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Axion-Like Interactions and CFT in Topological Matter,
Anomaly Sum Rules and the Faraday Effect

Claudio Corianò,* Mario Cretì, Stefano Lionetti, Dario Melle, and Riccardo Tommasi

Fundamental aspects of chiral anomaly-driven interactions in conformal field
theory (CFT) in four spacetime dimensions are discussed. These interactions
find application in very general contexts, from early universe plasma to
topological condensed matter. The key shared characteristics of these
interactions are outlined, specifically addressing the case of chiral anomalies,
both for vector currents and gravitons. In the case of topological materials,
the gravitational chiral anomaly is generated by thermal gradients via the
(Tolman–Ehrenfest) Luttinger relation. In the CFT framework, a nonlocal
effective action, derived through perturbation theory, indicates that the
interaction is mediated by excitation in the form of an anomaly pole, which
appears in the conformal limit of the vertex. To illustrate this, it is
demonstrated how conformal Ward identities (CWIs) in momentum space
allow to reconstruct the entire chiral anomaly interaction in its longitudinal
and transverse sectors just by inclusion of a pole in the longitudinal sector.
Both sectors are coupled in amplitudes with an intermediate chiral fermion or
a bilinear Chern–Simons current with intermediate photons. In the presence
of fermion mass corrections, the pole transforms into a cut, but the
absorption amplitude in the axial-vector channel satisfies mass-independent
sum rules related to the anomaly in any chiral interaction. The detection of an
axion-like/quasiparticle in these materials may rely on a combined
investigation of these sum rules, along with the measurement of the angle of
rotation of the plane of polarization of incident light when subjected to a chiral
perturbation. This phenomenon serves as an analog of a similar one in
ordinary axion physics, in the presence of an axion-like condensate, which is
rederived using axion electrodynamics.
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1. Introduction

In contrast to the traditional classifica-
tion based on the presence of band gaps
in conducting and insulating materials,
a novel category of materials known as
topological insulators (TIs) emerged at
the turn of the century (see ref. [1–4] for
an overview). The analysis of Hamilto-
nians in 3D for time-reversal invariant
electrons,[5–8] showed that similar to
the integer quantum Hall effect, band-
structure integrals can be used to classify
insulators in both 2D and 3D as ordinary
or topological, based on their ℤ2 topolog-
ical invariants.[9,10] These invariants are
remarkably robust, persisting even in the
presence of disorder, which is a key fea-
ture of topological insulators (and super-
conductors). In ref. [11, 12], a complete
classification of topological insulators
and superconductors in any dimension
was presented.[13] They can exhibit topo-
logical insulating phases with gapless
surface states protected by topology.

Materials like HgTe,[14] BixSb1 − x,[15]

Bi2Se3, and Bi2Te3
[16–19] provide a direct

realization of these phenomena. In some
cases, they exhibit a quantized magneto-
electric response proportional to a param-
eter (𝜃), due to electron orbital motion.
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The phase can be identified by the bulk polarization’s response
to an applied magnetic field,[20] which is described by axion
electrodynamics.[21]

TIs exhibit bandgaps within their bulk structure while also
featuring boundary states devoid of energy gaps. Unlike con-
ventional insulating metals, transitioning between the phases of
TIs and ordinary insulators requires transformations involving
the opening and closing of bandgaps, rather than adiabatic pro-
cesses.

The conventional method of characterizing different phases of
matter, which relies on a local order parameter and the notion
of spontaneous symmetry breaking, proves inadequate in distin-
guishing between TIs and other materials.

For instance, if both systems possess time-reversal invariance
(TRI) symmetry, they cannot be discerned solely through this ap-
proach. However, alternative methods exist for distinguishing be-
tween them.

For example, the magnetoelectric response parameter 𝜃 can be
quantized. This coefficient takes the value 0 (mod 2𝜋) for TIs, sig-
nifying a distinct response compared to conventional insulators
where 𝜃 = 0.

1.1. Classification

For insulators lacking time-reversal symmetry (TRI), two cate-
gories emerge: 1) axion-like and 2) magnetic. In axion-like in-
sulators, an effective form of TRI arises when combined with a
lattice translation, even with the explicit breaking of TRI. Also,
these materials possess a quantized topological response with 𝜃

= 0 (mod 2𝜋). Conversely, magnetic insulators exhibit a broken
TRI and a non-vanishing topological phase (𝜃 ≠ 0).

This non-zero phase is proportional to the material’s magneti-
zation, M(x, t).

If the magnetization acts as a local field, the response mani-
fests as an axion-like interaction, expressed in terms of the elec-
tric and magnetic fields as

𝜃F̃F ≈ 𝜃 E ⋅ B (1)

This interaction finds an analogy in chiral quantum field theories
(QFTs) affected by a global chiral anomaly. Indeed, in the local
formulation of the anomaly effective action, Equation (1) is the
standard way in which an asymptotic pseudoscalar field, identi-
fied with 𝜃, couples to the anomaly F̃F.

We will address anomalies related to continued symmetries
rather than to discrete ones. For a detailed discussion on the im-
plications of a discrete anomaly on the quantum anomalous Hall
effect, such as the parity anomaly, we refer to ref. [22] and refer-
ences therein.

The study of the topological response in the context of anomaly
interaction within ordinary QFT is the goal of this review.

1.2. Harnessing Chirality in Topological Insulators

Central to unlocking the full potential of such materials is the
generation of chiral currents, wherein electrons flow unidirec-
tionally along the edges or boundaries of the material (see for

instance ref. [23]) Achieving this result relies upon breaking the
TRI of these materials.

One possibility is the inclusion of magnetic atoms into the
crystal lattice or the application of an external magnetic field, in
this way, TRI can be effectively broken within the TI. This facil-
itates the emergence of chiral edge states, where electrons nav-
igate in a preferred direction along the boundaries of the mate-
rial. This approach offers versatility in determining the chiral cur-
rent behavior.

Another approach consists of the application of a mechanical
strain to the TI material. The introduction of strain induces a
non-zero Chern number, thereby fostering chiral edge currents.
This method underscores the interplay between mechanical de-
formation and electronic properties, opening avenues for tunable
chiral transport.

The combination of different TIs or their integration with
other materials creates an ideal environment for investigating
chiral phenomena. At the interface of these materials, complex
band structures interact, leading to the emergence of chiral edge
states. Manipulating heterostructures provides a pathway to en-
gineer customized chiral transport pathways.

Circularly polarized light has the ability to impart angular mo-
mentum to electrons within the TI, disrupting Time-Reversal In-
variance (TRI) and potentially generating a chiral photocurrent.
This non-invasive method holds promise for dynamically modu-
lating chiral behavior, paving the way for optically controlled elec-
tronics.

Tailoring specific geometries within the TI material, such as
sharp corners or edges, enables the localization of chiral states.
These topological corner states facilitate directed current flow,
offering opportunities for miniaturized devices and robust elec-
tronic circuitry. The selection of a particular method depends on
the intrinsic properties of the TI material and the desired charac-
teristics of the chiral current.

1.3. Topological Response, Chiral and Conformal Anomalies

If the topological response of TIs to chiral perturbations al-
lows us to establish a link with topological aspects of QFT and
anomalies,[20,24–27] then the investigation of the interpolating chi-
ral anomaly vertex plays an essential role.

In general, the analysis of these interactions is based on per-
turbative approaches. However, we are going to show that an in-
dependent analysis can be performed nonperturbatively, without
resorting to a Lagrangian realization, using CFT methods. This
opens the way to new anomalies, as shown in the case of the par-
ity odd-trace anomaly.[28]

Previous perturbative analysis have provided an in-depth char-
acterization of the corresponding effective actions for chiral and
conformal anomalies,[29–33] both of relevance for topological ma-
terials. It is well-known that anomalies[34,35] (see ref. [36, 37] for
overviews) in ordinary gauge theories, are related to the presence
of certain interactions, in a given gauge theory, that need to be
canceled by the choice of appropriate charge assignments for the
fermion spectrum.

The ordinary anomaly cancellation mechanism in the Stan-
dard Model of the elementary particles, indeed, bans interactions
carrying gauge anomalies. Anomalies do not carry any scale and
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this defines an important link between this phenomenon and
conformal symmetry, which we are going to explore and is the
main motivation for our analysis.

As we are going to show, the presence of conformal symmetry
and of a quasiparticle pole in the chiral correlator exhibiting the
anomaly, are the only two ingredients that allow to completely
characterize the anomaly behavior in all those cases where an
anomaly is present, in a certain field theory action.

1.4. Scale Independence of the Interaction

Chiral anomalies are scale-independent, a feature that can be
straightforwardly confirmed within perturbation theory. One can
show quite straightforwardly that mass corrections, typically as-
sociated with spontaneous symmetry breaking of gauge symme-
try in a gauge theory, do not alter the anomaly.

We remember that the fermion mass, in a gauge theory such as
the Standard Model, arises as a consequence of an order param-
eter generated by a local interaction, namely the vacuum expec-
tation value (vev) of the Higgs field, after spontaneous symme-
try breaking. The independence of the anomaly from such a vev,
parallels the previous discussion wherein the topological phase
transitions remain distinct from the spontaneous breaking of lo-
cal symmetries.

Thus, the presence of a quantized or continuous dimen-
sionless constant or field in the topological response of a given
material, interpreted as an axion-like interaction, serves as a
monitor for essential topological features of such materials,
which are not inherently associated with local operators.

Furthermore, as we delve into our discussion, as just men-
tioned, it becomes evident that the anomaly phenomenon is inti-
mately linked to the exchange of a massless pole in the anomaly
vertex. This picture emerges from a dispersion relation involving
the spectral density of the anomaly form factor, present in the
same vertex, in the conformal limit, a point we shall thoroughly
explore in the forthcoming sections.

1.5. Content of this Work

Our study begins with an examination of the nonlocal structure
found in the chiral anomaly effective action, which is regarded as
an induced action derived from an anomaly pole.[29,38] This for-
mulation stems from a variational approach to the anomaly con-
straint, which is given by the magnetoelectric response in Equa-
tion (1).

The anomaly constraint describes how a condensed matter sys-
tem responds when subjected to variations induced by an ex-
ternal axial-vector field. Initially discussed within the context of
kinetic mixing,[29] it was later reformulated using Stuckelberg
axions,[39] representing a broken symmetry characterized by a
non-zero Ward identity in the axial-vector channel. Our analy-
sis reveals the emergence of a ghost when the kinetic mixing of
the local action is reformulated as separate degrees of freedom,
a point discussed in Section 3.2. An alternative variational ap-
proach, utilizing a hydrodynamic framework with variations per-
formed with respect to the external chiral current rather than the
axial-vector source, has been explored in ref. [40, 41].

We delve into the structure of the anomaly vertex using two
different representations in Section 4, followed by an analysis of
the dispersion relation and sum rule satisfied by the extension of
the interaction once we include massive fermions in Section 5.
Similar sum rules are demonstrated to hold for the gravitational
chiral anomaly, where the correlator involves two stress–energy
tensors alongside the chiral current. Section 6 and Section 7 are
dedicated to outlining the relationship between CFT and both the
chiral and gravitational anomalies. In Section 8, we briefly illus-
trate the relevance of gravitational correlators in the analysis of TI
subjected to thermal stress, as predicted by the Luttinger relation
between gravity and thermal gradients.[42,43]

The last two sections focus on the local action of axion elec-
trodynamics, summarizing the interaction between an asymp-
totic pseudoscalar axion-like field and the anomaly. We outline
two key features of this action, one related to the rotation of the
plane of polarization of light incident on a material, for which
we provide a detailed derivation, addressing a gap in the litera-
ture. This effect was initially predicted in ref. [44] within axion
physics, in the presence of an axion condensate. In the case of
a TI, this effect would similarly signify the presence of an effec-
tive axion condensate within a system. In the final section, before
drawing our conclusions, we describe an intriguing aspect of the
light-cone behavior of the electromagnetic propagator in the pres-
ence of a timelike condensed axion field. The equations of axion
electrodynamics exhibit oscillations across the entire light-cone,
a phenomenon we elucidate before concluding our study.

2. Anomalies and Nonlocal Versus Local Actions

It’s noteworthy that chiral interactions, as derived in perturbative
QFT, are described by nonlocal actions.

Their local formulations have been extensively explored in
prior studies, employing various approaches. One such ap-
proach, directly derived from perturbative analysis of the
anomaly form factor, describes the interaction in terms of a ki-
netic mixing of two entangled degrees of freedom.[29] This aspect
will be examined in detail in the upcoming section, where we
show that the interaction can be reformulated in terms of two
Stuckelberg axions, one of which manifests as a ghost. The effec-
tive action is quite similar to the one investigated in ref. [45].

The approach, however, is not unique. A modified variational
principle that leads to a local action has been recently proposed
in ref. [40], thereby distinguishing between the 1PI description of
the interaction and its local counterpart. In this local description,
the longitudinal component of the chiral perturbation is assimi-
lated into a local pseudoscalar field, 𝜑, an axion.

However, establishing this local description involves rewrit-
ing the effective action through a field redefinition that depends
on the external axial-vector background. This redefinition funda-
mentally alters the nonlocal interaction, reformulating it into a
local one, which forms the foundation of the Lagrangian of axion
electrodynamics, a topic to be explored further in the last sec-
tions of this work.

In this framework, axion electrodynamics can be regarded
as describing the on-shell behavior of the perturbative (axial-
vector/vector/vector) AVV interaction, incorporating a pseu-
doscalar field 𝜑 interpreted as an axion-like excitation. This local
action finds widespread application in conventional axion physics
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and holds promise for experimental investigations in topological
materials. In this context, the coupling of an axion to the anomaly
is simply of the form 𝜑FF̃, where F is the electromagnetic field
strength, as common in axion physics.

The local action predicts the rotation of the plane of polariza-
tion of a light beam in the presence of a condensed axion field,
particularly when the condensate exhibits a gradient. This aspect
will be thoroughly examined in the last segment of the review.

2.1. Chiral Gravitational Anomalies

Interestingly, the charge assignments in the Standard Model of
elementary particles also resolve another anomaly known as the
gravitational anomaly. This anomaly involves a correlator with
one axial-vector current and two gravitons, represented by the
TTJ5 vertex, where T is the stress–energy tensor and J5 is a chi-
ral current. Within the Standard Model, this interaction is medi-
ated by the hypercharge, and its cancelation can be understood
in two ways.

One explanation involves considering the stress–energy tensor
as a composite operator within the Standard Model. In this view,
vertices where this operator is inserted alongside gauge interac-
tions need to be carefully defined for consistency.

Alternatively, the resolution of this anomaly can be seen as evi-
dence that the Standard Model and gravity are inherently consis-
tent with each other.

It’s important to emphasize subtle differences in the behav-
ior of chiral and conformal anomaly correlators.[33] The chiral
anomaly is purely topological, and the associated correlator is
constrained by ordinary (nonanomalous) conformal Ward iden-
tities. In the case of conformal anomalies, the situation is more
complex, because the corresponding anomaly is topological only
in its Gauss–Bonnet part and the corresponding conformal Ward
identities are anomalous. This topological aspect emerges in the
anomaly functional only after applying the Wess–Zumino consis-
tency condition. The origin of the conformal anomaly is directly
linked to the renormalization of the corresponding correlators in
d = 3 + 1, a step not required for any chiral anomaly.

The potential to replicate fundamental phenomena of quan-
tum field theory (QFT) in a laboratory setting, which are typically
observed indirectly in high-energy physics through particle accel-
erators or inferred via elaborate theoretical constructs, presents
an exciting opportunity that we aim to explore in this work.

2.2. The Topological Field Theory Perspective

In our approach, we start from the continuum limit, where we
discuss a QFT description of the phenomenon. We outline the po-
tential for a comprehensive reconstruction of the vertex, operat-
ing on the sole assumption that it arises from the presence of just
two fundamental ingredients: 1) the emergence of an anomaly
pole in the longitudinal sector of the correlator and 2) of confor-
mal symmetry.

A third important ingredient of the interaction, as we move
away from the conformal point, as already mentioned, is 3) the
presence of a mass -independent sum rule, satisfied by the ab-
sorbitive part of the transition amplitude in the axial-vector chan-
nel.

The reconstruction of the interaction, which is performed with
no reference to a Lagrangian realization and obtained by a solu-
tion of the conformal Ward identities (CWIs), is verified in free
field theory at one loop by a direct perturbative computation of
the interaction vertex. A similar analysis has been performed in
the context of the gravitational chiral anomaly, where, again, the
reconstruction of the interaction proceeds from the longitudi-
nal sector.

The presence of sum rules for chiral currents will be illus-
trated in Section 5.2, where we show that the pattern is shared
by correlators such as the gravitational anomaly correlator TTJ5
and TTJCS, where JCS is a Chern–Simons current[46] associated
with a gauge field V𝜇

J𝜆CS = 𝜖𝜆𝜇𝜈𝜌V𝜇𝜕𝜈V𝜌 (2)

Relying on a specific parameterization of the anomaly vertex,
with the inclusion of an anomaly pole, whose residue is the
anomaly, we propose that such an interpolating state should be
viewed as essential in the response function of the material once
it is subjected to an external chiral excitation, and should be prop-
erly searched in the experiments. We are going to elaborate on
this interpretation first by resorting to the perturbative expansion
of the vertex, and then illustrate the sum rules satisfied by the
chiral interactions, as soon as we move away from the conformal
point with massive fermions. In other words, the axion pole is
present in the conformal limit.

Indeed, the possible experimental verification of the sum rule
could provide a direct check of the quasiparticle nature of the key
dynamical feature of the anomaly vertex.

3. QFT Anomalies and the Effective Action

Conformal and chiral anomalies[33,47] (see ref. [1, 48] for applica-
tions in condensed matter physics) are generated from the parti-
tion function of a certain theory, (𝜒i),

(𝜒i) ≡ ∫ D𝜓D�̄�ei0(𝜓 ,�̄� ,𝜒i) (3)

after integration over the matter sector, the Dirac fermion field 𝜓

in this case, whenever the functional integral is not invariant un-
der either Weyl or axial-vector gauge transformations—for con-
formal and chiral anomalies respectively—or under both, if these
are symmetries of the original action 0.

𝜒 i denote external background fields.
The role played by the anomaly in the transport equations has

been discussed in several works and in various contexts, from
condensed matter physics to astrophysics,[49–51] the different real-
izations indicating its universality. Notice that in transport equa-
tion the axion/anomaly pole is not present in the description,
since the equations of motion are on-shell and incorporate the
longitudinal axial-vector Ward identity from the start. In other
words, they are based on a local action. In order to uncover the
mechanism of the pole exchange, one should analyze the entire
vertex, prior to any Ward identity, discussing its complete tensor
structure, as we are going to show.

In the case of the chiral anomaly, the underlying interaction
is represented by an AVV (axial-vector/vector/vector) anomaly
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diagram. This interaction appears at O(e2) in the expansion of
Equation (3), where 0 denotes the fundamental action of axial
QED.

k = ∫ d4x
(
�̄�𝛾𝜇(𝜕𝜇 − ieA𝜇)𝜓 − m�̄�𝜓

)
,

0 ≡ = k − i∫ d4x�̄�𝛾5𝛾
𝜇𝜓B𝜇 (4)

once we integrate out the Dirac fermion. A𝜇 is a vector gauge
field, the photon, and B𝜇 is an axial-vector external source. If B𝜇

were a propagating quantum field, then the partition function
generated by this theory would be clearly inconsistent, for
breaking local gauge invariance. For this reason we will treat it
exclusively as a non-propagating source.

Our discussion will be confined to axial QED, as given by Equa-
tion (4) in a context relevant for topological materials, where, as
already mentioned, the expectation value of the axial-vector cur-
rent is generated by varying the effective action

eff = log(𝜒i) (5)

with respect to B𝜇. Three-point functions involving external vec-
tor interactions can be obtained in a similar manner by varying
the same functional with respect to the external vector field A𝜇 ,
one or multiple times. The 𝜒 i’s in Equation (3) include all these
external gauge sources, that take the form of axial-vector (B𝜇) or
vector (A𝜇) fields. In a more general setup, one needs to also in-
clude the metric tensor g𝜇𝜈 , in the case of a conformal theory.
In this second case, the action needs to be extended in a curved
spacetime. This point will be briefly illustrated in Section 8.3.

In the following, we will be concerned with a correlator of the
form AVV, where the analysis remains valid for any abelian vector
current and for a single axial-vector one. The vector current cou-
ples to the photon, which can be on-shell, while the axial-vector
one is coupled to a non-propagating axial-vector field, B𝜇, that
takes the role of an external off-shell source. In the measurement
of the optical activity of the material induced by the anomaly,
which can be described within axion electrodynamics and is the
topic of the last section, the photons are obviously required to be
on-shell, since these are experimentally detected.

As already mentioned, the effective action underlining the
fermion dynamics is characteried by a global U(1)A and by a
gauge U(1)V symmetries, with the U(1)A broken by the anomaly.
The breaking of such symmetry, at quantum level, is expressed
in terms of an anomaly functional which contains the topological
term Equation (1). Under a variation of the external sources, the
effective action changes in the form

𝛿eff = ∫ d4x
𝛿eff

𝛿𝜃(x)
𝛿𝜃(x) (6)

with the finite part of the variation

𝛿eff

𝛿𝜃(x)
= (𝜒i) (7)

given by the anomaly (𝜒i). The anomaly is result is due to the
anomalous variation of eff under a gauge transformation of the
external gauge field B𝜇 , with gauge parameter 𝜉(x), 𝛿B𝜇 = ∂𝜇𝜃(x)

d𝜇 → d𝜇 exp
(
− i

8𝜋2 ∫ dx 𝜃(x)F(x)𝜇𝜈 F̃(x)𝜇𝜈
)

(8)

where we have indicated with d𝜇 the variation of the fermion inte-
gration measure in the partition function, in the background of
the electromagnetic field. This may involve the Euler–Poincarè
density Ed plus other terms in the case of a conformal anomaly,
whose explicit expressions depend on the spacetime dimensions
or the divergence of a topological Pontryagin current K𝜇, with
𝜕 ⋅ K = FF̃ ∼ E⃗ ⋅ B⃗, for the chiral anomaly.

Notice that Equation (6) is the usual way in which the topo-
logical response is discussed in all the literature on the chiral
anomaly in topological materials (see for example ref. [52]). This
is equivalent to a description of the longitudinal Ward identity
and does not describe the entire vertex as it appears in the inter-
action in the original current correlator. While this reduced de-
scription is at the basis of the local action, it erases the pole from
the off-shell effective action. In particular, the link between con-
formal symmetry, the anomaly pole and the sum rule is absent.

The presence or the breaking of these symmetries manifests
with an infinite set of either exact or anomalous Ward identities
among the quantum correlation functions of the theory.[33]

As mentioned in the Introduction, the analysis of such interac-
tions is fundamental for the consistency of the gauge theories of
particle physics, and anomaly cancelation is crucial for the iden-
tification of physics beyond the Standard Model, once the gauge
interactions are extended with wider symmetries.

A common character of the topological terms, in a perturba-
tive expansion of the partition function, is that they are not di-
rectly required by the regularization procedure of the correspond-
ing Feynman diagrams, but appear as a result of external condi-
tions associated with the Ward identities, imposed on the dia-
grammatic expansion.

Both the Wess–Zumino consistency condition - for the con-
formal anomaly—or the condition of conserved vector currents
(CVC) - for the chiral anomaly—can be formulated as external
Ward identities, necessary for the consistency of the quantum
theory. The process is exhausted at one-loop in both cases: at tri-
linear level in the external fields for the abelian chiral anomaly, at
fourth order in the nonabelian case, while it goes to all orders in
the case of the conformal anomaly. The anomaly functional, how-
ever, even in this second case, can also be inferred by the analysis
of the first lower-point functions with external gravitons.

In the case of the conformal anomaly, this perturbative pro-
cedure does not identify the entire contribution to the anomaly
functional, once the matter sector is integrated out—in our case,
this corresponds just to fermions—since other, non topological
terms appear, such as the square of the Weyl tensor in d = 4,
which are necessary for the renormalization of the quantum ac-
tion, once all the loop corrections are taken into account.

Obviously, in topological materials such interactions are emer-
gent, and are realized artificially by soliciting the sample either
with chemical potentials or with thermal gradients that interpo-
late with specific currents or tensor operators, such as the chiral
current J𝜇5 or the stress–energy tensor T𝜇𝜈 . For instance, thermal
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Figure 1. The AVV diagrams (direct and exchanged) in the expansion of
the anomaly action eff .

gradients can be treated as an artificial metric, using Luttinger’s
relation.[42,43,53].

In general, such studies, from the field theory perspective, are
performed in the conformal limit, when all the masses of the mat-
ter system are neglected. This is also the limit in which the effec-
tive action manifests key features of the anomalous behavior.

3.1. Correlators from the Partition Function

eff can be expanded perturbatively in the two coupling constants
e and gB. Here we will consider the contribution only of the AVV
diagram, which is the only one responsible for the anomalous
interaction of the electromagnetic field A𝜇 with the axial vector
source B𝜆 (Figure 1).

In the chiral anomaly case, the only violation of the axial-vector
current Ward identities takes place at trilinear level and it is sum-
marized by the two simple diagrams in Figure 3. The anomalous
variation of eff is essentially defined by this contribution and all
the relevant physical implications should be extracted at this level
(O(e2)), quadratic in the electric charge e.

In the limit of vanishing fermion mass, m → 0, the classical
Lagrangian possesses a U(1) global symmetry under 𝜓 → ei𝛼𝛾5

𝜓 ,
in addition to U(1) local gauge invariance. The Noether current
corresponding to this chiral symmetry is J𝜇5 . The two currents,
vector and axial-vector

J𝜇(x) = �̄�(x)𝛾𝜇𝜓(x) (9)

J𝜇5 (x) = �̄�(x)𝛾𝜇𝛾5𝜓(x) (10)

satisfy the conditions

𝜕𝜇J𝜇 = 0 (11)

while the classical conservation equation for the axial-vector cur-
rent is explicitly broken by the mass term

𝜕𝜇J𝜇5 = 2im �̄�𝛾5𝜓 (12)

One of the two symmetries cannot be maintained at the quantum
level. If we denote by ⟨J𝜇5 (z)⟩A the quantum average of J𝜇5 , with

⟨J𝜇5 (z)⟩
A
=

𝛿eff

𝛿B𝜇

|B=0 (13)

then the quantum version of Equation (12) becomes

𝜕𝜇J𝜇5 = 2m�̄�𝛾5𝜓 − 2 (14)

which in the fermion zero mass limit reduces to

𝜕𝜇⟨J𝜇5 ⟩A

|||m=0
= e2

16𝜋2
𝜖𝜇𝜈𝜌𝜎F𝜇𝜈F𝜌𝜎 = e2

2𝜋2
E ⋅ B (15)

The second variation of ⟨J𝜇5 (z)⟩
A

projects over the AVV correlation
function

Γ𝜇𝛼𝛽 (z, x, y) ≡ −i
𝛿2⟨J𝜇5 (z)⟩

A

𝛿A𝛼(x)𝛿A𝛽 (y)

|||||A=0

= −i(ie)2⟨TJ𝜇5 (z)J𝛼(x)J𝛽 (y)⟩|||A=0
(16)

which is affected by an anomaly.

Γ𝜇𝛼𝛽 (p, q) ≡ −i∫ d4x ∫ d4y eip⋅x+iq⋅y
𝛿2⟨J𝜇5 (0)⟩

A

𝛿A𝛼(x)𝛿A𝛽 (y)

|||||A=0

= ie2 ∫ d4x ∫ d4y eip⋅x+iq⋅y ⟨TJ𝜇5 (0)J𝛼(x)J𝛽 (y)⟩|||A=0
(17)

Then we have the expansion

⟨J𝜇5 (z)⟩
A
= i

2 ∫
d4p

(2𝜋)4 ∫
d4q

(2𝜋)4 ∫ d4x ∫ d4y e−ip⋅(x−z) ×

e−iq⋅(y−z) Γ𝜇𝛼𝛽 (p, q) A𝛼(x)A𝛽 (y) +… (18)

up to second order in the gauge field background A𝜇 . Focusing
our discussion on the chiral case, we expect that the anomaly ef-
fective action, computed from the anomaly functional, should be
expressed in terms of the complete components of the external
axial-vector source B𝜆, rather than just its longitudinal part. This
point can be illustrated as follows.

The quantum average of the axial-vector current can be ex-
tracted from the expression

𝛿eff

𝛿B𝜇

= ⟨J𝜇5 ⟩A
(19)

If we decompose the axial vector B𝜇 into its transverse and longi-
tudinal parts,

B𝜇 = B⟂
𝜇
+ 𝜕𝜇𝜑 (20)

with 𝜕𝜇B⟂
𝜇
= 0 and 𝜑 a pseudoscalar that will take the role of an

axion. The axial-vector interaction in 0 can then be re-expressed
in the form

∫ d4xJ𝜇5 B𝜇 = −∫ d4x𝜕𝜇J𝜇5𝜑 + ∫ d4xJ𝜇5 B⟂
𝜇

(21)

using the functional chain rule in the differentiation with respect
to the pseudoscalar component ϕ we obtain

𝜕𝜇⟨J𝜇5 ⟩A
= −𝛿

𝛿𝜑
(22)
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whose variational solution can be immediately chosen of the
form

eff = − e2

16𝜋2 ∫ d4x 𝜖𝜇𝜈𝜌𝜎F𝜇𝜈F𝜌𝜎 𝜑 (23)

and describes the coupling of an axion (𝜑) to the anomaly. No-
tice that 𝜑 behaves like a Nambu–Goldstone (NG) mode under
gauge variations of the external source since, for a generic gauge
function 𝜃(x), we have

B𝜇 → B′
𝜇
= B𝜇 + 𝜕𝜇𝜃 (24)

since it undergoes a shift, while B⟂
𝜇

is invariant

𝜑 → 𝜑 + 𝜃 B⟂
𝜇
→ B⟂

𝜇
(25)

Notice also that the Equation (23) is excluding contributions
which are proportional to the transverse component of the
source, B⟂

𝜇
. Such extra corrections correspond to homogenous

terms which do not contribute to Equation (23), for being trans-
verse, but are part of the expression of the current ⟨J𝜇5 ⟩.

Even within the limitations of Equation (23), we need to relate
𝜑 to the source B𝜆 and use the constraint 𝜕𝜆B𝜆 = □𝜑, to derive
the nonlocal form of the Equation (23)

eff = − e2

16𝜋2 ∫ d4x ∫ d4y [𝜖𝜇𝜈𝜌𝜎F𝜇𝜈F𝜌𝜎 ]x □
−1
xy [𝜕𝜆B𝜆]y (26)

Notice that the coupling of a NG mode to topological densities,
such as F∧F or the Euler–Poincarè density Ed, is a common fea-
ture of the method of derivation of the effective action, with sig-
nificant differences respect to those formulation that do not fol-
low this procedure.

Being the chiral anomaly contribution present just at trilinear
level, in the AVV and AAA sectors, the details can be worked out
within a simple perturbative picture.

3.2. Kinetic Mixing, Stuckelberg Axions and a Ghost

A first proposal for rewriting the nonlocal action in local form was
presented in ref. [29] in terms of two auxiliary fields, kinetically
mixed

eff [𝜂,𝜒 ; A, B] = ∫ d4x
{

(𝜕𝜇𝜂) (𝜕𝜇𝜒) − 𝜒 𝜕𝜇B𝜇 +
e2

8𝜋2
𝜂 F𝜇𝜈 F̃

𝜇𝜈

}
(27)

On can immediately show that the equations of motion of the two
pseudoscalars 𝜂 and 𝜒 take the form

□ 𝜂 = −𝜕𝜆B𝜆 (28)

□ 𝜒 = e2

8𝜋2
F𝜇𝜈 F̃

𝜇𝜈 = e2

16𝜋2
𝜖𝜇𝜈𝜌𝜎F𝜇𝜈F𝜌𝜎 (29)

At the same time, after integration by parts and removing a to-
tal divergence, one can show that Equation (27) reproduces the
nonlocal Equation (26).

In an ordinary quantum field theory pseudoscalar states at d =
4 should be characterized by a canonical mass dimension equal
to one. Notice, however that in the local Lagrangian introduced by
Giannotti and Mottola 𝜒 [29] has mass dimension two and 𝜂 has
mass dimension zero. By an appropriate scaling, we introduce
two fields �̄� and �̄� defined as

𝜒 = 1√
2
�̄�M 𝜂 = 1√

2

�̄�

M
(30)

canonically normalized, with the original Equation (26) that takes
the form

eff [�̄�, �̄� ; A, B] = ∫ d4x
{

(𝜕𝜇�̄�) (𝜕𝜇�̄�) + M𝜕𝜇�̄� B𝜇

+𝛼 �̄�

M
F𝜇𝜈 F̃

𝜇𝜈

}
(31)

with 𝛼 ≡ e2/8𝜋2. In the context of axion physics, the coupling of �̄�
to the topological density FF̃ is naturally suppressed by M, which
defines the axion decay constant, as in ordinary axion models.
Now introduce the two linear combinations

�̄� = a(x) − b(x) �̄� = b(x) + a(x) (32)

and we rewrite Equation (31) in the form

eff [a, b; A, B] = ∫ d4x
(1

2
(𝜕𝜇a − M̄B𝜇)2 − 1

2
(𝜕𝜇b − M̄B𝜇)2

+ a − b
M̄

FF̃
)

(33)

where M̄ = M∕
√

2. This action has a close resemblance with the
action introduced in ref. [45], except for the absence of the b ghost,
that there is formulated as an ordinary kinetic term, as well as for
the inclusion of a periodic potential, that here is absent. The two
degrees of freedom, in this formulation, are entangled.

Notice that the action above takes the ordinary Stückelberg
form, in terms of two Stückelberg axions a(x) and b(x). The ki-
netic terms are invariant under the gauge transformations

a → a − M̄𝜃(x), b → b + M̄𝜃, B𝜇 → B𝜇 + 𝜕𝜇𝜃 (34)

the second of them being ghost-like and given by b. In ordinary
Stückelberg models,[54] the symmetry with a single axion is suf-
ficient in order to provide a gauge invariant mass to a U(1) field,
in this case identified with B𝜇 . For a different approach to the
solution of the variational problem concerning the local and the
nonlocal actions in this context we refer to ref. [40].

4. The Chiral Anomaly from Perturbation Theory
and Covariance

In this section, we delineate the basic parameterization of the chi-
ral correlator affected by a chiral anomaly at the perturbative level
(the vector/vector/axial-vector or VVA diagram). The diagram-
matic expression of the interaction is described at a perturbative
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Figure 2. a) The fermion loop; b) the collinear region in the loop integra-
tion; c) the effective pseudoscalar exchange as an effective axion.

level in Figure 2a. We have indicated with p3 the momentum of
the axial-vector current J5 and with p1 and p2 those of the vec-
tor currents.

The first parameterization of the VVA vertex was introduced
long ago by Rosenberg.[55] It is expressed in terms of six tensor
structures and form factors. A second representation,[56] more
recent and particularly valuable from a physical standpoint, was
introduced in the analysis of the non-renormalization theorems
of the same VVA interaction in QCD. This second parameteri-
zation enables the attribution of the anomaly to the exchange
of a pole in the longitudinal channel.[29,31,57]. The two parame-
terizations are completely equivalent, since they are related by
Schoutens relations, however only the second one allows to ex-
ploit the conformal symmetry of the interaction for the complete
reconstruction of the entire vertex structure starting only from its
longitudinal sector.

In this second parameterization of the vertex, the decomposi-
tion identifies longitudinal and transverse components:

⟨J𝜇1 (p1)J𝜇2 (p2)J𝜇3
5 (p3)⟩ = 1

8𝜋2

(
W𝜇1𝜇2𝜇3

L − W𝜇1𝜇2𝜇3
T

)
(35)

where WT represents the transverse part, while the longitudi-
nal tensor structure is given by (70). Here, WL represents the
anomaly form factor, which exhibits a 1∕p2

3 pole in the massless
(chiral or conformal) case.

Lorentz symmetry and parity fix the correlation function in the
following form:

⟨J𝜇1 (p1)J𝜇2 (p2)J𝜇3
5 (p3)⟩ = B1(p1, p2)𝜀p1𝜇1𝜇2𝜇3 + B2(p1, p2)𝜀p2𝜇1𝜇2𝜇3

+ B3(p1, p2)𝜀p1p2𝜇1𝜇3 p1
𝜇2

+ B4(p1, p2)𝜀p1p2𝜇1𝜇3 p𝜇2
2

+ B5(p1, p2)𝜀p1p2𝜇2𝜇3 p𝜇1
1

+ B6(p1, p2)𝜀p1p2𝜇2𝜇3 p𝜇1
2 (36)

where B1 and B2 are divergent by power counting and we used
the notation 𝜀p1𝜇1𝜇2𝜇3 ≡ 𝜀𝛼𝜇1𝜇2𝜇3 p1𝛼 . The four invariant amplitudes

Figure 3. The AVV diagrams (direct and exchanged) in the expansion of
the anomaly action eff .

Bi for i ⩾ 3 are given by explicit parametric integrals[55]:

B3(p1, p2) = −B6(p2, p1) = 16𝜋2I11(p1, p2),

B4(p1, p2) = −B5(p2, p1) = −16𝜋2
[
I20(p1, p2) − I10(p1, p2)

]
(37)

that respect the Bose symmetry of the two vector lines, with Ist
defined by

Ist(p1, p2) = ∫
1

0
dw ∫

1−w

0
dzwszt

[
z(1 − z)p2

1 + w(1 − w)p2
2

+ 2wz(p1 ⋅ p2) − m2
]−1

(38)

By power counting, one immediately notices that both B1 and B2
are ill-defined, but they can be rendered finite by imposing the
conservation Ward identities on the two vector lines, giving

B1(p1, p2) = p1 ⋅ p2 B3(p1, p2) + p2
2 B4(p1, p2) (39)

B2(p1, p2) = p2
1 B5(p1, p2) + p1 ⋅ p2 B6(p1, p2) (40)

One notable trait of a chiral anomaly interaction lies in its po-
tential finiteness through the imposition of suitable Ward identi-
ties on the corresponding correlators. These relationships enable
the reinterpretation of formally divergent amplitudes in terms
of convergent ones, eliminating the necessity for introducing
counterterms. This feature underscores the conformal nature of
the diagrammatic contribution discussed earlier. Unlike other
correlators, such as those characterized by the insertion of an
energy–momentum tensor, where the conformal anomaly is di-
rectly linked to their renormalization, the chiral case presents a
distinct scenario.

At this juncture, while the depiction of the interaction remains
predominantly perturbative, we’ll explore how the vertex can be
derived from the solution of the conservation Ward identities
(CWIs) in momentum space, devoid of any reliance on pertur-
bation theory or free field theory realizations.

Utilizing the conservation Ward identities for the vector cur-
rents, we derive the convergent expansion.[32]

⟨J𝜇1 J𝜇2 J𝜇3
5 ⟩ = B3(p1 ⋅ p2𝜀

p1𝜇1𝜇2𝜇3 + p𝜇2
1 𝜀p1p2𝜇1𝜇3 )

+ B4(p2 ⋅ p2𝜀
p1𝜇1𝜇2𝜇3 + p𝜇2

2 𝜀p1p2𝜇1𝜇3 )

+ B5(p1 ⋅ p1𝜀
p2𝜇1𝜇2𝜇3 + p𝜇1

1 𝜀p1p2𝜇2𝜇3 )

+ B6(p1 ⋅ p2𝜀
p2𝜇1𝜇2𝜇3 + p𝜇1

2 𝜀p1p2𝜇2𝜇3 )

≡ B3 𝜂
𝜇1𝜇2𝜇3
3 (p1, p2) + B4 𝜂

𝜇1𝜇2𝜇3
4 (p1, p2)

+ B5 𝜂
𝜇1𝜇2𝜇3
5 (p1, p2) + B6 𝜂

𝜇1𝜇2𝜇3
6 (p1, p2) (41)

In the last step of Equation (41), we have introduced four ten-
sor structures that are mapped into one another under the Bose
symmetry of the two vector lines. We can identify six of them, as
indicated in Table 1, but two of them

𝜂
𝜇1𝜇2𝜇3
1 (p1, p2) = p𝜇3

1 𝜀p1p2𝜇1𝜇2 (42)

Adv. Physics Res. 2024, 2400043 2400043 (8 of 32) © 2024 The Author(s). Advanced Physics Research published by Wiley-VCH GmbH
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Table 1. Tensor structures of odd parity in the expansion of the VVA with
conserved vector currents.

𝜂1 p
𝜇3
1 𝜀p1p2𝜇1𝜇2

𝜂2 p
𝜇3
2 𝜀p1p2𝜇1𝜇2

𝜂3 p1 ⋅ p2𝜀
p1𝜇1𝜇2𝜇3 + p𝜇2

1 𝜀p1p2𝜇1𝜇3

𝜂4 p2 ⋅ p2𝜀
p1𝜇1𝜇2𝜇3 + p

𝜇2
2 𝜀p1p2𝜇1𝜇3

𝜂5 p1 ⋅ p1𝜀
p2𝜇1𝜇2𝜇3 + p

𝜇1
1 𝜀p1p2𝜇2𝜇3

𝜂6 p1 ⋅ p2𝜀
p2𝜇1𝜇2𝜇3 + p𝜇1

2 𝜀p1p2𝜇2𝜇3

𝜂
𝜇1𝜇2𝜇3
2 (p1, p2) = p𝜇3

2 𝜀p1p2𝜇1𝜇2 (43)

are related by the Schouten relations to the other four, 𝜂3, …𝜂6.
Indeed, we have

𝜂
𝜇1𝜇2𝜇3
1 (p1, p2) = 𝜂

𝜇1𝜇2𝜇3
3 (p1, p2) − 𝜂

𝜇1𝜇2𝜇3
5 (p1, p2) (44)

𝜂
𝜇1𝜇2𝜇3
2 (p1, p2) = 𝜂

𝜇1𝜇2𝜇3
4 (p1, p2) − 𝜂

𝜇1𝜇2𝜇3
6 (p1, p2) (45)

The remaining tensor structures are inter-related by the Bose
symmetry:

𝜂
𝜇1𝜇2𝜇3
3 (p1, p2) = −𝜂𝜇2𝜇1𝜇3

6 (p2, p1)

𝜂
𝜇1𝜇2𝜇3
4 (p1, p2) = −𝜂𝜇2𝜇1𝜇3

5 (p2, p1) (46)

The correct counting of the independent form factors/tensor
structures can be done only after we split each of them into their
symmetric and antisymmetric components:

𝜂
𝜇1𝜇2𝜇3

i = 𝜂
S 𝜇1𝜇2𝜇3

i + 𝜂
A 𝜇1𝜇2𝜇3

i

𝜂
S∕A 𝜇1𝜇2𝜇3

i ≡ 1
2

(
𝜂
𝜇1𝜇2𝜇3

i (p1, p2) ± 𝜂
𝜇2𝜇1𝜇3

i (p2, p1)
) ≡ 𝜂

± 𝜇1𝜇2𝜇3

i (47)

with i ⩾ 3, giving:

𝜂+3 (p1, p2) = −𝜂+6 (p1, p2)

𝜂−3 (p1, p2) = 𝜂−6 (p1, p2)

𝜂+4 (p1, p2) = −𝜂+5 (p1, p2)

𝜂−4 (p1, p2) = 𝜂−5 (p1, p2) (48)

We can then re-express the correlator as:

⟨VVA⟩ = B+
3 𝜂

+
3 + B−

3 𝜂
−
3 + B+

4 𝜂
+
4 + B−

4 𝜂
−
4 (49)

in terms of four tensor structures of definite symmetry times four
independent form factors.

4.1. Finite Density Extensions

More recently, the structure of the correlator at finite density has
also been investigated.[52] The analysis requires the inclusion of
the four-momentum of the heat bath 𝜂𝜇 , that renders the analysis

of the parameterization far more involved compared to the vac-
uum case, with additional tensor structures allowed by the sym-
metries.

At finite density, the initial 60 tensor structures undergo a re-
duction to 28 through the imposition of the Schouten identities.
Subsequently, enforcing Bose symmetry further diminishes this
count to 16, and upon imposing vector Ward identities (WIs), the
expression ultimately manifests in terms of 10 tensor structures.
This process can be iterated by incorporating specific constraints
on the momenta of the two vector lines relative to the thermal
bath. These constraints follow a format similar to

p1 ⋅ 𝜂 = p2 ⋅ 𝜂 = p ⋅ 𝜂 (50)
p2

1 = p2
2 = p2 (51)

that allows to perform further simplification of the tensor struc-
ture. One can show that even in the presence of chemical poten-
tials, the structure of the anomaly vertex preserves its topologi-
cal nature and the anomaly pole is protected by such corrections.
These extensions offer the possibility at experimental level to in-
vestigate the response functions of topological materials in more
general experimental situations, where the fermion chemical po-
tential 𝜇 can be fine-tuned in order to characterize the response
function of such materials in more realistic environments. De-
tails of this analysis can be found in ref. [52].

4.2. Chern–Simons Terms

Another notable aspect concerning the VVA vertex involves the
potential to redefine partial Ward identities (WIs) within each
channel through the incorporation of Chern–Simons (CS) forms.
The discernment of such supplementary interactions, facilitating
the “shifting” of the anomaly between vertices, becomes more
clear when examining their Lagrangian formulation directly. By
introducing external gauge fields B𝜆 and A𝜇 , where the former
is an axial-vector and the latter a vector, the effective action for
a chiral anomaly interaction can be altered by a CS term of the
form

VCS ≡ i∫ dxA𝜆(x)B𝜈(x)FA
𝜌𝜎

(x)𝜀𝜆𝜈𝜌𝜎 (52)

that in momentum space corresponds to the vertex

𝜀𝜆𝜇𝜈𝛼 (p𝛼
1 − p𝛼

2 ) (53)

In perturbation theory, the identification of such extra contribu-
tions in the form factor decomposition of the VVA diagram pro-
ceeds rather easily if, in momentum space, one performs an ar-
bitrary shift in the loop integral. For example, if we proceed with
a specific momentum parameterization of the loop we obtain

p1𝜇𝜆𝜇𝜈(p1, p2) = a1𝜖
𝜆𝜈𝛼𝛽p𝛼

1p𝛽

2

p2𝜈𝜆𝜇𝜈(p1, p2) = a2𝜖
𝜆𝜇𝛼𝛽p𝛼

2p𝛽

1

p3 𝜆𝜆𝜇𝜈(p1, p2) = a3𝜖
𝜇𝜈𝛼𝛽p𝛼

1p𝛽

2 (54)
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where

a1 = − i
8𝜋2

a2 = − i
8𝜋2

a3 = − i
4𝜋2

(55)

Note that a1 = a2, aligning with the expected outcome due to the
Bose symmetry of the two vector lines. Furthermore, it is a well-
established fact that the total anomaly a1 + a2 + a3 ≡ an remains
independent of the regularization scheme. It’s worth recalling
that a momentum shift in the integrand (p → p + a), where a
represents the most general four-momentum expressed in terms
of the two independent external momenta of the triangle diagram
(a = 𝛼(p1 + p2) + 𝛽(p1 − p2)), induces changes in Δ that solely
manifest through a dependence on one of the two parameters
characterizing a, denoted as 𝛽

𝜆𝜇𝜈(𝛽, p1, p2) = 𝜆𝜇𝜈(p1, p2) − i
4𝜋2

𝛽𝜖𝜆𝜇𝜈𝜎
(
p1𝜎 − p2𝜎

)
(56)

We have adopted the notation 𝜆𝜇𝜈(𝛽, p1, p2) to represent the
shifted three-point function, whereas 𝜆𝜇𝜈(p1, p2) denotes the
original one, where the shift is null. It is worth noting that un-
der this momentum shift, the discrepancy between the two form
factors B1 and B2 remains unaffected. We have

p1𝜇𝜆𝜇𝜈(𝛽′, p1, p2) = (a1 −
i𝛽′

4𝜋2
)𝜀𝜆𝜈𝛼𝛽p𝛼

1p𝛽

2

p2𝜈𝜆𝜇𝜈(𝛽′, p1, p2) = (a2 −
i𝛽′

4𝜋2
)𝜀𝜆𝜇𝛼𝛽p𝛼

2p𝛽

1

k𝜆𝜆𝜇𝜈(𝛽′, p1, p2) = (a3 +
i𝛽′

2𝜋2
)𝜀𝜇𝜈𝛼𝛽p𝛼

1p𝛽

2 (57)

All these manipulations can be performed in four spacetime di-
mensions. The inclusion of external Ward identities is what saves
us from dealing directly with such CS contributions. In the case
of a TI, the parameterization of the underlying VVA vertex, obvi-
ously, should respect the QED gauge symmetry, with the conser-
vation of the vector currents. For this obvious reason, one does
not have to deal with such CS terms in an experimental setting.

4.3. Duality Symmetry and the CS Current

Here we pause for a moment to remark that the CS current plays
a role in specific correlators, for example in the TTJ5, where a chi-
ral current is coupled to two stress–energy tensors, a vertex which
is responsible for the gravitational anomaly. We will comment on
this interaction in a follow-up section. If the chiral current is of
the CS form, then, from the perturbative viewpoint, this vertex is
pictured as a triangle diagram with a spin-1 (photon) field run-
ning in the loop. This is clearly possible from the perturbative
viewpoint if the Maxwell action is coupled to an external gravita-
tional metric.

We recall that the Maxwell equations, in the absence of charges
and currents, satisfy the duality symmetry (E → B and B → −E)
(see, for example ref. [58, 59]). This symmetry can be viewed as a
special case of continuous symmetry.

𝛿F𝜇𝜈 = 𝛽F̃𝜇𝜈 (58)

where 𝛿𝛽 is an infinitesimal SO(2) rotation and F̃𝜇𝜈 = 𝜖𝜇𝜈𝜌𝜎F𝜌𝜎∕2.
Its finite form(

E
B

)
=
(

cos 𝛽 sin 𝛽

− sin 𝛽 cos 𝛽

)(
E
B

)
(59)

is indeed a symmetry of the equations of motion, but not of the
Maxwell action. The action

 = ∫ d4xF𝜇𝜈F
𝜇𝜈

(60)

is invariant under an infinitesimal transformation modulo a total
derivative. For 𝛽 = 𝜋/2, the discrete case, then the action flips sign
since (F2 → −F̃2), while its infinitesimal variation takes the form

𝛿𝛽S0 = −𝛽 ∫ d4x𝜕𝜇
(
F̃𝜇𝜈 A𝜈

)
(61)

Imposing the dual Bianchi identity

𝜕𝜈F
𝜇𝜈 = 0 ↔ 𝜖𝜇𝜈𝜌𝜎𝜕𝜈 F̃𝜌𝜎 = 0 (62)

we can introduce the dual gauge field Ã𝜇

F̃𝜇𝜈 = 𝜕𝜇Ã𝜈 − 𝜕𝜈Ã𝜇 (63)

which is related to the original A𝜇 one by

𝜕𝜇Ã𝜈 − 𝜕𝜈Ã𝜇 = 𝜖𝜇𝜈𝜌𝜎𝜕𝜌A𝜎 (64)

The current corresponding to the infinitesimal symmetry, Equa-
tion (61), can be expressed in the form

J𝜇 = F̃𝜇𝜈A𝜈 − F𝜇𝜈Ã𝜈 (65)

whose conserved charge is gauge invariant

Q5 = ∫ d3x
(
A ⋅ ∇ × A − Ã ⋅ ∇ × Ã

)
(66)

as can be shown after an integration by parts. In the equa-
tion above, the two terms correspond to the linking number of
magnetic and electric lines, respectively. In fluid mechanics, he-
licity refers to the volume integral of the scalar product of the
velocity field with its curl, expressed as follows

fluid = ∫ d3x v⃗ ⋅ ∇ × v⃗ (67)

and one recognizes in Equation (66) the expression

Q5 = ∫ d3x
(
B ⋅ A − E ⋅ Ã

)
(68)

with B = ∇ × A and E = −∇ × Ã, that defines the optical helicity
of the electromagnetic field.[60]
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4.4. L/T Decomposition

An alternative parameterization of the VVA correlator brings us
closer to the main point of our discussion, i.e., on its most funda-
mental characterization, which involves an anomaly pole. A pole
shows in the parameterization only after the use of the Schouten
identities. Indeed, the topological behavior of the chiral interac-
tion can surely be attributed to these relations. One can insert
poles as well as remove them by using these identities. This is
the reason why it takes some effort in order to show the physical
relevance of such terms.

This takes us to consider a parameterization in which the ver-
tex is separated into its longitudinal and transverse sectors. The
longitudinal sector naturally contains a pole, as we are going to
see, while the transverse part is homogeneous with respect to the
axial-vector WI. The meaning of this separation will become clear
once we let a massive fermion run in the loop, and introduce a
dispersion relations in the parameterization of the anomaly form
factor. This point will be addressed later in this review. The longi-
tudinal transverse (L/T) decomposition takes the following form
ref. [56]

⟨J𝜇1 (p1)J𝜇2 (p2)J𝜇3
5 (p3)⟩ = 1

8𝜋2

(
WL𝜇1𝜇2𝜇3 − WT𝜇1𝜇2𝜇3

)
(69)

where the longitudinal component is specified as

W𝜇1𝜇2𝜇3
L = wL p𝜇3

3 𝜖𝜇1𝜇2𝜌𝜎p1𝜌p2𝜎 ≡ wL p𝜇3
3 𝜖𝜇1𝜇2p1p2 (70)

while the transverse component is given by

WT𝜇1𝜇2𝜇3 (p1, p2, p2
3) = w(+)

T

(
p2

1, p2
2, p2

3

)
t(+)𝜇1𝜇2𝜇3 (p1, p2)

+ w(−)
T

(
p2

1, p2
2, p2

3

)
t(−)𝜇1𝜇2𝜇3 (p1, p2)

+ w̃(−)
T

(
p2

1, p2
2, p2

3

)
t̃(−)𝜇1𝜇2𝜇3 (p1, p2) (71)

This decomposition automatically account for all the symmetries
of the correlator. The transverse tensors are given by

t(+)𝜇1𝜇2𝜇3 (p1, p2) = p𝜇2
1 𝜀𝜇1𝜇3p1p2 − p𝜇1

2 𝜀𝜇2𝜇3p1p2 − (p1 ⋅ p2) 𝜀𝜇1𝜇2𝜇3(p1−p2)

(72)

+
p2

1 + p2
2 − p2

3

p2
3

(p1 + p2)𝜇3 𝜀𝜇1𝜇2p1p2

t(−)𝜇1𝜇2𝜇3 (p1, p2) =

[
(p1 − p2)𝜇3 −

p2
1 − p2

2

p2
3

(p1 + p2)𝜇3

]
𝜀𝜇1𝜇2p1p2

t̃(−)𝜇1𝜇2𝜇3 (p1, p2) = p𝜇2
1 𝜀𝜇1𝜇3p1p2 + p𝜇1

2 𝜀𝜇2𝜇3p1p2 − (p1 ⋅ p2) 𝜀𝜇1𝜇2𝜇3(p1+p2)

(73)

The relation between the representation in Equation (41) and the
current one is given by the relations

B3(p1, p2) = 1
8𝜋2

[
wL − w̃(−)

T − p2
1+p2

2

p2
3

w(+)
T − 2

p1⋅p2+p2
2

p2
3

w(−)
T

]
(74)

B4(p1, p2) = 1
8𝜋2

[
wL + 2

p1 ⋅ p2

p2
3

w(+)
T + 2

p1 ⋅ p2 + p2
1

p2
3

w(−)
T

]
(75)

and viceversa

wL(p2
1, p2

2, p2
3) = 8𝜋2

p2
3

[
B1 − B2

]
(76)

After the imposition of the Ward identities in Equations (39) and
(40), we also obtain

wL(p2
1, p2

2, p2
3) = 8𝜋2

p2
3

[
(B3 − B6)p1 ⋅ p2 + B4 p2

2 − B5 p2
1

]
(77)

w(+)
T (p2

1, p2
2, p2

3) = −4𝜋2
(
B3 − B4 + B5 − B6

)
(78)

w(−)
T (p2

1, p2
2, p2

3) = 4𝜋2
(
B4 + B5

)
(79)

w̃(−)
T (p2

1, p2
2, p2

3) = −4𝜋2
(
B3 + B4 + B5 + B6

)
(80)

where Bi ≡ Bi(p1, p2). As already illustrated above, (76) is rather
special as a relation, since it shows that the pole is not affected by
Chern–Simons forms, manifesting the physical character of this
part of the interaction. In this case as well, the counting of the
form factors results in four functions: one for the longitudinal
pole part and three for the transverse part. Notice that all of them
are either symmetric or antisymmetric by construction.

wL(p2
1, p2

2, p2
3) = wL(p2

2, p2
1, p2

3)

w(+)
T (p2

1, p2
2, p2

3) = w(+)
T (p2

2, p2
1, p2

3)

w(−)
T (p2

1, p2
2, p2

3) = −w(−)
T (p2

2, p2
1, p2

3)

w̃(−)
T (p2

1, p2
2, p2

3) = −w̃(−)
T (p2

2, p2
1, p2

3) (81)

There is an important point to note: Equation (76) is not affected
by CS forms. This implies that even if we do not impose the vector
WI, which allows us to re-express the divergent form factors B1
and B2 in terms of the converging ones, the pole is not affected by
the parameterization of the loop momentum due to its relation
to the difference of the two form factors. This is the first indica-
tion of the significance of the 1∕p2

3 term, known as the anomaly
pole, in the anomaly vertex. This has some remarkable implica-
tions regarding the structure of the anomaly effective action and
the origin of the axion-like interaction generated in the response
function of topological materials.

Such an effective action has been developed in the form of an
expansion in terms of dimensionless composite operators, as we
will explain. These operators encode the absence of scales in the
anomaly and highlight the dominance of the phenomenon in
light-cone physics. The expansion is governed by the insertion
of interactions of nonlocal operators of the form R□ −1 for the
conformal anomaly and 𝜕 ⋅ B□ −1 for the chiral anomaly. It is
reproduced both in perturbation theory and non-perturbatively
using conformal field theory (CFT) methods, through the solu-
tion of the CWIs. Here, R represents the Ricci scalar and B is
an external axial-vector source, driving the response of a system
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to external chiral or conformal interactions. Before diving into a
discussion of the anomaly-effective action for chiral interactions,
we will briefly discuss CFT in momentum space, which offers
an independent perspective capable of reproducing all the high-
lighted results.

5. The Dispersive Sum Rule and the Spectral
Density Flow

The literature on the chiral anomaly (Dolgov, 1971) extensively
discusses a notable perturbative feature: the appearance of a
massless pole, termed an anomaly pole, in the 〈AVV〉 dia-
gram. This anomaly pole emerges under specific kinematic
conditions—specifically, at zero fermion mass and with on-shell
vector lines—within perturbation theory. Figure 2 depicts the ef-
fective action’s intermediate state, characterized by two massless
fermions traveling along the light-cone, as mediated by the 〈AVV〉

diagram. The presence of this intermediate state in perturbation
theory indicates the possible exchange of a bound state within the
quantum effective action.

In a phenomenological context, the broader significance of this
kinematic mechanism arises from the emergence of a particular
kinematical duality accompanying any perturbative anomaly. In
this specific scenario, it is commonly known as Q2-duality, estab-
lishing a connection between the resonance and asymptotic re-
gions of a specific correlator in a nontrivial manner (Bertlmann,
1981). This property often finds justification in the existence of a
sum rule for the spectral density 𝜌(s, m2) of the correlator, which
frequently takes the form

1
𝜋 ∫

∞

0
𝜌(s, m2)ds = f (82)

where the constant f remains independent of any mass or other
parameter characterizing the thresholds or strengths of the reso-
nant states potentially present in the integration region (s > 0). It
is important to emphasize that sum rules formulated for the anal-
ysis of resonance structures, such as their strengths and masses
as observed in the context of QCD, the theory of the strong inter-
actions, necessitate a parameterization of the resonant behavior
of 𝜌(s, m) at low s values through a phenomenological approach,
coupled with the inclusion of the asymptotic behavior of the cor-
relator, amenable to perturbation theory for larger s. This signif-
icant interplay between the infrared (IR) and UV regions aptly
warrants the term “duality” to describe the implications of a given
sum rule.

It has been noted for some time that a specific aspect of
the chiral anomaly lies in the existence of a sum rule for the
〈AVV〉 diagram,[62] later extended to a similar investigation of the
trace of the energy–momentum tensor (trT) for the 〈trTVV〉 in
QED (with V representing a vector current), particularly at zero
momentum transfers.[63,64] This scrutiny has provided substan-
tial evidence that the sum rule, in conjunction with the initial
identification of the anomaly pole from the perturbative spectral
density,[57] constitutes two significant and interconnected aspects
of the anomaly phenomenon. It is worth recalling that the explo-
ration of these correlators has a lengthy history.[65–67]

More recently, comprehensive perturbative analyses of the
〈TVV〉 correlator (or the graviton–gauge–gauge vertex), con-

ducted off-shell and at nonzero momentum transfer, have re-
vealed that the general characteristics observed in the 〈AVV〉 and
〈trTVV〉 cases remain preserved.[29,31,68,69]

A distinct feature of the spectral density associated with the
chiral and conformal anomalies is the introduction of a pole
in the spectrum under specific kinematic limits, representing
a degeneracy of the two-particle cut when any secondary scale
(such as the fermion mass) tends to zero. The phenomenon
of the “cut turning into a pole” is characteristic of finite (non-
superconvergent) sum rules. It is associated with a spectral den-
sity normalized by the sum rule akin to an ordinary weighted dis-
tribution, with its support positioned at the edge of the allowed
phase space (s = 0) as the conformal deformation approaches
zero. This enables the isolation of a unique interpolating state
among all possible exchanges permitted in the continuum, par-
ticularly for s > 4m2, as the theory transitions toward its confor-
mal/superconformal point.

As previously discussed, the presence of a sum rule for the
form factor responsible for a particular anomaly indicates a
UV/IR connection manifested by the corresponding spectral
density. However, this connection is not exclusively tied to the
anomaly phenomenon. Indeed, non-anomalous form factors, in
certain cases, exhibit similar behaviors. Nonetheless, the break-
ing of symmetry should ideally result in the emergence of a mass-
less state in the effective theory’s spectrum, lending a distinctive
significance to the saturation of the spectral density with a single
resonance in an anomaly form factor.

Expanding upon Equation (82), it becomes apparent that the
anomaly’s effect generally correlates with the behavior of the
spectral density across all values of s, albeit in certain kinemat-
ical limits, particularly around the light cone (s ∼ 0), dominating
the sum rule and constituting a resonant contribution. The com-
bination of the scaling behavior of the corresponding form factor
F(Q2) (or equivalently, its density 𝜌) with the requirement of inte-
grability of the spectral density essentially fixes f as a constant and
ensures that the sum rule Equation (82) is saturated by a single
massless resonance. Conversely, a superconvergent sum rule ob-
tained for f = 0 would not exhibit this behavior. Importantly, the
absence of subtractions in the dispersion relations underscores
the significance of the sum rule, independent of any UV cutoff.

It is straightforward to demonstrate that Equation (82) im-
poses a constraint on the asymptotic behavior of the associated
form factor. The proof involves observing the dispersion rela-
tion for a form factor in the spacelike region (Q2 = −k2 > 0),
which, upon expansion and utilization of Equation (82), induces
an asymptotic behavior on F(Q2, m2) as Q2 → ∞. This behav-
ior, F ∼ f/Q2 at large Q2, with f independent of m, highlights the
dominance of the pole in F as Q2 → ∞. The UV/IR conspiracy
of the anomaly, as discussed in [31, 32, 69], is evidenced by the
reappearance of the pole contribution at very large values of the
invariant Q2, even for a nonzero mass m. Notably, the spectral
density exhibits support around the s = 0 region (𝜌(s) ∼ 𝛿(s)), akin
to the massless (m = 0) case. This subtle point underscores the
decoupling of the anomaly pole for a nonzero mass, termed as
“decoupling,” referring to the non-resonant behavior of 𝜌.

Thus, the presence of a 1/Q2 term in anomaly form factors re-
flects the entire flow, converging to a localized massless state (𝜌(s)
∼ 𝛿(s)) as m → 0, while the presence of a non-vanishing sum rule
validates the asymptotic constraint. Importantly, although the
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independence of the asymptotic value f on m for conformal defor-
mations driven by a single mass parameter is a straightforward
consequence of the scaling behavior of F(Q2, m2), it holds gener-
ally even for completely off-shell kinematics.

In summary, the two fundamental features of anomalous be-
havior of a certain form factor responsible for chiral or confor-
mal anomalies are 1) the existence of a spectral flow that trans-
forms a dispersive cut into a pole as m approaches zero, and 2)
the presence of a sum rule relating the asymptotic behavior of the
anomaly form factor to the strength of the pole resonance.

5.1. The Case of the AVV

We illustrate this point by an analysis of the anomaly form factor
in the AVV interaction for a massive fermion in the loop and on-
shell photons. A direct computation gives

Γ𝜇𝛼𝛽 (p, q) = i
g2

12𝜋2
𝜙1(k2, m2) k𝜇

k2
𝜀[p, q, 𝛼, 𝛽] (83)

with

Φ1(k2, m2) = −1 − 2 m2 0(k2, m2) (84)

where the anomaly form factor is given by

𝜒(k2, m2) ≡ Φ1(k2, m2)∕k2 (85)

We start by introducing the spectral density 𝜌(k2), which is the
discontinuity of 0 along the cut (k2 > 4m2), as

𝜌(k2, m2) = 1
2i

Disc0(k2, m2) (86)

with the usual iϵ prescription (ϵ > 0)

Disc0(k2, m2) ≡ 0(k2 + i𝜖, m2) − 0(k2 − i𝜖, m2) (87)

To evaluate the discontinuity, we may proceed in two different
ways. We can use the unitarity cutting rules and compute the in-
tegral

Disc0(k2, m2) = 1
i𝜋2 ∫ d4l

2𝜋i𝛿+(l2 − m2)2𝜋i𝛿+((l − k)2 − m2)
(l − p)2 − m2 + i𝜖

= 2𝜋
ik2

log

(
1 +

√
𝜏(k2, m2)

1 −
√
𝜏(k2, m2)

)
𝜃(k2 − 4m2) (88)

where 𝜏(k2, m2) =
√

1 − 4m2∕k2. The integral has been computed
by sitting in the rest frame of the off-shell line of momentum
k. Alternatively, we can exploit directly the analytic continuation
of the explicit expression of the 0(k2, m2) integral in the various

regions. This is given by

0(k2 ± i𝜖, m2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2k2

log2

√
𝜏(k2, m2) + 1√
𝜏(k2, m2) − 1

for k2 < 0

− 2
k2

arctan2 1√
−𝜏(k2, m2)

for 0 < k2 < 4m2

1
2k2

(
log

1 +
√
𝜏(k2, m2)

1 −
√
𝜏(k2, m2)

∓ i𝜋

)2

for k2 > 4m2

(89)

From the two branches encountered with the ±iϵ prescriptions,
the discontinuity is then present only for k2 > 4m2, as expected
from unitarity arguments, and the result for the discontinuity,
obtained using the definition in Equation (87), clearly agrees with
Equation (88), computed instead by the cutting rules.

The dispersive representation of 0(k2, m2) in this case is writ-
ten as

0(k2, m2) = 1
𝜋 ∫

∞

4m2

ds
𝜌(s, m2)
s − k2

(90)

The scalar integral 0(k2, m2) can be reconstructed from its dis-
persive part.

Having determined the spectral function of the scalar inte-
gral 0(k2, m2), we extract the spectral density associated with the
anomaly form factor in Equation (83), that can be computed as

Disc𝜒(k2, m2) = 𝜒(k2 + i𝜖, m2) − 𝜒(k2 − i𝜖, m2) = −Disc
( 1

k2

)
− 2m2Disc

(0(k2, m2)
k2

)
(91)

We use the principal value prescription

1
x ± i𝜖

= P
( 1

x

)
∓ i𝜋𝛿(x) (92)

to obtain

Disc
( 1

k2

)
= −2i𝜋𝛿(k2)

Disc
(0(k2, m2)

k2

)
= P

( 1
k2

)
Disc0(k2, m2) − i𝜋𝛿(k2)A(0)

(93)

where we have defined

A(k2) ≡ C0(k2 + i𝜖, m2) + C0(k2 − i𝜖, m2) (94)

and

A(0) = lim
k2→0

A(k2) = − 1
m2

(95)
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This gives, together with the discontinuity of 0(k2, m2) which we
have computed previously in Equation (88),

Disc
(0(k2, m2)

k2

)
= −2i 𝜋

(k2)2
log

1 +
√
𝜏(k2, m2)

1 −
√
𝜏(k2, m2)

𝜃(k2 − 4m2)

+ i 𝜋

m2
𝛿(k2) (96)

The discontinuity of the anomalous form factor 𝜒(k2, m2) is then
given by the expression

Disc𝜒(k2, m2) = 4i𝜋 m2

(k2)2
log

1 +
√
𝜏(k2, m2)

1 −
√
𝜏(k2, m2)

𝜃(k2 − 4m2) (97)

The total discontinuity of 𝜒(k2, m2), as observed from the result
above, is characterized solely by a single cut for k2 > 4m2, as the
𝛿(k2) (massless resonance) contributions cancel out between the
first and second terms of Equation (91). This outcome demon-
strates the decoupling of the anomaly pole at k2 = 0 in the massive
case due to the disappearance of the resonant state.

The function describing the anomaly form factor, 𝜒(k2, m2),
then admits a dispersive representation over a single branch cut

𝜒(k2, m2) = 1
𝜋 ∫

∞

4m2

𝜌𝜒 (s, m2)

s − k2
ds (98)

corresponding to the ordinary threshold at k2 = 4m2, with

𝜌𝜒 (s, m2) = 1
2i

Disc𝜒(s, m2) = 2𝜋m2

s2
log

(
1 +

√
𝜏(s, m2)

1 −
√
𝜏(s, m2)

)
𝜃(s − 4m2) (99)

As we have anticipated above, a crucial feature of these spectral
densities is the existence of a sum rule. In this case it is given by

1
𝜋 ∫

∞

4m2

ds𝜌𝜒 (s, m2) = 1 (100)

The convergence of the family of spectral densities to a resonant
behavior can be shown by decreasing m and sending its value
to zero. For this purpose it is convenient to extract a discrete se-
quence of functions, parameterized by an integer n and then let
n go to infinity

𝜌(n)
𝜒

(s) ≡ 𝜌𝜒 (s, m2
n) with m2

n = 4m2

n
(101)

One can show that this sequence {𝜌(n)
𝜒 } then converges to a Dirac

delta function

lim
m→0

𝜌𝜒 (s, m2) = lim
m→0

2𝜋m2

s2
log

(
1 +

√
𝜏(s, m2)

1 −
√
𝜏(s, m2)

)
𝜃(s − 4m2) = 𝜋𝛿(s)

(102)

In Figure 4 we illustrate the sequence of spectral densities that
describe the evolution as we approach a zero mass parameter.
The area under each curve is determined by the sum rule and

Figure 4. Representatives of the family of spectral densities
𝜌𝜒

(n)

𝜋
(s) are

plotted versus s in units of m2. The family of curves “‘flows,” tending to
acquire support from the s = 0 region, ultimately becoming a 𝛿(s) function
as m2 approaches zero. The area under the curve is preserved by the flow
and equals the anomaly. A similar result has been shown to hold for the
gravitational chiral anomaly.

acts as a characteristic of the entire evolution process. It is clear
that the 𝜌(n) distributions are normalized for each specific value
of m. They signify, for each invariant mass value s, the abso-
lute weight of the intermediate state—of that particular invariant
mass—contributing to a given anomaly form factor.

5.2. Other Chiral Anomaly Sum Rules

Here we are going to prove the existence of other chiral sum rules
for similar correlators. In each example, one needs to move away
from the conformal point, where the correlation function is fixed
by the pole and the CWIs, by giving a mass m to the particle in the
loop. Chiral gravitational anomalies for spin 1 fields (photons)
have been discussed long ago by a perturbative analysis of the
〈TTJCS〉.[70]

The presence of an anomaly pole in this correlator can indeed
be extracted from ref. [70], in agreement with our result, based
on the CFT reconstruction of the corresponding vertex. One can
show that similar anomaly sum rules are present in all the ver-
tices as we move away from the conformal limit, reproducing the
phenomenon that we have described for the AVV. Indeed, for on-
shell gravitons (g) and photons (𝛾), the authors obtain, with the
inclusion of mass effects in the 〈AVV〉, 〈TTJf〉, and 〈TTJCS〉 the
following expressions for the matrix elements

⟨0|J𝜇f |𝛾𝛾⟩ = f1(q2)
q𝜇

q2
F𝜅𝜆F̃𝜅𝜆(q) (103)

⟨0|J𝜇f |gg⟩ = f2(q2)
q𝜇

q2
R𝜅𝜆𝜌𝜎R̃𝜅𝜆𝜌𝜎(q) (104)

⟨0|J𝜇CS|gg⟩ = f3(q2)
q𝜇

q2
R𝜅𝜆𝜌𝜎R̃𝜅𝜆𝜌𝜎(q) (105)

where q is the momentum of the chiral current. R𝜅𝜆𝜌𝜎 is the
Riemann tensor. The terms RR̃(q) denotes the Fourier trans-
form to momentum space of RR̃, here differentiated twice with
respect to the gravitational metric and contracted with physical
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polarizations of the external gravitational field. The extraction of
the anomaly poles can be performed by including a mass m in
the propagators of the loop corrections, in the form of either a
fermion mass for the 〈AVV〉 and the 〈TTJf〉, or working with a
Proca spin-1 in the case of 〈TTJCS〉, and then taking the limit for
m → 0. As shown in ref. [70], a dispersive analysis gives for the
corresponding spectral densities

ΔAVV (q2, m) ≡ Im f1(q2) =
dAVV

q2
(1 − v2) log 1 + v

1 − v

ΔTTJf
(q2, m) ≡ Im f2(q2) =

dTTJf

q2
(1 − v2)2 log 1 + v

1 − v

ΔTTJCS
(q2, m) ≡ Im f3(q2) =

dTTJCS

q2
v2(1 − v2)2 log 1 + v

1 − v

(106)

with v =
√

1 − 4m2∕q2 and dAVV = −1/2 𝛼em, dTTJf
= 1∕(192𝜋)

and dTTJCS
= 1∕(96𝜋) being the corresponding anomaly coeffi-

cients in the normalization of the currents of ref. [70], with 𝛼em
the electromagnetic coupling.

Notice ΔTTJf
(q2, m) and ΔTTJCS

(q2, m), away from the confor-
mal limit, have different functional forms when the mass m is
nonzero, but share similar sum rules, as discussed for the AVV
correlator. One can easily check that in the massless limit the
branch cut present in the previous spectral densities at q2 = 4m2

turns into a pole

lim
m→0

Δ(q2, m) → 𝛿(q2) (107)

in all the three cases. The same spectral densities satisfy three
(mass independent) sum rules[46]

∫
∞

4m2

dsΔAVV (s, m) = 2 dAVV (108)

∫
∞

4m2

dsΔTTJf
(s, m) = 2

3
dTTJf

(109)

∫
∞

4m2

dsΔTTJCS
(s, m) = 14

45
dTTJCS

(110)

These indicate that for any m, the integral under each of the
Δ(s, m)’s are constants. Therefore, the numerical value of the
area equals the value of the anomaly coefficient in each of the
three cases.

One can verify, by taking the on-shell photon/graviton limit,
that the transverse sector of 〈TTJ5〉, vanishes, as for the AVV case.
Then it is clear that, in general, the structure of the anomaly
action responsible for the generation of the gravitational chiral
anomaly can be summarized by the nonlocal action

anom ∼ ∫ d4x d4y 𝜕𝜆A𝜆 1
□

(x, y)RR̃(y) +⋯ (111)

where the ellipses stand for the transverse sector, and A𝜆 is a
spin-1 external source. For on-shell gravitons, as remarked above,

this action summarizes the effect of the entire chiral gravitational
anomaly vertex, being exactly given by the exchange of a single
anomaly pole, displaying a typical 1∕□, nonlocal behavior.

6. CFT in Momentum Space

In this section, we delve into a nonperturbative analysis of the
chiral correlators using the fundamental constraints of CFT, here
e xpressed in momentum space.

Formulating the theory in coordinate space allows for the effi-
cient reconstruction of correlators but does not offer any insight
into the origin of the anomaly. As we have observed in the previ-
ous sections, the anomaly should be attributed to the correlated
exchange of a fermion/antifermion pair, particularly viewed from
the axial-vector channel.

Anomalies emerge from regions in coordinate space where all
the points of a certain correlator coincide. As demonstrated long
ago in ref. [71], these anomalies need to be manually included
in specific chiral or conformal correlators as non-homogeneous
contributions to the ordinary solutions of the Callan–Symanzik
equations, often taking the form of products of Dirac delta func-
tions. Consequently, there is not much information, from a kine-
matical perspective, about the nature of the correlated exchange
responsible for the phenomenon on the light-cone.

Momentum space methods play a crucial role in overcoming
this limitation and have been independently formulated from the
previous approach from coordinate space. An overview of these
methods can be found in ref. [33].

In d = 4, it has been investigated in ref. [72, 73] and ref. [74–77]
and more recent work can be found in ref. [78, 79]. The con-
formal constraints can be reduced to a set of differential equa-
tions with regular solutions whose exponents are fixed by the
Fuchsian points of singular differential equations. [74,75]

The extension of the methods to tensor correlators have been
originally formulated for conformal anomalies, corresponding to
parity even sectors,[76] while their extension to the non-conserved
parity-odd ones has been discussed in several works.[80] The ex-
tension of the method to chiral correlators, with the direct in-
clusion of the anomaly constraint, has been presented in ref.
[81] for the ordinary chiral anomaly and in ref. [46] for the grav-
itational chiral anomaly. More general parity-odd anomalies,[28]

whose existence, from the perturbative picture, has been debated
recently, due to opposite conclusions,[30,82–85] has also been dis-
cussed within CFT in ref. [28], nonperturbatively.

The hypergeometric structure of the CWIs has been identi-
fied independently in refs. [72] and [73], as mentioned earlier, in
the case of three-point functions. The identification of general-
ized hypergeometric solutions of the CWIs for four-point func-
tions, which share a structure typical of three-point functions,
and of the homogeneous solutions of Lauricella type, has been
discussed in ref. [79].

The CWIs are composed of special conformal and dilata-
tion WIs, besides the ordinary (canonical) WIs corresponding to
Lorentz and translational symmetries, which we specify below.
We recall that, in d = 4, conformal symmetry is realized by the ac-
tion of 15 generators, ten of them corresponding to the Poincaré
subgroup, four to the special conformal transformations, and one
to the dilatation operator.
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In infinitesimal form, they are given by

x′
𝜇
(x) = x𝜇 + a𝜇 + 𝜔𝜇𝜈x

𝜈 + 𝜎x𝜇 + b𝜇x2 − 2b ⋅ x x𝜇 (112)

and they can be expressed as a local rotation

𝜕x′𝜇

𝜕x𝜈
= Ω(x)R𝜇

𝜈
(x) (113)

where 𝜇 = 1, 2…d, and Ω(x) and R𝜇
𝜈
(x) are, respectively, finite

position-dependent rescalings and rotations with

Ω(x) = 1 − 𝜆(x), 𝜆(x) = 𝜎 − 2b ⋅ x (114)

and b𝜇 is a constant d-vector.
The transformation in Equation (112) is composed of the pa-

rameters a𝜇 for translations, 𝜔𝜇𝜈 =−𝜔𝜈𝜇 for boosts and rotations,
𝜎 for dilatations, and b𝜇 for special conformal transformations.
The first three terms in Equation (112) define the Poincaré sub-
group, obtained when Ω(x) = 1, which leaves the infinitesimal
length invariant. For a general d, the counting of the parameters
of the transformation is straightforward. We have d(d − 1)/2 or-
dinary rotations associated with a SO(d) symmetry in ℝd - with
parameters 𝜔𝜇𝜈 - d translations (P𝜇) with parameters a𝜇 , d special
conformal transformations K𝜇 (with parameters b𝜇), and one di-
latation D whose corresponding parameter is 𝜎, for a total of (d
+ 1)(d + 2)/2 parameters. This is exactly the number of param-
eters appearing in the general SO(2, d) transformation. Indeed,
one can embed the actions of the conformal group of d dimen-
sions into a larger ℝd+2 space, where the action of the generators
is linear on the coordinates xM (M = 1, 2, …, d + 2) of such space,
using a projective representation. This is the basis of the so-called
embedding formalism. For more details, we refer to ref. [86].

By including the inversion ()

x𝜇 → x′
𝜇
=

x𝜇

x2
, Ω(x) = x2 (115)

we can enlarge the conformal group to O(2, d). Special confor-
mal transformations can be realized by considering a translation
preceded and followed by an inversion.

We will focus our discussion mostly on scalar primary opera-
tors of a quantum CFT, acting on a certain Hilbert space, which
under a conformal transformation will transform as

Oi(x) → O′
i (x

′) = 𝜆−Δi Oi(x) (116)

with specific scaling dimensions Δi. We start this excursus on
the implication of such symmetry on the quantum correlation
functions of a CFT, by considering the simple case of a correlator
of n primary scalar fields Oi(xi), each of scaling dimension Δi

Φ(x1, x2,… , xn) = ⟨O1(x1)O2(x2)…On(xn)⟩ (117)

Here we are going to summarize some basic results, while few
additional details can be found in the appendix.

three- and four-point functions (besides two-point functions)
in any CFT are significantly constrained in their general struc-

tures due to such CWIs. For scalar correlators, the special CWIs
are given by first-order differential equations

K𝜅 (xi)Φ(x1, x2,… , xn) = 0 (118)

with

K𝜅 (xi) ≡
n∑

j=1

(
2Δjx

𝜅
j − x2

j
𝜕

𝜕x𝜅
j

+ 2x𝜅
j x𝛼

j
𝜕

𝜕x𝛼
j

)
(119)

being the expression of the special conformal generator in coor-
dinate space.

The corresponding dilatation WI on the same n-point function
Φ is given by

D(xi)Φ(x1,… xn) = 0 (120)

with

D(xi) ≡
n∑

i=1

(
x𝛼

i
𝜕

𝜕x𝛼
i

+ Δi

)
(121)

for scale covariant correlators. In the case of scale invariance, the
dilatation WI takes the form

D0(xi)Φ(x1,… xn) = 0 (122)

with D0(xi) given by

D0(xi) ≡
n∑

i=1

(
x𝛼

i
𝜕

𝜕x𝛼
i

)
(123)

Such CWIs are sufficient to completely determine the expression
of a scalar three-point function of primary operators i of scaling
dimensions Δi (i = 1, 2, 3) in the form

⟨1(x1)2(x2)3(x3)⟩ = C123

xΔt−2Δ3
12 xΔt−2Δ1

23 xΔt−2Δ2
13

, Δt ≡
3∑

i=1

Δi,

(124)

where xij = |xi − xj| and C123 is a constant that specifies the CFT.
For four-point functions, the same constraints are weaker, and
the structure of a scalar correlator is identified modulo an arbi-
trary function of the two cross ratios

u(xi) =
x2

12x2
34

x2
13x2

24

v(xi) =
x2

23x2
41

x2
13x2

24

(125)

The general solution, allowed by the symmetry, can be written in
the form

⟨1(x1)2(x2)3(x3)4(x4)⟩ = h(u(xi), v(xi))
1(

x2
12

) Δ1+Δ2
2
(
x2

34

) Δ3+Δ4
2

(126)

where h(u(xi), v(xi)) remains unspecified.
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For the analysis of n-point functions, it is sometimes conve-
nient to introduce more general notations. For instance, one may
define

Φ(x) ≡ ⟨1(x1)2(x2)…n(xn)⟩, eipx ≡ ei(p1x1+p2x2+⋯+pnxn),

dp ≡ dp1dp2 … dpn, Φ(p) ≡ ⟨O1(p1)O2(p2)…On(pn)⟩
(127)

where each of the integrations dpi ≡ ddpi is performed on the d-
dimensional components of the momenta fpi = (p1

i , p2
i … pd

i ).
It will also be useful to introduce the total momentum P =∑n
j=1 pj characterizing a given correlator, which vanishes because

of the translational symmetry of the correlator in ℝd. The mo-
mentum constraint in momentum space is enforced via a delta
function 𝛿(P). For instance, translational invariance of Φ(x) gives

Φ(x) = ∫ dp 𝛿(P) eipx Φ(p) (128)

In general, for an n-point function Φ(x), the condition of transla-
tional invariance generates an expression of the same correlator
in momentum space of the form Equation (128). We can remove
one of the momenta, conventionally selecting the last one, pn,
which is replaced by its “on shell” version p̄n = −(p1 + p2 +⋯ +
pn−1).

In general, for an n-point function Φ(x), the condition of trans-
lational invariance is given by

⟨1(x1)2(x2),… ,n(xn)⟩ = ⟨1(x1 + a)2(x2 + a)…n(xn + a)⟩
(129)

This generates an expression of the same correlator in momen-
tum space, given by Equation (128) in the form

Φ(x) = ∫ dp1dp2 … dpn−1ei(p1x1+p2x2+⋯+pn−1xn−1+p̄nxn)Φ(p1,… pn−1, p̄n)

(130)

where

Φ(p1,… pn−1, p̄n) = ⟨O1(p1)…On(p̄n)⟩ (131)

is the Fourier transform of the original correlator Equation (117).
Further discussions on the derivations of expressions in momen-
tum space for dilatation and special conformal transformations
can be found in Equation [74].

The special conformal generator in momentum space is ex-
pressed as:

K𝜅 (pi) ≡
n−1∑
j=1

(
2(Δj − d) 𝜕

𝜕p𝜅
j

+ p𝜅
j

𝜕2

𝜕p𝛼
j 𝜕p𝛼

j

− 2p𝛼
j

𝜕2

𝜕p𝜅
j 𝜕p𝛼

j

)
(132)

This corresponds to Equation (119), and thus the special CWIs
are given by the equation

K𝜅 (pi)Φ(p1,… pn−1, p̄n) = 0 (133)

If the primary operator i transforms under scaling as

i(𝜆 xi) = 𝜆−Δii(xi) (134)

then in momentum space, the same scaling takes the form

Φ(𝜆 p1,… , 𝜆 p̄n) = 𝜆−Δ
′Φ(p1,… , p̄n) (135)

where

Δ′ ≡
(
−

n∑
i=1

Δi + (n − 1)d

)
= −Δt + (n − 1)d (136)

In momentum space, the conditions of scale covariance and in-
variance respectively take the forms

D(pi)Φ(p1,… , p̄n) = 0 (137)

where

D(pi) ≡
n−1∑
i=1

p𝛼
i

𝜕

𝜕p𝛼
i

+ Δ′ (138)

and

D0(pi)Φ(p1,… , p̄n) = 0 (139)

where

D0(pi) ≡
n−1∑
i=1

p𝛼
i

𝜕

𝜕p𝛼
i

(140)

In the case of tensor correlators, the structure of the special CWIs
involves the Lorentz generators Σ𝜇𝜈 and takes the form

n−1∑
r=1

(
pr 𝜇

𝜕2

𝜕p𝜈r 𝜕pr 𝜈
− 2 pr 𝜈

𝜕2

𝜕p𝜇r 𝜕pr 𝜈

+ 2(Δr − d) 𝜕

𝜕p𝜇r
+ 2(Σ(r)

𝜇𝜈 )ir
jr

𝜕

𝜕pr 𝜈

)
× ⟨i1

1 (p1)…jr
r (pr )…in

n (pn)⟩ = 0 (141)

where the indices i1, …in and j1, …, jn run over the representation
of the Lorentz group to which the operators belong. Note that
the sum over the index r selects a specific momentum pr in each
term, but the last momentum pn is not included, since the sum-
mation runs from 1 to n − 1. Therefore, the differentiation with
respect to the last momentum pn, which has been chosen as the
dependent one, is performed implicitly. Meanwhile, the action of
the rotation (Lorentz) generators Σ(r)

𝜇𝜈 of SO(d) is performed on
each of the primary operators O1, O2, …, except the last one, On,
which is treated as a singlet under such rotational symmetry.[74]

6.1. Two-Point Functions

The simplest application of such equations are for Two-point
functions[72] Gij(p) ≡ ⟨i

1(p)j
2(−p)⟩ of two primary fields, each

of spin-1, here defined as i and j. In this case, if we consider the
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correlator of two primary fields each of spin-1, the equations take
the form(
−p𝜇

𝜕

𝜕p𝜇
+ Δ1 + Δ2 − d

)
Gij(p) = 0

(
p𝜇

𝜕2

𝜕p𝜈𝜕p𝜈
− 2 p𝜈

𝜕2

𝜕p𝜇𝜕p𝜈
+ 2(Δ1 − d) 𝜕

𝜕p𝜇

)
Gij(p) + 2(Σ𝜇𝜈 )i

k
𝜕

𝜕p𝜈
Gkj(p) = 0

(142)

For the two-point function GS(p) of two scalar quasi primary
fields, the invariance under the Poincaré group implies that the
function GS depends on the scalar invariant p2 and then GS(p)
= GS(p2). Furthermore, the invariance under scale transforma-
tions implies that GS(p2) is a homogeneous function of degree
𝛼 = 1

2
(Δ1 + Δ2 − d). It is easy to show that one of the two equa-

tions in Equation (142) can be satisfied only if Δ1 =Δ2. Therefore
conformal symmetry fixes the structure of the scalar two-point
function up to an arbitrary overall constant C as

GS(p2) = ⟨1(p)2(−p)⟩ = 𝛿Δ1Δ2
C (p2)Δ1−d∕2 (143)

If we redefine

C = cS12
𝜋d∕2

4Δ1−d∕2

Γ(d∕2 − Δ1)
Γ(Δ1)

(144)

in terms of the new integration constant cS12, the two-point func-
tion reads as

GS(p2) = 𝛿Δ1Δ2
cS12

𝜋d∕2

4Δ1−d∕2

Γ(d∕2 − Δ1)
Γ(Δ1)

(p2)Δ1−d∕2 (145)

and after a Fourier transform in coordinate space takes the famil-
iar form

⟨1(x1)2(x2)⟩ ≡  . .
[
GS(p2)

]
= 𝛿Δ1Δ2

cS12
1

x2Δ1
12

(146)

where x12 = |x1 − x2|.

6.2. The Hypergeometric Structure from Three-Point Functions F4

In the case of a scalar correlator of three-point functions, all the
conformal WI’s can be re-expressed in scalar form by taking as

independent momenta the magnitude pi =
√

p2
i . In fact, Lorentz

invariance on the correlation function implies that

Φ(p1, p2, p̄3) = Φ(p1, p2, p3) (147)

i.e., it is a function which depends on the magnitude of the mo-
menta pi, i = 1, 2, 3. In this case p3 is taken as the dependent
momentum (p̄3 = −p1 − p2) by momentum conservation, with p3
= |p1 + p2|. The original equations, in the covariant version, take
the form

K𝜅 (pi)Φ(p1, p2, p̄3) ≡
2∑

j=1

(
2(Δj − d) 𝜕

𝜕p𝜅j
+ p𝜅j

𝜕2

𝜕p𝛼j 𝜕p𝛼j
− 2p𝛼j

𝜕2

𝜕p𝜅j 𝜕p𝛼j

)

× Φ(p1, p2, p̄3) = 0 (148)

for the special conformal WI and

D(pi)Φ(p1, p2, p̄3) ≡
(

2∑
i=1

p𝛼
i

𝜕

𝜕p𝛼
i

+ Δ′

)
Φ(p1, p2, p̄3) (149)

for the dilatation WI. In this case K𝜅 (pi) does not involve the spin
part Σ, as illustrated in the general Equation (141), because of
the scalar nature of this particular correlation function. For this
reason, the action of K𝜅 is purely scalar K𝜅 (pi) ≡ K𝜅

scalar(pi) Using
the chain rule

𝜕Φ
𝜕p𝜇

i

=
p𝜇

i

pi

𝜕Φ
𝜕pi

−
p̄𝜇

3

p3

𝜕Φ
𝜕p3

i = 1, 2 (150)

and the properties of the scalar products

p1 ⋅ p2 =
1
2

[
p2

3 − p2
1 − p2

2

]
pi ⋅ p3 =

1
2

[
p2

j − p2
3 − p2

i

]
, i ≠ j, i, j = 1, 2 (151)

one can re-express the differential operator for the dilatation WI
as

p𝛼
1
𝜕Φ
p1

𝛼
+ p𝛼

2
𝜕Φ
p2

𝛼
= p1

𝜕Φ
𝜕p1

+ p2
𝜕Φ
𝜕p2

+ p3
𝜕Φ
𝜕p3

(152)

giving the equation(
3∑

i=1

Δi − 2d −
3∑

i=1

pi
𝜕

𝜕pi

)
Φ(p1, p2, p3) = 0 (153)

One can show that the special conformal transformations, sum-
marized in Equation (148), take the form

3∑
i=1

p𝜅
i

(
Ki Φ(p1, p2, p3)

)
= 0 (154)

having introduced the operators

Ki ≡ 𝜕2

𝜕pi𝜕pi
+

d + 1 − 2Δi

pi

𝜕

𝜕pi
(155)

It is easy to show that Equation (154) can be split into the two
independent equations

𝜕2Φ
𝜕pi𝜕pi

+ 1
pi

𝜕Φ
𝜕pi

(d + 1 − 2Δ1) − 𝜕2Φ
𝜕p3𝜕p3

− 1
p3

𝜕Φ
𝜕p3

(d + 1 − 2Δ3) = 0

i = 1, 2 (156)

having used the momentum conservation equation p𝜅
3 = −p𝜅

1 −
p𝜅

2 .
By defining

Kij ≡ Ki − Kj (157)

Equation (156) take the form

K13 Φ(p1, p2, p3) = 0 and K23 Φ(p1, p2, p3) = 0 (158)
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which are equivalent to a hypergeometric system of equa-
tions, with solutions given by linear combinations of Appell’s
functions F4.

7. The Chiral Anomaly Interaction Derived
Nonperturbatively

In the case of the AVV, the invariance of the correlator with re-
spect to the dilatations is encoded in the following equation(

3∑
i=1

Δi − 2d −
2∑

i=1

p𝜇

i
𝜕

𝜕p𝜇

i

)⟨J𝜇1 (p1)J𝜇2 (p2)J𝜇3
5 (p3)⟩ = 0 (159)

while the special CWIs are given by

0 =
2∑

j=1

[
−2 𝜕

𝜕pj𝜅
− 2p𝛼j

𝜕2

𝜕p𝛼j 𝜕pj𝜅
+ p𝜅j

𝜕2

𝜕p𝛼j 𝜕pj𝛼

] ⟨J𝜇1 (p1)J𝜇2 (p2)J𝜇3

5 (p3)⟩
+ 2

(
𝛿𝜇1𝜅

𝜕

𝜕p𝛼1

1

− 𝛿𝜅
𝛼1

𝜕

𝜕p1𝜇1

)⟨J𝛼1 (p1)J𝜇2 (p2)J𝜇3

5 (p3)⟩
+ 2

(
𝛿𝜇2𝜅

𝜕

𝜕p𝛼2

2

− 𝛿𝜅
𝛼2

𝜕

𝜕p2𝜇2

)⟨J𝜇1 (p1)J𝛼2 (p2)J𝜇3

5 (p3)⟩
≡ 𝜅 ⟨J𝜇1 (p1)J𝜇2 (p2)J𝜇3

5 (p3)⟩ (160)

The analysis of the conformal constraints for ⟨JJJ5⟩, as already
mentioned, is performed by applying the L/T decomposition to
the correlator. We focus our analysis on the d = 4 case, where
the conformal dimensions of the conserved currents J𝜇 are Δ =
3 and the tensorial structures of the correlator will involve the
antisymmetric tensor in four dimensions ϵ𝜇𝜈𝛼𝛽 . The procedure
to obtain the general structure of the correlator starts from the
conservation Ward identities

∇𝜇 ⟨J𝜇⟩ = 0, ∇𝜇 ⟨J𝜇5 ⟩ = a1 𝜀
𝜇𝜈𝜌𝜎F𝜇𝜈F𝜌𝜎 (161)

of the expectation value of the non anomalous J𝜇 and anomalous
J𝜇5 currents. The vector currents are coupled to the vector source
A𝜇 and the axial-vector current to the source B𝜇. Applying mul-
tiple functional derivatives to Equation (161) with respect to the
source A𝜇 , after a Fourier transform, we find the conservation
Ward identities related to the entire correlator which are given by

pi𝜇i
⟨J𝜇1 (p1)J𝜇2 (p2)J𝜇3

5 (p3)⟩ = 0, i = 1, 2

p3𝜇3
⟨J𝜇1 (p1)J𝜇2 (p2)J𝜇3

5 (p3)⟩ = −8 a1 i 𝜀p1p2𝜇1𝜇2

(162)

From this relations we construct the general form of the corre-
lator, splitting the operators into a transverse and a longitudinal
part as

J𝜇(p) = j𝜇(p) + j𝜇loc(p),

j𝜇 = 𝜋𝜇
𝛼

(p) J𝛼(p), 𝜋𝜇
𝛼

(p) ≡ 𝛿𝜇
𝛼
−

p𝛼 p𝜇

p2

j𝜇loc(p) =
p𝜇

p2
p ⋅ J(p)

(163)

and

J𝜇5 (p) = j𝜇5 (p) + j𝜇5loc(p),

j𝜇5 = 𝜋𝜇
𝛼

(p) J𝛼5 (p),

j𝜇5loc(p) =
p𝜇

p2
p ⋅ J5(p)

(164)

Due to Equation (162), the correlator is purely transverse in the
vector currents. We then have the following decomposition

⟨J𝜇1 (p1)J𝜇2 (p2)J𝜇3
5 (p3)⟩ = ⟨j𝜇1 (p1)j𝜇2 (p2)j𝜇3

5 (p3)⟩
+ ⟨J𝜇1 (p1)J𝜇2 (p2) j𝜇3

5 loc (p3)⟩ (165)

where the first term is completely transverse with respect to the
momenta pi𝜇i

, i = 1, 2, 3 and the second term is the longitudinal
part that is proper of the anomaly contribution. Using the
anomaly constraint on j5loc we obtain

⟨J𝜇1 (p1)J𝜇2 (p2) j𝜇3

5 loc (p3)⟩ = p𝜇3
3

p2
3

p3 𝛼3
⟨J𝜇1 (p1)J𝜇2 (p2)J𝛼3

5 (p3)⟩
= −8 a i

p2
3

𝜀p1p2𝜇1𝜇2 p𝜇3
3 (166)

The general structure of the transverse part can instead be
parameterized in the following way

⟨j𝜇1 (p1)j𝜇2 (p2)j𝜇3
5 (p3)⟩

= 𝜋𝜇1
𝛼1

(p1)𝜋𝜇2
𝛼2

(p2)𝜋𝜇3
𝛼3

(
p3

)[
A1(p1, p2, p3) 𝜀p1p2𝛼1𝛼2 p𝛼3

1

+ A2(p1, p2, p3) 𝜀p1𝛼1𝛼2𝛼3 − A2(p2, p1, p3) 𝜀p2𝛼1𝛼2𝛼3
]

(167)

where A1(p1, p2, p3) = −A1(p2, p1, p3). The form factors A1 and A2
can be completely fixed by imposing the conformal invariance
on the correlator encoded in the Equations (159) and (160). The
solution is found in terms of special 3K integrals, which are para-
metric integrals of three Bessel functions, that can be mapped
into ordinary perturbative Feynman integrals. Explicitly we have⟨

j𝜇1
(
p1

)
j𝜇2
(
p2

)
j𝜇3

5

(
p3

)⟩
= 8ia1𝜋

𝜇1
𝛼1

(
p1

)
𝜋𝜇2
𝛼2

(
p2

)
𝜋
𝜇3
𝛼3

(
p3

) [
p2

2I3{1,0,1}𝜀
p1𝛼1𝛼2𝛼3

− p2
1I3{0,1,1}𝜀

p2𝛼1𝛼2𝛼3
]

(168)

Notice how both the longitudinal and transverse sectors are
proportional to the same factor a1, which is the residue at
the anomaly pole in the longitudinal sector, corresponding to
momentum p3.

One can show that the inclusion of a pole in order to account
for the anomaly, together with the CWIs, generates an expres-
sion for the entire correlator that can be shown to be identical to
the perturbative one, derived by the use of Feynman diagrams.
The coefficient a1 in Equation (168) is the ordinary value of the
anomaly, and acquires a specific value for each type of fermion
running in the loop.

The construction of the entire correlator proceeds from the
anomaly pole, which plays a fundamental role in any anomaly
diagram. This serves as a pivot in the procedure, facilitating the
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straightforward resolution of the longitudinal anomalous Ward
Identity (WI). The other sector of the correlator, the transverse
one, is entirely constructed from the longitudinal one by solving
the corresponding CWIs. Since the coefficient a1 is the residue at
the anomaly pole in the longitudinal sector, the same coefficient
controls also the transverse sector. In other words, if we remove
the anomaly, then the correlator vanishes.

The tensorial expansion of a chiral vertex is not unique, ow-
ing to the presence of Schouten relations among its tensor com-
ponents. For example, an anomaly pole in the virtuality of the
axial-vector current (denoted as 1∕p2

3 in our notation) can be in-
troduced or removed from a given tensorial decomposition sim-
ply by utilizing these relations.

For gauge anomalies, the cancellation of the anomaly poles is
entirely tied to the particle content of the theory and delineates
the conditions for eliminating such massless interactions. The
total residue at the pole thus identifies the total anomaly of a spe-
cific fermion multiplet.

A similar behavior is observed for conformal correlators with
stress-energy tensors, where the residue at the pole aligns with
the 𝛽-function of the Lagrangian field theory. This value is deter-
mined by the number of massless degrees of freedom included
in the corresponding anomaly vertex, at the scale where the per-
turbative prescription holds.[87]

Our parametrization can also be mapped to the Rosenberg
one, using the following relations

A1 = B3 − B6

A2 = p2
2(B6 + B4)

(169)

Further details of this analysis can be found in ref. [81]. There-
fore, CFT and a pole in the longitudnal axial-vector WI are suf-
ficient to determine the entire vertex, without any reference to a
Lagrangian realization of the interaction. A topological material
exhibiting an anomaly, therefore, may offer the possibility to in-
vestigate some of the special features that we have highlighted
for such type of interactions.

8. The Gravitational Chiral Anomaly and
Luttinger’s Relation

Certain quantum anomalies, such as conformal and mixed
axial-gravitational anomalies, may manifest themselves in
curved spacetimes due to their involvement with the energy–
momentum tensor and, consequently, the metric tensor. In con-
densed matter systems, these gravitational anomalies can be in-
vestigated in an off-equilibrium regime using the Luttinger the-
ory of thermal transport coefficients,[53,88] which has been ap-
plied, for instance, in studies of the thermal effects of the axial-
gravitational anomaly.

The fundamental concept is that the influence of a tempera-
ture gradient 𝛁T , which impels a system out of equilibrium, can
be counteracted, at linear order, by a non-uniform gravitational
potential Φ:

1
T
𝛁T = − 1

c2
𝛁Φ (170)

where c represents the speed of light. In the regime of a weak
gravitational field (in the Newtonian limit), the gravitational po-
tential Φ is defined as:

g00 = 1 + 2Φ
c2

(171)

which is linked to the g00 component of the metric, while other
components of the metric tensor remain unaltered. This obser-
vation is closely associated with the Tolman–Ehrenfest effect,[89]

which asserts that in a stationary gravitational field, the local tem-
perature of a system at thermal equilibrium varies spatially. The
temperature is spatially dependent according to the formula:

T(x) =
T0√
g00(x)

(172)

where T0 denotes a reference temperature at a chosen point
where g00 = 1. The Luttinger Equation (170) can be deduced
from simple thermodynamic considerations (see, for example,
ref. [42]).

8.1. Conservation and Trace Ward Identities

The reconstruction of the correlator is performed using the
anomaly pole present in the decomposition of this correlator in
its anomaly sector as a pivot. In the case of 〈JJJ5〉 or 〈J5J5J5〉, we
satisfy the anomaly constraint with one or three anomaly poles re-
spectively, and all the remaining sectors are fixed by this choice.
The general character of this reconstruction procedure, based on
the inclusion of the anomaly constraint, will also be proven in
the case of 〈TTJ5〉. In all these three cases, our analysis shows
that the anomaly phenomenon, at least in the parity-odd case, is
entirely associated with the presence of an anomaly pole. Once
the coefficient in front of the anomaly is determined, then the
entire correlator is fixed, if we impose the conformal symmetry.
In 〈TTJ5〉, if we include both a gauge field and a general met-
ric background in the background, the anomalous WI that we
will use for the definition of the correlator in CFT is given by the
equation:

∇𝜇⟨J𝜇5 ⟩ = a1 𝜀
𝜇𝜈𝜌𝜎F𝜇𝜈F𝜌𝜎 + a2 𝜀

𝜇𝜈𝜌𝜎R𝛼𝛽
𝜇𝜈

R𝛼𝛽𝜌𝜎 (173)

which defines a boundary condition for the CWIs. These results
can also be extended to the non-abelian case. For a general chiral
current J𝜇i , we can write:

∇𝜇⟨J𝜇i ⟩ = a1 Dijk 𝜀
𝜇𝜈𝜌𝜎Fj

𝜇𝜈
Fk
𝜌𝜎

+ a2 Di 𝜀
𝜇𝜈𝜌𝜎R𝛼𝛽

𝜇𝜈
R𝛼𝛽𝜌𝜎 (174)

where we have introduced the anomaly tensors:

Dijk =
1
2

Tr[{Ti, Tj} Tk], Di = Tr[Ti] (175)

constructed with the non-abelian generators of the theory. In the
case of the Di’s, for example, in the Standard Model, where the
symmetry is SU(3)× SU(2)×U(1)Y, only the hypercharge (U(1)Y)
contribution 〈TTJY〉 is taken into account, since the SU(2) and
SU(3) generators are traceless.
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Both the chiral (FF̃) and gravitational (RR̃) anomalies cancel
once we sum over each generation of chiral fermions. The cancel-
lation of the gravitational anomaly in the Standard Model can be
interpreted in two possible ways. On one hand, it shows the con-
sistency of the coupling of the Standard Model to gravity, since
the gauge currents are conserved in a gravitational background.
On the other hand, the stress–energy tensor is just another oper-
ator of the Standard Model, and the conservation of the currents
is required for the analysis of the mixing of such operators with
the gauge currents at the perturbative level.

By applying two functional derivative with respect to the metric
on Equation (173) and then Fourier transforming, one can deter-
mine the following anomalous constraint on the TTJ5 correlator

p3𝜇3
⟨T𝜇1𝜈1 (p1)T𝜇2𝜈2 (p2)J𝜇3

5 (p3)⟩ = 4 i a2 (p1 ⋅ p2)

×

{[
𝜀𝜈1𝜈2p1p2

(
g𝜇1𝜇2 −

p𝜇2
1 p𝜇1

2

p1 ⋅ p2

)
+
(
𝜇1 ↔ 𝜈1

)]
+
(
𝜇2 ↔ 𝜈2

)}
(176)

Such condition will be satisfied by the inclusion of an anomaly
pole in the correlator.

We also need to require diffeomorphism and Weyl invariance
which is encoded in the following equations

0 = ∇𝜇
⟨

T𝜇𝜈

⟩
− FB𝜈𝜇

⟨
J𝜇5
⟩
+ B𝜈∇𝜇

⟨
J𝜇5
⟩

0 = g𝜇𝜈⟨T𝜇𝜈⟩ (177)

Note that, in this case, we can ignore the conformal anomaly con-
tribution to the last equation since it does not affect our correlator.
The equations above in momentum space lead to the following
constraints on the TTJ5

pi𝜇i
⟨T𝜇1𝜈1 (p1)T𝜇2𝜈2 (p2)J𝜇3

5 (p3)⟩ = 0, i = {1, 2}

𝛿𝜇i𝜈i
⟨T𝜇1𝜈1 (p1)T𝜇2𝜈2 (p2)J𝜇3

5 (p3)⟩ = 0, i = {1, 2}
(178)

8.2. The Nonperturbative Derivation

In this section, first, we derive the most general expression for
the 〈TTJ5〉 that satisfies the (anomalous) conservation and trace
Ward identities. We then proceed to fix the correlator by imposing
invariance under the conformal group. The analysis is performed
by applying the L/T decomposition to the 〈TTJ5〉. We focus on
a parity odd 4D correlator, therefore its tensorial structure will
involve the antisymmetric tensor 𝜖𝜇𝜈𝜌𝜎 .

We start by decomposing the energy-momentum tensor T𝜇𝜈

and the current J𝜇5 in terms of their transverse-traceless part and
longitudinal ones (also called “local”)

T𝜇i𝜈i (pi) = t𝜇i𝜈i (pi) + t𝜇i𝜈i

loc (pi) (179)

J𝜇i
5 (pi) = j𝜇i

5 (pi) + j𝜇i

5 loc(pi) (180)

where

t𝜇i𝜈i (pi) = Π𝜇i𝜈i
𝛼i𝛽i

(pi) T𝛼i𝛽i (pi), t𝜇i𝜈i

loc (pi) = Σ𝜇i𝜈i
𝛼i𝛽i

(p) T𝛼i𝛽i (pi)

j𝜇i
5 (pi) = 𝜋𝜇i

𝛼i
(pi) J𝛼i

5 (pi), j𝜇i

5 loc(pi) =
p𝜇i

i pi 𝛼i

p2
i

J𝛼i
5 (pi) (181)

having introduced the transverse-traceless (Π), transverse (𝜋) and
longitudinal (Σ) projectors, given respectively by

𝜋𝜇
𝛼
= 𝛿𝜇

𝛼
−

p𝜇p𝛼

p2
(182)

Π𝜇𝜈

𝛼𝛽
= 1

2

(
𝜋𝜇
𝛼
𝜋𝜈
𝛽
+ 𝜋

𝜇

𝛽
𝜋𝜈
𝛼

)
− 1

d − 1
𝜋𝜇𝜈𝜋𝛼𝛽 (183)

Σ𝜇i𝜈i

𝛼i𝛽i
=

pi 𝛽i

p2
i

[
2𝛿(𝜈i

𝛼i
p𝜇i)

i −
pi𝛼i

(d − 1)

(
𝛿𝜇i𝜈i + (d − 2)

p𝜇i

i p𝜈i

i

p2
i

)]
+

𝜋𝜇i𝜈i (pi)
(d − 1)

𝛿𝛼i𝛽i

(184)

Such decomposition allows to split our correlation function into
the following terms

⟨
T𝜇1𝜈1 T𝜇2𝜈2 J𝜇3

5

⟩
=
⟨

t𝜇1𝜈1 t𝜇2𝜈2 j𝜇3
5

⟩
+
⟨

T𝜇1𝜈1 T𝜇2𝜈2 j𝜇3

5 loc

⟩
+
⟨

T𝜇1𝜈1 t𝜇2𝜈2

loc J𝜇3
5

⟩
+
⟨

t𝜇1𝜈1

loc T𝜇2𝜈2 J𝜇3
5

⟩
−
⟨

T𝜇1𝜈1 t𝜇2𝜈2

loc j𝜇3

5 loc

⟩
−
⟨

t𝜇1𝜈1

loc t𝜇2𝜈2

loc J𝜇3
5

⟩
−
⟨

t𝜇1𝜈1

loc T𝜇2𝜈2 j𝜇3

5 loc

⟩
+
⟨

t𝜇1𝜈1

loc t𝜇2𝜈2

loc j𝜇3

5 loc

⟩
(185)

Using the conservation and trace WIs derived in the previous sec-
tion, it is then possible to completely fix all the longitudinal parts,
i.e., the terms containing at least one t𝜇𝜈loc or j𝜇5 loc. We start by con-
sidering the non-anomalous equations

𝛿𝜇i𝜈i
⟨T𝜇1𝜈1 (p1)T𝜇2𝜈2 (p2)J𝜇3

5 (p3)⟩ = 0, i = {1, 2}

pi𝜇i
⟨T𝜇1𝜈1 (p1)T𝜇2𝜈2 (p2)J𝜇3

5 (p3)⟩ = 0, i = {1, 2}
(186)

Thanks to these WIs, we can eliminate most of terms on the right-
hand side of Equation (185), ending up only with two terms

⟨
T𝜇1𝜈1 T𝜇2𝜈2 J𝜇3

5

⟩
=
⟨

t𝜇1𝜈1 t𝜇2𝜈2 j𝜇3
5

⟩
+
⟨

t𝜇1𝜈1 t𝜇2𝜈2 j𝜇3

5 loc

⟩
(187)

The remaining local term is then fixed by the anomalous WI of
J5. First, we construct the most general expression in terms of
tensorial structures and form factors

⟨
t𝜇1𝜈1 t𝜇2𝜈2 j𝜇3

5 loc

⟩
= p𝜇3

3 Π𝜇1𝜈1
𝛼1𝛽1

(p1)Π𝜇2𝜈2
𝛼2𝛽2

(p2) 𝜀𝛼1𝛼2p1p2
(

F1 g𝛽1𝛽2 + F2 p𝛽2
1 p𝛽1

2

)
(188)

where, due to the Bose symmetry, both F1 and F2 are symmetric
under the exchange (p1↔p2). Then, recalling the definition of j5 loc
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and the anomalous WI

p3𝜇3
⟨T𝜇1𝜈1 (p1)T𝜇2𝜈2 (p2)J𝜇3

5 (p3)⟩ = 4 i a2 (p1 ⋅ p2)

×

{[
𝜀𝜈1𝜈2p1p2

(
g𝜇1𝜇2 −

p𝜇2
1 p𝜇1

2

p1 ⋅ p2

)
+
(
𝜇1 ↔ 𝜈1

)]
+
(
𝜇2 ↔ 𝜈2

)}
(189)

we can write

⟨
t𝜇1𝜈1 t𝜇2𝜈2 j𝜇3

5 loc

⟩
= 4ia2

p𝜇3
3

p2
3

(p1 ⋅ p2)

{[
𝜀𝜈1𝜈2p1p2

(
g𝜇1𝜇2 −

p𝜇2
1 p𝜇1

2

p1 ⋅ p2

)

+
(
𝜇1 ↔ 𝜈1

)]
+
(
𝜇2 ↔ 𝜈2

)}
(190)

One can show that this formula coincides with Equation (188) af-
ter contracting the projectors’ indices and fixing the form factors
in the following way

F1 =
16ia2(p1 ⋅ p2)

p2
3

, F2 = −
16ia2

p2
3

(191)

Therefore, all the local terms of the 〈TTJ5〉 are fixed. The only
remaining term to be studied in order to reconstruct the entire
correlator is the transverse-traceless part

⟨
t𝜇1𝜈1 t𝜇2𝜈2 j𝜇3

5

⟩
that can

be expressed as⟨
t𝜇1𝜈1

(
p1

)
t𝜇2𝜈2

(
p2

)
j𝜇3
5

(
p3

)⟩
= Π𝜇1𝜈1

𝛼1𝛽1

(
p1

)
Π𝜇2𝜈2

𝛼2𝛽2

(
p2

)
𝜋𝜇3
𝛼3

(
p3

)
X𝛼1𝛽1𝛼2𝛽2𝛼3

(192)

where X𝛼1𝛽1𝛼2𝛽2𝛼3 is a general rank five tensor built by products
of metric tensors, momenta and the Levi–Civita symbol with the
appropriate choice of indices. As a consequence of the projec-
tors in Equation (192), X𝛼1𝛽1𝛼2𝛽2𝛼3 can not be constructed by using
g𝛼i𝛽i

, nor by pi 𝛼i
with i = {1, 2, 3}. We also must keep in mind

that, due to symmetries of the correlator, form factors associated
with structures linked by a (1↔2) transformation (the gravitons
exchange) are dependent. Additionally, the number of form fac-
tors can be further reduced by considering Schouten identities.
In the end, the transverse-traceless part can be written in the min-
imal form⟨

t𝜇1𝜈1
(
p1

)
t𝜇2𝜈2

(
p2

)
j𝜇3
5

(
p3

)⟩
= Π𝜇1𝜈1

𝛼1𝛽1

(
p1

)
Π𝜇2𝜈2

𝛼2𝛽2

(
p2

)
𝜋𝜇3
𝛼3

(
p3

)
A1𝜀

p1𝛼1𝛼2𝛼3 p𝛽1
2 p𝛽2

3 − A1

(
p1 ↔ p2

)
𝜀p2𝛼1𝛼2𝛼3 p𝛽1

2 p𝛽2
3

+ A2𝜀
p1𝛼1𝛼2𝛼3𝛿𝛽1𝛽2 − A2

(
p1 ↔ p2

)
𝜀p2𝛼1𝛼2𝛼3𝛿𝛽1𝛽2

+ A3𝜀
p1p2𝛼1𝛼2 p𝛽1

2 p𝛽2
3 p𝛼3

1 + A4𝜀
p1p2𝛼1𝛼2𝛿𝛽1𝛽2 p𝛼3

1

]
(193)

where A3 and A4 are antisymmetric under the exchange (p1↔p2).
The four form factors appearing in such expressions can be fixed
by imposing the invariance of the correlator under the conformal

group. The dilatations WIs are(
3∑

i=1

Δi − 2d −
2∑

i=1

p𝜇

i
𝜕

𝜕p𝜇

i

)⟨T𝜇1𝜈1 (p1)T𝜇2𝜈2 (p2)J𝜇3
5 (p3)⟩ = 0

(194)

while the special conformal WIs take the form

0 = 𝜅
⟨

T𝜇1𝜈1
(
p1

)
T𝜇2𝜈2

(
p2

)
J𝜇3

5

(
p3

)⟩
=

2∑
j=1

(
2
(
Δj − d

) 𝜕

𝜕pj𝜅
− 2p𝛼j

𝜕

𝜕p𝛼j

𝜕

𝜕pj𝜅
+
(
pj

)𝜅 𝜕

𝜕p𝛼j

𝜕

𝜕pj𝛼

)

×
⟨

T𝜇1𝜈1
(
p1

)
T𝜇2𝜈2

(
p2

)
J𝜇3

5

(
p3

)⟩
+ 4

(
𝛿𝜅(𝜇1

𝜕

𝜕p𝛼1

1

− 𝛿𝜅
𝛼1
𝛿

(𝜇1

𝜆

𝜕

𝜕p1𝜆

)⟨
T 𝜈1)𝛼1

(
p1

)
T𝜇2𝜈2

(
p2

)
J𝜇3

5

(
p3

)⟩

+ 4

(
𝛿𝜅(𝜇2

𝜕

𝜕p𝛼2

2

− 𝛿𝜅
𝛼2
𝛿

(𝜇2

𝜆

𝜕

𝜕p2𝜆

)⟨
T 𝜈2)𝛼2

(
p2

)
T𝜇1𝜈1

(
p1

)
J𝜇3

5

(
p3

)⟩
(195)

These equations have been solved in ref. [46]. The result is de-
termined in terms of special 3K integrals, which are parametric
integrals of three Bessel functions. Explicitly we have

A1 = −4ia2p2
2I5{2,1,1}

A2 = −8ia2p2
2

(
p2

3I4{2,1,0} − 1
)

A3 = 0

A4 = 0

(196)

Once again, one can observe how the solution of the (anomalous)
chiral and conformal WIs is sufficient to solve for the entire corre-
lator. This shows that the inclusion of the anomaly pole is crucial
for the entire vertex.

8.3. The Perturbative TTJ5

The 〈TTJ5〉 correlator perturbatively at one-loop, can be com-
puted in a suitable regularization scheme. We consider the fol-
lowing action with a fermionic field in the presence of a gravita-
tional and axial gauge field background

S0 = ∫ ddx e
[

i
2
�̄�e𝜇a𝛾

a
(
𝜕𝜇𝜓

)
− i

2

(
𝜕𝜇�̄�

)
e𝜇a𝛾

a𝜓 − gA𝜇�̄�e𝜇a𝛾
a𝛾5𝜓

+ i
4
𝜔𝜇abe𝜇c �̄�𝛾abc𝜓

]
(197)

with

𝛾abc = {Σab, 𝛾 c} (198)
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Figure 5. Feynman Diagrams of the three different topologies appearing in the perturbative expansion of the TTJ5, responsible for the gravitational
anomaly.

Taking a first variation of the action with respect to the metric,
the stress-energy tensor takes the form

T𝜇𝜈 = − i
2

[
�̄�𝛾 (𝜇∇𝜈)𝜓 − ∇(𝜇�̄�𝛾𝜈)𝜓 − g𝜇𝜈

(
�̄�𝛾𝜆∇𝜆𝜓 − ∇𝜆�̄�𝛾𝜆𝜓

)]
− g�̄�

(
g𝜇𝜈𝛾𝜆A𝜆 − 𝛾 (𝜇A𝜈)

)
𝛾5 𝜓 (199)

We can then proceed to evaluate the TTJ5 correlator pertubatively
by considering the diagrams shown in Figure 5. One can show
that the perturbative result, expressed in terms of Feynman mas-
ter integrals, is in complete agreement with the nonperturbative
one described in the previous section (see ref. [46] for the details).

It is clear that at this stage, it is important to devise possible
ways to characterize, both phenomenologically and experimen-
tally, the methods that need to be implemented in order to gather
information on the axion-like interactions that manifest in the
conformal limit. In the next section, we are going to discuss a
possible method of detecting this state using polarimetry. The
method is well-known in the context of axion physics, suggested
by Sikivie and Harari.[44] In the subsequent section, we offer an
independent derivation of the equations that relate the rotation
of the angle of polarization in terms of the axionic background in
the eikonal approximation. We will be using axion electrodynam-
ics in a local formulation. Since the action is a consequence of the
chiral WI, which is local, there is no information, in this analysis,
on the entire structure of the interaction that, as we have shown
in the previous sections, is characterized by a sum rule. We will
come back to this point before our conclusions.

9. Axion Electrodynamics: The Faraday Effect

In this section we review the derivation of the local anomaly ac-
tion with the inclusion of a pseudoscalar, both in the case of a
constant 𝜃 term and of a variable 𝜃, with 𝜃 ≡ 𝜑/M. Here M is the
scale defining the coupling of the axion field to the anomaly. We
introduce also a dimensionfull coupling g̃ ≡ g∕M. We first dis-
cuss a well-known effect in axion physics, that is attributed to ax-
ion electrodynamics, i.e., the rotation of the plane of polarization

of a light beam in the presence of a condensed axion in the back-
ground. The effect was pointed out in ref. [44] and finds direct
application in TIs as well. The derivation that we present is exact
up to the last step, where we will resort to the eikonal approxima-
tion in order to solve the two coupled propagation equations for
the effective D and H fields, that characterize the effective dy-
namics. In a subsequent Section 9.4, we point out the existence
of some special features of the photon propagator in axion elec-
trodynamics, which allow to determine over the entire light-cone
surface the bi-tensor function that controls the residue of its lead-
ing singularity. We are going to show the presence of periodic os-
cillations in such function, by solving the recursion relations of
its Hadamard expansion. The oscillations are parameterized by
an angle that is proportional to the gradient of the background
axion field.

We work in a rationalized system of units with 4𝜋, c → 1. The
Lagrangian for the coupling of an axion-like field to the U(1) EM
gauge field is given by

 = −1
4

F𝜇𝜈F
𝜇𝜈 + 1

2
𝜕𝜇𝜑𝜕

𝜇𝜑 + 1
4

g̃ 𝜑F𝜇𝜈 F̃
𝜇𝜈 (200)

with the inclusion of a kinetic term for 𝜑.
From the above Lagrangian the equations of motion for the

axion field 𝜑 are

□𝜑 −
g̃
4

F𝜇𝜈 F̃𝜇𝜈 = 0 (201)

For the electromagnetic field, the covariant equation

𝜕𝜇F𝜇𝜈 = J𝜈 (202)

can be cast into the form

−𝜕𝜇F𝜇𝜈 + g̃ 𝜕𝜇(F̃𝜇𝜈𝜑) = 0 (203)

The canonical gauge current is extracted from the variation

J𝜈 = 𝛿
𝛿𝜕𝜇A𝜈

𝛿A𝜈 𝛿A𝜈 = 𝜕𝜈𝛼(x) (204)
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modulo a vanishing four-divergence (∂𝜇∂𝜈F
𝜇𝜈 = 0) and it is given

by

J𝜈 = g̃ 𝜕𝜇(F̃𝜇𝜈𝜑) (205)

which is conserved.
The two gauge invariants that we can build out of the field

strength are

F𝜇𝜈F𝜇𝜈 = −2(E2 − B2) (206)

F̃𝜇𝜈F𝜇𝜈 = −4E ⋅ B (207)

with

F0i = −Ei Fij = −𝜖ijkBk, F̃io = Bi F̃ij = 𝜖ijkEk (208)

Rewritten in terms of the gauge invariant fields B and E, the ac-
tion

 = ∫ d4x
(1

2
𝜕𝜇𝜑𝜕

𝜇𝜑 + 1
2

(E2 − B2) − g̃𝜑B ⋅ E
)

(209)

is invariant under a parity transformation.
The Bianchi identity ϵ𝜇𝜈𝛼𝛽∂𝜈F𝛼𝛽 = 0 gives the two homogenous

equations

∇ ⋅ B = 0 (210)

∇ × E = −𝜕B
𝜕t

(211)

To obtain the last two equations, we separate the spatial from the
temporal components of the four-current J𝜇 , obtaining

J0 = g̃ 𝜑𝜕iF̃
i0 + g̃ F̃i0𝜕i𝜑 (212)

Jj = g̃ 𝜑𝜕iF̃
ij + g̃ F̃ij𝜕i𝜑 (213)

explicitly given by

J0 = g̃ 𝜑∇ ⋅ B + g̃ ∇𝜑 ⋅ B (214)

and

J = g̃ 𝜑
(
−𝜕 B

𝜕t
− ∇ × E

)
− g̃

(
B
𝜕𝜑

𝜕t
− E × ∇𝜑

)
= −g̃

(
B
𝜕𝜑

𝜕t
− E × ∇𝜑

)
(215)

having used the Bianchi identity (211). The time component of
the lhs of Equation (202)

𝜕𝜇F𝜇0 = ∇ ⋅ E (216)

combined with Equation (214) gives, after using the Bianchi iden-
tity Equation (210), the modified Gauss law takes the form

∇ ⋅ E = g̃ ∇𝜑 ⋅ B (217)

The space part of Equation (202)

𝜕𝜇F𝜇j = 𝜕0F0j + 𝜕iF
ij = 𝜕0F0j + 𝜖ijk𝜕jB

k = ∇ × B − 𝜕E
𝜕t

(218)

combined with Equation (213) finally gives the modified displace-
ment law

∇ × B − 𝜕E
𝜕t

= −g̃B
𝜕𝜑

𝜕t
+ g̃E × ∇𝜑 (219)

In summary, the four modified equations are the two Bianchi
identities Equations (210) and (211), together with

□𝜑 = −g̃ E ⋅ B (220)

∇ ⋅ E = g̃ ∇𝜑 ⋅ B (221)

∇ × B − 𝜕E
𝜕t

= −g̃B
𝜕𝜑

𝜕t
+ g̃E × ∇𝜑 (222)

corresponding, respectively, to the axion equation of motion, the
modified Gauss law and the modified displacement law for the B
and E fields. We can convert to the notation of ref. [21] by the re-
placement g̃𝜑 = −𝜅a, where a is the dimensionless axionic angle
normalized as Ma = 𝜑, and M, as already mentioned, is the typ-
ical scale of the axionic interaction, with the three coupled equa-
tions in the form

∇ ⋅ E = − 𝜅∇a ⋅ B (223)

∇ × B =𝜕E
𝜕t

+ 𝜅(ȧB + ∇a × E) (224)

9.1. Rotation of the Polarization Plane in the Eikonal
Approximation

We are interested in studying the effect of a slowly varying axionic
background. We work in the geometrical optics approximation,
where we neglect all the terms containing more than two deriva-
tives on the axion field or gradient squared terms, of the form
(∇iϕ)2 and ∇i∇jϕ.

9.2. Eikonal D

We take the curl of the Ampere law Equation (211)

∇ × (∇ × E) + 𝜕

𝜕t
(∇ × B) = 0 (225)

in which we use the displacement law Equation (219)

∇ × (∇ × E) + 𝜕

𝜕t

(
𝜕E
𝜕t

+ g̃ E × ∇𝜑 − g̃B
𝜕𝜑

𝜕t

)
(226)

At this stage we use the identity ∇ × (∇ × E) = ∇(∇ ⋅ E) − (∇2E),
and in the eikonal approximation we obtain the relation

∇(∇ ⋅ E) − (∇2E) + 𝜕2E
𝜕t2

+ g̃ 𝜕E
𝜕t

× ∇𝜑 − g̃ 𝜕B
𝜕t

𝜕𝜑

𝜕t
= 0 (227)
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that is simplified using Equation (217), to the form

□E = −∇(g̃∇𝜑 ⋅ B) + g̃ 𝜕B
𝜕t

𝜕𝜑

𝜕t
− g̃ 𝜕E

𝜕t
× ∇𝜑 (228)

A further simplification, using Equation (219) gives

□E = −∇(g̃∇𝜑 ⋅ B) + g̃ 𝜕B
𝜕t

𝜕𝜑

𝜕t
− g̃

(
∇ × B −

[
g̃E × ∇𝜑

]
+
[

g̃B
𝜕𝜑

𝜕t

])
× ∇𝜑 (229)

Terms in squared brackets [ ] are neglected in the eikonal approx-
imation. Using the identity

∇(X ⋅ Y ) = (X ⋅ ∇)Y + (Y ⋅ ∇)X + X × (∇ × Y ) + Y × (∇ × X )

(230)

setting X = ∇𝜑 e Y = B, we obtain

∇(∇𝜑 ⋅ B) = (∇𝜑 ⋅ ∇)B + ∇𝜑 × (∇ × B) (231)

that inserted into Equation (229), after some simplifications,
yields the relation

□E = −g̃(∇𝜑 ⋅ ∇)B + g̃ 𝜕B
𝜕t

𝜕𝜑

𝜕t
(232)

This can be covariantized in the form

□E = g̃𝜕𝜇𝜑 𝜕𝜇B (233)

It is possible to square this relation in order to remove the mixed
derivative terms in ϕ and B, bringing it into the form

□ (E − 1
2

g̃𝜑B) = − 1
2

g̃𝜑 □B (234)

Indeed, expanding the equation above

−□E + 1
2

g̃𝜕𝜇( 𝜕𝜇𝜑B + 𝜑𝜕𝜇B) − 1
2

g̃𝜑□B = 0 (235)

and using the eikonal approximation, Equation (235) reduces to
Equation (233). It is convenient to introduce the induced electric
field

D = E − 1
2

g̃𝜑B (236)

and solve perturbatively the equation by an appropriate expan-
sion. Therefore Equation (234), which we call eikonal-D, is the
first equation useful for investigating the rotation of the angle
of polarization of an incoming, linearly polarized plane wave on
the material, in the presence of a slowly varying background ax-
ion field.

9.3. Eikonal H

Before turning to the perturbative solution, we derive a similar
equation in which E and B are interchanged. We take the curl of
Equation (219)

∇ × ∇ × B − 𝜕

𝜕t
∇ × E = g̃∇ × (E × ∇𝜑) − g̃∇ ×

(
B
𝜕𝜑

𝜕t

)
(237)

that we can rewrite in the form

∇(∇ ⋅ B) − ∇2B − 𝜕

𝜕t
∇ × E = g̃∇ × (E × ∇𝜑) − g̃∇ ×

[
B
𝜕𝜑

𝜕t

]
(238)

The squared brackets in the last term above, indicate that we can
apply the eikonal approximation and pull out the axion field from
the action of the curl and use the Bianchi identity Equations (211)
and (210) to obtain

−∇2B + 𝜕2B
𝜕t2

= g̃∇ × (E × ∇𝜑) − g̃
𝜕𝜑

𝜕t
∇ × B (239)

Using the identity

∇ × (X × Y ) = X (∇ ⋅ Y ) − Y (∇ ⋅ X ) + (Y ⋅ ∇)X − (X ⋅ ∇)Y (240)

we rewrite

∇ × (E × ∇𝜑) = (∇𝜑 ⋅ ∇)E − (∇𝜑)(∇ ⋅ E) (241)

that allows to re-express Equation (239) in the form

□B = g̃
(
(∇𝜑 ⋅ ∇)E − ∇𝜑(∇ ⋅ E)

)
− g̃(∇ × B)

𝜕𝜑

𝜕t
(242)

Notice that in the equation above, we can drop the term contain-
ing ∇ ⋅ E if we use Equation (221), the modified Gauss law, per-
forming a first eikonal approximation, deriving the expression

□B = g̃(∇𝜑 ⋅ ∇)E + g̃
(
𝜕E
𝜕t

+ E × ∇𝜑 −
[

B
𝜕𝜑

𝜕t

])
𝜕𝜑

𝜕t
(243)

where we have re-expressed ∇ × B in Equation (242) using the
modified displacement law. The last term in the squared brackets
can also be dropped in the eikonal limit, giving

□B = g̃(∇𝜑 ⋅ ∇)E − g̃ 𝜕E
𝜕t

𝜕𝜑

𝜕t
(244)

This equation can be rewritten in the covariant form as

□B + g̃𝜕𝜇E 𝜕𝜇𝜑 = 0 (245)

As in the derivation of the equation for D, also in this case, the
derivative terms bilinear in 𝜑 and B are leftover from the eikonal
expansion of

□ (B + 1
2

g̃𝜑E) =1
2

g̃𝜑 □E (246)
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Also in this case we define an effective magnetic field of the form

H = B + 1
2

g̃𝜑E (247)

Notice that the system of the two eikonal Equations (234) and
(246) is invariant under the duality transformation (E → B, B →
−E). We summarize the equations in the forms

□H = −1
2

g̃𝜑 □B (248)

□D = 1
2

g̃𝜑 □E (249)

When solving the equations perturbatively, at the lowest order
with 𝜑 held constant, we find that both □E and □B vanish, in-
dicating that E and B satisfy the vacuum wave equation. Moving
to the first order of approximation, we encounter new combina-
tions: E + g̃𝜑 B

2
and B − g̃𝜑 E

2
. These are denoted as D and H, re-

spectively. Notably, these combinations fulfill the homogeneous
D’Alembert equation, indicating their propagation without dis-
tortion in free space.

This analytical progression implies that an electromagnetic
wave, initially linearly polarized at the lowest order, will exhibit
behavior at the first order where both D and H (and thus B and
E) oscillate along a fixed direction. This phenomenon leads to an
intriguing consequence: with each incremental change in 𝜑 by
an amount Δ𝜑 along the path of the electromagnetic wave, the
vectors E and B undergo a rotation. The angle of this rotation,
Δϕ, is directly proportional to the change in 𝜑, as described by
the equation:

Δ𝜙 = 1
2

g̃ Δ𝜑 (250)

This relationship highlights the coupling between the electro-
magnetic field and the scalar field 𝜑, showcasing how variations
in 𝜑 across space lead to observable changes in the polarization
angle of the wave, a phenomenon that could have implications
for our understanding of wave propagation and field interactions
in various physical contexts.

9.4. Light-Cone Structure of the Photon Propagator and
Oscillations for a Timelike Axionic Background

The equations of motion for the gauge fields are quite interesting
in their behavior around the light cone

𝜕𝜇F𝜇𝜈 = b0𝜕𝜇𝜑𝜖
𝜇𝜈𝛼𝛽𝜕𝛼A𝛽 (251)

where b0 ≡ 4g̃. In the Lorentz gauge they take the form

□A𝜈 − k𝜈𝛼𝛽𝜕
𝛼A𝛽 = 0 (252)

where

k𝜈𝛼𝛽 = b0𝜕𝜇𝜑𝜖
𝜇𝜈𝛼𝛽 (253)

Since the Gaussian operator is diagonal in the highest derivatives,
the Hadamard expansion for the propagator of the gauge fields

in the axionic background can be directly set up by introducing
the Green’s function Δ̂ for Equation (252)

□ Δ̂𝜈𝜌 − k𝜈𝛼𝛽𝜕
𝛼Δ̂𝛽

𝜌
= 𝛿𝜈𝜌𝛿

4(z) (254)

where z = x − y. We will investigate the structure of the Feynman
propagator around the light-cone showing the presence of some
special features of the photon propagator.

The standard ansatz for its behavior around the light cone is
given by the Hadamard expansion

Δ̂𝜈𝜌(x, y) = G(0)
𝜈𝜌

(x, y)DF

− i
16𝜋2

ln
(

z2

𝜇2
− i𝜖

) ∞∑
n=0

(
z2

4

)n
1
n!

G(n+1)
𝜈𝜌

(x, y) (255)

Here, DF is the Feynman free propagator in coordinate space:

DF = 1
4𝜋2i(z2 − i𝜖)

(256)

and 𝜇 is a mass parameter introduced to keep the argument of
the logarithm dimensionless.

We are going to investigate the behavior of the coefficient of
the leading pole singularity on the light cone, which is controlled
by the anomaly. The recursion relations for the coefficients of the
expansion can be readily obtained. Setting the singularities of the
Green function to zero independently, when applied to the Equa-
tion (255), we obtain a leading singularity equation for z−4

2z𝜇𝜕𝜇G(0)
𝜈𝜌

(x, y) − z𝛼k𝜈𝛼𝛽G(0)
𝛽𝜌

(x, y) = 0 (257)

a DF (i.e., z−2) singularity equation

□G(0)
𝜈𝜌

+ G(1)
𝜈𝜌

+ z𝜇𝜕𝜇G(1)
𝜈𝜌

− k𝜈𝛼𝛽𝜕
𝛼G(0)

𝛽𝜌

−z𝛼

2
k𝜈𝛼𝛽G(1)𝛽

𝜌
= 0 (258)

and a log-equation (for z2n ln( z2

𝜇2
)):

z𝜇𝜕𝜇Gn+2
𝜈𝜌

+ (n + 2)G(n+1)
𝜈𝜌

+ □G(n+1)
𝜈𝜌

−z𝛼

2
k𝜈𝛼𝛽G(n+2)𝛽

𝜌
− k𝜈𝛼𝛽𝜕

𝛼G(n+1)
𝛽𝜌

= 0 (259)

Defining G(− 1) = 0 for n = −1, 0, 1,…, all the equations can be
summarized in the form

z𝜇𝜕𝜇G(n+1)
𝜈𝜌

+ (n + 1)G(n+1)
𝜈𝜌

+ □G(n)
𝜈𝜌

−z𝛼

2
k𝜈𝛼𝛽G(n+1)

𝛽𝜌
− k𝜈𝛼𝛽𝜕

𝛼G(n)𝛽
𝜌

= 0 (260)

Here, we observe that the axion field acts as a background field, af-
fecting the propagation of the leading singularity in a non-trivial
manner (through k𝜈𝛼𝛽 ).

For a constant 𝜑, due to Equation (253), the equation for the
propagator of the leading singularity becomes

z𝜇𝜕𝜇G(0)
𝜈𝜌

= 0 (261)
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holds true on the light cone surface. The initial condition is:

G(0)
𝜈𝜌

(x, x) = 𝛿𝜈𝜌 (262)

The solution is simply the Kronecker delta, making the strength
diagonal across the entire characteristic surface. In general, the
propagator for separate points is given by

□ −1 =
G(0)

𝜈𝜌

(z2 − i𝜖)4𝜋2i
=

𝛿𝜈𝜌

(z2 − i𝜖)4𝜋2i
(263)

9.5. Leading Singularity Dynamics

We now focus on the description of the leading behavior of the
electromagnetic field dynamics in the presence of a local depen-
dence of 𝜑. We will demonstrate that for a linearly increasing
axion field in the timelike case, some components of the leading
singularity tensor G(0)

𝜈𝜌 remain constant on the light cone sur-
face. Indeed, contracting both sides of Equation (260) with ∂𝜈𝜑

and utilizing the antisymmetry of k (defined in Equation (253)),
we obtain

𝜕𝜈𝜑z𝜇𝜕𝜇G(0)
𝜈𝜌(x(s), 0) = 0 (264)

We introduce the parameterization

x𝜇(s) = sx𝜇 , 0 < s < 1; y = 0 (265)

for a straight line on the light-cone surface, we can rewrite Equa-
tion (264) as:

𝜕𝜈𝜑(x) d
ds

G(0)
𝜈𝜌(x(s), 0) = 0 (266)

Repeating this process again yields

x𝜈 d
ds

G(0)
𝜈𝜌

(x(s), 0) = 0 (267)

This implies that certain components of the leading singularity
tensor G(0)

𝜈𝜌 are constant along straight lines on the light-cone
surface, for a timelike gradient of the axion field.

9.6. Timelike Axion Field and the Leading Singularity

It can be shown that if the variation of the 𝜑 field is linear in a
timelike direction, a frame exists where it only has a time depen-
dence:

𝜕𝜇𝜑 = (a0, 0, 0, 0) (268)

In particular, for the timelike components, we obtain:

d
ds

G(0)
0𝜌 = 0 (269)

Therefore, from the initial condition Equation (262) we get

G(0)
0i = 0 G(0)

00 = 1 (270)

The remaining components of the leading singularity tensor can
also be determined. Equation (260) for the leading singularity can
be expressed as:

d
ds

G(0)
ij (x(s), 0) −

b0a0

2
xk𝜖0iklG(0)

lj (x(s), 0) = 0 i, j, k, l = 1, 2, 3

(271)

For a given timelike vector x𝜇 , this equation has two first inte-
grals. Define:

G(0)
ij (x(s), 0) = v̂j; �̂�k =

b0a0

2
xk (272)

where �̂� is constant for a fixed x𝜇 . Rewrite the equation as:

d
ds

v̂j = �̂� ∧ v̂j (273)

Here, the two first integrals of motion along the s-line are:

�̂� ⋅ v̂j =
b0a0

2
xkG(0)

kj (x(s), 0) = dj (274)

v̂2
j =

∑
i

G(0)
ij (x(s), 0)G(0)

ij (x(s), 0) = lj (275)

This approach allows for determining the remaining compo-
nents of the leading singularity tensor G(0)

ij based on the initial
conditions and the specific form of the timelike axion field.

We identify the following expressions for the Feynman propa-
gators of electromagnetic fields in the linearly growing, timelike
𝜃 vacuum, with r = |x⃗|
< Ai(x)Aj(0) >𝜃 =

[(
𝛿ij −

xij

r2

)
cos

(a0r
2

)
+ 𝜖ikj xk

r
sin

(a0r
2

)

+ xixj

r2

]
1

4𝜋2i(x2 − i0)
+ log. terms (276)

< A0(x)Ai(0) >𝜑=
𝛿0i

4𝜋2i(x2 − i0)
+ G(1)

0i (x, 0) ln(x2 − i0) (277)

with a typical oscillating behavior on the leading singularity in-
duced by the anomaly around the light-cone surface. The oscil-
lations are present if the gradient of the same background is
nonzero. In general, the structure of the bitensor characteriz-
ing the residue of the leading singularity of a given propagator
cannot be determined globally, but only at coincidence points, as
clear from the recursion relations derived from the Hadamard ex-
pansion. The propagation, in this case, is quite interesting, since
G(0)

𝜇𝜈 (x, y) can be determined globally. We expect that the specific
features of this propagation may provide guidance for the iden-
tification of the anomaly behavior in real experimental settings,
given the singularity of the phenomenon.

10. Perspectives and Conclusion

In conclusion, our investigation has shed light on the intricate
dynamics of chiral anomaly-driven interactions within the frame-
work of conformal field theory (CFT) in 4D spacetime.
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Throughout our discussion, we have elucidated the fundamen-
tal aspects of these interactions, particularly focusing on chiral
anomalies in both vector currents and gravitons. We have high-
lighted their emergence in topological materials, where gravita-
tional chiral anomalies arise from thermal gradients, as eluci-
dated by the Luttinger relation.

Moreover, within the framework of CFT, we have uncovered
the mediation of these interactions through quasiparticle excita-
tions in the form of anomaly poles, discerned through a nonlocal
effective action derived via perturbation theory.

Our examination of conformal Ward identities (CWIs) in mo-
mentum space has provided insights into the longitudinal and
transverse sectors of chiral anomaly interactions, demonstrat-
ing their intimate coupling and the role of intermediary parti-
cles such as chiral fermions or bilinear Chern–Simons currents.
We have discussed the transformation of anomaly poles into cuts
in the presence of fermion mass corrections, while emphasizing
the retention of mass-independent sum rules in the axial-vector
channel in all the chiral cases. Lastly, our exploration has high-
lighted the importance of investigating these sum rules along-
side experimental observations, such as the rotation of the plane
of polarization of incident light, in the quest to detect axion-
like/quasiparticle entities in topological materials.

In retrospect, our journey through the intricacies of chiral
anomaly-driven interactions underscores their profound impli-
cations across various disciplines, serving as a testament to the
richness of theoretical frameworks like CFT in elucidating fun-
damental phenomena in nature.

Appendix A: Special Conformal Ward Identities in
the Operatorial Approach

In this appendix, for the sake of completeness, we present an operator-
based derivation of conformal Ward Identities (CWIs) for three-point func-
tion correlators that include the stress–energy tensors.

To start, let’s consider an infinitesimal transformation

x𝜇 → x′𝜇 = x𝜇 + v𝜇(x) (A1)

which is categorized as an isometry if it preserves the form of the metric
tensor g𝜇𝜈(x). The transformed metric g′𝜇𝜈(x′) in the new coordinate sys-
tem x′ maintains the form

g′𝜇𝜈(x′) = g𝜇𝜈(x′) (A2)

Implementing this condition into the standard covariant transformation
rule for g𝜇𝜈(x) results in

g′𝜇𝜈(x′) = 𝜕x𝜌

𝜕x′𝜇
𝜕x𝜎

𝜕x′𝜈
g𝜌𝜎(x) = g𝜇𝜈(x′) (A3)

leading to the derivation of the Killing equation

v𝛼𝜕𝛼g𝜇𝜈 + g𝜇𝜎𝜕𝜈v𝜎 + g𝜎𝜈𝜕𝜇v𝜎 = 0 (A4)

For conformal transformations, the metric condition is modified to

g′𝜇𝜈(x′) = Ω−2g𝜇𝜈(x′) (A5)

yielding the conformal Killing equation:

v𝛼𝜕𝛼g𝜇𝜈 + g𝜇𝜎𝜕𝜈v𝜎 + g𝜎𝜈𝜕𝜇v𝜎 = 2𝜎g𝜇𝜈 (A6)

In the limit of flat spacetime, the expression above simplifies to

𝜕𝜇v𝜈 + 𝜕𝜈v𝜇 = 2𝜎𝜂𝜇𝜈 , 𝜎 = 1
d
𝜕 ⋅ v (A7)

Transitioning to the Euclidean case and omitting the index positions, we
express any conformal transformation via a local rotation matrix

R𝜇
𝛼 = Ω 𝜕x′𝜇

𝜕x𝛼
(A8)

which allows us to expand R around the identity matrix

R = 1 + [𝜖] +⋯ (A9)

where [ϵ] is an antisymmetric matrix, reformulated in terms of antisym-
metric parameters 𝜏𝜌𝜎 and the SO(d) rotation group generators Σ𝜌𝜎 as

[𝜖]𝜇𝛼 = 1
2
𝜏𝜌𝜎(Σ𝜌𝜎)𝜇𝛼 (A10)

(Σ𝜌𝜎)𝜇𝛼 = 𝛿𝜌𝜇𝛿𝜎𝛼 − 𝛿𝜌𝛼𝛿𝜎𝜇 (A11)

From this, we derive a relation between the conformal transformation pa-
rameters v and the rotation matrix parameters 𝜏𝜇𝛼

R𝜇𝛼 = 𝛿𝜇𝛼 + 𝜏𝜇𝛼 = 𝛿𝜇𝛼 +
1
2
𝜕[𝛼v𝜇] (A12)

Considering the scaling dimensions ΔA of a vector field A𝜇(x)′, its trans-
formation under a conformal change is captured by

A′𝜇(x′) = ΩΔA R𝜇𝛼A𝛼(x) (A13)

= (1 − 𝜎 +⋯)ΔA (𝛿𝜇𝛼 +
1
2
𝜕[𝛼v𝜇] +⋯)A𝛼(x) (A14)

leading to an expression for the variation of A𝜇(x)

𝛿A𝜇(x) = −(v ⋅ 𝜕 + ΔA𝜎)A𝜇(x) + 1
2
𝜕[𝛼v𝜇]A

𝛼(x) (A15)

defined as the Lie derivative LvA𝜇(x) = −𝛿A𝜇(x), aside from a sign differ-
ence.

Exploring a general rank-2 tensor field ϕIK with scaling dimension Δϕ

and transforming under the representation DI
J(R) of the rotation group

SO(d), we adapt the previous form to:

𝜙′IK (x′) = ΩΔ𝜙DI
I′ (R)DK

K′ (R)𝜙I′K′
(x) (A16)

For the stress–energy tensor, utilizing its scaling dimension ΔT and con-
sidering a special conformal transformation (SCT) parameterized by b𝜇 ,
we derive its impact on T𝜇𝜈(x), culminating in the formulation of the SCT
operator 𝜅 acting on T in a finite form.

For a special conformal transformation (SCT), characterized by

v𝜇(x) = b𝜇x2 − 2x𝜇b ⋅ x (A17)

the transformation of the stress–energy tensor becomes

𝛿T𝜇𝜈(x) = −(b𝛼x2 − 2x𝛼b ⋅ x) 𝜕𝛼T𝜇𝜈(x) − ΔT𝜎T𝜇𝜈(x) + 2(b𝜇x𝛼 − b𝛼x𝜇)T𝛼𝜈

+ 2(b𝜈x𝛼 − b𝛼x𝜈) T𝜇𝛼(x) (A18)
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It is sufficient to differentiate this expression respect to b𝜅 in order to de-
rive the form of the SCT K𝜅 on T in its finite form

𝜅T𝜇𝜈(x) ≡ 𝛿𝜅T𝜇𝜈(x) = 𝜕

𝜕b𝜅
(𝛿T𝜇𝜈)

= −(x2𝜕𝜅 − 2x𝜅x ⋅ 𝜕)T𝜇𝜈(x) + 2ΔT x𝜅T𝜇𝜈(x) + 2(𝛿𝜇𝜅x𝛼 − 𝛿𝛼𝜅x𝜇)T𝛼𝜈(x)

+ 2(𝛿𝜅𝜈x𝛼 − 𝛿𝛼𝜅x𝜈)T𝜇𝛼 (A19)

The approach can be generalized to correlators built out of several opera-
tors. In the case of a TJJ correlator,

Γ𝜇𝜈𝛼𝛽 (x1, x2, x3) = ⟨T𝜇𝜈(x1)J𝛼(x2)J𝛽 (x3)⟩ (A20)

with a vector current of dimension ΔJ, the CWI’s take the explicit form

𝜅Γ𝜇𝜈𝛼𝛽(x1, x2, x3) =
3∑

i=1

Ki
𝜅
scalar(xi)Γ𝜇𝜈𝛼𝛽 (x1, x2, x3)

+ 2
(
𝛿𝜇𝜅x1𝜌 − 𝛿𝜅

𝜌
x𝜇1

)
Γ𝜌𝜈𝛼𝛽 + 2

(
𝛿𝜈𝜅x1𝜌 − 𝛿𝜅

𝜌
x𝜈1
)
Γ𝜇𝜌𝛼𝛽

2
(
𝛿𝛼𝜅x2𝜌 − 𝛿𝜅

𝜌
x𝛼2
)
Γ𝜇𝜈𝜌𝛽 + 2

(
𝛿𝛽𝜅x3𝜌 − 𝛿𝜅

𝜌
x𝛽3

)
Γ𝜇𝜈𝛼𝜌 = 0

(A21)

where

i
𝜅
scalar = −x2

i
𝜕

𝜕x𝜅
+ 2x𝜅i x𝜏i

𝜕

𝜕x𝜏i
+ 2Δix

𝜅
i (A22)

is the scalar part of the special conformal operator acting on the ith coor-
dinate and Δi ≡ (ΔT, ΔJ, ΔJ) are the scaling dimensions of the operators
in the correlation function.

Appendix B: Scalar Three-Point Functions:
Examples of Solutions

To elucidate the structure of the solutions of the CWIs, as an example,
here we bring the example of the scalar correlator Φ(p1, p2, p3), defined by
two homogeneous conformal equations

K31Φ = 0 and K21Φ = 0 (B1)

combined with the scaling equation

3∑
i=1

pi
𝜕

𝜕pi
Φ = (Δ − 2d)Φ (B2)

Following the approach outlined in ref. [72], we adopt an ansatz for the
solution in the form:

Φ(p1, p2, p3) = pΔ−2d
1 xaybF(x, y) (B3)

where x =
p2

2
p2

1
and y =

p2
3

p2
1

. Here, p1 is chosen as the “pivot” in the expan-

sion, although any of the three momentum invariants could be chosen
equivalently. The homogeneity of Φ of degree Δ − 2d under a scale trans-
formation, as dictated by Equation (B2), is accommodated by the factor
pΔ−2d

1 in Equation (B3). Employing scale-invariant variables x and y leads
to the hypergeometric form of the solution.

Upon analysis, we find the equations

K21Φ = 4pΔ−2d−2
1 xayb ×

(
x(1 − x) 𝜕

𝜕x𝜕x
+ (Ax + 𝛾) 𝜕

𝜕x
− 2xy 𝜕2

𝜕x𝜕y

− y2 𝜕2

𝜕y𝜕y
+ Dy 𝜕

𝜕y
+ (E + G

x
)
)

F(x, y) = 0 (B4)

where

A = D = Δ2 + Δ3 − 1 − 2a − 2b − 3d
2

,

𝛾(a) = 2a + d
2
− Δ2 + 1,

G = a
2

(d + 2a − 2Δ2),

E = − 1
4

(2a + 2b + 2d − Δ1 − Δ2 − Δ3)(2a + 2b + d − Δ3 − Δ2 + Δ1)

(B5)

Similar constraints are obtained from the equation K31Φ = 0, with the
exchanges (a, b, x, y) → (b, a, y, x)

K31Φ = 4pΔ−2d−2
1 xayb ×

(
y(1 − y) 𝜕

𝜕y𝜕y
+ (A′y + 𝛾 ′) 𝜕

𝜕y
− 2xy 𝜕2

𝜕x𝜕y

− x2 𝜕2

𝜕x𝜕x
+ D′x 𝜕

𝜕x
+ (E′ + G′

y
)
)

F(x, y) = 0 (B6)

where

A′ = D′ = A, 𝛾 ′(b) = 2b + d
2
− Δ3 + 1

G′ = b
2

(d + 2b − 2Δ3), E′ = E (B7)

To reduce the equations to hypergeometric form, in Equation (B6), we set
G/x = 0 and G′/y = 0, implying

a = 0 ≡ a0 or a = Δ2 −
d
2
≡ a1 (B8)

and

b = 0 ≡ b0 or b = Δ3 −
d
2
≡ b1 (B9)

The four independent solutions of the CWIs are characterized by the same
four pairs of indices (ai, bj), where i, j = 1, 2. Defining

𝛼(a, b) = a + b + d
2
− 1

2
(Δ2 + Δ3 − Δ1)

𝛽(a, b) = a + b + d − 1
2

(Δ1 + Δ2 + Δ3) (B10)

we have:

E = E′ = −𝛼(a, b)𝛽(a, b), A = D = A′ = D′ = −(𝛼(a, b) + 𝛽(a, b) + 1)

(B11)

Apologies for the abrupt ending. Continuing from where we left off:
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The solutions take the form

F4(𝛼(a, b), 𝛽(a, b); 𝛾(a), 𝛾 ′(b); x, y)

=
∞∑
i=0

∞∑
j=0

(𝛼(a, b), i + j) (𝛽(a, b), i + j)
(𝛾(a), i) (𝛾 ′(b), j)

xi

i!
yj

j!
(B12)

We denote 𝛼…𝛾′ as the first… fourth parameters of F4. The four indepen-
dent solutions are then all of the form xaybF4, where the hypergeometric
functions will take some specific values for its parameters, with a and b
fixed by Equations (B8) and (B9). Specifically, we have:

Φ(p1, p2, p3) = pΔ−2d
1

∑
a,b

c(a, b, Δ⃗) xayb F4(𝛼(a, b), 𝛽(a, b); 𝛾(a), 𝛾 ′(b); x, y)

(B13)

where the sum runs over the four values ai, bi (i = 0, 1) with arbitrary
constants c(a, b, Δ⃗), and Δ⃗ = (Δ1,Δ2,Δ3). Notice that Equation (B13) is
a very compact way to write down the solution. However, once this type of
solutions of a homogeneous hypergeometric system are inserted into an
inhomogeneous system of equations, the sum over a and b needs to be
made explicit. For this reason, it is convenient to define

𝛼0 ≡ 𝛼(a0, b0) = d
2
−

Δ2 + Δ3 − Δ1

2
, 𝛽0 ≡ 𝛽(b0) = d −

Δ1 + Δ2 + Δ3

2

𝛾0 ≡ 𝛾(a0) = d
2
+ 1 − Δ2

𝛾 ′0 ≡ 𝛾(b0) = d
2
+ 1 − Δ3 (B14)

These are the four basic (fixed) hypergeometric parameters, and all the
remaining ones are defined by shifts with respect to these. The four inde-
pendent solutions can be re-expressed in terms of the parameters above
as

S1(𝛼0, 𝛽0; 𝛾0, 𝛾 ′0; x, y) ≡ F4(𝛼0, 𝛽0; 𝛾0, 𝛾 ′0; x, y) =
∞∑
i=0

∞∑
j=0

(𝛼0, i + j) (𝛽0, i + j)

(𝛾0, i) (𝛾 ′0, j)
xi

i!
yj

j!

(B15)

and

S2(𝛼0, 𝛽0; 𝛾0, 𝛾 ′0; x, y) = x1−𝛾0 F4(𝛼0 − 𝛾0 + 1, 𝛽0 − 𝛾0 + 1; 2 − 𝛾0, 𝛾 ′0; x, y)

S3(𝛼0, 𝛽0; 𝛾0, 𝛾 ′0; x, y) = y1−𝛾′0 F4(𝛼0 − 𝛾 ′0 + 1, 𝛽0 − 𝛾 ′0 + 1; 𝛾0, 2 − 𝛾 ′0; x, y)

S4(𝛼0, 𝛽0; 𝛾0, 𝛾 ′0; x, y) = x1−𝛾0 y1−𝛾′0 F4(𝛼0 − 𝛾0 − 𝛾 ′0 + 2, 𝛽0 − 𝛾0 − 𝛾 ′0 + 2;

2 − 𝛾0, 2 − 𝛾 ′0; x, y) (B16)

Notice that in the scalar case, one is allowed to impose the complete
symmetry of the correlator under the exchange of the three external mo-
menta and scaling dimensions, as discussed in ref. [72]. This reduces the
four constants to just one.
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