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1 Introduction

The study of gauge theories with non-trivial low codimensional defects is an active field of
research. As usual, supersymmetry helps a lot in obtaining exact results. Supersymmetric
boundary conditions and interface defects in N = 4 SYM have been studied in [1, 2]. The
1
2 -BPS defects may be identified with intersecting D5- and NS5- branes that share three
directions with a stack of D3-branes where the 4d SYM theory lives.

Suitable defects preserving integrability and conformal invariance of N = 4 SYM allow
in principle to use the corresponding techniques for integrable models [3] and conformal
bootstrap [4–6]. Many results have been already obtained by exploiting integrability in
dCFT like domain wall versions of N = 4 SYM, see e.g. [7–9] for reviews. The exact
formula for tree-level one-point functions in the SU(2) sector have been first obtained
in [10, 11]. Extension to the full SO(6) scalar sector has been achieved in [12, 13] and at
one-loop order in [14, 15]. The closed form determinant formula in the SU(3) sector in [12]
was proven in [16].

A conjectured all-orders asymptotic (i.e. without wrapping corrections) one-point func-
tion formula in the SU(2) sub-sector has been formulated in [17]. It has been tested in [18]
where an extension to gluonic and fermionic sectors (in presence of fluxes) is also treated.
Further results on one-point functions from the point of view of the overlap between stan-
dard Bethe eigenstates and boundary states of the integrable super spin chains may be
found in [19, 20]. Recently, classical integrability of the D3-D5 brane system was proven
on the string theory side in [21], complementing the earlier work [22].

The bootstrap approach for correlation functions of local operators may be formulated
in the presence of boundaries or domain walls that preserve the conformal sub-algebra
longitudinal to the defect [4, 5, 23]. The structure is richer than in the standard setup
since additional structure constants appear, intrinsic to the defects, and defining the so-
called defect one-point functions of bulk local operators. They are the necessary data, with
the usual OPE expansion of local operators, to determine (local) correlation functions in
the presence of the conformal defect. For recent results, see [24].
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Figure 1. String setup for the D3-D5 system with flux, and corresponding dual dSYM theory.

At codimension one, we deal with boundaries or interface defects, the two being typi-
cally linked by a suitable (un)folding construction relating half-space to full space bisected
by a domain wall defect. In this paper, we will consider the so-called D3-D5 system [25–28].
Its IIB string side description involves D3- and D5-branes sharing the 234 directions. The
N D3-branes fill the 1234 directions, while the D5-brane spans 234890. All the branes are
placed at the origin of the transverse coordinates. In the near horizon limit, this system
has geometry AdS5 × S5 split in two by the probe D5-brane with world-volume geometry
AdS4×S2. The near horizon geometry of the D3-D5 system contains the closed IIB super-
strings excitations in AdS5, dual to N = 4 SYM states on the R4 boundary of AdS5. Also,
we have open strings connecting the D3- and D5-branes, dual to field theory excitations
on the R3 boundary of AdS4, to be regarded as a codimension one defect in R4.

The dual field theory is N = 4 SYM in 4 dimensions and interacting with a 3d N = 4
field theory living on the dimensional defect. The system of bulk SYM plus the interface
at x1 = 0 has a reduced symmetry since all (conformal) transformations acting on x1
are broken. Supersymmetry is also partially broken since supercharges anticommute into
translations. One finds that the defect breaks half of the supercharges and superconformal
charges, i.e. preserves a 1

2 -BPS subalgebra of the full superconformal algebra. In more
details, the R-symmetry algebra is reduced su(4)→ so(3)⊕ so(3) and the superconformal
algebra psu(2, 2|4)→ osp(4|4).1

This basic setup may be generalized when the worldvolume gauge fields of the probe
D5-brane have a monopole bundle with quantized U(1) magnetic flux. Now, in the field
theory dual, the defect separates 3+1-dimensional space-time into regions where the gauge
group of N = 4 SYM has different ranks. This corresponds to the situation where k of
the N D3-branes end on the worldvolume of a D5-brane and k turns out to be the number
of units of Dirac monopole flux, see figure 1. At large N , this is same as considering a
single D5-brane being the end locus for N + k D3-branes on one side of the defect and N
D3-branes on the other.

1A conformal defect of codimension p in 4d CFT with Minkowski signature breaks the conformal group
to subgroups of SO(4, 2) → SO(4 − p, 2) × SO(p). In supersymmetric theories the superconformal algebra
is reduced to BPS subalgebras, i.e. preserving a certain number of supercharges, and the maximally
supersymmetric ones are 1

2 -BPS. For psu(2, 2|4), they are classified in [29]. The codimension-one case
(interface) has reduced supersymmetry osp(4|4,R) and the interface has 3d N = 4 supersymmetry on
its world-volume. This super-algebra contains so(3) ⊕ so(3) ⊕ so(3, 2), i.e. a maximal subalgebra of the
R-symmetry so(6) and the conformal algebra on the interface.
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While the D5-brane interface for k = 0 has a simple Lagrangian description, as a trans-
parent interface stacked with a bifundamental hypermultiplet on its worldvolume, this is
not the case when k > 1 which involve the singular Nahm pole boundary condition [1]. The
case k = 1 is somewhat in between and smoothness across it has been recently fully clarified
in [18].2 Finally, we remark that the opposite limit k � 1 may facilitate the comparison
with the string side, see e.g. [32]. Integrability of the D3-D5 system holds in the usual
sense of describing the spectrum of anomalous dimensions in terms of an integrable spin
chain Hamiltonian and has been discussed in [33] for k = 0 and generalized to any k in [34].

In this paper, we consider the localization matrix model that captures the k = 0
D3-D5 system [35–37] and discuss the all-orders 1/N expansion of specific observables,
i.e. the defect interface expectation value playing the role of free energy for this system,
and the one-point functions of certain BPS scalar primaries in the presence of the defect.
The key observation is that the defect modifies the N = 4 SYM Gaussian matrix model
by introducing a single-trace non-polynomial potential. The modified matrix model is
related to the Toda integrable hierarchy and its Volterra reduction. This allows to derive
systematically its 1/N expansion in terms of exact functions of the ’t Hooft coupling.3

This strategy has been recently applied in [40, 41] to the four-dimensional N = 2
superconformal Sp(2N) gauge theory containing the vector multiplet coupled to four hy-
permultiplets in the fundamental representation and one hypermultiplet in the rank-2 anti-
symmetric representation. The special feature of this model is that its localization matrix
model has an interaction potential containing single-trace terms only. Application of the
Toda lattice equations solves the 1/N expansion at any ’t Hooft coupling, including the
strongly coupled regime where the gauge theory can be compared with its string dual,
an orientifold of AdS5 × S5 type IIB string. A similar analysis is possible here precisely
because of the absence of double (or higher ) trace interactions. Such terms are typical in
N = 2 models, see for instance [42–45], and greatly complicate the analysis, altough exact
strong coupling results are available in some cases [46].

The plan of the paper is the following. In section 2, we briefly recall the localization
approach to the fluxless D3-D5 system, the resulting single-trace matrix model, and the
observables we consider. These are the free energy, i.e. logarithm of partition function
with defect insertion, and certain 1

2 -BPS local scalar operators in the localization relevant
cohomology. In section 3, we present some preliminary results on the 1/N expansion of the
free energy for the model with gauge group U(N). A direct analysis shows the existence of
peculiar differential relations expressing the higher order 1/N corrections Fn(λ) to the free
energy (λ being the ’t Hooft coupling) to the leading term F0(λ). In section 4, we recall the
connection between single-trace hermitian one-matrix models and integrable hierarchies,

2In the field theory, the interface may be realized by assigning a non zero expectation value to three
N = 4 SYM scalars in the half space x1 > 0, in the Nahm pole form 〈Φi=1,2,3〉 = ti/x1 where ti is an
irreducible k-dimensional representation of su(2) [26, 30, 31]. This approach trivializes for k = 1 and require
ad hoc boundary conditions.

3As a remark, the analysis of 1/N corrections based on the underlying integrable hierarchies turns out
to be much more effective than the general purpose topological recursion based on loop equations, see for
instance [38, 39].
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in particular the Toda lattice and its Volterra reduction. In 5, we apply these structures
to generate systematically the differential relations giving all 1/N corrections to the free
energy. We also analyse the strong coupling expansion of the functions Fn(λ) deriving the
resummation of the terms with highest power of λ at each order in the genus expansion. In
section 6 and 7, we extend our analysis to the model with gauge group SU(N). Technically,
this is non-trivial since imposing a traceless condition is not natural from the point of view
of the integrable hierarchies. This is the counterpart of the physical fact that the extra
U(1) degrees of freedom in U(N) case do not decouple from the defect. Nevertheless, we
provide exact formulas for the 1/N corrections up to the order 1/N3. In the remaining
part of the paper we move on the one-point function of the BPS scalars. In section 8,
we provide some preliminary perturbative results for the operators with lower dimension,
working out the corrections up to (relative) 1/N2. Note that the 1/N expansion is not only
in even powers of 1/N unlike what happens in simple defectless N = 4 SYM. Section 9 is
devoted to an analytic derivation of the exact 1/N expansion, i.e. valid at all coupling, by
exploiting the Volterra hierarchy in the U(N) model. Again, all the computed corrections
are studied at strong coupling by exploiting the exact differential relations. The extension
to the model with SU(N) symmetry is presented in section 10. Conclusions and open issues
are summarized in section 11. Finally, several technical appendix sections are included
providing further details and proofs.

2 Localization and defect CFT

In presence of enough supersymmetry and in definite sectors of observables, we may use
localization [47] to compute one-point functions of protected operators, which are definitely
non-trivial objects in dCFT [35–37]. As first conjectured in [48, 49], and later proved in [50]
by localization, it is possible to show that N = 4 SYM 1

2 -BPS Wilson loops restricted to
a two-sphere S2

YM are described by a bosonic 2d YM theory. In the localization proof, one
chooses a particular supercharge Q of the 4d SYM which is nilpotent when restricted to
S2

YM and shows that the 2d YM emerges as an effective description of the Q-cohomology
in the original SYM. The precise 2d/4d dictionary has been clarified in [51] and many
applications followed, as the check of AdS/CFT described in [52–56].

The classification of general conformal defects of the 4d N = 4 SYM in the Q-
cohomology has been accomplished in [36], including in particular domain walls or bound-
aries. A BPS interface crosses the previous S2

YM at an equator S1 that is a codimension-one
defect in the 2d YM. The Q-cohomology is extended to take into account local insertions
on S1. The 2d YM turns out to be non-trivially coupled to a certain one-dimensional topo-
logical quantum mechanics on S1 [57–61] defining to so-called defect YM (dYM). A large
class of defect observables in the SYM that preserve a common supercharge Q have simple
descriptions in the dYM sector and their correlation functions can be extracted using 2d
gauge theory techniques, see [62, 63] for reviews.

For the D5-brane interface that interpolates between U(N) and U(N+k) SYM theories
for k ≥ 0, the dYM sector has been determined in [36, 37] for any k by using S-duality of
the bulk SYM theory and the related mirror symmetry acting on the boundary conditions.

– 4 –
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By two-dimensional gauge theory techniques in the dYM effective theory, the computation
of the defect one-point function 〈O〉D is reduced to a single-matrix integral. Compared to
the simple Gaussian matrix model familiar for SYM, the relevant matrix model involves a
novel single trace potential, which comes from the D5-brane defect. By solving this matrix
model in the planar large N limit, it is possible to determine the one-point functions 〈O〉D
as exact functions of the ’t Hooft coupling λ = g2N .

2.1 The matrix model for the k = 0 U(N) D3-D5 system

Let us sketch the construction of the matrix model we need for the k = 0 D3-D5 system.
Let us begin by briefly recalling what happens in the case without defects. Let us consider
the following 2-sphere S2

YM (we implicitly stereographically map R4 to the sphere S4 of
radius R)

x4 = 0, x2
1 + x2

2 + x2
3 = R2. (2.1)

Localization can be performed with respect to a particular supercharge Q such that the
BPS locus QΨ = 0 is parametrized by a twisted connection A on S2

YM (depending on both
A and three scalar fields of N = 4 SYM) and the SYM action on S4 reduces on the BPS
locus to 2d constrained (i.e. at zero instanton number) YM action on S2

YM with imaginary
coupling g2

2 = −g2
YM/(2π R2).4 Observables are in the Q cohomology and include 1

8 -BPS
Wilson loops and certain local operators on S2

YM, see [51].
Let us now consider N = 4 SYM with a codimension one interface at x1 = 0. As we

mentioned, it is realized by a single D5-brane along the 234890 directions intersecting N D3-
branes along the 1234 directions in the 10d spacetime. On the osp(4|4) preserving interface,
theN = 4 vector multiplet splits into 3d N = 4 multiplets, the hypermultiplet (A1, Xa,Ψ−)
and the vector multiplet (A2,3,4, Ya,Ψ+), where Ψ± are suitable Majorana projections of Ψ
and X = (Φ8,Φ9,Φ0), Y = (Φ5,Φ6,Φ7) in the notation of footnote 4. In the half space R4

+
one can consider two types of supersymmetry preserving boundary conditions (and their
possible mixing), i.e. D5-brane type (or generalized Dirichlet) or NS5-brane type that are
related to the previous ones by S-duality [2]. They read (we show only bosonic fields)

D5: D1Xi −
1
2εijk[Xj , Xk]

∣∣∣∣
x1=0

= Yi|x1=0 = 0,

NS5: Xi|x1=0 = D1Yi|x1=0 = 0. (2.2)

At x1 = 0, the interface has 3d N = 4 superconformal symmetry on its 234 worldvol-
ume. It contains a non-trivial 1d sector described by topological quantum mechanics living
on the circle x1 = x4 = 0, x2

2 + x2
3 = R2. This is the boundary of HS2

YM and appears in
the Q cohomology in presence of the defect.

When we give D5-type boundary conditions to the hypermultiplet and NS5-type to the
vector multiplet, then the vector multiplet can be coupled to 3d N = 4 matter SCFT, see

4The 10d SYM action is S = − 1
2g2

YM

∫
d4x tr( 1

2FMNF
MN −ΨΓMDMΨ). The 10d spacetime indices split

into 4d indices µ = 1, 2, 3, 4 and R-symmetry indices a = 5, . . . , 9, 0. The gauge field AM contains the 4d
gauge field Aµ and six scalars Φa. The gaugino is a chiral spinor of Spin(10). Finally D = d+A.

– 5 –
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for instance [33] for the explicit Lagrangian in component fields. At the level of the 2d (con-
strained) YM theory, this gauges the topological quantum mechanics on the intersection
between S2

YM and the interface x1 = 0.
The detailed analysis in [36] confirms (and clarifies in full generality) the one-matrix

model first proposed in [35]. This may be quickly obtained, with some hindsight, by a
combination of the results for 4d N = 4 SYM and independent localization computations in
(intrinsically) three-dimensional Chern-Simons-matter theories [64]. The partition function
is indeed as in N = 4 SYM, but with a rather simple defect term associated with the 3d
fundamental hypermultiplet living at the defect. It reads [35–37]

ZN (gYM) =
∫
u(N)
DM exp

[
− 8π2

g2
YM

trM2 − tr log[2 cosh(πM)]
]
, (2.3)

where details on the measure, i.e. normalization, will be discussed in a moment.
According to the 4d/2d dictionary, and up to a normalization, the matrix M is asso-

ciated with the (scalar) 1
8 -BPS chiral primary (see also [65])

trM ↔ trΦ = tr(x1 Φ7 + x2 Φ9 + x3 Φ0 + iΦ8), (2.4)

as proved by Giombi and Pestun in [51].5 If the defect is placed at, say, x1 = 0 in the
(x1, x2, x3, x4) half-space R4

+, a generic scalar operator with definite conformal weight has
one-point function (in some conventional normalization)

〈O(x)〉R4
+

= hO
|x1|∆O

. (2.5)

We are interested in the specialization where O is a protected 1
2 -BPS operator placed at

(1, 0, 0, 0) and belonging to the cohomology of the charge Q used for localization. In this
case, the one-point function (2.5) reduces to 〈O(x)〉 = hO. A well known case, discussed
in [36, 37] is that of single trace composite scalars of the form

Op = trΦp, (2.6)

that transform in the [0, p, 0] representation of the R-symmetry algebra su(4) and whose
one-point function in (2.5) is non-vanishing only when p is even.6 For these composite
operators, as in the non-defect case, one has also to relate the sphere computation to
flat space by disentangling the operator mixing due to the fact that the regulated theory
on S4 breaks the U(1)R symmetry and mixing among operators with different R-charge
is possible [54, 68]. This amounts to a normal ordering prescription O →: O :, see for
instance [69, 70]. The associated one-point functions are computed by inserting : trMp :
in the one-matrix model (2.3), where mixing has to be computed using the N = 4 U(N)
SYM matrix model without the defect contribution.

5The field in the r.h.s. of (2.4) is Q-closed and any gauge invariant functional of it may be treated in a
similar way. Also, the general discussion in [36] gives the theoretical framework to deal with the full set of
states in the Q-cohomology, including disorder operators.

6For related investigations of different correlators in the same BPS sector, see also [66, 67].
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Before discussing the relevant observables considered in this paper, let us give (2.3) in
full detail. In the general case with flux, we have gauge groups U(N) and U(N + k) on the
two sides of the interface. The defect partition function is, cf. eq. (2.33) of [37],

ZD5
N,k(gYM) = πN

( 4π
g2

YM

)N2+(N+k)2
2

e
4π
g2
YM

k(k2−1)
24

G(1 + k)ZN,k(gYM), (2.7)

with

ZN,k(gYM) = (−i)Nk

N !

∫ N∏
n=1

dxn
2π

∏
1≤n<m≤N (xn − xm)2∏N
n=1 cosh π(xn + ik

2 )

N∏
n=1

k−1
2∏

s=− k−1
2

(xn − is) e
− 8π2
g2
YM

∑N

n=1 x
2
n
.

(2.8)
Up to a non-trivial gYM-dependent normalization, this takes the form (2.3) for k = 0. This
(simplest) case is still non-trivial. We will write7

ZD5
N,0 = πN

( 4π
g2

YM

)N2

ZN , (2.9)

where ZN is a specialization of the general single-trace partition function

ZN (t) =
∫
u(N)
DM e− trW (M,t) = 1

N !

∫ N∏
n=1

dxn
2π

∏
1≤n<m≤N

(xn − xm)2 e−
∑N

n=1 W (xn;t),

(2.10)
with a generic multi-coupling potential

W (x; t) =
∞∑
n=1

tn x
n. (2.11)

Comparing (2.10) with (2.8), the (k = 0) D3-D5 system corresponds to the total single-
trace potential

W (x) = 8π2

g2
YM

x2 + L(x), (2.12)

with the specific form of the function L(x)

L(x) = log cosh(πx) =
∞∑
n=1

22n(22n − 1)B2nπ
2n

2n(2n)! x2n, (2.13)

where B2n are Bernoulli numbers. Notice that the quadratic term in the small x expansion
of L(x) combines with 8π2

g2
YM

to give the full t2 coupling, i.e.

t2n = 8π2

g2
YM

δn,2 + 22n(22n − 1)B2nπ
2n

2n(2n)! . (2.14)

7See appendix A for comments on the prefactor in (2.9).

– 7 –



J
H
E
P
0
2
(
2
0
2
3
)
2
0
8

2.2 Free energy and one-point functions

The free energy of the matrix model (2.10) is the expectation value of the defect insertion
D = exp[− trL(M)] in the SYM matrix model. Thus,

FN (gYM) = FN (gYM)N=4 + ∆FN (gYM), ∆FN (gYM) = − log〈D〉SYM, (2.15)

where the expectation value 〈· · ·〉SYM is normalized at the N = 4 matrix model, i.e.

〈f(M)〉SYM =
∫
DMf(M)e

− 8π2
g2
YM

trM2

/

∫
DMe

− 8π2
g2
YM

trM2

, (2.16)

so that 〈1〉SYM = 1. Notice that the prefactor in (2.9) should be included, but for the
purposes of the next sections it will be convenient to adopt the above simpler normalization.
In the ’t Hooft limit, with fixed λ = g2

YMN and large N , the defect contribution to the free
energy admits the 1/N expansion8

∆FN (λ) = N F0(λ) + F1(λ) + 1
N

F2(λ) + · · · . (2.17)

We remark that the 1/N expansion involves even and odd powers of 1/N . On string side
this is due to the fact that the D5-brane probe introduces an open string sector in this
model and thus disk-like diagrams.

Defect one-point functions are defined as9

〈O〉D ≡
〈O D〉SYM
〈D〉SYM

. (2.18)

We will focus on the case O =: On :=: trMn : and denote its large N expansion at fixed
λ = g2

YMN by

On(λ;N) = 〈: trMn :〉D = O(0)
n (λ) + O(1)

n (λ) 1
N

+ O(2)
n (λ) 1

N2 + · · · . (2.19)

For weak coupling calculations it will be often convenient to rescale the matrix M

according to

A =
√

8π2

g2
YM

M. (2.20)

The associated multi-trace operators defined by

Ωn = trAn1 trAn2 · · · trAnK , |n| = n1 + · · ·+ nK , (2.21)

obey

On(M) =
(

λ

8π2N

)|n|/2
Ωn(a), and : On(M) :=

(
λ

8π2N

)|n|/2
: Ωn(a) : . (2.22)

In terms of the new matrix A, the partition function (2.10) reads

ZN (t) =
(
g2

YM

8π2

)N2/2 ∫
u(N)
DA exp

[
− trA2 − trL

√ g2
YM

8π2 A

]. (2.23)

8We adopt a little abuse of language and use the same symbol to denote the free energy when expressed
in terms of λ in the ’t Hooft limit.

9Of course the matrix model normalization drops in (2.18).
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3 Free energy 1/N expansion in the U(N) model: direct method

Evaluating perturbatively (2.23), we can obtain the free energy FN (λ) at weak coupling
and with the specific D3-D5 function L in (2.12). The expansion of the first coefficient
functions Fn(λ) in (2.17) are

F0(λ) = λ

32 −
λ2

1536 + λ3

36864 −
17λ4

11796480 + 31λ5

353894400 −
691λ6

118908518400 + · · · ,

F1(λ) = − λ2

1024 + λ3

12288 −
11λ4

1572864 + 29λ5

47185920 −
83λ6

1509949440 + · · · ,

F2(λ) = − λ2

3072 + 7λ3

73728 −
35λ4

2359296 + 563λ5

283115520 −
1681λ6

6794772480 + · · · . (3.1)

The same computation can be done while keeping generic couplings t in the even potential
L,10 and one finds (we keep only the couplings up to t8 and dots in the coefficients of the
λn terms denote higher t2n contributions)

F0(λ) = t2λ

16π2 + t4λ
2

128π4 + 5t6λ 3

4096π6 + 7t8λ4

32768π8 + · · · ,

F1(λ) =− t22λ
2

256π4 −
(t2t4)λ3

512π6 + (−18t24−30t2t6)λ4

65536π8 + (−720t4t6−560t2t8)λ5

5242880π10

+ (−900t26−1680t4t8 + · · ·)λ6

50331648π12 − 15(40t6t8 + · · ·)λ7

67108864π14 − 175(14t28 + · · ·)λ8

2147483648π16 + · · · ,

F2(λ) = t4λ
2

256π4 + (4t32 +30t6)λ3

12288π6 + (24t22t4 +70t8)λ4

65536π8 + (720t2t24 +600t22t6 + · · ·)λ5

5242880π10

+ (864t34 +4320t2t4t6 +1680t22t8)λ6

50331648π12 + (7560t24t6−21t2(−300t26−560t4t8)+ · · ·)λ7

469762048π14

+ (10800t4t26 +10080t24t8 +420t2(40t6t8 + · · ·))λ8

2147483648π16 + · · · . (3.2)

Of course, by replacing in (3.2) the couplings in the sum in (2.13) one gets back (3.1). We
can write the cluster expansion of ∆FN (t) as

∆FN (t) =
∞∑
n=1

(
λ

8π2

)n
Cn(N) t2n −

1
2

∞∑
n,m=1

(
λ

8π2

)n+m
Cn,m(N) t2n t2m

+ 1
3!

∞∑
n,m,k=1

(
λ

8π2

)n+m+k
Cn,m,k(N) t2n t2m t2k + · · · , (3.3)

where

Cn(N) = 〈tr
(
A√
N

)2n
〉, Cn,m(N) = 〈tr

(
A√
N

)2n( A√
N

)2m
〉c, . . . . (3.4)

All dependence on N is captured by the connected correlators Cn,m,...(N) and their 1/N
expansion provides the 1/N expansion of ∆F. We have the following explicit expressions

10So, we do not include in t2 the free action contribution 8π2

g2
YM
.
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for the Gaussian correlators in (3.4)11

Cn(N) =N
2nΓ(n+ 1

2)
√
πΓ(n+2)

[
1+ 1

N2
n(n2−1)

12 + 1
N4

n(n2−1)(n−2)(n−3)(5n−2)
1440 + · · ·

]
,

Cn,m(N) =
2n+mΓ(n+ 1

2)Γ(m+ 1
2)

π (n+m)Γ(n)Γ(m)

[
1+ 1

N2
(n+m)(1−2n−2m+n2 +nm+m2)

12 + · · ·
]
,

Cn,m,k(N) = 1
N

2n+m+kΓ(n+ 1
2)Γ(m+ 1

2)Γ(k+ 1
2)

π3/2 Γ(n)Γ(m)Γ(k)

[
1+ 1

N2 cn,m,k+ · · ·
]
, (3.5)

with

cn,m,k = −1
6 + 5

12(n+m+ k)− 1
6[2(n2 +m2 + k2) + 3(nm+ nk +mk)]

+ 1
12[n3 +m3 + k3 + 2(k2m+ km2 + k2n+ kn2 +mn2 +m2n) + 2nmk. (3.6)

From these results we can obtain the explicit expression of F0, F1, F2. The linear in N

term is

F0(λ, t) =
∞∑
n=1

(
λ

4π2

)n Γ(n+ 1
2)

√
π Γ(n+ 2) t2n, (3.7)

and can be written in the convenient form

F0(λ) = −
∮

dx

2πi(x− x
−1)L

(√
λ

4π (x+ x−1)
)
, (3.8)

due to the relation

−
∮

dx

2πi(x− x
−1)

(√
λ

4π (x+ x−1)
)2n

=
(
λ

4π2

)n Γ(n+ 1
2)

√
π Γ(n+ 2) . (3.9)

The next correction is

F1(λ, t) = −1
2

∞∑
n,m=1

(
λ

4π2

)n+m Γ(n+ 1
2)Γ(m+ 1

2)
π (n+m) Γ(n)Γ(m) t2n t2m, (3.10)

that implies

λ∂λF1(λ, t) = −1
2

∞∑
n,m=1

(
λ

4π2

)n+m Γ(n+ 1
2)Γ(m+ 1

2)
π Γ(n)Γ(m) t2n t2m

= −1
2

[ ∞∑
n

(
λ

4π2

)n
n(n+ 1)

Γ(n+ 1
2)

√
π Γ(n+ 2) t2n

]2
= −1

2[λ∂2
λ[λF0(λ, t)]]2, (3.11)

or (omitting arguments)

∂λF1 = −1
2λ [(λF0)′′]2. (3.12)

11〈ABC〉c = 〈ABC〉 − 〈A〉 〈BC〉 − 〈B〉 〈AC〉 − 〈C〉 〈AB〉+ 2〈A〉 〈B〉 〈C〉, etc.
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Finally, at the next order in the 1/N expansion, we obtain

F2(λ, t) =
∞∑
n=1

(
λ

4π2

)n Γ(n+ 1
2)

√
π Γ(n+ 2)

n(n2 − 1)
12 t2n

+ 1
6

∞∑
n,m,k=1

(
λ

4π2

)n+m+k Γ(n+ 1
2)Γ(m+ 1

2)Γ(k + 1
2)

π3/2 Γ(n)Γ(m)Γ(k)
t2n t2m t2k, (3.13)

that we can write
F2 = 1

12λ∂λ((λ∂λ)2 − 1)F0 + 1
6[λ∂2

λ(λF0)]3. (3.14)

It is clear that we can continue generating differential relations by extending the expan-
sions (3.5). In the next section, we present a general formalism to derive systematically
the above relations by exploiting the integrable hierarchy governing the matrix model.

4 Integrable hierarchies and hermitian 1-matrix models

Let us briefly recall some known facts about orthogonal polynomials and their role in
the evaluation of single trace matrix model partition functions [71]. Let us introduce the
measure associated with the potential W in (2.10)

dµ(t) = e−W (x;t) dx

2π . (4.1)

We consider monic polynomials Pn(x; t) = xn + · · · orthogonal with respect to dµ(t)

〈n|m〉 =
∫
dµ(t)Pn(x; t)Pm(x; t) = hn(t)δnm, hn(t) ≡ e−fn(t). (4.2)

The partition function in (2.10) and the associated free energy obey

ZN (t) =
N−1∏
n=0

hn(t), → FN (t) =
N−1∑
n=0

fn(t). (4.3)

We can write

fN (t) = D+FN (t), and fN (t)− fN−1(t) = D2FN (t), (4.4)

where we have introduced the (commuting) forward/backward difference operators

D+XN = XN+1 −XN , D−XN = XN −XN−1, (4.5)

and the second order operator

D2 = D+D−, D2XN = XN+1 − 2XN +XN−1. (4.6)

Let us also introduce the auxiliary quantities

rn(t) = e−fn(t)+fn−1(t) = e−D+fn−1(t). (4.7)
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The first equation in the Toda hierarchy associated with this system reads

−∂
2fn
∂t21

= rn+1 − rn = e−fn+1+fn − e−fn+fn−1 . (4.8)

Summing over n, it implies

∂2FN (t)
∂t21

=
N−1∑
n=0

∂2

∂t21
fn = −e−fN+fN−1 = −e−D2FN (t). (4.9)

Volterra reduction. For an even potential W , with only t2n couplings, the Toda hier-
archy reduces to the Volterra hierarchy, see appendix B. In this case, the first equation of
the hierarchy reads

∂fn
∂t2

= rn+1 + rn. (4.10)

In terms of the free energy, this relation implies, cf. (4.4) and (4.7) with n = N ,

∂

∂t2
D+FN (t) = e−D

2FN (t) + e−D
2FN+1(t). (4.11)

Remark. The potential for the D3-D5 system, cf. (2.10) and (2.12), is even. Neverthe-
less, if one is interested in gauge group SU(N) instead of U(N), it is natural to represent
the traceless constraint by introducing an auxiliary coupling t1. For this reason, in the
later section 7 we will need some consequences of the Toda equation (4.9). In particular,
we will need the multi-trace defect one-point functions 〈(trM)n〉D whose computation is
discussed in appendix C.

5 All order 1/N expansion of the free energy in the U(N) model from
the Volterra hierarchy

In our model, the free energy has also a dependence on gYM, but it may be linked to the
dependence on t2 since

FN (gYM, t) = − log
∫
u(N)
DAe

− trA2−
∑

n≥1 t2n

(
g2
YM

8π2

)n
trA2n

= −N
2

2 log 8π2

g2
YM

− log
∫
u(N)
DAe

−
(

8π2
g2
YM

+t2
)

trA2−
∑

n≥2 t2n trA2n

= −N
2

2 log 8π2

g2
YM

+ F̂N

(
t2 + 8π2

g2
YM

, t3, . . .

)
. (5.1)

Hence, we can replace 8π2

g2
YM
∂t2 by differentiation with respect to gYM as follows

8π2

g2
YM

∂t2FN (gYM,t) = 8π2

g2
YM

∂

∂ 8π2

g2
YM

F̂N

(
t2 + 8π2

g2
YM

, t3, . . .

)
=−1

2gYM

∂

∂gYM

[
FN (gYM,t)+N2

2 log 8π2

g2
YM

]

=−1
2gYM

∂

∂gYM

FN (gYM,t)+N2

2 . (5.2)
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Besides
FN = ∆FN + FGaussian

N = ∆FN − log
[
(2π)−

N
2 G(N + 1) 2−

N2
2

]
, (5.3)

where G is the Barnes G-function. Plugging (5.2) and (5.3) into (4.11) gives12

− gYM∂gD+∆FN (gYM, t) + 2N + 1 =
[
N e−D

2∆FN (gYM,t) + (N + 1) e−D2∆FN+1(gYM,t)
]

(5.4)

Finally, we turn this equation into a differential-difference equation in λ

2N + 1− 2λ∂λD∆FN (λ) = N e−D
2∆FN (λ) + (N + 1)e−D2∆FN+1(λ). (5.5)

where

D2∆FN = D2∆FN (g2
YMN) = ∆FN+1

(
λ
N + 1
N

)
− 2∆FN (λ) + ∆FN−1

(
λ
N − 1
N

)
, (5.6)

and similarly

D2∆FN+1 = ∆FN+2

(
λ
N + 2
N

)
− 2∆FN+1

(
λ
N + 1
N

)
+ ∆FN (λ). (5.7)

As we now show, the master equation (5.5) encodes the differential relations (3.12)
and (3.14) as special cases and generalizes them to higher order.

Differential relations. Let us plug the expansion (2.17) in (5.5). The first non-trivial
relation is

F′1 = −2λF′02 − 2λ2F′0F′′0 −
1
2λ

3F′′02, (5.8)

which is the same as (3.12). At the next order in 1/N , and using systematically (5.8), we
obtain

F2 = 4
3λ

3F′03 + 1
4λ

2F′′0 + 2λ4F′02F′′0 + λ5F′0F′′02 + 1
6λ

6F′′03 + 1
12λ

3F0
(3), (5.9)

which agrees with (3.14). The next coefficient functions turn out to be all expressible by
algebraic differential operators acting on F0. For instance, we find

F3 =−2λ4F′04−λ3F′0F′′0−8λ5F′03F′′0−
7
8λ

4F′′02−9λ6F′02F′′02−4λ7F′0F′′03− 5
8λ

8F′′04

−λ4F′0F0
(3)− 4

3λ
6F′03F0

(3)− 3
4λ

5F′′0F0
(3)−2λ7F′02F′′0F0

(3)−λ8F′0F′′02F0
(3)− 1

6λ
9F′′03F0

(3)

− 1
24λ

6F0
(3)2− 1

6λ
5F′0F0

(4)− 1
12λ

6F′′0F0
(4). (5.10)

12Notice that if we apply D− to this we get the more symmetric form

−1
2gYM∂gD2∆FN (gYM, t) + 1 = 1

2

[
(N + 1) e−D

2∆FN+1(gYM,t) − (N − 1) e−D
2∆FN−1(gYM,t)

]
.
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and

F4 = 16
5 λ

5F′05 +3λ4F′02F′′0 +24λ6F′04F′′0 +9λ5F′0F′′0 2 +52λ7F′03F′′0 2 + 9
2λ

6F′′0 3 +46λ8F′02F′′0 3

+18λ9F′0F′′0 4 + 13
5 λ

10F′′0 5 +5λ5F′02F0
(3) +8λ7F′04F0

(3) +13λ6F′0F′′0 F0
(3) +24λ8F′03F′′0 F0

(3)

+6λ7F′′0 2F0
(3) +24λ9F′02F′′0 2F0

(3) +10λ10F′0F′′0 3F0
(3) + 3

2λ
11F′′0 4F0

(3) +2λ7F′0F0
(3)2 + 4

3λ
9F′03F0

(3)2

+ 5
4λ

8F′′0 F0
(3)2 +2λ10F′02F′′0 F0

(3)2 +λ11F′0F′′0 2F0
(3)2 + 1

6λ
12F′′0 3F0

(3)2 + 1
36λ

9F0
(3)3 + 1

16λ
4F0

(4)

+ 11
6 λ

6F′02F0
(4) + 2

3λ
8F′04F0

(4) + 17
6 λ

7F′0F′′0 F0
(4) + 4

3λ
9F′03F′′0 F0

(4) + 23
24λ

8F′′0 2F0
(4)

+λ10F′02F′′0 2F0
(4) + 1

3λ
11F′0F′′0 3F0

(4) + 1
24λ

12F′′0 4F0
(4) + 1

3λ
8F′0F0

(3)F0
(4) + 1

6λ
9F′′0 F0

(3)F0
(4) + 1

30λ
5F0

(5)

+ 1
6λ

7F′02F0
(5) + 1

6λ
8F′0F′′0 F0

(5) + 1
24λ

9F′′0 2F0
(5) + 1

288λ
6F0

(6). (5.11)

Remarkably, it turns out that these quantities take a simplified form in terms of

Z(λ) = λ (λF0)′′. (5.12)

Explicit expressions are collected in appendix D.

5.1 Strong coupling expansion

Let us now specialize to the D3-D5 potential. We begin with the leading order (3.8)

F0(λ)=−
∮
dx

2πi(x−x
−1)logcosh

[√
λ

4 (x+x−1)
]

= 4
π

∫ π/2

0
dθ sin2θ logcosh

(√
λ

2 cosθ
)

= 4
π

∫ 1

0
dt
√

1−t2 logcosh t
√
λ

2 = 2
3π
√
λ−log2+ 4

π

∫ 1

0
dt
√

1−t2 log(1+e−t
√
λ). (5.13)

The last integral is subleading but not exponentially suppressed due to the point t = 0
where exponential suppression does not hold. From the results in appendix E we have the
asymptotic expansion13

F0(λ) = − log 2− 2
π2

∞∑
k=0

22k−1 − 1
2k − 1 Γ

(
k − 3

2

)
Γ
(
k + 1

2

)
ζ(2k) 1

λk−1/2 . (5.14)

The first terms are explicitly

F0(λ) = 2
3π
√
λ− log 2 + π

3
1√
λ
− 7π3

180
1
λ3/2 −

31π5

2520
1
λ5/2 −

127π7

6720
1
λ7/2 + · · · . (5.15)

13Notice that the infinite sum in (5.14) has a term ∼
√
λ that is dominant with respect to the constant

− log 2. That constant term is somehow separated since it arises as an integration constant.
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Using the differential relations for Fn(λ) we obtain the following non vanishing terms at
large coupling λ14

F1(λ) = − λ

8π2 + 1
24 log λ+O(1/

√
λ),

F2(λ) = λ3/2

48π3 −
√
λ

32π +O(1/
√
λ),

F3(λ) = − λ2

384π4 + 5λ3/2

18432π3 + 1
240 +O(1/

√
λ), (5.16)

F4(λ) = λ5/2

5120π5 + 5λ3/2

18432π3 + 79
√
λ

368640π +O(1/
√
λ),

F5(λ) = − λ2

12288π4 −
11λ

23040π2 −
1847

1161216 +O(1/
√
λ),

F6(λ) = − λ7/2

688128π7 −
7λ5/2

983040π5 + 55λ3/2

786432π3 + 122947
√
λ

212336640π +O(1/
√
λ).

Keeping the leading terms at each order in the 1/N expansion, these results suggest the
strong coupling scaling form

∆F (λ,N) = λ f

(
λ

N2

)
+ · · · , (5.17)

where dots are subleading terms at large N with fixed λ/N2. Comparing with the above
gives

f(x) = 2
3π
√
x
− 1

8π2 +
√
x

48π3 −
x

384π2 + x3/2

5120π5 −
x5/2

688128π7 + · · · . (5.18)

Indeed, inserting the Ansatz (5.17) into (5.5) gives the non-linear differential equation

1− e−x3f ′′ − x(f − xf ′ − x2f ′′) = 0. (5.19)

The solution is obtained in appendix F and reads

f(x) = 1
384π2

[
− 48− x+ 8

(
5 + x

8π2

)√
1 + 16π2

x
+ 192π2

x
arccosh

(
1 + x

8π2

)]
. (5.20)

Remark. The structure of (5.16) shows that the highest powers of λ at each term in the
topological expansion take the form

F = FN=4 + ∆F, FN=4 ∼ N2 log T, (5.21)

∆F = N (c1T + · · · ) + (c2T
2 + · · · ) + 1

N
(c3T

3 + · · · ) + · · · , (5.22)

where T ∼
√
λ should be interpreted as the string tension on the dual AdS/CFT side

where one has a probe D5 brane intersecting the AdS5 boundary along 3 directions, i.e.
14We remark the presence of a log λ term in F1(λ), i.e. at the next-to-leading term in the 1/N expansion.

It would be interesting to understand whether it may admit an interpretation in terms of dCFT conformal
anomalies, see for instance [72], or it is instead independent and a feature of the non-Gaussian matrix model.
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the defect. As we already mentioned, the reason why we have odd powers of 1/N is that
the D5 brane probe introduces an open string sector in this model and associated disk-like
contributions. It would be interesting to derive (5.20) on string side. In particular, one may
guess that the free energy is captured by the D5 brane probe effective action in analogy to
what has been discussed for the D3-D7 system [41, 73] or for a D3-brane probe ending on
AdS5 boundary discussed in [74, 75].

6 Free energy in the SU(N) model at order 1/N3

If the gauge group is SU(N) we need to consider an extra traceless condition in the matrix
model. This is a non-trivial modification, although irrelevant at leading large N . It is due
to the fact that the U(1) degrees of freedom in the two N = 4 SYMs do not decouple due
to interaction with the interface. We remark that it would be interesting to clarify the
string counterpart of this fact.

The traceless condition complicates the application of the integrable hierarchies at
least at practical level. Anyway, we can directly determine the 1/N expansion of the defect
expectation value (our free energy) by the methods in section 3. Denoting by a tilde the
quantities in the SU(N) case, the expansions (3.1) are modified into

F̃0(λ) = F0(λ),
F̃1(λ) = F1(λ),

F̃2(λ) = − λ

32 + 5λ2

3072 −
5λ3

73728 −
λ4

2359296 + 191λ5

283115520 −
4259λ6

33973862400 + · · · , (6.1)

with deviations in all F̃n≥2. Inspection suggests the simple relation

F̃2 = F2 −
λ

2 (λF0)′′. (6.2)

To prove (6.2) and generalize it, we start again from the connected correlators in (3.5)
that, in SU(N) case, read, cf. appendix G,

CSU(N)
n (N) =N

2nΓ(n+ 1
2 )

√
πΓ(n+2)

[
1+ 1

N2
n(n+1)(n−7)

12 + 1
N4

n(n2−1)(5n3−87n2 +340n−12)
1440 + · · ·

]
,

CSU(N)
n,m (N) =

2n+mΓ(n+ 1
2 )Γ(m+ 1

2 )
π (n+m)Γ(n)Γ(m)

[
1+ 1

N2
(n+m)(7−8n−8m+n2 +nm+m2)

12 + · · ·
]
,

C
SU(N)
n,m,k (N) = 1

N

2n+m+kΓ(n+ 1
2 )Γ(m+ 1

2 )Γ(k+ 1
2 )

π3/2 Γ(n)Γ(m)Γ(k)

[
1+ 1

N2 c̃n,m,k + · · ·
]
, (6.3)

where

c̃n,m,k = −7
6 + 23

12(n+m+ k)− 1
6[5(n2 +m2 + k2) + 9(nm+ nk +mk)]

+ 1
12[n3 +m3 + k3 + 2(k2m+ km2 + k2n+ kn2 +mn2 +m2n) + 2nmk. (6.4)

– 16 –



J
H
E
P
0
2
(
2
0
2
3
)
2
0
8

Notice that defining ∆C = CSU(N) − CU(N) we have, cf. (3.5),

∆Cn(N) =N
2nΓ(n+ 1

2 )
√
πΓ(n+2)

[
− 1
N2

n(n+1)
2 − 1

N4
n2(n2−1)(n−5)

24 + · · ·
]
, (6.5)

∆Cn,m(N) =
2n+mΓ(n+ 1

2 )Γ(m+ 1
2 )

π (n+m)Γ(n)Γ(m)

[
− 1
N2

(n+m)(n+m−1)
2 + · · ·

]
,

∆Cn,m,k(N) = 1
N

2n+m+kΓ(n+ 1
2 )Γ(m+ 1

2 )Γ(k+ 1
2 )

π3/2 Γ(n)Γ(m)Γ(k)

[
1
N2

(n+m+k−1)(n+m+k−2)
2 + · · ·

]
,

Hence, for instance, (3.13) reads

F̃2(λ, t) =
∞∑
n=1

(
λ

4π2

)n Γ(n+ 1
2)

√
π Γ(n+ 2)

[
n(n2 − 1)

12 −1
2n(n+ 1)

]
t2n

+ 1
6

∞∑
n,m,k=1

(
λ

4π2

)n+m+k Γ(n+ 1
2)Γ(m+ 1

2)Γ(k + 1
2)

π3/2 Γ(n)Γ(m)Γ(k)
t2n t2m t2k, (6.6)

where the blue term is the shift with respect to (3.13) and provides the second term in (6.2).
We can analyze in a similar way the 1/N2 term F̃3 and the 1/N3 term F̃4 and we obtain

F̃3 = F3 −
λ2

2 F′′1 = F3 −
λ2

2

(
−2λF′02 − 2λ2F′0F′′0 −

1
2λ

3F′′02
)′
, (6.7)

F̃4 = F4 + λ2
[F′0

3 −
2
3λ

2F′03 + 5
12λF′′0 − 4λ3F′02F′′0 −

7
2λ

4F′0F′′02 − 5
6λ

5F′′03 (6.8)

− 1
12λ

2F(3)
0 − λ

4F′02F(3)
0 − λ

5F′0F′′0F(3)
0 −

1
4λ

6F′′02F(3)
0 −

1
24λ

3F(4)
0

]′
.

We can examine the effect of these shifts at strong coupling using (5.15). This gives

F̃2 − F2 = −
√
λ

4π + · · · , (6.9)

F̃3 − F3 = 1
48 + · · · , (6.10)

F̃4 − F4 = λ3/2

384π3 −
5
√
λ

256π + · · · . (6.11)

Comparing with (5.16) we see that the leading term at large λ is not changed and keep
being resummed by the expression (5.17) and (5.20).

7 Systematic relation between the free energies in the U(N) and SU(N)
models

The shifts F̃n − Fn can be analyzed in a systematic way as follows. The partition function
in the SU(N) matrix model, with insertion of a generic function f(A), is

ZSU
f =

∫
DA δ(trA)e−trA2

f(A)= 1
2π

∫
dα

∫
DAe−trA2+iαtrAf(A) (7.1)

= 1
2π

∫
dαe−

Nα2
4

∫
DAe−trA2

f

(
A+ iα

2

)
= 1
π
√

2N

∫
dαe−

α2
2

∫
DAe−trA2

f

(
A+ iα√

2N

)
.
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Hence, we can write

〈f〉SU =
∫
DAe−trA2〈f(A+ iα√

2N )〉0∫
DAe−trA2 , 〈f

(
A+ iα√

2N

)
〉0 = 1√

2π

∫
dαe−

α2
2 f

(
A+ iα√

2N

)
.

(7.2)
Expanding in powers of α/

√
N and integrating over α, we get

〈f
(
A+ iα√

2N

)
〉0 = f(A)− 1

4N f ′′(A) + 1
32N2 f

(4)(A) + · · · =
∞∑
p=0

(−1)p

p!(4N)p f
(2p)(A). (7.3)

Inserting this in (7.2), and integrating by parts in the matrix model, we obtain (Hn are
Hermite polynomials), cf. appendix H,

〈f〉SU =
∞∑
p=0

(−1)p

p!(4N)p

∫
DA[etrA2

∂2p
A e
−trA2 ]f(A)e−trA2∫

DAe−trA2 =
∞∑
p=0

(−1)p

p!(4N)pN
p〈f(A)H2p

( trA√
N

)
〉.

(7.4)
Choosing f to be the defect factor, we have

〈D〉SU = 〈D〉
[
1 +

∞∑
p=1

(−1)p

p! 4p 〈H2p

( trA√
N

)
〉D
]
. (7.5)

that gives

∆F̃ = ∆F − log
[
1 +

∞∑
p=1

(−1)p

p! 4p 〈H2p

( trA√
N

)
〉D
]
. (7.6)

Expanding the logarithm of the series in the r.h.s. we find15

∆F̃ = ∆F+ 1
N

(
〈Ω1,1〉D−

N

2

)
− 1

2N2

(
〈Ω1,1,1,1〉D−〈Ω1,1〉2D−2N 〈Ω1,1〉D+N2

2

)
+· · · (7.7)

From the expansions (C.7) and (C.15) , using also (C.11) , we obtain

∆F̃ = ∆F + 1
N
ω

(1)
1,1 + 1

N2λ
2∂λ

[ 1
λ

(ω(1)
1,1)2

]
+ · · · , (7.8)

where ω(1)
1,1 is given in (C.8). One can check that we prove in this way the formulas for the

shifts in F2 and F3 given in (6.2) and (6.7).

8 One-point functions of single trace operators in the U(N) model

The mixing problem for the operators O2n in (2.6) has a large N known solution in term
of Chebyshev T-polynomials, cf. appendix J,

: O2n :N→∞= 1
22n−1 trT2n(M). (8.1)

15One can check that the two contributions start at 1/N and 1/N2 respectively, i.e. no special cancella-
tions occur.
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Since we are interested in higher orders in the 1/N expansion, we need finite N expressions.
These can be worked out systematically by solving the mixing problem. For example, we
have the first cases

: Ω2 : = Ω2 −
N2

2 , : Ω4 := Ω4 − 2N Ω2 − Ω1,1 + N(2N2 + 1)
4 , (8.2)

: Ω6 : = Ω6 − 3N Ω4 −
3
2Ω2,2 + 15

4 (N2 + 1) Ω2 − 3 Ω1,3 + 15N
4 Ω1,1 −

5
8N

2(N2 + 2).

and one finds

〈: Ω2 :〉D =−Nλ32 + (1+3N+2N2)λ2

1536 N − (3+7N+6N2 +2N3)λ3

24576N2 + · · · , (8.3)

〈: Ω4 :〉D = (3+5N+6N2 +N3)λ2

3072N − (31+75N+70N2 +30N3 +4N4)λ3

122880N2 (8.4)

+ (840+2251N+2340N2 +1225N3 +330N4 +34N5)λ4

11796480N3 + · · · ,

〈: Ω6 :〉D =−(120+318N+300N2 +145N3 +30N4 +2N5)λ3

491520N2 (8.5)

+ (7785+21385N+23051N2 +12775N3 +3885N4 +595N5 +34N6)λ4

55050240N3 + · · · .

Going to large N , and recalling (2.22), we obtain the expansion (2.19) with following
coefficients O(k)

n . For O2

O(0)
2 (λ) = λ

8π2

(
− λ

32 + λ2

768 −
λ3

12288 + 17λ4

2949120 + · · ·
)
, (8.6)

O(1)
2 (λ) = λ

8π2

(
λ2

512 −
λ3

4096 + 11λ4

393216 −
29λ5

9437184 + · · ·
)
,

O(2)
2 (λ) = λ

8π2

(
λ2

1536 −
7λ3

24576 + 35λ4

589824 −
563λ5

56623104 + · · ·
)
.

For O4

O(0)
4 (λ) =

(
λ

8π2

)2 ( λ2

3072 −
λ3

30720 + 17λ4

5898240 −
31λ5

123863040 + · · ·
)
, (8.7)

O(1)
4 (λ) =

(
λ

8π2

)2 ( λ2

512 −
λ3

4096 + 11λ4

393216 −
29λ5

9437184 + · · ·
)
,

O(2)
4 (λ) =

(
λ

8π2

)2 ( 5λ2

3072 −
7λ3

12288 + 245λ4

2359296 −
563λ5

35389440 + · · ·
)
.

Finally, for O6

O(0)
6 (λ) =

(
λ

8π2

)3 (
− λ3

245760 + 17λ4

27525120 −
31λ5

440401920 + 691λ6

95126814720 + · · ·
)
, (8.8)

O(1)
6 (λ) =

(
λ

8π2

)3 (
− λ3

16384 + 17λ4

1572864 −
91λ5

62914560 + 35λ6

201326592 + · · ·
)
,

O(2)
6 (λ) =

(
λ

8π2

)2 (
− 29λ3

98304 + 37λ4

524288 −
4549λ5

377487360 + 56443λ6

31708938240 + · · ·
)
.
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The planar terms of these expansions have been computed at all orders in [37] and read
(for even n ≥ 2)

O(0)
n (λ) = −n

(
λ

16π2

)n/2 ∮ dx

2π i
1

xn+1 log cosh
[√

λ

4 (x+ x−1)
]
. (8.9)

For a generic defect function L this clearly generalizes to

O(0)
n (λ) = −n

(
λ

16π2

)n/2 ∮ dx

2πi
1

xn+1 L

(√
λ

4π (x+ x−1)
)
, (8.10)

as derived in appendix I by a slightly different approach compared with [36, 37]. In partic-
ular, we bypass the resolvent construction and simply solve the 1/N perturbation equation
for the eigenvalue densities.

Remarkably, from (8.10) we find that all even O(0)
2n (λ) are related by an integro-

differential relation

∂λO(0)
2n (λ) = 1

16π2
2n

2n− 2 λ
2n−1 d

dλ

[ 1
λ2n−2 O(0)

2n−2(λ)
]
. (8.11)

To prove this, we notice that the r.h.s. differs from the l.h.s. by the integral of a non-trivial
total derivative:

∂λO(0)
2n (λ)− 1

16π2
2n

2n− 2 λ
2n−1 d

dλ

[ 1
λ2n−2 O(0)

2n−2(λ)
]

= n

16π2

(
λ

16π2

)n−1 ∮ dx

2πi
∂

∂x

[1 + x2

x2n L

(√
λ

4π (x+ x−1)
)]

= 0. (8.12)

9 1/N expansion of one-point functions in the U(N) model from the
Volterra hierarchy

The 1/N expansion of one-point functions with gauge group U(N) can be obtained again
by exploiting the Volterra hierarchy and, in the special case of O2, a special relation.

Results for O2(λ,N). An exact relation is

〈: Ω2 :〉D = −λ∂λ∆FN (λ). (9.1)

To prove this relation we simply notice that

−λ∂λ∆FN = λ∂λ log〈D〉SYM = λ∂λ log

∫
u(N)DM exp

(
− 8π2

g2
YM

trM2 − trL(M)
)

∫
u(N)DM exp

(
− 8π2

g2
YM

trM2
)

= 8π2

g2
YM

[〈trM2〉D − 〈trM2〉SYM] = 〈: trΩ2 :〉D. (9.2)
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From (9.1), we immediately obtain the 1/N expansion of O2(λ,N). The first two correc-
tions, i.e. terms ∼ 1/N and ∼ 1/N2, are

O(1)
2 = λ3

16π2 (2F′0 + λF′′0)2, (9.3)

O(2)
2 = λ3

96π2 (−6F′′0 + λ(−6F0
(3) − 6(2F′0 + λF′′0)2(2F′0 + λ(4F′′0 + λF0

(3)))− λF0
(4))), (9.4)

and they reproduce O(1)
2 (λ) and O(2)

2 (λ) in (8.6).

Results for O4(λ,N). In this case we need derivatives with respect to the couplings t
(again here we split the “kinetic term” out of t2 in L) that (for n > 1) are given by

∂t2n∆FN = 〈trM2n〉D =
(
g2

YM

8π2

)n
〈Ω2n〉D. (9.5)

From the expression of : Ω4 in (8.2),

〈: Ω4 :〉D = 〈Ω4〉D − 2N 〈: Ω2 : +N2

2 〉D − 〈Ω1,1〉D + N(2N2 + 1)
4

=
(

8π2

g2
YM

)2

∂t4∆FN + 2N λ∂λ∆FN − 〈Ω1,1〉D −
N(2N2 − 1)

4 . (9.6)

Using the Toda relation (C.6), we can eliminate 〈Ω1,1〉D

〈: Ω4 :〉D =
(

8π2

g2
YM

)2

∂t4∆FN + 2N λ∂λ∆FN −
N

2 e
−D2∆FN − N(2N2 − 1)

4 . (9.7)

We now need a Volterra hierachy equation to express ∂t4∆F . From the results in ap-
pendix B with (B.18) in (B.17), we obtain

〈: Ω4 :〉D = N2
(64π4

λ2 ∂t4F1 + 2λF′0
)

+ N

2 (4λ2[F′0]2 + 4λ3F′0F′′0 + λ4[F′′0]2) +O(N0), (9.8)

and using (2.22)

O4(λ,N) = ∂t4F1 + λ3

32π4 F′0 + 1
N

λ2

128π4 (4λ2[F′0]2 + 4λ3F′0F′′0 + λ4[F′′0]2) +O(1/N2). (9.9)

Replacing in this expression the expansions (3.1) and evaluating ∂t4F1 by differentiat-
ing (3.2) and replacing the couplings in (2.13), one reproduces O(0)

4 (λ) and O(1)
4 (λ) in (8.7).

Of course, the planar term is independently known from (8.9), while the 1/N correction is
a new result

O(1)
4 (λ) = 1

2

(
λ

8π2

)2
λ2 (4F′02 + 4λF′0F′′0 + λ2F′′02) = λ

8π2 O(1)
2 (λ). (9.10)

The next order, i.e. the correction 1/N2, using (B.19) reads

O(2)
4 (λ) = − 1

12

(
λ

8π2

)2
λ2[96λF′03 + 15F′′0 + 30λ4F′′03 + 6λ5F′′02F0

(3) (9.11)

+ 24λ3F′0F′′0(6F′′0 + λF0
(3)) + 24λ2F′02(9F′′0 + λF0

(3)) + λ(9F0
(3) + λF0

(4))],

and again can be checked to reproduce the 1/N2 contribution O(2)
4 (λ) in (8.7).
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Results for O6(λ,N). In this case

〈: Ω6 :〉D = 〈Ω6〉D − 3N 〈Ω4〉D −
3
2〈Ω2,2〉D + 15

4 (N2 + 1) 〈Ω2〉D − 3 〈Ω1,3〉D

+ 15N
4 〈Ω1,1〉D −

5
8N

2(N2 + 2)

= 〈Ω6〉D − 3N 〈Ω4〉D −
3
2〈Ω2,2〉D + 15

4 (N2 + 1) 〈: Ω2 :〉D − 3 〈Ω1,3〉D

+ 15N
4 〈Ω1,1〉D + 5

8N
2(2N2 + 1). (9.12)

We can eliminate 〈Ω2,2〉D by

−(λ∂λ)2∆FN = (λ∂λ)2 log〈D〉SYM = (λ∂λ)2 log

∫
u(N)DM exp

(
− 8π2

g2
YM

trM2 − trL(M)
)

∫
u(N)DM exp

(
− 8π2

g2
YM

trM2
)

= 〈Ω2,2〉D − 〈Ω2〉2D + 〈Ω2〉D − 〈Ω2,2〉SYM + 〈Ω2〉2SYM − 〈Ω2〉SYM

= 〈Ω2,2〉D − 〈Ω2〉2D + 〈Ω2〉D −N2. (9.13)

Thus,

〈Ω2,2〉D = −(λ∂λ)2∆FN + [λ∂λ∆FN ]2 − (N2 + 1)λ∂λ∆FN + 1
4N

2(N2 + 2). (9.14)

It remains to eliminate 〈Ω1,3〉D going back to the Toda recursion. After some work we find
in this case

O(1)
6 (λ) = 3

8

(
λ

8π2

)3
λ3 F′′0 (4F′0 + λF′′0), (9.15)

that reproduces the 1/N contribution O(1)
6 (λ) in (8.8). Also,

O(2)
6 (λ) = 1

16

(
λ

8π2

)3
λ2 [−80λF′03 − 40λ4F′′03 − 6λ5F′′02F0

(3) (9.16)

− 12λ3F′0F′′0(15F′′0 + 2λF0
(3))− 24λ2F′02(10F′′0 + λF0

(3))− λ(14F0
(3) + λF0

(4))].

9.1 Strong coupling expansion

Let us begin with the planar term (8.9). For n = 1, using (9.1)

O(0)
2 (λ) = − λ2

8π2∂λF0, (9.17)

and from (5.15),

O(0)
2 (λ) = − λ

3/2

24π3 +
√
λ

48π + · · · . (9.18)

For O(0)
4 , we use the recursion (8.11)

∂λO(0)
4 (λ) = 1

8π2 λ
3 d

dλ

[ 1
λ2 O(0)

2 (λ)
]
, (9.19)

– 22 –



J
H
E
P
0
2
(
2
0
2
3
)
2
0
8

and obtain
O(0)

4 (λ) = λ5/2

960π5 −
λ3/2

384π3 + 7
√
λ

1536π + · · · . (9.20)

The general structure, from (8.11), turns out to be

O(0)
2n (λ) = 8 (−1)n

(
λ

16π2

)n+ 1
2 n

4n2 − 1

[
1 + 1− 4n2

6
π2

λ
+ 7(1− 4n2)2

360
π4

λ2 + · · ·
]
. (9.21)

The next corrections can be computed by using the exact expressions (9.3), (9.4)
and (9.10), (9.11). For O2(λ) we have

O(1)
2 (λ) = λ2

64π4 −
λ

192π2 −
1

720 + · · · , (9.22)

O(2)
2 (λ) = − λ5/2

256π5 + λ3/2

512π3 + 49
√
λ

92160π + · · · ,

Using (9.1), (5.17), and (5.20), we can resum the leading terms at large tension as

O2(λ;N) LT= N3f2

(
16π2N2

λ

)
, f2(x) = 8π2

3x3 + 4
x2 −

8
3x3 (1 + x)3/2. (9.23)

As a check, expanding at large N we find

O2(λ;N) LT= − λ
3/2

24π3 + λ2

64π4N
− λ5/2

256π5N2 + λ3

1536π4N3 −
λ7/2

16384π7N4 + · · · , (9.24)

that reproduces the leading terms at large λ in (9.18) and (9.22).
For O4(λ) we find

O(1)
4 (λ) = λ3

512π6 −
λ2

1536π4 −
λ

5760π2 −
13

40320 + · · · , (9.25)

O(2)
4 (λ) = − 3λ7/2

2048π7 + 7λ5/2

4096π5 −
49λ3/2

147456π3 −
1037

√
λ

30965760π + · · · .

For O6(λ) we find

O(1)
6 (λ)=− 7λ4

49152π8 + 13λ3

49152π6−
13λ2

61440π4−
43λ

1290240π2−
289

1290240 +··· , (9.26)

O(2)
6 (λ)=− 3λ9/2

65536π9−
167λ7/2

393216π7 + 20851λ5/2

23592960π5−
563657λ3/2

990904320π3−
5922863

√
λ

13212057600π ··· . (9.27)

A cleaner way of presenting these expansions is in terms of the scaled coupling λ̂ = λ
4π2

O(1)
2 (λ) = 1

4 λ̂
2
(

1− 1
12 λ̂

− 1
180 λ̂2

+ · · ·
)
, (9.28)

O(2)
2 (λ) = −1

8 λ̂
5/2

(
1− 1

8 λ̂
− 49

5760 λ̂2
+ · · ·

)
, (9.29)

O(1)
4 (λ) = 1

8 λ̂
3
(

1− 1
12 λ̂

− 1
180 λ̂2

− 13
5040 λ̂3

+ · · ·
)
, (9.30)

O(2)
4 (λ) = − 3

16 λ̂
7/2

(
1− 7

24 λ̂
+ 49

3456 λ̂2
+ 1037

2903040 λ̂3
+ · · ·

)
, (9.31)

O(1)
6 (λ) = − 7

192 λ̂
4
(

1− 13
28 λ̂

+ 13
140 λ̂2

+ 43
11760 λ̂3

+ 289
47040 λ̂4

+ · · ·
)
, (9.32)

O(2)
6 (λ) = − 3

128 λ̂
9/2

(
1 + 167

72 λ̂
− 20851

17280 λ̂2
+ 563657

2903040 λ̂3
+ 5922863

154828800 λ̂4
+ · · ·

)
. (9.33)
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10 One-point functions in the SU(N) model

In the SU(N) case, the explicit expansions written in (8.6) , (8.7) , (8.8) can be recomputed
with the traceless constraint and one finds16

Õ(k)
n (λ) = O(k)

n (λ), k = 0, 1, n = 2, 4, 6, . . . , (10.1)

showing that it gives deviations with (relative) size 1/N2. The one-point functions at this
order are

Õ(2)
2 (λ)= λ

8π2

(
λ

32−
5λ2

1536 + 5λ3

24576 + λ4

589824−
191λ5

56623104 +···
)
, (10.2)

Õ(2)
4 (λ)=

(
λ

8π2

)2(
− 7λ2

3072 + 409λ4

11796480−
71λ5

8847360 + 21481λ6

15854469120−
27143λ7

135895449600 +···
)
, (10.3)

Õ(2)
6 (λ)=

(
λ

8π2

)3(
− 17λ3

98304 + 23λ4

491520−
4583λ5

528482304 + 85937λ6

63417876480−
117013λ7

608811614208 +···
)
, (10.4)

Õ(2)
8 (λ)=

(
λ

8π2

)4( 59λ4

4718592−
433λ5

123863040 + 125071λ6

190253629440−
197261λ7

1902536294400 +···
)
, (10.5)

and they differ from the corresponding U(N) expressions. Nevertheless, the case of Õ2 is
still captured by (9.1). From that relation and (6.2) one obtains

Õ(2)
2 (λ)− O(2)

2 (λ) = λ2

16π2 [λ (λF0)′′]′. (10.6)

In the case of Õ4 we found17

Õ(2)
4 (λ)− O(2)

4 (λ) =
(
λ

8π2

)2 (
3λ2F′′0 + 1

2λ
3F′′′0

)
. (10.7)

Starting with O6 the structure changes and we have

λ2∂λ

[ 1
λ

(Õ(2)
6 − O(2)

6 )
]

=
(
λ

8π2

)3 (15
4 λ

3 ∂3
λF0 + 3

8λ
4∂4
λF0

)
, (10.8)

(λ2∂λ)2
[ 1
λ2 (Õ(2)

8 − O(2)
8 )
]

=
(
λ

8π2

)4 (7
2λ

4 ∂4
λF0 + 1

4λ
5∂5
λF0

)
, (10.9)

(λ2∂λ)3
[ 1
λ3 (Õ(2)

10 − O(2)
10 )
]

=
(
λ

8π2

)5 (45
16λ

5 ∂5
λF0 + 5

32λ
6∂6
λF0

)
. (10.10)

suggesting the general form, valid for n ≥ 2

(λ2∂λ)n−2
[ 1
λn−2 (Õ(2)

2n − O(2)
2n )
]

= 1
2n−1

(
λ

8π2

)n [
n(2n− 1)λn ∂nλF0 + n

2λ
n+1∂n+1

λ F0

]
.

(10.11)
that we checked for higher values of n.

16We use a tilde to denote SU(N) quantities.
17We used the fact that, in a general model, the shift is linear in t2n and therefore in F0.
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10.1 Deviations in the strong coupling expansion

At strong coupling (we use the same notation as in (9.29) and (9.31) for comparison)

Õ(2)
2 (λ)−O(2)

2 (λ)= λ3/2

64π3 +
√
λ

384π+···=−1
8 λ̂

5/2
(

0− 1
λ̂
− 1

24λ̂2
+···

)
, (10.12)

Õ(2)
4 (λ)−O(2)

4 (λ)=− 3λ5/2

512π5 + 7λ3/2

1024π3−
35
√
λ

12288π+···=− 3
16 λ̂

7/2
(

0+ 1
λ̂
− 7

24λ̂2
+···

)
, (10.13)

and, in both cases, the correction is subleading compared with the leading term in (9.29)
and (9.31). The pattern continues for higher one-point functions, using (10.11) and in all
cases the correction is still subleading.

11 Conclusions and open issues

We have considered the fluxless D3-D5 system and the dual dCFT consisting in four di-
mensional U(N) N = 4 SYM in the presence of a codimension-one interface hosting a 3d
N = 4 theory. For the free energy and the simplest one-point functions of BPS scalars, lo-
calization reduces their computation to the analysis of a hermitian one-matrix model with
a non-polynomial (subleading) single-trace potential. Such a matrix model is known to be
closely related to integrable hierarchies, i.e. the Toda lattice and its Volterra reduction.
We have shown how to exploit this rich structure in order to analytically control the 1/N
expansion. In particular, it is possible to access the strong coupling regime and determine
some features emerging in the large-tension limit where the ’t Hooft coupling is taken large
order by order in 1/N .

While the analysis of the free energy is complete in the sense that can be pushed
without effort to higher orders in 1/N , the situation is different for the one-point func-
tions. Despite the results presented at low operator dimension ∆, it is clear that mixing
remains a major complication. In particular, refined tools are needed in order to derive
results depending in closed form on ∆ that could be useful, for instance, to explore large
charge limits. Another puzzling technical aspect are the complications that are met while
extending the analysis from U(N) to SU(N) symmetry on the gauge side. Their general
solution calls for a better physical understanding of the interaction between the extra U(1)
degrees of freedom and the 3d theory on the defect.

More conceptually, a major issue is to understand the strong coupling expansions of
the free energy and one-point functions from the perspective of the dual string theory.
Generally speaking, since 1/N corrections are associated with higher genus string calcula-
tions, one can hope at least to understand the structure of the strong coupling expansions
(leading powers at large λ) and their large-tension resummations in the spirit of [38, 76].
From this point of view, it would also be interesting to further explore the nature (stability)
of the non-perturbative corrections expected to affect the free energy at strong coupling as
well as their resurgence structure, see for instance [40, 41, 46].

At a more practical level, natural extensions of this work concern the generalization
to the case of D3-D5 system with flux in order to explore nicer AdS/CFT limits involving
large fluxes k � 1. Also, it would be important to extend the analysis to defect theories
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with N = 2 superconformal symmetry, where the same localization approach as in [36, 37]
is expected to work.
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A On the normalization of ZD5

The partition function (2.7) has a non-trivial normalization that depends on gYM even in
the case k = 0, cf. (2.9). To understand this factor, let us recall that (2.7) is obtained,
in general case with flux, by integrating out the U(N + k) eigenvalues in the expression in
eq. (2.28) of [37] (here g ≡ gYM)

ZD5
N,k = 1

N !(N + k)!

∫ N∏
n=1

dan

N+k∏
n=1

dbn
∆(a) ∆̃(a) e−

g2
4
∑N

n=1 a
2
n ∆(b) ∆̃(b) e−

g2
4
∑N+k

n=1 b2n∏N
n=1

∏N+k
m=1 2 cosh π(an − bm)

,

(A.1)
This expression has a factored form, corresponding to gluing U(N) and U(N +M) SYMs
with Neumann boundary conditions and coupled together by the interface U(N)×U(N+k)
bifundamental hypermultiplet. In the above, ∆(x) =

∏
n<m(xn− xm) is the Vandermonde

determinant, while ∆̃(x) =
∏
i<j 2 sinh π(xi − xj) is the one-loop determinant for the 3d

N = 4 vector multiplets.
It may be instructive to consider the case N = 1 and k = 0. In this case, we have

simply

ZD5
1,0 =

∫ ∞
−∞

da

∫ ∞
−∞

db
e−

g2
4 (a2+b2)

2 cosh π(a− b) =
(
π

2g2

)1/2 ∫ ∞
−∞

da
e−

g2
8 a2

cosh πa, (A.2)

where we shifted b→ b+ a and integrated over b. Using now

1
cosh πa =

∫ ∞
−∞

dt
e2πita

cosh πt, (A.3)

we get

ZD5
1,0 =

(
π

2g2

)1/2 ∫ ∞
−∞

da

∫ ∞
−∞

dt
e−

g2
8 a2+2πiat

cosh πt = 4π
g2

∫ ∞
−∞

dt
e
− 8π2

g2 t2

2 cosh πt, (A.4)

which is (2.9), taking into account the explicit factors of 2 and π in (2.8). This very
simple special case illustrates why the effect of the defect is not just the insertion of the
single trace log cosh potential, but also the additional pre-factor (1/g2

YM)N2 in the partition
function normalization in (2.18).
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B Higher order flows in the Volterra hierarchy

B.1 Structure of the flows

In the notation of section 4 we can introduce the following ratios of partition functions

Bn(t) = Zn+1(t)Zn−1(t)
Z2
n(t) = e−D+fn(t). (B.1)

From the results of [77, 78] we have the equations

∂t2kBn(t) = −Bn(t)[V (2k)
n+1 (t)− V (2k)

n−1 (t)], (B.2)

where (omitting the argument t) V (2k)
n may be derived by the Lax formalism

V (2k)
n =

√
Bn(L2k−1)n,n+1, L =


0
√
B1 0 0 · · ·√

B1 0
√
B2 0 · · ·

0
√
B2 0

√
B3 · · ·

· · ·

 . (B.3)

Explicitly, the first cases are

V (2)
n =Bn, (B.4)

V (4)
n =V (2)

n (V (2)
n−1 +V (2)

n +V
(2)
n+1), (B.5)

V (6)
n =V (2)

n (V (2)
n−1V

(2)
n+1 +V

(4)
n−1 +V (4)

n +V
(4)
n+1), (B.6)

V (8)
n =Bn (B3

n−1 +2Bn−2B
2
n−1 +3BnB2

n−1 +Bn+1B
2
n−1 +B2

n−2Bn−1 +3B2
nBn−1

+B2
n+1Bn−1 +Bn−3Bn−2Bn−1 +2Bn−2BnBn−1 +Bn−2Bn+1Bn−1 +4BnBn+1Bn−1

+Bn+1Bn+2Bn−1 +B3
n+B3

n+1 +3BnB2
n+1 +Bn+1B

2
n+2 +3B2

nBn+1 +2B2
n+1Bn+2

+2BnBn+1Bn+2 +Bn+1Bn+2Bn+3), (B.7)

and so on. These are the generalizations of (4.10) which is simply the k = 1 case of (B.2).
Indeed, in this case it reads, cf. (4.7),

∂t2D+fn = e−D+fn+1 − e−D+fn−1 = rn+2 − rn = D+(rn+1 + rn). (B.8)

This gives
∂t2fn = rn+1 + rn + const. (B.9)

The constant is shown to be zero taking n = 1 and this gives back (4.10). In our problem,

ZN (t) = 2−N2/2G(N + 1)〈D〉SYM, (B.10)

where we do not write the dependence on gYM and as usual t2 is from the defect term L.
Since FN = − log〈D〉SYM, we have

BN (t) = N

2 e
−D2∆FN (t), (B.11)

and taking into account the coupling dependent factors attached to the couplings t2n, the
flows in (B.2) should be written(

8π2

g2
YM

)k
∂t2kBN (t) = −BN (t)[V (2k)

N+1(t)− V (2k)
N−1(t)]. (B.12)
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B.2 The k = 2 flow and its consequences

We have discussed the k = 1 equation in the main text, here let us write the k = 2 case.
It is(

8π2

g2
YM

)2

∂t4BN = −BN [BN+1(BN +BN+1 +BN+2)−BN−1(BN−2 +BN−1 +BN )], (B.13)

that is(
8π2

g2
YM

)2

∂t4D2∆FN = BN+1(BN +BN+1 +BN+2)−BN−1(BN−2 +BN−1 +BN ), (B.14)

Replacing here (B.11) and the expansion (2.17) with rules like (5.6) or (5.7), we obtain

∂t4F0(λ) = λ2

128π4 , (B.15)

∂t4F′1(λ) = − 3λ2

64π4 (2F′0 + λF′′0), (B.16)

∂t4F2(λ) = c1λ+ c2λ
2 + 3λ4

128π4 (2F′0 + λF′′0)2, (B.17)

where we used systematically the differential relations for Fn, as in (5.8) etc. In the D3-D5
system, comparison with weak coupling gives

c1 = 0, c2 = 1
256π4 . (B.18)

The next relation is substantially more involved. Zero modes are absent in the D3-D5
system and one finds

∂t4F3(λ) =− λ3

256π4 (4F′0 +64λ2F′03 +11λF′′0 +168λ3F′02F′′0 +120λ4F′0F′′02 +26λ5F′′03 (B.19)

+7λ2F0
(3) +24λ4F′02F0

(3) +24λ5F′0F′′0F0
(3) +6λ6F′′02F0

(3) +λ3F0
(4)).

C Toda t1 flow and 1/N expansion of 〈Ω1,...,1〉D

Let us begin by writing the Toda equation (4.9) in the form

D2FN (t) = − log
(
− ∂2

∂t21
FN (t)

)
. (C.1)

Since

∆FN = FN − FGaussian
N = FN + log

[
(2π)−

N
2 G(N + 1)

(
16π2

g2
YM

)−N2
2 ]

(C.2)

we obtain

D2∆FN (t)− logN + log
(

16π2

g2
YM

)
= − log

(
− ∂2

∂t21
∆FN (t)

)
, (C.3)
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that we write as18

D2∆FN (t) = − log
(
− 16π2

λ

∂2

∂t21
∆FN (t)

)
, (C.4)

Differentiating (C.4), we obtain formulas for 〈Ω1,...,1〉D in terms of F0(λ). Let us see the
first two examples.

C.1 〈Ω1,1〉D
From

∂2

∂t21
∆FN (t)

∣∣∣∣
t1=0

= − λ

8π2N
〈Ω1,1〉D, (C.5)

we have
〈Ω1,1〉D = N

2 e−D
2∆FN (t). (C.6)

If we parametrize
〈Ω1,1〉D = N

2 + ω
(1)
1,1(λ) + 1

N
ω

(2)
1,1(λ) + · · · , (C.7)

and use (5.6), we obtain differential relations. The first of them gives

ω
(1)
1,1(λ) = −λF′0 −

λ2

2 F′′0 = −λ2 (λF0)′′. (C.8)

and integrating by parts (3.8) we obtain

ω
(1)
1,1(λ) = −

∮
dx

2πi
x

(1− x2)2 log cosh
[√

λ

4 (x+ x−1)
]
. (C.9)

For the coefficient ω(2)
1,1(λ) we find

ω
(2)
1,1(λ) = [ω(1)

1,1(λ)]2 − λ2

2 F′′1 =
(
− λF′0 −

λ2

2 F′′0
)2
− λ2

2 ∂λ
[
− 1

2λ[(λF0)′′]2
]
, (C.10)

and comparing with (C.8) we get the simple relation

ω
(2)
1,1 = λ∂λ[(ω(1)

1,1)2]. (C.11)

C.2 〈Ω1,1,1,1〉D
The next example is

∂4

∂t41
∆FN (t)

∣∣∣∣
t1=0

= −
(

λ

8π2N

)2
[〈Ω1,1,1,1〉D − 3〈Ω1,1〉2D]. (C.12)

From (C.4),

∂4

∂t41
∆FN (t)

∣∣∣∣
t1=0

= − λ

16π2
∂2

∂t21
e−D

2∆FN (t)
∣∣∣∣
t1=0

= λ

16π2
∂2

∂t21
D2∆FN (t) e−D2∆FN

∣∣∣∣
t1=0

= − λ

(16π2)2 e
−D2∆FND2

[
λe−D

2∆FN (t)
]
. (C.13)

18The l.h.s. of (C.4) should be expressed in terms of gYM before applying D2.

– 29 –



J
H
E
P
0
2
(
2
0
2
3
)
2
0
8

This gives

〈Ω1,1,1,1〉D − 3〈Ω1,1〉2D = N2

4λ e
−D2∆FND2

[
λe−D

2∆FN (t)
]
. (C.14)

Replacing the expansion of FN (2.17), we obtain

〈Ω1,1,1,1〉D = 3N2

4 + 3Nω(1)
1,1(λ) + 3∂λ[λ(ω(1)

1,1)2] + · · · . (C.15)

C.3 General 〈Ω1,...1〉D at order 1/N2

Inspection of the next cases provides the following simple generalization to the case with
2n indices “1”

〈(trA)2n〉D = (2n− 1)!!
2n Nn

[
1 + 2n

N
ω

(1)
1,1(λ) + 2n

N2
1

λn−2∂λ[λn−1(ω(1)
1,1)2] + · · ·

]
. (C.16)

D Compact expressions for the free energy in the U(N) model

The explicit expression of the free energy expansion coefficients Fn(λ) in (2.17) have been
discussed in section 5. Here, we provide the simplified expresssions that are obtained in
terms of the quantity Z(λ) defined in (5.12) and up to F6(λ).

F′
1(λ) =− 1

2λ Z
2, (D.1)

F2(λ) =− Z12 + Z3

6 + 1
12λZ

′, (D.2)

F3(λ) =− 1
24Z

2 + Z4

24 + 1
12λZZ

′− 1
6λZ

3Z ′− 1
24λ

2Z ′2− 1
12λ

2ZZ ′′, (D.3)

F4(λ) = Z

120−
Z3

36 + Z5

60 −
1

120λZ
′ + 1

12λZ
2Z ′− 1

12λZ
4Z ′− 1

12λ
2ZZ ′2 + 1

6λ
2Z3Z ′2 (D.4)

+ 1
36λ

3Z ′3 + 1
240λ

2Z ′′− 1
24λ

2Z2Z ′′ + 1
24λ

2Z4Z ′′ + 1
6λ

3ZZ ′Z ′′− 1
720λ

3Z(3)

+ 1
24λ

3Z2Z(3) + 1
288λ

4Z(4),

F5(λ) = Z2

80 −
Z4

48 + Z6

120−
1
40λZZ

′ + 1
12λZ

3Z ′− 1
20λZ

5Z ′ + 1
80λ

2Z ′2− 1
8λ

2Z2Z ′2 (D.5)

+ 1
8λ

2Z4Z ′2 + 1
12λ

3ZZ ′3− 1
6λ

3Z3Z ′3− 1
48λ

4Z ′4 + 1
80λ

2ZZ ′′− 1
24λ

2Z3Z ′′

+ 1
40λ

2Z5Z ′′− 1
80λ

3Z ′Z ′′ + 1
8λ

3Z2Z ′Z ′′− 1
8λ

3Z4Z ′Z ′′− 1
4λ

4ZZ ′2Z ′′ + 1
320λ

4Z ′′2

− 1
12λ

4Z2Z ′′2− 1
240λ

3ZZ(3) + 1
72λ

3Z3Z(3)− 1
120λ

3Z5Z(3) + 1
240λ

4Z ′Z(3)

− 1
8λ

4Z2Z ′Z(3)− 29λ5Z ′′Z(3)

1440 − 1
480λ

4ZZ(4)− 1
72λ

4Z3Z(4)− 1
96λ

5Z ′Z(4)− 1
288λ

5ZZ(5),

F6(λ) =− Z

252 + Z3

60 −
Z5

60 + Z7

210 + 1
252λZ

′− 1
20λZ

2Z ′ + 1
12λZ

4Z ′− 1
30λZ

6Z ′ (D.6)

+ 1
20λ

2ZZ ′2− 1
6λ

2Z3Z ′2 + 1
10λ

2Z5Z ′2− 1
60λ

3Z ′3 + 1
6λ

3Z2Z ′3− 1
6λ

3Z4Z ′3

− 1
12λ

4ZZ ′4 + 1
6λ

4Z3Z ′4 + 1
60λ

5Z ′5− 1
504λ

2Z ′′ + 1
40λ

2Z2Z ′′− 1
24λ

2Z4Z ′′

+ 1
60λ

2Z6Z ′′− 1
20λ

3ZZ ′Z ′′ + 1
6λ

3Z3Z ′Z ′′− 1
10λ

3Z5Z ′Z ′′ + 1
40λ

4Z ′2Z ′′− 1
4λ

4Z2Z ′2Z ′′
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+ 1
4λ

4Z4Z ′2Z ′′ + 1
3λ

5ZZ ′3Z ′′ + 1
80λ

4ZZ ′′2− 1
24λ

4Z3Z ′′2 + 1
40λ

4Z5Z ′′2− 1
80λ

5Z ′Z ′′2

+ 1
3λ

5Z2Z ′Z ′′2 + 7
360λ

6Z ′′3 + λ3Z(3)

1512 −
1

120λ
3Z2Z(3) + 1

72λ
3Z4Z(3)− 1

180λ
3Z6Z(3)

+ 1
60λ

4ZZ ′Z(3)− 1
18λ

4Z3Z ′Z(3) + 1
30λ

4Z5Z ′Z(3)− 1
120λ

5Z ′2Z(3) + 1
4λ

5Z2Z ′2Z(3)

+ 7
720λ

5ZZ ′′Z(3) + 7
72λ

5Z3Z ′′Z(3) + 29
360λ

6Z ′Z ′′Z(3) + 29λ6ZZ(3)2

1440 − λ
4Z(4)

6048
+ 1

480λ
4Z2Z(4)− 1

288λ
4Z4Z(4) + 1

720λ
4Z6Z(4) + 1

120λ
5ZZ ′Z(4) + 1

18λ
5Z3Z ′Z(4)

+ 1
48λ

6Z ′2Z(4) + 11
360λ

6ZZ ′′Z(4) + λ5Z(5)

30240 + 1
360λ

5Z2Z(5) + 1
288λ

5Z4Z(5)

+ 1
72λ

6ZZ ′Z(5) + 19λ6Z(6)

51840 + 1
576λ

6Z2Z(6) + λ7Z(7)

10368 .

E Strong coupling asymptotic expansion of F0(λ)

From (5.13), we see that the strong coupling expansion of F0(λ) amounts to the large
a→∞ expansion of

f(a) = 4
π

∫ 1

0
dt
√

1− t2 log cosh(at) → f ′(a) = 2
π

∫ 1

−1
dt t

√
1− t2 tanh(at) (E.1)

Expanding tanh, integrating, and replacing Bernoulli numbers by their integral represen-
tation gives

f ′(a) = −2π
a2

∫ ∞
0

dt

t

e2πt

(e2πt − 1)2 [J1(4at)− 2J1(2at)]. (E.2)

This has the form of a Mellin convolution

f ′(a) = −2π
a

∫ ∞
0

dtf1(at)f2(t) = −2π
a

(f1 ? f2)(a), (E.3)

with
f1(t) = J1(4t)− 2J1(2t)

t
, f2(t) = e2πt

(e2πt − 1)2 (E.4)

We have the explicit Mellin transforms

M
[

e2πt

(e2πt − 1)2

]
= − 1

2πM
[
d

dt

1
e2πt − 1

]
= 1

2π (s− 1)M
[ 1
e2πt − 1

]
s−1

= (2π)−sΓ(s)ζ(s− 1), (E.5)

and
M
[
J1(4t)− 2J1(2t)

t

]
= −

2−s (2s − 1) Γ
(
s
2
)

Γ
(
2− s

2
) . (E.6)

Hence,

M[f ′](s) = −2πM[f1 ? f2](s− 1) = −2π f̃1(s− 1)f̃2(2− s)

= −
2−s (2s − 2) ζ(s) csc

(
πs
2
)

Γ
(
s+1

2

)
Γ
(

5
2 −

s
2

) , (E.7)
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and with −1 < c < 0

f ′(a) = −
∫ c+∞

c−i∞

ds

2πia
−s

2−s (2s − 2) ζ(s) csc
(
πs
2
)

Γ
(
s+1

2

)
Γ
(

5
2 −

s
2

) (E.8)

Picking residues at poles with s ≥ 0 we get the asymptotic expansion for a→∞. The first
terms are

f ′(a) = 4
3π −

π

6
1
a2 + 7π3

480
1
a4 + 31π5

16128
1
a6 + 127π7

122880
1
a8 + · · · , (E.9)

with closed form

f ′(a) = 2
π2

∞∑
k=0

(1− 21−2k)Γ
(
k − 3

2

)
Γ
(
k + 1

2

)
ζ(2k) 1

a2k . (E.10)

This series is asymptotic and non-alternating so we expect non-perturbative correc-
tions/ambiguities. Integrating it we have

f(a) = C + 2
π2

∞∑
k=0

1− 21−2k

1− 2k Γ
(
k − 3

2

)
Γ
(
k + 1

2

)
ζ(2k) 1

a2k−1 . (E.11)

Since F0(λ) in (5.13) obeys F0(λ) = f(
√
λ/2) we fix C = − log 2.

F Solution of the differential equation (5.19)

To solve the equation (5.19), we set f(x) = xh( 1
x2 ) and get

1− e−2(h′+2xh′′) + 4xh′′ = 0. (F.1)

We re-define log x = X and H(X) = h′(x) and differentiate with respect to X

(1 + 4H ′)′ = −2(H ′ + 2H ′′)e−2(H+2H′) = −2(H ′ + 2H ′′)(1 + 4H ′). (F.2)

Now set H ′ = G

4G′ = −2(G+ 2G′)(1 + 4G). (F.3)

The general solution is

G(X) = e−X/2
[
c1 ±

√
c2

1 + 1
2c1eX/2

]
. (F.4)

Integrating back to get H(X)→ h(x)→ f(x), we obtain

f(x) = −4c1 + c2x+
√

2c1
3

√
2c1 + 1

x
(5 + 4c1x) + 1

x
arccoth

 √
2c1√

2c1 + 1
x

+ iπ

2x. (F.5)

The integration constants are fixed by the expansion (5.18) and we get the values

c1 = 1
32π2 , c3 = − 1

384π2 . (F.6)

After simplification, f(x) takes the final form (5.20).
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G Systematic evaluation of CSU(N)
n,m,...

Let us begin with a single trace. Splitting the trace in U(N) we obtain

〈tr exA〉SU(N) = e−
x2
4N 〈tr exA〉U(N), (G.1)

and taking derivatives

〈Ap〉SU(N) = 1
2pNp/2 〈Hp(

√
N A)〉U(N). (G.2)

Using

H2p(x) = (2p)!
p∑
`=0

(−1)p−`

(2`)!(p− `)! (2x)2`, (G.3)

we obtain

CSU(N)
n = (2n)!

n∑
`=0

(−1)n−`

(2`)!(n− `)!
1

(4N2)n−` C
U(N)
` . (G.4)

and we can read the systematic 1/N corrections, for instance

C
U(N)
n − n(2n−1)

2N2 C
U(N)
n−1

C
SU(N)
n

= 1 +O(1/N4). (G.5)

Multiple trace expectation values can be worked out similarly with the final result shown
in (6.3).

H A useful matrix identity

In (7.4), we used the matrix identity

dp(A) = etrA2
∂pAe

− trA2 = (−1)pNp/2Hp

( trA√
N

)
. (H.1)

This follows by direct inspection, or using the recursion

dp+1(A) = etrA2
∂A∂

p
Ae
− trA2 = etrA2

∂Ae
− trA2

etrA2
∂pAe

− trA2

= (∂A − 2 trA)dp(A). (H.2)

Indeed, induction requires

− (−1)pNp/2√NHp+1

( trA√
N

)
= (−1)pNp/2

[√
NH ′p

( trA√
N

)
− 2 trAHp

( trA√
N

)]
, (H.3)

and this holds using H ′p = 2xHp(x)−Hp+1(x).
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I The large N limit from the integral equation with sources

In the large N limit, the saddle point equation for the matrix model with generic defect
function L(x)

−
∫ `

−`
dv

ρ(v)
u− v

= 8π2

λ
u+ 1

2N L′(u), (I.1)

where ` =
√
λ

2π + 1
N δ` has a

1
N correction to be determined. Let us rescale u, v according to

u = ` α, α ∈ [−1, 1]. (I.2)

The integral equation (I.1) reads19

−
∫ 1

−1
dβ

ρ(β)
α− β

= 8π2

λ
`2 α+ `

2N L′(` α). (I.3)

After expanding
ρ(α) = 2

π

√
1− α2 + 1

N
δρ(α) + · · · , (I.4)

the first order perturbed integral equation reads

−
∫ 1

−1
dβ

δρ(β)
α− β

= 8π√
λ
δ` α+

√
λ

4π L′
(
α
√
λ

2π

)
. (I.5)

The bounded solution is unique and is obtained as

δρ(α) = − 1
π2

√
1− α2−

∫ 1

−1
dβ

1
α− β

1√
1− β2

[ 8π√
λ
δ` β +

√
λ

4π L′
(
β
√
λ

2π

)]
,∫ 1

−1
dα δρ(α) = 0. (I.6)

where the second condition fixes δ`. The defect one-point function of O2n is obtained
from20

〈
trT2n

(2πM√
λ

)〉
D

=N

∫ 1

−1
dα

[ 2
π

√
1−α2 + 1

N
δρ(α)+ · · ·

]
T2n

 √λ2π + δ`
N + · · ·
√
λ

2π

α

 (I.7)

=N

∫ 1

−1
dα

[ 2
π

√
1−α2 + 1

N
δρ(α)+ · · ·

][
T2n(α)+ 1

N

2πδ`√
λ
T ′2n(α)

]
,

For n > 2, using orthogonality of the Chebyshev polynomials, it is easy to show that the
only surviving term is 〈

trT2n

(2πM√
λ

)〉
D

=
∫ 1

−1
dα δρ(α)T2n(α). (I.8)

Let us evaluate

In =
∫ 1

−1
dα δρ(α)T2n(α) = −

√
λ

4π3 −
∫ 1

−1
dα−
∫ 1

−1
dβ

T2n(α)
α− β

√
1− α2√
1− β2 L

′
(
β
√
λ

2π

)
. (I.9)

19The new density is ` ρ(` α)→ ρ(α) such that
∫ 1
−1 dαρ(α) = 1.

20Notice that for 2n = 2 we need to add to T2 the constant shift + 1
2 , see [70].
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Let us consider the integral over α

−
∫ 1

−1
dα

T2n(α)
α− β

√
1− α2 = −

∫ 1

−1
dα

T2n(α)(1− α2)
α− β

1√
1− α2

= ˚ (I.10)

From the definition of Chebyshev polynomials, cf. appendix J, one obtains21

− 1
4T2n−2(x) + 1

2T2n(x)− 1
4T2n+2(x) = T2n(x) (1− x2). (I.11)

Hence, from (J.3), we get

˚ = −1
4−
∫ 1

−1
dα

T2n−2 − 2T2n + T2n+2
α− β

1√
1− α2

= −π4

[
U2n−3(β)− 2U2n−1(β) + U2n+1(β)

]
= π (1− β2)U2n−1(β). (I.12)

Thus,

In = −
√
λ

4π2

∫ 1

−1
dβ L′

(
β
√
λ

2π

) √
1− β2 U2n−1(β), (I.13)

and we obtain (relabeling the integration variable)

O(0)
n (λ) = − 2

π

(
λ

16π2

)n+1
2
∫ 1

−1
dαL′

(
α
√
λ

2π

) √
1− α2 Un−1(α). (I.14)

Let us change variables α = cos θ, using (J.1) we get

O(0)
n (λ) = − 2

π

(
λ

16π2

)n+1
2
∫ π

0
dθ sin2 θ L′

(
cos θ

√
λ

2π

)
Un−1(cos θ)

= − 1
π

(
λ

16π2

)n+1
2
∫ 2π

0
dθ sin θ L′

(
cos θ

√
λ

2π

)
sin(nθ)

= 1
2π

(
λ

16π2

)n/2 ∫ 2π

0
dθ

d

dθ
L

(
cos θ

√
λ

2π

)
sin(nθ) (I.15)

Integrating by parts

O(0)
n (λ) = − n

2π

(
λ

16π2

)n/2 ∫ 2π

0
dθ L

(
cos θ

√
λ

2π

)
cos(nθ)

= − n

2π

(
λ

16π2

)n/2 ∮ dx

ix
L

(√
λ

4π (x+ x−1)
)

1
2(xn + x−n). (I.16)

The terms xn and x−n give the same contribution using x→ 1/x and we get (8.10).

21This is also an immediate consequence of the product formula 2Tm Tn = Tm+n + T|m−n|, evaluated at
m = 2.
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J Chebyshev polynomials

Chebyshev polynomials of 1st and 2nd kind are defined by

Tn(x) = cos(nθ), Un(x) = sin[(n+ 1)θ]
sin θ , with x = cos θ ∈ [−1, 1], θ ∈ [0, π], (J.1)

and obey the orthogonality relations

∫ 1

−1
dx
Tn(x)Tm(x)√

1− x2
=


0 n 6= m

π n = m = 0
π/2 n = m 6= 0

,

∫ 1

−1
dx
√

1− x2 Un(x)Um(x) = π

2 δnm.

(J.2)
Useful relations that we used in the main text are

T ′n(x) = nUn−1(x),∫ 1

−1
dy

Tn(y)
(x− y)

√
1− y2 = −π Un−1(x),

∫ 1

−1
dy
√

1− y2Un(y)
x− y

= π Tn+1(x). (J.3)
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