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Abstract: Environmental pollution caused by heavy metal ions has become a major health prob-
lem across the world. In this study, a selective colorimetric sensor based on starch functionalized
silver nanoparticles (St-Ag NPs) for rapid detection of Hg2+ in real samples was developed. The
environmentally friendly green approach was utilized to synthesize starch functionalized silver
nanoparticles (St-AgNPs). A multi-technique approach involving UV-Vis absorption spectroscopy,
Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and scanning electron microscope (SEM)
was used for the characterization of St-Ag NPs. These starch functionalized AgNPs were tested for
the detection of heavy metals at 25 ◦C. The screening process revealed clear changes in the AgNPs
color and absorption intensity only in the presence of Hg2+ due to the redox reaction between Ag0

and Hg2+. The color and absorption intensity of nanoparticles remain unchanged in the presence
of all the other tested metals ion. The proposed method has strong selectivity and sensitivity to
Hg2+ ions, with a detection limit of 1 ppm revealed by UV-visible spectrophotometry. The proposed
procedure was found to be successful for the detection of Hg2+ in real samples of tap water.

Keywords: green synthesis; nanotechnology; silver nanoparticles; surface plasmon resonance;
calorimetric detection; tap water

1. Introduction

During the last decade, the emerging field of plasmonic-based nanotechnology brought
a revolutionary track in the discipline of applied sciences due to many practical applications
of nanoparticles in the field of environmental sciences, such as wastewater treatment [1,2].
Heavy metal ions (M+), such as Cr3+, Zn2+, Ni2+, Cu2+, and Hg2+, are essentially mandatory
for the growth process of both animals and plants at appropriate concentrations. However,
these metal ions are harmful to living creatures at relatively high concentrations because of
their input in both human and animal bodies via biological food webs [3,4].

Mercury ion (Hg2+), which is widely distributed in the atmosphere, soil on the earth’s
surface, and even in water, is one of the most lethal and hazardous metal pollutants [5,6].
There are various sources of mercury such as the burning of coal in power plants, nat-
ural liberation of gases from earth surface during vulcanization, and metals extraction
process [7]. Hg2+ is a persistent pollutant because naturally, it cannot decompose in the
environment [8]. In water, fishes consume mercury as it is dissolved in water, and through
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the food web, this is the major way of mercury accumulation in humans [9]. It can damage
the brain, the nervous system, and the immune system [6].

Therefore, detection of poisonous metals in the aquatic environment and biological
system has become a crucial need of the present-day world [10]. During the last decade,
various methods have been developed for Hg2+ detection, including electrochemical meth-
ods [11], optical detections [12], atomic absorption spectroscopy, inductively coupled
plasma mass spectroscopy [13], and fluorescent spectroscopy [14]. However, most of these
approaches are inconvenient because the use of complicated instruments is painstaking
and time-consuming [15,16]. Therefore, the introduction of a logical technique that is not
just easy and cheap but also useful and reproducible, and able to sense the toxic metal
pollutants in the ecological samples, is greatly needed. For these mentioned problems,
approaches to low cost and rapid detection of mercury using silver nanoparticles (AgNPs)
or gold nanoparticles (AuNPs) are advantageous [17,18].

Synthesizing metallic nanoparticles (AgNPs and AuNPs) in an environmentally
friendly manner is a key step in nanotechnology. In the field of selective and sensitive de-
tection methods, the use of environmentally friendly nanotechnology has recently become
increasingly significant [19,20]. During the last decade, colorimetric sensors, in particular,
have a distinct advantage because of their versatility, rapidity, high selectivity, and ease
of use, which includes the ability to perform real-time qualitative [19] and quantitative
analysis [21,22].

Nanotechnology has the potential to boost life sciences, healthcare, and industrial
technology significantly. For example, Lax man et al. [23] presented an optical process for
careful recognition of Hg2+ depending upon the aggregation of AgNPs. Wang et al. [24]
reported a highly sensitive method for sensing Hg2+, ascorbic acid, and Cd2+ by using
trithiocy anuric acid gold NPs. Senapati and co-workers, in their work, showed the
use of tryptophan coated gold nanoparticles for selective and efficient detection of
Hg2+ [25]. Chai et al. [26] presented colorimetric detection of Pb2+ using glutathione
functionalized AuNPs. However, these approaches typically use some chemicals as
reducing agents that frequently produce toxic side products [27]. Some of them used
organic reagents as the functional selective reagents, which are unstable and easily
oxidized, while some tagging agents found it costly to use these techniques as sensors
for real life [28]. Additionally, the production processes of nanoparticles used in sensing
systems are complex [29]. These sensors are generally derivatives of fluorescent dyes,
usually harmful to the environment [30,31].

Colorimetric detection of particular analytes of interest by using AuNPs and AgNPs
is a common practice because of color changes which are simply viewed with naked eyes
instead of complicated instruments [32]. These nanoparticles are used as colorimetric probes
for sensing lethal metal ions from ecological samples via cheap and simple procedures [33].
Compared to AuNPs, silver nanoparticles have several benefits such as low cost, easy
preparation, etc. Further, AgNPs can also be oxidized by Hg2+, which causes color change
and decrease in the UV-visible UV spectrum absorption of the AgNPs.

Besides the other advantages, the role of surfactant during the synthesis of AgNPs
is very important. The starch and D-glucose are biomolecules that are non-toxic and
biocompatible ligands. Starch acts as a protecting agent as it contains many hydroxyl (–OH)
groups that will simply attach to the surface of AgNPs through the Ag-O bond and prevent
the accumulation of AgNPs [34]. The use of silver nitrate was reduced by D-glucose in the
presence of starch synthesizes nanoparticles (NPs). D-Glucose is an ecologically favorable
and mild reducing agent, which is activated in the presence of a basic catalyst.

In this paper, a fast and very selective colorimetric method was developed for the
detection of Hg2+ by using starch-functionalized AgNPs, with a green synthesis approach.
The addition of Hg2+ to AgNPs solution produces instant color change (dark yellow to
colorless) which can be seen by the naked eye. The selectivity of this detection system of
Hg2+ by using starch stabilized AgNPs is outstanding when compared with other metal
ions such as Pb2+, Al3+, Zn2+, Cu2+, and Fe3+. Additionally, the detection process of
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Hg2+ is outstanding even in the presence of a mixture of the mentioned heavy metal ions.
Furthermore, AgNPs were successfully employed for the detection of Hg2+ ion in real
water samples.

2. Materials and Methods
2.1. Chemicals

AgNO3, KOH, KCl, NaCl, FeCl3, ZnCl2, HgCl2, NiCl2·6H2O, CuSO4, and AlCl3 were
purchased from Sigma Aldrich. D-glucose and soluble starch ((C6H10O5)n) were also pur-
chased from Sigma Aldrich. Distilled water was used during the research. All the required
substances were received in pure form so there was no need for additional purification.

2.2. Synthesis of Starch-Stabilized AgNPs

In a typical synthetic procedure, 2 mL of D-glucose (0.1 M), 2 mL of starch (0.2 wt%),
and 0.02 mL of KOH (0.1 M) were added into 5 mL of AgNO3 (10 mM). After that, the
mixture was heated at 30 ◦C for 10 min with continuous stirring at (100 rpm). After that
formation of AgNPs was indicated by a color change from colorless to deep reddish yellow.
The basic steps involved during the synthesis process are mentioned in Scheme 1. This
nanoparticle dispersion was centrifuged at 1200 rpm to obtain solid particles. Finally, the
prepared nanoparticles were stored at 25 ◦C for further characterization.
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Scheme 1. Different steps involved in the preparation of AgNPs.

2.3. Characterization

The synthesized AgNPs were analyzed first by UV-vis spectrophotometer. UV-vis
absorption studies were done by using UV-1800 double beam spectrophotometer (Shi-
madzu, Kyoto, Japan), utilizing quartz cuvettes of 1.0 cm path length in the UV range from
200–800 nm. XRD was recorded on a Bruker D-8 powder X-ray diffractometer by Cu-K
radiation (λ = 0.15418 nm) over a range of 20–90◦ with a step size of 0.02◦. FT-IR spectra
were obtained by using FT-IR 8400S Shimadzu, Japan using KBr disk (4000–400 cm−1).

2.4. General Procedure for the Calorimetric Determination of Hg2+

For detection of Hg2+ using AgNPs dispersion, 1 mL (100 ppm) of aqueous solutions of
Pb2+, Cu2+, Al3+, Zn2+, Fe2+, Ni2+, and Hg2+ were added, respectively, into 1 mL of AgNPs
dispersion. To find out the detection limit, various concentrations of HgCl2 (1–100 ppm)
were prepared from the stock solution by quantitative dilution. Keeping the total volume
of mixture constant (2 mL), an equal volume of Ag-NPs and HgCl2 (each concentration)
were mixed. To check out the selectivity of the detection system 100 ppm aqueous solutions
of Pb2+, Cu2+, Al3+, Zn2+, Fe2+, Ni2+, and Hg2+ were prepared. 1 mL of every solution
was added into 1 mL solution of Hg2+ (100 ppm) and 1 mL of AgNPs dispersion. All the
solution and dilution processes were carried out at room temperature.
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To determine the binding stoichiometry of Hg2+ and AgNPs, Hg2+ (100 ppm) solution
ratios from 0.1 to 2 mL were mixed with AgNPs dispersion in opposite ratios of volume. To
find out the role of pH on the sensing study, pH of AgNPs was varied from 1 to 12. To study
the practical applications of the planned strategy, we used tap water for Hg2+ detection.
About 100 ppm Hg2+ solution was prepared in tap water, and then 1 mL of that dispersion
was mixed with AgNPs dispersion in tap water. All of these mixtures were kept at room
temperature for 10 min to monitor the effect of Hg2+ on AgNPs dispersion in tap water.

3. Results and Discussions
3.1. Visual Detection of AgNPs Synthesis

The color of the reaction mixture changed within 10 min from colorless to reddish
yellow (as shown in Figure 1A), after mixing starch, glucose, and KOH solution with
AgNO3 solution. Thus, Ag+ reduction was confirmed as the colorless silver nitrate solution
altered to yellowish-brown. It is assumed that the production of AgNPs is a redox reaction
where Ag+ is reduced to Ag0 with the oxidation of glucose to corresponding gluconic acid
which was later on confirmed through FT-IR.
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Figure 1. (A) UV spectra show Glucose, Starch, KOH, and AgNO3 and synthesized AgNPs, (B) XRD
image of synthesized silver nanoparticles. (C) FT-IR Spectrum of AgNPs and (D) SEM image of
synthesized AgNPs.

3.2. UV–Visible Absorption Spectroscopy

The synthesized AgNPs were analyzed by UV–visible absorption spectroscopy tech-
nique because of the surface plasmon resonance (SPR) phenomenon. When light waves
interact with free electrons present in the reduced AgNPs surface, plasmon resonance origi-
nates. For confirmation of the formation of AgNPs, UV spectra were recorded for a starch
solution, D-Glucose solution, and KOH solution, which do not show any characteristic
absorption due to the absence of SPR. UV–vis spectrum of the AgNPs suspensions shows an
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absorption maximum at 430 nm, as shown in Figure 1A. As a function of synthesis/reaction
time, the absorbance was found to increase and a maximum was observed after a reaction
time of 10 min (as depicted in Figure 1, green curve). Thus, the optimum reaction time for
the synthesis of AgNPs was found to be 10 min. Under the influence of high temperature,
the rate of reduction of Ag+ increases, and therefore the rapid synthesis of AgNPs could be
achieved [35].

3.3. X-ray Diffraction

A characteristic XRD pattern of synthesized AgNPs showed various reflections, at
38.2◦ (111), 44.3◦ (200), and 64.5◦ (220) as shown in Figure 1B. These sharp Bragg peaks
maybe produced due to the stabilization of nanoparticles by starch that acts as a capping
agent. The peak related to the (111) plane was more prominent than the rest of the planes,
signifying that the (111) plane was the major orientation in the face-centered cubic (fcc)
structure of AgNPs. The XRD results of AgNPs show a crystalline behavior similar to
previously reported literature [36].

3.4. FT-IR Analysis

FT-IR spectra were used to recognize the functional groups in different types of
compounds. For comparison, IR spectra were recorded for D-Glucose, starch, and AgNPs.
In spectra of D-glucose and starch, there is a wide peak at 3200–3500 cm−1, which reflects the
stretching vibration of OH group (i.e., hydrogen-bonded), and a sharp peak at 1725 cm−1

represents the C=O stretch of aldehyde group. The sharp peaks at 2900 cm−1 and 1100 cm−1

are the stretching vibrations of aldehyde C-H and C-O, respectively. Moreover, OH bending
vibration is reflected in the region of 1433 cm−1. In IR spectra of AgNPs, the peaks of OH
group stretching and bending are less intense. A sharp peak in the region of 1710 cm−1

appeared, which indicates the presence of the COOH group as shown in Figure 1C. It
means that during the formation of AgNPs, the C=O and OH groups of Starch and D-
Glucose cause the reduction of Ag+ ions from AgNO3 and itself oxidized into respective
acid. KumariJyoti et al. reported similar observations in their work [37].

3.5. Scanning Electron Microscopy

The surface morphology monitored by SEM images reveals various shapes in the form
of spherical AgNPs. Figure 1D shows the low and high magnification images of AgNPs.
One can observe that the particle size lies in the range of 1–100 nm. This may be due to the
availability of the different quantities of capping agents during their synthesis process [38].

3.6. Parametric Study of the Synthesis of AgNPs

The volume of AgNO3 (10 mM) (NN-A1 to NN-A5), starch (0.2%) (NN-A6 to NN-A10),
and glucose (0.1 M) (NNA-11 to NNA-15) varied from 1 to 5 mL as shown in Table 1. UV
spectra showed that absorption gradually increases with theAgNO3 volume ratio. This
finding can be associated with the rise in the redox reaction rate involving AgNO3 and
the OH groups of starch and glucose, whereas absorption gradually decreases with an
increase in the volume ratio of starch and glucose (as shown in Figure 2A–C) due to a
simple dilution effect.

Table 1. Experimental details for different volume ratios of AgNO3, starch, and glucose during the
synthesis of Ag-NPs.

Sample
No.

AgNO3
(mL)

Starch
(mL)

Glucose
(mL)

KOH
(mL)

Temperature
(◦C)

Stirring
(rpm)

Time
(min)

NN-A1 1 5 2 0.02 30 100 10
NN-A2 2 5 2 0.02 30 100 10
NN-A3 3 5 2 0.02 30 100 10
NN-A4 4 5 2 0.02 30 100 10



Coatings 2022, 12, 763 6 of 15

Table 1. Cont.

Sample
No.

AgNO3
(mL)

Starch
(mL)

Glucose
(mL)

KOH
(mL)

Temperature
(◦C)

Stirring
(rpm)

Time
(min)

NN-A5 5 5 2 0.02 30 100 10
NN-A6 5 1 2 0.02 30 100 10
NN-A7 5 2 2 0.02 30 100 10
NN-A8 5 3 2 0.02 30 100 10
NN-A9 5 4 2 0.02 30 100 10
NN-A10 5 5 2 0.02 30 100 10
NN-A11 5 2 1 0.02 30 100 10
NN-A12 5 2 2 0.02 30 100 10
NN-A13 5 2 3 0.02 30 100 10
NN-A14 5 2 4 0.02 30 100 10
NN-A15 5 2 5 0.02 30 100 10
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Figure 2. UV spectra relating to AgNPs’ formation at diverse volume ratios of (A) 10 mM AgNO3

(1 to 5 mL), (B) 0.1 M glucose, (C) 0.2% starch, and (D) at 5 mL of different concentration of AgNO3,
(E) at 2 mL of various concentrations of starch, (F) at 2 mL of various concentrations of glucose.

The concentration of AgNO3 (NN-A16 to NNA-20) varied from 2 to 10 mM, while the
concentration of glucose (NNA-21 to NNA-25), starch (NN-A26 to NN-A30), and KOH
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(NNA-31 to NNA-35) varied from 0.1 to 0.5 M, as shown in Table 2. UV spectra show the
maximum absorption at 430 nm, which gradually increases with an increase in concern
of AgNO3 (as shown in Figure 2D–F). It is expected that a large number of Ag+ would
be available during the redox reaction, resulting in a higher yield of AgNPs, which is
responsible for the increase in the absorption peak [39]. A similar behavior was observed
in the UV spectra of starch, glucose, and KOH, where absorption at 430 nm gradually
increases with an increase in concentrations. This result is due to an increase in the rate
of nanoparticle synthesis in a highly basic environment and adequate availability of the
reducing and stabilizing agent. However, in concentrated solutions the concentration
of OH increases, causing aggregation on the surface AgNPs which increases in peak
intensity [29,40].

Table 2. Experimental details for different concentrations. of AgNO3, glucose, starch, and KOH in
the synthesis of AgNPs.

Sample
No

AgNO3
Conc.
(mM)

Starch
Conc.
(%)

Glucose
Conc.
(M)

KOH
Conc.
(M)

Time
(min)

Temp
(◦C)

Stirring
(rpm)

NN-A16 10 0.2 0.1 0.1 10 30 100
NN-A17 2 0.2 0.1 0.1 10 30 100
NN-A18 4 0.2 0.1 0.1 10 30 100
NN-A19 6 0.2 0.1 0.1 10 30 100
NN-A20 8 0.2 0.1 0.1 10 30 100
NN-A21 10 0.2 0.1 0.1 10 30 100
NN-A22 10 0.2 0.2 0.1 10 30 100
NN-A23 10 0.2 0.3 0.1 10 30 100
NN-A24 10 0.2 0.4 0.1 10 30 100
NN-A25 10 0.2 0.5 0.1 10 30 100
NN-A26 10 0.1 0.1 0.1 10 30 100
NN-A27 10 0.2 0.1 0.1 10 30 100
NN-A28 10 0.3 0.1 0.1 10 30 100
NN-A29 10 0.4 0.1 0.1 10 30 100
NN-A30 10 0.5 0.1 0.1 10 30 100
NN-A31 10 0.2 0.1 0.1 10 30 100
NN-A32 10 0.2 0.1 0.2 10 30 100
NN-A33 10 0.2 0.1 0.3 10 30 100
NN-A34 10 0.2 0.1 0.4 10 30 100
NN-A35 10 0.2 0.1 0.5 10 30 100

A controlled experiment without glucose and starch was carried out. UV spectrum
shows that in the absence of glucose and starch absorption, 430 nm is the minimum (as
shown in Figure 3B,C). This might be due to a slight reduction of Ag+ to Ag0 in the absence
of glucose that acts as a reducing agent, whereas starch act as a stabilizing agent. In the
absence of starch AgNPs are unstable and get aggregated, which results in a decrease in
surface plasmon resonance peak [34]. AgNPs can form even in the absence of KOH and
UV spectra reveals that absorption of AgNPs gradually increases (as given in Figure 3D),
with a raise in heating time in the absence of KOH.

It can be concluded that in the absence of base pH the reaction mixture was low, hence
the rate of reduction of AgNO3 to AgNPs was time-consuming [41].

3.7. Possible Mechanism of the Formation of AgNPs

This reaction is an example of hydrolysis of starch that is catalyzed by a base (KOH)
giving simpler molecules, like glucose. Glucose is used as a reducing agent for silver
nitrate to silver metal. During the reaction, the aldehyde group of glucose reduces Ag+ to
Ag0 and is oxidized to gluconic acid (as shown in Scheme 2), while the starch stabilizes
silver nanoparticles.



Coatings 2022, 12, 763 8 of 15

Coatings 2022, 12, x FOR PEER REVIEW 8 of 16 
 

 

NN-A27 10 0.2 0.1 0.1 10 30 100 

NN-A28 10 0.3 0.1 0.1 10 30 100 

NN-A29 10 0.4 0.1 0.1 10 30 100 

NN-A30 10 0.5 0.1 0.1 10 30 100 

NN-A31 10 0.2 0.1 0.1 10 30 100 

NN-A32 10 0.2 0.1 0.2 10 30 100 

NN-A33 10 0.2 0.1 0.3 10 30 100 

NN-A34 10 0.2 0.1 0.4 10 30 100 

NN-A35 10 0.2 0.1 0.5 10 30 100 

A controlled experiment without glucose and starch was carried out. UV spectrum 

shows that in the absence of glucose and starch absorption, 430 nm is the minimum (as 

shown in Figure 3B,C). This might be due to a slight reduction of Ag+ to Ag0 in the absence 

of glucose that acts as a reducing agent, whereas starch act as a stabilizing agent. In the 

absence of starch AgNPs are unstable and get aggregated, which results in a decrease in 

surface plasmon resonance peak [34]. AgNPs can form even in the absence of KOH and 

UV spectra reveals that absorption of AgNPs gradually increases (as given in Figure 3D), 

with a raise in heating time in the absence of KOH. 

 

Figure 3. UV spectrum shows AgNPs formation, (A) at 0.02 mL of different concentrations of KOH, 

(B) without 2 mL of glucose, (C) without 2 mL of starch, (D) without 0.02 mL of KOH. 

It can be concluded that in the absence of base pH the reaction mixture was low, 

hence the rate of reduction of AgNO3 to AgNPs was time-consuming [41]. 

3.7. Possible Mechanism of the Formation of AgNPs 

This reaction is an example of hydrolysis of starch that is catalyzed by a base (KOH) 

giving simpler molecules, like glucose. Glucose is used as a reducing agent for silver ni-

trate to silver metal. During the reaction, the aldehyde group of glucose reduces Ag+ to 

Ag0 and is oxidized to gluconic acid (as shown in Scheme 2), while the starch stabilizes 

silver nanoparticles. 

Figure 3. UV spectrum shows AgNPs formation, (A) at 0.02 mL of different concentrations of KOH,
(B) without 2 mL of glucose, (C) without 2 mL of starch, (D) without 0.02 mL of KOH.

Coatings 2022, 12, x FOR PEER REVIEW 9 of 16 
 

 

 

 

Scheme 2. Possible route for the synthesis of AgNPs. 

3.8. Calorimetric Determination of Hg2+ 

AgNPs have shown their potential in visual as well as SPR detection-based sensing 

of heavy metals. Herein, AgNPs are used for Hg2+ sensing in water. The decolorization of 

AgNPs and decrease in their UV absorption peak intensity is due to the redox reaction 

that causes the aggregation of the nanoparticles. During the reaction, Ag0 from AgNPs is 

oxidized to Ag+ while Hg2+ is reduced to Hg0, as confirmed by the standard electrode po-

tential values of Hg2+/Hg (E0 = 0.85 V) and Ag+/Ag (E0 = 0.79 V). Furthermore, because Hg2+ 

has a greater reduction potential than Ag+, the redox reaction 2Ag+ 2Hg2+ = 2Ag+ + Hg2+ 

occurs spontaneously. As illustrated for the original colorless solution AgNO3, oxidizing 

Ag0 to Ag+ changes the color of AgNPs from yellowish brown to colorless (Scheme 3). The 

colorimetric detection of mercury by AgNPs is based on this redox process. Ag (0) AgNPs 

to Ag+ cannot oxidize the bulk of transition metals, alkaline, and alkaline earth metals due 

to their lower potential than Ag+, allowing for extremely selective Hg2+ analyses. Thus, the 

oxidation of AgNPs leads to the loss of its characteristic color and a decrease in its UV 

absorption peak intensity. 

This revised mechanism promotes the mechanisms previously proposed [42–45]. 

However, after the addition of Hg ions, some colorimetric mercury detection methods 

with various surfactant or functional AgNPs might yield a colored mixture that would 

suggest a distinct reaction mechanism. It is found that the role of surfactant is very im-

portant during the sensing process [46]. Instead of a direct reaction between Hg2+ ions and 

Ag(0) of AgNPs, the interaction between Hg ions and capping agents (gluconic acid) to 

form larger nanoparticles that lead to aggregation plays a crucial role in these reactions. 

The interaction of Hg2+ ions and Ag(0) of AgNPs in the presence of gluconic acid as a 

surfactant is shown in Scheme 3. 

Scheme 2. Possible route for the synthesis of AgNPs.

3.8. Calorimetric Determination of Hg2+

AgNPs have shown their potential in visual as well as SPR detection-based sensing of
heavy metals. Herein, AgNPs are used for Hg2+ sensing in water. The decolorization of
AgNPs and decrease in their UV absorption peak intensity is due to the redox reaction that
causes the aggregation of the nanoparticles. During the reaction, Ag0 from AgNPs is oxi-
dized to Ag+ while Hg2+ is reduced to Hg0, as confirmed by the standard electrode potential
values of Hg2+/Hg (E0 = 0.85 V) and Ag+/Ag (E0 = 0.79 V). Furthermore, because Hg2+

has a greater reduction potential than Ag+, the redox reaction 2Ag+ 2Hg2+ = 2Ag+ + Hg2+
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occurs spontaneously. As illustrated for the original colorless solution AgNO3, oxidizing
Ag0 to Ag+ changes the color of AgNPs from yellowish brown to colorless (Scheme 3). The
colorimetric detection of mercury by AgNPs is based on this redox process. Ag (0) AgNPs
to Ag+ cannot oxidize the bulk of transition metals, alkaline, and alkaline earth metals due
to their lower potential than Ag+, allowing for extremely selective Hg2+ analyses. Thus,
the oxidation of AgNPs leads to the loss of its characteristic color and a decrease in its UV
absorption peak intensity.
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This revised mechanism promotes the mechanisms previously proposed [42–45]. How-
ever, after the addition of Hg ions, some colorimetric mercury detection methods with
various surfactant or functional AgNPs might yield a colored mixture that would suggest
a distinct reaction mechanism. It is found that the role of surfactant is very important
during the sensing process [46]. Instead of a direct reaction between Hg2+ ions and Ag(0) of
AgNPs, the interaction between Hg ions and capping agents (gluconic acid) to form larger
nanoparticles that lead to aggregation plays a crucial role in these reactions. The interaction
of Hg2+ ions and Ag(0) of AgNPs in the presence of gluconic acid as a surfactant is shown
in Scheme 3.

3.8.1. Screening of Heavy Metals

Nanoparticles’ (NPS) behavior towards heavy metals was monitored by UV-Vis spec-
troscopy. To estimate the detection tendency of AgNPs towards heavy metals, 1 mL of
AgNPs was mixed with 1 mL of aqueous solutions of heavy metals (100 ppm) under the
experimental conditions reported in Table 3.

The addition of Hg2+ resulted in the destruction of AgNPs that was observable, as
after the addition of Hg2+ in AgNPs, the solution suddenly changes its color from reddish
yellow to colorless, as shown in vials Figure 4A. UV-Vis spectra reveals broadness and
hypochromic shift in the plasmon resonance band. AgNPs dispersion shows utmost
absorption intensity at 430 nm, which is dismissed by the addition of Hg2+ as shown in
Figure 4A. All other metals, including Cu2+, Na+1, Cr+3,Al3+, Zn2+, Fe2+, Pb+2, and Ni2+,
did not make any change in the color of AgNPs as well as in the UV spectrum. Hg2+

was the only metal that showed clear changes in color and absorption intensity of AgNPs,
which may be due to the redox reaction occurring between Ag0 and Hg2+. These results
reveal outstanding selectivity over a variety of heavy metals, thus AgNPs have binding
sites for Hg2+ [42].
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Table 3. Experimental details for the screening of different heavy metals by AgNPs.

Sample No
Amount of

Ag NPs
(mg)

Heavy
Metals

Pollutants
Conc
(ppm)

Sensing
Time
(min)

Temperature
(◦C) pH

Absorption
Maxima

(a.u.)

01 2 - 100 10 30 5 2.032

02 2 Fe2+ 100 10 30 5 1.778

03 2 Na1+ 100 10 30 5 1.682

04 2 Cr3+ 100 10 30 5 1.732

05 2 Cu2+ 100 10 30 5 1.917

06 2 Ni2+ 100 10 30 5 1.994

07 2 Zn2+ 100 10 30 5 1.789

08 2 Pb2+ 100 10 30 5 1.881

09 2 Al3+ 100 10 30 5 1.827

10 2 Hg2+ 100 10 30 5 0.588
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3.8.2. Effect of Hg2+ Concentration

The quantitative estimation of the detection limit of Hg2+ ions sensing was stud-
ied by altering the concentrations of these Hg2+ (1−100 ppm) while keeping the same
concentration of AgNPs at the same laboratory circumstances, as shown in Table 4.
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Table 4. Experimental details for sensing of different concentrations of Hg2+ by Ag NPs.

Sample
No

Amount of
Ag NPs

(mg)

Hg2+ Conc
(ppm)

Sensing
time
(min)

Temperature
(◦C) pH

Absorption
Maxima

(a.u.)

01 2 - 10 30 5 2.722

02 2 1 10 30 5 1.981

03 2 10 10 30 5 1.661

04 2 20 10 30 5 1.610

05 2 30 10 30 5 1.587

06 2 40 10 30 5 1.431

07 2 50 10 30 5 1.406

08 2 60 10 30 5 1.278

09 2 70 10 30 5 1.137

10 2 80 10 30 5 0.831

11 2 90 10 30 5 0.665

12 2 100 10 30 5 0.511

The surface plasmon resonance band of the AgNPs revealed that mixing of Hg2+ ions
in AgNPs solutions produces a steady hypochromic shift in the surface plasmon resonance
band at 430 nm. The extent of the shift in the direction of the lower-intensity depends
upon the concentrations of Hg2+ ions, as shown in Figure 4B. The decrease in absorbance
intensity was observed by an increase in the concentration of Hg2+ ions (1–100 ppm). It can
be seen from figure that even 1 ppm concentration of Hg2+ produces significant reduction
in the absorption intensity of AgNPS. The value of the linear regression coefficient (R2) for
the system under observation was 0.998, with the theoretical detection limit up to 0.2 ppm
as shown in Figure 4C. Table S1 shows the comparison of our proposed method with
some recent works published in the literature (Supporting Information). These phenomena
corroborate with previous results [47].

3.8.3. Interference Study with Other Metal Ions/Selectivity of the Test

To check the selectivity of the above method, 100 ppm aqueous solutions of Na+1,
Pb2+, Cu2+, Al3+, Cr+3 Zn2+, Fe2+, Ni2+, and Hg2+ were prepared. Keeping the total volume
of mixture constant (3 mL), an equal volume of AgNPs, Hg2+ (100 ppm), and interfering
metals solutions were mixed and kept at room temperature to monitor the effect. After a
few minutes, the solutions of AgNPs and Hg2+ became colorless even in the presence of all
metal ions. The hypochromic shift was observed by UV spectrum as shown in Figure 4D,
which indicates that AgNPs can detect Hg2+ ions with high sensitivity even in the presence
of an equimolar amount of other interfering cations of any other metal [48].

3.8.4. Effect of pH on Detection of Hg2+

If the circumstances of the detection scheme are altered, then there is a noticeable
effect on Hg2+ sensing. The variation in pH of the system results in aggregation and
destabilization of AgNPs. The pH of the system was altered from 2 to10 by using 0.1 M
KOH, and 0.1 M HCl and UV spectra were recorded for the adjusted pH values. The results
indicated that AgNPs are stable in basic medium while in acidic medium (pH less than
5) the solution become colorless, and at the same time UV spectra indicate the minimum
absorption intensity, as shown in Figure 5A. The stability of AgNPs in basic medium is due
to an increase in the rate reduction of Ag+ ions by OH ions from the base, which results in
an augmented formation of AgNPs that is degraded by Hg2+ ions. It means that in basic
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medium Hg2+ are not able to degrade the maximum amount of highly stable AgNPs, while
they succeed in acidic conditions.
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3.8.5. Determination of Required Stoichiometry of AgNPs and Hg2+

The binding stoichiometry of the AgNPs and Hg2+ was detected by Job’s plot method [49].
Different mole fraction ratios of Hg2+ and AgNPs were tested. The absorption intensity
at 430 nm obtained via UV was plotted against the molar fraction of Hg2+ (100 ppm) to
monitor the results. The mole fraction of the highest absorption intensity revealed the
binding stoichiometry of the compound. As shown in Figure 5B, 1 mL of Hg2+ solution
and 1 mL of AgNPs suspension were present in the sample, revealing minimum absorption
intensity. The results suggest that AgNPs forms a 1:1 complex (AgNPs:Hg2+), which means
that the best detection of heavy metals occurs when equal moles of AgNPs and Hg2+ are
present [50]. The increased stability of AgNPs in alkaline pH might be due to stronger
protection of AgNPs by deprotonated OH groups in the starch [51].

Finally, as shown in Table 2, the proposed method was applied to real tap and lake
water samples. In order to verify the recovery and accuracy of the procedure, these samples
were also spiked with known levels of Hg2+. A volume of 1 mL of Hg2+ solution was
added into 1 mL of tap water sample of AgNPs and after some time the solution became
colorless, as was done for Hg2+ sensing in distilled water. Moreover, UV-visible spectra
revealed that the peak became broadened at 430 nm (as shown in Figure 6) and the same
results observed in distilled water are obtained. Hence, AgNPs are found to be effective for
the detection of Hg2+ in tap water samples [52].
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4. Conclusions

In this study, we have developed a facile and green approach for the synthesis of starch-
coated silver nanoparticles-based colorimetric sensor for the selective recognition of Hg2+

in real samples. Various parameters that regulate the synthesis and stabilization of AgNPs
were studied and optimized. The newly synthesized nanoparticles were characterized
using various spectroscopic techniques. Moreover, we established the colorimetric as
well as SPR detection-based sensing for Hg2+ by starch stabilized AgNPs. The strategy
is focused on a redox reaction between Starch-AgNP and Hg2+, which results in a shift
in color from yellow to colorless nanoparticles dispersions and a decrease in AgNPs SPR
uptake. Additionally, this approach allows a wide range of linear detection, while avoiding
interference from other metal ions. The synthesized AgNPs showed admirable selectivity
for Hg2+, even in the occurrence of many other heavy metals. The proposed calorimetric
chemosensor can be useful for laboratory tap water with a detection limit of 0.1 ppm.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/coatings12060763/s1, Table S1: Comparison of different methods
using nanoparticles as a sensing probe for Hg+2 determination. References [53–55] are cited in the
supplementary materials.
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