

r,j + kr,j − l2
r,j − lr,j

)
+ 2kr,0

d

∑
j=1

kr,j − 2lr,0

d

∑
j=1

lr,j

)

+γ

(
d

∑
j=0

l2
r,j + 2lr,0

d

∑
j=1

lr,j

)
≥

d

∑
j=0

k2
r,j + 2kr,0

d

∑
j=1

kr,j ∀r ∈ R

x(kr,0 − lr,0) + y
d

∑
j=1

(kr,j − lr,j) + 2z
d

∑
j=0

(kr,j − lr,j) + γ
d

∑
j=0

lr,j ≥
d

∑
j=0

kr,j ∀r ∈ R

x, y, z ≥ 0.

Again, for the social cost function Perc, we obtain mutatis mutandis the following dual program.

min γ

s.t.

x

(
kr,0

d

∑
j=0

kr,j − lr,0 − lr,0

d

∑
j=0

kr,j

)
+ y

d

∑
j=1

(
kr,j(kr,j + kr,0)− lr,j(kr,j + kr,0 + 1)

)
+z

(
d

∑
j=0

(
k2

r,j + kr,j − l2
r,j − lr,j

)
+ 2kr,0

d

∑
j=1

kr,j − 2lr,0

d

∑
j=1

lr,j

)

+γ

(
d

∑
j=0

lr,j

)2

≥
(

d

∑
j=0

kr,j

)2

∀r ∈ R

x(kr,0 − lr,0) + y
d

∑
j=1

(kr,j − lr,j) + 2z
d

∑
j=0

(kr,j − lr,j) + γ
d

∑
j=0

lr,j ≥
d

∑
j=0

kr,j ∀r ∈ R

x, y, z ≥ 0.

Again, by setting kr := nr(σ) and lr := nr(σ∗) and replacing kr,0 and lr,0 with kr − kr,1 − kr,2 and
lr − lr,1 − lr,2, respectively, DLP(Pres, σ, σ∗) becomes

min γ

s.t.
x ((kr − kr,1 − kr,2)kr − (lr − lr,1 − lr,2)(kr + 1))
+y (kr,1(kr − kr,2)− lr,1(kr − kr,2 + 1) + kr,2(kr − kr,1)− lr,2(kr − kr,1 + 1))

+z
(

k2
r − 2kr,1kr,2 − l2

r + 2lr,1lr,2 + kr − lr
)
+ γ

(
l2
r − 2lr,1lr,2

)
≥ k2

r − 2kr,1kr,2 ∀r ∈ R

x(kr − kr,1 − kr,2 − lr + lr,1 + lr,2) + y(kr,1 + kr,2 − lr,1 − lr,2) + 2z(kr − lr) + γlr ≥ kr ∀r ∈ R
x, y, z ≥ 0.

Similarly, the dual program DLP(Perc, σ, σ∗) can be rewritten as:

min γ

s.t.
x ((kr − kr,1 − kr,2)kr − (lr − lr,1 − lr,2)(kr + 1))
+y (kr,1(kr − kr,2)− lr,1(kr − kr,2 + 1) + kr,2(kr − kr,1)− lr,2(kr − kr,1 + 1))
+z
(
k2

r − 2kr,1kr,2 − l2
r + 2lr,1lr,2 + kr − lr

)
+ γl2

r ≥ k2
r ∀r ∈ R

x(kr − kr,1 − kr,2 − lr + lr,1 + lr,2) + y(kr,1 + kr,2 − lr,1 − lr,2) + 2z(kr − lr) + γlr ≥ kr ∀r ∈ R
x, y, z ≥ 0.



Algorithms 2020, 13, 261 14 of 23

Theorem 5. For each bidimensional affine congestion game (G, C), PoS(G, C) ≤ 1 + 2√
7

under the social cost
function Pres and PoS(G, C) ≤ 2.92 under the social cost function Perc.

Proof. For the social cost function Pres, set γ = 1 + 2√
7
, x = y = 1√

7
and z = 1

2 + 1
2
√

7
. The second

dual constraint is always satisfied, as min{x, y} ≥ 1 and max{x, y}+ 2z ≤ γ. Thus, we shall focus
again on the first constraint g1(k, l) ≥ 0. For any r ∈ R, g1(k, l) becomes

k2(3−
√

7)− k(2l− 1−
√

7) + 2k1k2(
√

7− 3) + 2(k1l2 + k2l1) + (l2− l)(3+
√

7)− 2l1l2(3+
√

7) ≥ 0.

The claim follows by applying Lemma A9 reported in the Appendix A.
For the social cost function Perc, set γ = 2.92, x = 0.68, y = 1.3 and z = 0.81. Again, the second

dual constraint is always satisfied, as min{x, y} ≥ 1 and max{x, y}+ 2z ≤ γ. Thus, we shall focus
again on the first constraint g1(k, l) ≥ 0. For any r ∈ R, g1(k, l) become 49k2 + k(62k1 + 62k2 − 68l −
62l1 − 62l2 + 81) + 130k1l2 + 130k2l1 − 422k1k2 + 211l2 − 149l + 2(81l1l2 − 31l1 − 31l2) ≥ 0. The claim
follows by applying Lemma A13 reported in the Appendix A.

For these cases, unfortunately, we are not able to devise matching lower bounds. The following
result is obtained by suitably extending the lower bounding instance given in Reference [17] for the
price of stability of congestion games (the proof is deferred to the Appendix).

Theorem 6. For any ε > 0, there exist two bidimensional linear congestion games (G, C) and (G ′, C ′) such
that PoS(G, C) ≥ 1+

√
5

2 − ε under the social cost function Pres and PoS(G ′, C ′) ≥ 5+
√

17
4 − ε under the social

cost function Perc.

7. Conclusions and Open Problems

We have introduced d-dimensional (weighted) congestion games: a generalization of (weighted)
congestion games able to model various interesting scenarios of applications. They can also be
reinterpreted as a particular subclass of that of graphical (weighted) congestion games defined by an
undirected social knowledge graph whose independence number is equal to d. We have provided
bounds for the price of anarchy and the price of stability of these games as a function of d under the
two fundamental social cost functions sum of the players’ perceived costs and sum of the players’
presumed costs. We have also considered in deeper detail the case of d = 2 in presence of unweighted
players only.

Closing the gap between upper and lower bounds is an intriguing and challenging open problem.
In particular, we conjecture that the upper bound of O(d) for the price of anarchy of d-dimensional
weighted congestion games is asymptotically tight (with respect to d), even for unweighted games.

Along the line of research of improving the performance of congestion games via some feasible
strategies or coordination (e.g., taxes [27,28] or Stackelberg strategies [29,30]), another interesting
research direction is partitioning the players into d + 1 clusters similarly as in d-dimensional games,
to improve as much as possible the price of anarchy or the price of stability.

A further research direction is that of combining the model of multidimensional congestion games
with other variants of congestion games (e.g., risk-averse congestion games [31–34] and congestion
games with link failures [35–37]).
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Appendix A. Technical Lemmas

In this section we gather all technical lemmas needed to prove our main theorems.

Lemma A1. For any d ≥ 0, let Q = (qi,j)i,j∈[d]∪{0} be the (d + 1)× (d + 1) matrix such that: (i) qi,j =
√

d
if i = j; (ii) qi,j = 1 if either i = 0, or j = 0, with (i, j) 6= (0, 0); (iii) qi,j = 0 otherwise. We have that Q is a
positive-semidefinite matrix.

Proof. To show the claim, we resort to the Sylvester’s criterion, stating that a symmetric matrix M
is positive-semidefinite if and only if the determinant of each principal minor of M (i.e., each upper
upper left h-by-h corner of M) is non-negative. Let Ah,x = (ah,x,i,j)i,j∈[h] be a h× h matrix such that:
(i) ah,x,i,j = x if i = j; (ii) ah,x,i,j = 1 if (i, j) 6= (1, 1), and, either i = 1, or j = 1; (iii) ah,x,i,j = 0 otherwise.
We have that each principal minor of matrix Q is of type Ah,

√
d for some h ∈ [d + 1]. Thus, it is

sufficient showing that the determinant of matrix Ah,
√

d, denoted as Det(Ah,
√

d), is non-negative for
any h ∈ [d + 1].

We first show by induction on integers h ≥ 1 that Det(Ah,x) = xh − (h − 1) · xh−2 for any
fixed x ∈ R. If h = 0 we trivially get Det(Ah,x) = x = xh − (h − 1) · xh−2. Now, we assume that
Det(Ah,x) = xh − (h− 1)xh−2 holds for some h ≥ 1, and we show that Det(Ah+1,x) = xh+1 − h · xh−1.
We get Det(Ah+1,x) = x ·Det(Ah,x)− xh−1 = x(xh − (h− 1)xh−2)− xh−1 = xh+1− h · xh−1, where the
first equality comes from the Laplace expansion for computing the determinant, and the second
equality comes from the inductive hypothesis.

By using the fact that Det(Ah,x) = xh − (h − 1) · xh−2 holds for any x ∈ R and any integer
h ≥ 1, we have that Det(Ah,

√
d) = (

√
d)h − (h − 1)(

√
d)h−2 ≥ 0 for any h ∈ [d + 1], where the

last inequality holds since quantity xh − (h− 1)xh−1 is always non-negative for any x ≥
√

h− 1 if
h ≤ d + 1. Thus each principal minor of Q has a non-negative determinant, and the claim follows.

Lemma A2. Let θ : Z6
≥0 → Q be the function such that θ(a, b, c, d, e, f ) = 18a2 − a(b + c + 51d− e− f ) +

50b f + 50ce− 34bc + 119d2 − 51d + e + f − 238e f . For any (a, b, c, d, e, f ) ∈ Z6
≥0 such that a ≥ b + c and

d ≥ e + f , it holds that θ(a, b, c, d, e, f ) ≥ 0.

Proof. At a first glance, in order to use standard arguments from calculus, we allow the 6-tuples
(a, b, c, d, e, f ) to take values in the set of non-negative real numbers.

We first show that, in such an extended scenario, θ attains its minimum for 6-tuples (a, b, c, d, e, f )
such that b = c and e = f . Consider to this aim the 6-tuple (a, b, b + h, d, e, e + k), where h, k ∈ R.
By definition of θ, we get θ(a, b + h

2 , b + h
2 , d, e + k

2 , e + k
2 ) = θ(a, b, b + h, d, e, e + k)− 17h2−50hk+119k2

2 ≤
θ(a, b, b + h, d, e, e + k)− (4h−10k)2

2 ≤ θ(a, b, b + h, d, e, e + k).
Hence, we do not lose in generality by restricting to 6-tuples of non-negative real values

(a, b, b, d, e, e) such that a ≥ 2b and d ≥ 2e. In this case θ becomes 18a2 − a(2b + 51d− 2e)− 34b2 +

100be + 119d2 − 51d − 238e2 + 2e. Consider the two partial derivatives δθ
δb = 100e − 2a − 68b and

δθ
δe = 2(a + 50b + 1− 238e). Since they are linear and decreasing in b and e, respectively, it follows that
θ is minimized at one of the following four cases: b = 0 ∧ e = 0, b = 0 ∧ e = d

2 , b = a
2 ∧ e = 0 and

b = a
2 ∧ e = d

2 .
In the first case, θ becomes 18a2 − 51ad + 119d2 − 51d. Since δθ

δa = 36a− 51d, θ is minimized at
a = 17d

12 . By substituting, θ becomes 1
8 (663d2 − 408d) which is always non-negative for any d ∈ Z.

In the second case, θ becomes 36a2 − 100ad + 119d2 − 100d. Since δθ
δa = 36a− 50d, θ is minimized

at a = 25d
18 . By substituting, θ becomes 1

9 (223d2 − 450d) which is always non-negative for any d ∈
Z \ {1, 2}.

In the third case, θ becomes 17
2 (a2 − 6ad + 14d2 − 6d). Since δθ

δa = 17(a− 3d), θ is minimized at
a = 3d. By substituting, θ becomes 17

2 (5d2 − 6d) which is always non-negative for any d ∈ Z \ {1}.
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In the fourth case, θ becomes 1
2 (17a2− 50ad+ 119d2− 100d). Since δθ

δa = 17a− 25d, θ is minimized
at a = 25d

17 . By substituting, θ becomes 1
17 (699d2 − 850d) which is always non-negative for any

d ∈ Z \ {1}.
Hence, in order to complete the proof, we are left to settle the following cases: (a, 0, 0, 1, 0, 0),

(a, 0, 0, 2, 1, 1), (a, 0, 0, 1, 1, 0), (a, 0, 0, 1, 0, 1), (a, a
2 , a

2 , 1, 1, 0), (a, a
2 , a

2 , 1, 0, 1) and (a, a
2 , a

2 , 1, 0, 0).
In the case (a, 0, 0, 1, 0, 0), θ becomes 18a2 − 51a + 68 which is always non-negative for any a ∈ R.

In the case (a, 0, 0, 2, 1, 1), θ becomes 18a2 − 100a + 138 which is always non-negative for any a ∈ Z.
In the cases (a, 0, 0, 1, 1, 0) and (a, 0, 0, 1, 0, 1), θ becomes 18a2 − 50a + 69 which is always non-negative
for any a ∈ R. In the cases (a, a

2 , a
2 , 1, 1, 0) and (a, a

2 , a
2 , 1, 0, 1), θ becomes 17a2−50a+138

2 which is always
non-negative for any a ∈ R. Finally, in the case (a, a

2 , a
2 , 1, 0, 0), θ becomes 17

2 (a2 − 6a + 8) which is
always non-negative for any a ∈ Z \ {3}. Hence, we are only left to consider the case (3, b, c, 1, 0, 0) for
which θ becomes 77− 34bc− 3(b + c). Since b + c ≤ 3, it holds that 77− 34bc− 3(b + c) ≥ 68− 34bc
which is always non-negative since bc ≤ 2 for any b, c ∈ Z≥0 such that b + c ≤ 3.

Lemma A3. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = a2− 3ad+ 5d2− 3d. For any (a, d) ∈ Z2

≥0
such that d 6= 1, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 2a− 3d, λ is minimized at a = 3

2 d. By substituting, we get 11d2 − 12d which is
non-negative for any d ∈ Z \ {1}.

Lemma A4. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = a2 − 6ad + 14d2 − 6d. For any

(a, d) ∈ Z2
≥0 such that d 6= 1, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 2a − 6d, λ is minimized at a = 3d. By substituting, we get 5d2 − 6d which is

non-negative for any d ∈ Z \ {1}.

Lemma A5. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = 20a2 − 84ad + 259d2 − 168d. For any

(a, d) ∈ Z2
≥0, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 40a− 84d, λ is minimized at a = 21

10 d. By substituting, we get 61d2 − 60d which is
non-negative for any d ∈ Z.

Lemma A6. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = 13a2 − 21ad + 35d2 − 21d. For any

(a, d) ∈ Z2
≥0, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 26a− 21d, λ is minimized at a = 21

26 d. By substituting, we get 197d2 − 156d which is
non-negative for any d ∈ Z.

Lemma A7. Let θ : Z6
≥0 → Q be the function such that θ(a, b, c, d, e, f ) = 7a2 + 3a(2b + 2c− 5d− 2e−

2 f ) + 21b f + 21ce− 42bc + 35d2 − 15d− 6e− 6 f . For any (a, b, c, d, e, f ) ∈ Z6
≥0 such that a ≥ b + c and

d ≥ e + f , it holds that θ(a, b, c, d, e, f ) ≥ 0.

Proof. At a first glance, in order to use standard arguments from calculus, we allow the 6-tuples
(a, b, c, d, e, f ) to take values in the set of non-negative real numbers. Since δθ

δc = 3(2a− 14b + 7e) and
δθ
δ f = 3(7b− 2a− 2), θ is minimized at one of the following four cases: c = 0∧ f = 0, c = 0∧ f = d− e,
c = a− b ∧ f = 0 and c = a− b ∧ f = d− e.

In the first case, we get θ = 7a2 + 3a(2b− 5d− 2e)+ 35d2− 15d− 6e. Since δθ
δb = 6a, θ is minimized

at b = 0 which yields θ = 7a2 − 3a(5d + 2e) + 35d2 − 15d− 6e. Since δθ
δe = −6(a + 1), θ is minimized

at e = d which yields θ = 7(a2 − 3ad + 5d2 − 3d). The claim then follows for any d 6= 1 by applying
Lemma A3. For the leftover tuples of the form (a, 0, 0, 1, 1, 0), we get θ = 7(a2 − 3a + 2) which is
always non-negative for any a ∈ Z.
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In the second case, we get θ = 7a2 + 3a(2b− 7d) + 7(3b(d− e) + 5d2 − 3d). Since δθ
δb = 3(2a +

7(d− e)), θ is minimized at b = 0, which yields θ = 7(a2 − 3ad + 5d2 − 3d). The claim then follows
for any d 6= 1 by applying Lemma A3. For the leftover tuples of the form (a, 0, 0, 1, e, 1− e), we get
θ = 7(a2 − 3a + 2) which is always non-negative for any a ∈ Z.

In the third case, we get θ = 13a2 − 3a(14b + 5(d− e)) + 42b2 − 21be + 35d2 − 15d− 6e. Since
δθ
δe = 3(5a− 7b− 2), θ is minimized at either e = 0 or e = d. For e = d, we get θ = 13a2 − 42ab +
42b2 − 21bd + 35d2 − 21d. Since δθ

δb = −21(2a − 4b + d), θ is minimized at b = 2a+d
4 . This yields

θ = 20a2 − 84ad + 259d2 − 168d and the claim then follows by applying Lemma A5. For e = 0, we
get θ = 13a2 − 3a(14b + 5d) + 42b2 + 35d2 − 15d. Since δθ

δb = 42(2b − a), θ is minimized at b = a
2

which yields θ = 5(a2 − 6ad + 14d2 − 6d) and the claim then follows for any d 6= 1 by applying
Lemma A4. For the leftover tuples of the form (a, a

2 , a
2 , 1, 0, 0), we get θ = 5

2 (a2 − 6a + 8) which is
always non-negative for any a ∈ Z \ {3}. Hence, we are still left to prove what happens for the tuples
of the form (3, b, 3− b, 1, 0, 0). In this case, we get θ = 42b2 − 126b + 92 which is always non-negative
for any b ∈ Z.

In the fourth case, we get θ = 13a2 − 21a(2b + d − e) + 7(6b2 + 3b(d − 2e) + 5d2 − 3d). Since
δθ
δe = 21(a− 2b), θ is minimized at either e = 0 or e = d. For e = 0, we get θ = 13a2 − 21a(2b + d) +
7(6b2 + 3bd + 5d2 − 3d). Since δθ

δb = −21(2a− 4b− d), θ is minimized at either b = 0 or b = 2a−d
4 .

The first case yields θ = 13a2 − 21ad + 35d2 − 21d and the claim then follows by applying Lemma A6,
while the second one yields θ = 20a2−84ad+259d2−168d

8 and the claim then follows by applying Lemma A5.
For e = d, we get θ = 13a2 − 41ab + 7(6b2 − 3bd + 5d2 − 3d). Since δθ

δb = −21(2a − 4b + d), θ is

minimized at b = 2a+d
4 which yields θ = 20a2−84ad+259d2−168d

8 and the claim then follows by applying
Lemma A5.

Lemma A8. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = 3−

√
7

2 a2 + (1 +
√

7 − 2d)a + (3 +
√

7)( d2

2 − d). For any (a, d) ∈ Z2
≥0 \ {(0, 1), (1, 1), (1, 2)}, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = (3 +

√
7)a− 2d + 1 +

√
7, λ is minimized at either a = 0 or a = 2d−1−

√
7

3+
√

7
.

In the first case, λ becomes 3−
√

7
2 d(d− 2) which is always non-negative for any d ∈ Z≥0 \ {1}.

In the second case, λ becomes 1
2 (3(
√

7 − 1)d2 + 2d(
√

7 − 7) +
√

7 − 5) which is always

non-negative for any d ∈ Z≥0 \ {1, 2}. For the leftover case d = 2, λ becomes 3−
√

7
2 a2 + (

√
7− 3)a

which is always non-negative for any a ∈ Z \ {1}. For the other case d = 1, λ becomes
3−
√

7
2 a2 + (

√
7− 1)a− 3+

√
7

2 which is always non-negative for any a ∈ Z \ {0, 1}.

Lemma A9. Let θ : Z6
≥0 → Q be the function such that θ(a, b, c, d, e, f ) = a2(3−

√
7)− a(2d− 1−

√
7) +

2bc(
√

7− 3) + 2(b f + ce) + (d2 − d)(3 +
√

7)− 2(3 +
√

7)e f . For any (a, b, c, d, e, f ) ∈ Z6
≥0 such that

a ≥ b + c and d ≥ e + f , it holds that θ(a, b, c, d, e, f ) ≥ 0.

Proof. Note first, that for 6-tuples of the form (0, b, c, 1, e, f ), it holds that θ = 0, since a = 0 ⇒ b =

c = 0 and d = 1⇒ e f = 0, for 6-tuples of the form (1, b, c, 1, e, f ), it holds that θ = 2(1 + b f + ce) > 0,
since a = d = 1 ⇒ bc = e f = 0, and for 6-tuples of the form (1, b, c, 2, e, f ), it holds that θ =

2b f + 2ce− 2(3 +
√

7)e f + 2(3 +
√

7) ≥ 0, since d = 2 ⇒ e f ≤ 1. Hence, in the sequel of the proof,
we avoid to consider the cases a = 0∧ d = 1, a = d = 1 and a = 1∧ d = 2.

At a first glance, in order to use standard arguments from calculus, we allow the 6-tuples
(a, b, c, d, e, f ) to take values in the set of non-negative real numbers. Since it holds that δθ

δc = 2(b(
√

7−
3) + e) and δθ

δ f = 2(b− (
√

7 + 3)e), θ is minimized at one of the following four cases: c = 0 ∧ f = 0,
c = 0∧ f = d− e, c = a− b ∧ f = 0 and c = a− b ∧ f = d− e.

In the first case, we get θ = (3−
√

7)a2 + (
√

7 + 1− 2d)a + (3 +
√

7)(d2 − d). The claim follows
by applying Lemma A8, since θ ≥ λ.
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In the second case, we get θ = (3−
√

7)a2 + (
√

7 + 1− 2d)a + (3 +
√

7)(d2 − d) + 2(d− e)(b−
(3 +

√
7)e). Since δθ

δb = 2(d− e), θ is minimized at b = 0, which yields θ = (3−
√

7)a2 + (
√

7 + 1−
2d)a + (3 +

√
7)(d2 − d)− 2(d− e)(3 +

√
7)e. Since δθ

δe = 4(3 +
√

7)e− 2d(3 +
√

7), θ is minimized for

e = d
2 . In this case, θ becomes (3−

√
7)a2 + (

√
7 + 1− 2d)a + (3 +

√
7)( d2

2 − d). The claim follows by
applying Lemma A8, since θ ≥ λ.

In the third case, we get θ = (3−
√

7)a2 +(
√

7+ 1+ 2e− 2d)a+(3+
√

7)(d2− d)+ 2b2(3−
√

7)+
2b((
√

7− 3)a− e). Since δθ
δe = 2(a− b), θ is minimized for e = 0, which yields θ = (3−

√
7)a2 + (

√
7+

1− 2d)a + (3 +
√

7)(d2 − d) + 2b2(3−
√

7) + 2ab(
√

7− 3). Since δθ
δb = 4(3−

√
7)b− 2a(3−

√
7), θ is

minimized for b = a
2 . In this case, θ becomes 3−

√
7

2 a2 + (
√

7 + 1− 2d)a + (3 +
√

7)(d2 − d). The claim
follows by applying Lemma A8, since θ ≥ λ.

In the fourth case, we get θ = (3−
√

7)a2 + (
√

7 + 1 + 2e− 2d)a + (3 +
√

7)(d2 − d) + 2b2(3−√
7) + 2(

√
7− 3)ab + 2bd− 4be + 2(3 +

√
7)e2. Since δθ

δb = 4(3−
√

7)b + 2(
√

7− 3)a + 2d− 4e, θ is

minimized at either b = 0 or b = (3−
√

7)a+2e−d
2(3−

√
7)

. For b = 0, θ becomes (3−
√

7)a2 + (
√

7 + 1 + 2e−
2d)a + (3 +

√
7)(d2 − d) + 2(3 +

√
7)e2. Since δθ

δe = 2a− 2(3 +
√

7)d + 4(3 +
√

7)e, θ is minimized

at either e = 0 or e = (3+
√

7)d−a
2(3+

√
7)

. In these two cases, θ becomes, respectively, (3−
√

7)a2 + (
√

7 +

1− 2d)a + (3 +
√

7)(d2 − d) and 3
4 (3−

√
7)a2 + (

√
7 + 1− d)a + (3 +

√
7)( d2

2 − d) which are always

non-negative because of Lemma A8 and the fact that θ ≥ λ. For b = (3−
√

7)a+2e−d
2(3−

√
7)

, θ becomes

3−
√

7
2 a2 + (

√
7+ 1− d)a + (3+

√
7)( 3d2

4 − d)− (3+
√

7)de + (3+
√

7)e2. Since δθ
δe = (3+

√
7)(2e− d),

θ is minimized at either e = 0 or e = d
2 . In these two cases, θ becomes, respectively, 3−

√
7

2 a2 +

(
√

7 + 1− d)a + (3 +
√

7)( 3d2

4 − d) and 3−
√

7
2 a2 + (

√
7 + 1− d)a + (3 +

√
7)( d2

2 − d) which are always
non-negative because of Lemma A8 and the fact that θ ≥ λ.

Lemma A10. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = 49a2 + a(81− 130d) + 211d2 − 211d.

For any (a, d) ∈ Z2
≥0, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 98a− 130d + 81, λ is minimized at either a = 0 or a = 130d−81

98 .
In the first case, λ becomes d(d− 1) which is always non-negative for any d ∈ Z.
In the second case, λ becomes d(3057d − 2537) − 6561

8 which is always non-negative for any
d ∈ Z \ {0, 1}. For the leftover case d = 0, λ becomes 49a2 + 81a, which is non-negative for any a ∈ R.
For the other case of d = 1, λ becomes a(a− 1) which is non-negative for any a ∈ Z.

Lemma A11. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = 11a2 + a(81− 68d) + 422d2 − 298d.

For any (a, d) ∈ Z2
≥0, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 222a− 2(68d− 81), λ is minimized at either a = 0 or a = 68d−81

11 .
In the first case, λ becomes d(211d− 149) which is always non-negative for any d ∈ Z.
In the second case, λ becomes d(9d + 3869)− 6561

2 which is always non-negative for any d ∈
Z≥0 \ {0}. For the leftover case of d = 0, λ becomes 11a2 + 162a which is non-negative for any
a ∈ R.

Lemma A12. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = 2321a2 + 422a(81− 65d) + 84817d2 −

89042d. For any (a, d) ∈ Z2
≥0 \ {(0, 1)}, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 4642a− 422(65d− 81), λ is minimized at either a = 0 or a = 65d−81

11 .
In the first case, λ becomes 84817d2 − 89042d which is always non-negative for any d ∈ Z \ {1}.
In the second case, λ becomes d(5189d + 155296) − 1384371

8 which is always non-negative for
any d ∈ Z≥0 \ {0, 1}. For the leftover case d = 0, λ becomes 11a2 + 162a, which is non-negative for
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any a ∈ R. For the other case of d = 1, λ becomes a(11a + 32)− 4225
211 which is non-negative for any

a ∈ Z≥0 \ {0}.

Lemma A13. Let θ : Z6
≥0 → Q be the function such that θ(a, b, c, d, e, f ) = 49a2 + a(62b + 62c− 68d−

62e− 62 f + 81) + 130b f + 130ce− 422bc + 211d2 − 149d + 162e f − 62e− 62 f . For any (a, b, c, d, e, f ) ∈
Z6
≥0 such that a ≥ b + c and d ≥ e + f , it holds that θ(a, b, c, d, e, f ) ≥ 0.

Proof. At a first glance, in order to use standard arguments from calculus, we allow the 6-tuples
(a, b, c, d, e, f ) to take values in the set of non-negative real numbers. Since it holds that δθ

δc = 62a−
42b + 130e and δθ

δ f = −2(31a − 65b − 81e + 31), θ is minimized at one of the following four cases:
c = 0∧ f = 0, c = 0∧ f = d− e, c = a− b ∧ f = 0 and c = a− b ∧ f = d− e.

In the first case, we get θ = 49a2 + a(62b− 68d− 62e + 81) + 211d2 − 149d− 62e. Since δθ
δe =

−62(a + 1), θ is minimized at e = d, which yields θ = 49a2 + a(62b − 130d + 81) + 211d2 − 211d.
Since δθ

δb = 62a, θ is minimized for b = 0. In this case, θ becomes 49a2 + a(81− 130d) + 211d2 − 211d.
The claim follows by applying Lemma A10.

In the second case, we get θ = 49a2 + a(62b− 130d + 81) + 130b(d− e) + 211d2 + d(162e− 211)−
162e2. Since δθ

δb = 62a + 130(d− e), θ is minimized at b = 0, which yields θ = 49a2 + a(81− 130d) +
211d2 + d(162e− 211)− 162e2. Since δθ

δe = 162d− 324e, θ is minimized at either e = 0 and e = d. In both
cases θ becomes 49a2 + a(81− 130d) + 211d2 − 211d and the claim follows by applying Lemma A10.

In the third case, we get θ = 111a2 − a(422b + 68d− 68e− 81) + 422b2 − 130be + 211d2 − 149d−
62e. Since δθ

δb = −422a + 844b − 130e, θ is minimized at b = 211a+65e
422 , which yields θ = 2321a2 +

422a(3e + 81− 68d) + 89042d2 − 62878d− 4225e2 − 26164e. Since δθ
δe = 1266a− 8450e− 26164, θ is

minimized at either e = 0 or e = d. For e =, θ becomes 11a2 + 2a(81− 68d)+ 422d2− 298d and the claim
follows by applying Lemma A11. For e = d, θ becomes 2321a2 + 422a(81− 65d) + 84817d2 − 89042d
and the claim follows for any 6-tuple (a, b, c, d, e, f ) such that (a, d) 6= (0, 1) by applying Lemma A12.
Hence, we are left to consider the 6-tuples of the form (0, 0, 0, 1, e, 0). In this case θ becomes 62(1− e)
which is always non-negative since e ∈ {0, 1}.

In the fourth case, we get θ = 111a2 − a(422b + 130d − 130e − 81) + 422b2 + 130b(d − 2e) +
211d2 + d(162e− 211)− 162e2. Since δθ

δb = −422a + 844b + 130(d− 2e), θ is minimized at either b = 0

or b = 211a−65(d−2e)
422 . For b = 0, θ becomes 111a2− a(130d− 130e− 81)+ 211d2 + d(162e− 211)− 162e2.

Since δθ
δe = 130a + 162d− 324e, θ is minimized at either e = 0 or e = d. In these two cases, θ becomes,

respectively, 111a2 + a(81− 130d) + 211d2 − 211d and 111a2 + 81a + 211d2 − 211d which are always
non-negative because of Lemma A10 and the fact the θ ≥ λ. For b = 211a−65(d−2e)

422 , θ becomes
2321a2 + 422a(81− 65d) + 84817d2 + 2d(42632e− 44521)− 85264e2. Since δθ

δe = 85264d− 170528e, θ

is minimized at either e = 0 or e = d. In both cases, θ becomes 2321a2 + 422a(81− 65d) + 84817d2 −
89042d and the claim follows for any 6-tuple (a, b, c, d, e, f ) such that (a, d) 6= (0, 1) by applying
Lemma A12. Hence, we are left to consider the 6-tuples of the form (0, 0, 0, 1, e, 1− e). In this case, θ

becomes 162(1− e) which is always non-negative since e ∈ {0, 1}.

Appendix B. Missing Proofs

Theorem A1 (Claim of Theorem 4). There exist two bidimensional linear congestion games (G, C) and
(G ′, C ′) such that PoA(G, C) ≥ 119

33 under the social cost function Pres and PoA(G ′, C ′) ≥ 35
8 under the social

cost function Perc.

Proof. For the social cost function Pres, consider the game (G, C) depicted in Figure A1a).
First, we show that σ is a pure Nash equilibrium for (G, C), that is, no player can lower her perceived
cost by switching to her optimal strategy. Player 1 is paying 27 · 2 + 46 = 100; by switching to σ∗1 ,
she pays 7 · 4 + 18 · 4 = 100. Player 2 is paying 27 · 2 + 42 + 56 = 152; by switching to σ∗2 , she pays
17 · 4 + 21 · 4 = 152. Player 3 is paying 27 · 2 + 42 = 96; by switching to σ∗3 , she pays 7 · 4 + 17 · 4 = 96.
Player 4 is paying 27 · 2 + 46 + 56 = 156; by switching to σ∗4 , she pays 18 · 4 + 21 · 4 = 156.
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Player 5 is paying 7 · 3 + 17 · 3 + 21 · 3 = 135; by switching to σ∗5 , she pays 27 · 5 = 135. Player
6 is paying 7 · 3 + 18 · 3 + 21 · 3 = 138; by switching to σ∗6 , she pays 46 · 3 = 138. Player 7 is
paying 7 · 3 + 18 · 3 + 17 · 3 = 126; by switching to σ∗7 , she pays 42 · 3 = 126. Player 8 is paying
18 · 3 + 17 · 3 + 21 · 3 = 168; by switching to σ∗8 , she pays 56 · 3 = 168.

The price of anarchy of (G, C) is then lower bounded by the ratio

100 + 152 + 96 + 156 + 135 + 138 + 126 + 168
25 + 38 + 24 + 39 + 27 + 46 + 42 + 56

=
1071
297

=
119
33

.

For the social cost function Perc, consider the game (G ′, C ′) depicted in Figure A1b). First, we show
that σ is a pure Nash equilibrium for (G ′, C ′), that is, no player can lower her perceived cost by
switching to her optimal strategy. Player 1 is paying 1418 + 958 + 189 · 2 = 2754; by switching
to σ∗1 , she pays 918 · 3 = 2754. Player 2 is paying 616 + 221 + 189 · 2 = 1215; by switching to σ∗2 ,
she pays 405 · 3 = 1215. Player 3 is paying 1418 + 616 + 189 · 2 = 2412; by switching to σ∗3 , she pays
804 · 3 = 2412. Player 4 is paying 958+ 221+ 189 · 2 = 1557; by switching to σ∗4 , she pays 519 · 3 = 1557.
Player 5 is paying (918 + 405 + 804) · 2 = 4254; by switching to σ∗5 , she pays 1418 · 3 = 4254. Player
6 is paying (918 + 519) · 2 = 2874; by switching to σ∗6 , she pays 958 · 3 = 2874. Player 7 is paying
(405 + 519) · 2 = 1848; by switching to σ∗7 , she pays 616 · 3 = 1848. Player 8 is paying 804 · 2 = 1608;
by switching to σ∗8 , she pays 221 · 3 + 189 · 5 = 1608.

By noting that the perceived cost of the first four players is exactly twice their presumed one,
the price of anarchy of (G ′, C ′) is then lower bounded by the ratio

2 · (2754 + 1215 + 2412 + 1557) + 4254 + 2874 + 1848 + 1608
1418 + 958 + 616 + 221 + 189 + 918 + 405 + 804 + 519

=
26460
6048

=
35
8

.
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Figure A1. The games depicted in figures (a,b) represent the lower bound instances w.r.t. the social
cost functions Pres and Perc, respectively. Each column in the matrix represents a resource of cost
function `(x) = αx whose coefficient α is reported at the bottom of the column. Each row i in the matrix
models the strategy set of player i as follows: circles represent resources belonging to σi, while crosses
represent resources belonging to σ∗i .

Theorem A2 (Claim of Theorem 6). For any ε > 0, there exist two bidimensional linear congestion games
(G, C) and (G ′, C ′) such that PoS(G, C) ≥ 1+

√
5

2 − ε under the social cost function Pres and PoS(G ′, C ′) ≥
5+
√

17
4 − ε under the social cost function Perc.

Proof. Let (G, C) be a bidimensional linear congestion game such that |C0| = n0 and |C1| = |C2| = n1.
Each player i ∈ C1 ∪ C2 has two strategies σi and σ∗i , while all players in C0 have the same strategy s.

There are three types of resources:
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• n1 resources ri, i ∈ [n1], each with cost function `ri (x) = n1+2n0+1+γ
2 x, where γ is an arbitrarily

small positive value. Resource ri belongs only to σ∗i ;
• n1(n1 − 1) resources r′i,j, i, j ∈ [n1] with i 6= j, each with cost function `r′ij

(x) = 1
2 x. Resource r′ij

belongs only to σi and to σ∗j ;
• one resource r′′ with cost function `r′′(x) = 1. Resource r′′ belongs to σi for each i ∈ [n1] and to s.

Let σ (resp. σ∗) be the strategy profile in which each player i /∈ C0 plays strategy σi (resp. σ∗i ).
The cost of each player i ∈ Cj, with j ∈ {1, 2}, for adopting strategy σi when there are exactly h
players in Cj adopting the strategy played in σ (and thus there are n1 − h players in Cj adopting
the strategy played in σ∗) is costσ(h) = 2n1−h−1

2 + n0 + h. Similarly, the cost of each player i ∈ Cj
for adopting strategy σ∗i when there are exactly h players in Cj adopting the strategy played in σ

is costσ∗(h) = n1+2n0+1+γ
2 + n1+h−1

2 . Since for any h ∈ [n1], it holds that costσ∗(h− 1) > costσ(h),
it follows that σ is the only pure Nash equilibrium for (G, C).

The price of stability of (G, C) is then lower bounded by the following ratio

n1(n1 − 1) + 2n1(n1 + n0) + n0(2n1 + n0)

n1(n1 + 2n0 + 1 + γ) + n1(n1 − 1) + n2
0

,

which, for n0 going to infinity and n1 = 1+
√

5
2 n0, tends to 1+

√
5

2 .
Let (G ′, C ′) be a bidimensional linear congestion game such that C0 = ∅, |C1| = n1 and |C2| = n2.

Each player i ∈ C1 has two strategies σi and σ∗i , while all players in C2 have the same strategy s.
There are three types of resources:

• n1 resources ri, i ∈ [n1], each with cost function `ri (x) = n1+1+γ
2 x, where γ is an arbitrarily small

positive value. Resource ri belongs only to σ∗i ;
• n1(n1 − 1) resources r′i,j, i, j ∈ [n1] with i 6= j, each with cost function `r′ij

(x) = 1
2 x. Resource r′ij

belongs only to σi and to σ∗j ;
• one resource r′′ with cost function `r′′(x) = 1. Resource r′′ belongs to σi for each i ∈ [n1] and to s.

Let σ (resp. σ∗) be the strategy profile in which each player i /∈ C0 plays strategy σi (resp. σ∗i ).
The cost of each player i ∈ C1 for adopting strategy σi when there are exactly h players in C1 adopting
the strategy played in σ (and thus there are n1 − h players in C1 adopting the strategy played in σ∗) is
costσ(h) = 2n1−h−1

2 + h. Similarly, the cost of each player i ∈ C1 for adopting strategy σ∗i when there
are exactly h players in C1 adopting the strategy played in σ is costσ∗(h) =

n1+1+γ
2 + n1+h−1

2 . Since for
any h ∈ [n1], it holds that costσ∗(h− 1) > costσ(h), it follows that σ is the only pure Nash equilibrium
for (G ′, C ′).

The price of stability of (G ′, C ′) is then lower bounded by the following ratio

1
2 n1(n1 − 1) + (n1 + n2)

2

1
2 n1(n1 + 1 + γ) + 1

2 n1(n1 − 1) + n2
2

,

which, for n2 going to infinity and n1 = 1+
√

17
4 n2, tends to 1+

√
17

4 .
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