ELSEVIER

Contents lists available at ScienceDirect

Genomics

journal homepage: www.elsevier.com/locate/ygeno

Assessing temporal and geographic contacts across the Adriatic Sea through the analysis of genome-wide data from Southern Italy

Alessandro Raveane ^{a,b,c,*}, Ludovica Molinaro ^d, Serena Aneli ^{e,f}, Marco Rosario Capodiferro ^{a,g}, Luciana de Gennaro ^h, Linda Ongaro ^{d,g}, Nicola Rambaldi Migliore ^a, Sara Soffiati ^a, Teodoro Scarano ⁱ, Antonio Torroni ^a, Alessandro Achilli ^a, Mario Ventura ^h, Luca Pagani ^{d,e}, Cristian Capelli^{j,k}, Anna Olivieri ^a, Francesco Bertolini ^b, Ornella Semino ^{a,1,*}, Francesco Montinaro ^{d,h,j,1,*}

^a Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy

^b Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy

^c Human Technopole, 20157 Milan, Italy

^e Department of Biology, University of Padua, 35121 Padua, Italy

^f Department of Public Health Sciences and Pediatrics, University of Turin, 10126 Turin, Italy

^g Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland

h Department of Biology and Genetics, University of Bari, 70126 Bari, Italy

ⁱ Department of Cultural Heritage, University of Salento, 73100 Lecce, Italy

^j Department of of Zoology, University of Oxford, Oxford, UK

^k Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy

ARTICLE INFO

Keywords: Population genomics Genetic population structure Ancestry aDNA Selection Mediterranean area

ABSTRACT

Southern Italy was characterised by a complex prehistory that started with different Palaeolithic cultures, later followed by the Neolithization and the demic dispersal from the Pontic-Caspian Steppe during the Bronze Age. Archaeological and historical evidences point to a link between Southern Italians and the Balkans still present in modern times. To shed light on these dynamics, we analysed around 700 South Mediterranean genomes combined with informative ancient DNAs. Our findings revealed high affinities of South-Eastern Italians with modern Eastern Peloponnesians, and a closer affinity of ancient Greek genomes with those from specific regions of South Italy than modern Greek genomes. The higher similarity could be associated with a Bronze Age component ultimately originating from the Caucasus with high Iranian and Anatolian Neolithic ancestries. Furthermore, extremely differentiated allele frequencies among Northern and Southern Italy revealed putatively adapted SNPs in genes involved in alcohol metabolism, nevi features and immunological traits.

1. Introduction

Southern Italy was one of the first European regions to be inhabited by our species. One of the oldest archaeological remains attributed to *Homo sapiens*, has been in fact excavated in Apulia (Grotta del Cavallo \sim 45 thousand years ago - kya) and recently associated with the Uluzzian culture [1], also reported in the Middle and Upper Palaeolithic in Greece [2–4], although other interpretations have been proposed [5]. At the end of the Last Glacial Maximum, approximately 20 kya, populations from South-Eastern Europe and West Asia partially replaced continental European Hunter Gatherers (HG) [6,7]. Recently, ancient DNA (aDNA) analyses found support of an early arrival of European HG with high affinity to the so-called Villabruna Cluster (or Western Hunter Gatherers - WHG). The earliest evidence of this change has been recorded in the genomes of remains from North-Eastern Italy dated about 17 kya. This shift has been associated with e demographic

¹ These authors contributed equally.

https://doi.org/10.1016/j.ygeno.2022.110405

Received 28 February 2022; Received in revised form 1 June 2022; Accepted 9 June 2022 Available online 13 June 2022

0888-7543/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^d Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia

^{*} Corresponding authors.

E-mail addresses: alessandro.raveane01@universitadipavia.it (A. Raveane), ornella.semino@unipv.it (O. Semino), francesco.montinaro@gmail.com (F. Montinaro).

transition occurring between Early to Late Epigravettian in Southern Europe around 17 kya [8,9] as confirmed by archaeological data [10]. These observations highlighted the existence of a connection between Western and Eastern Europe well before Neolithic times, with Italy playing the role either of a bridge or a refuge [8].

Neolithization revolutionised the culture and the demography of continental Europe, with Southern Italy being the first colonised place West of the Adriatic Sea [11-13]. Recently, the availability of ancient Southern European genomes helped in disentangling the dynamics of the early stages of the Pontic Steppe populations diffusion that occurred in the Bronze Age period [14,15]. Differently from the rest of Europe, Greece and Southern Italy appear to have been less impacted by this demic dispersal, being characterised by an additional Iranian-related ancestry [16-19]. However, the lack of Southern Italian ancient genomes from the Neolithic period keeps open essential questions regarding this major cultural and demographic transition in the region. Starting from 5.5 kya archaeological evidence allows to outline a network of cultural connections interacting along the Adriatic-Ionian axis, operating between two or more different core areas and radiating across trajectories of link and expansion which likely triggered small human groups movements [20,21]. As a matter of fact, from about 4.3 to 4 kya, the well-know Cetina-type cultural elements, also related to the Bell Beaker phenomenon in the North-Western Balkans, played an active role spreading from the Dalmatian core area Southwards across the Adriatic in Northern Apulia and South-Eastern Italy, also influencing the Ionian Islands and Western Greece [22].

Later on, starting from 4 kya, a flourishing and continuous cultural relationship was established between Southern Italy and Aegean communities especially from the Recent Bronze Age (3.3 to 3.2 kya) onward [23,24]. Although the demographic extent of these contacts is not clear, some valuable insights on mobility could be inferred from ceramic crafts. The most recent analytical evidences, relating to the Aegean-type pottery from the core sites of Punta di Zambrone (Tyrrhenian Calabria) and Roca Vecchia (Southern Adriatic Apulia), allow to highlight a strong connection with the Western Greek regions (Ionian Islands, Acarnania, Achaea and Elis) and, to a lesser extent, with Western Crete [25].

Precisely, following the Bronze Age, in a period between the socalled Greek "Dark Ages" [26] and the Archaic Greece (2.7 to 2.5 kya), Southern Italy became a hotspot for the foundation of Greek colonies. The first colonies were set in Campania and Sicily, possibly by settlers arriving from Eastern Greece (Euboea island) around 2.8 kya, soon followed by colonies in Calabria, Basilicata and Apulia [27–30], encompassing an area later to be known as *Magna Grecia*. Between 2.7 to 2.6 kya, some of these settlements, specifically in South-Eastern Sicily (Siracusa and Megara Iblea) and Apulia (Taranto), were attributed to Eastern Peloponnesian founders [31,32].

The nature of the early settlements, the scale of their demographic impact and genetic legacy are still a matter of debate. Some genetic studies [33,34] have tried characterise the demographic impact of these processes in Southern Italy using present-day Italian populations, but none of them had the intent of finely dissecting these ancient components. Furthermore, a recent aDNA study [35] showed that Iron Age Apulians were not yet superimposable to contemporary Southern Italians, pointing to later processes as keys for the understanding of present-day genetic diversity in Italy.

As a consequence of this complex demographic scenario, Italy harbours the largest degree of genetic population structure identified in Europe so far [17], making its population a valuable asset for adaptation studies [36–38].

In this study, we performed a genome-wide analysis, unveiling the contemporary genetic structure of present-day South and Eastern European populations, and highlighting recent and past interactions between Southern Italy and Greece. Furthermore, by integrating available ancient genomes, we finely characterised the genetic similarities between modern-day Southern Italians and different Eurasian ancient groups. Finally, we searched for putatively selected genomic regions by evaluating differences in allele frequencies between Southern and Northern Italians, identifying SNPs potentially under selection that are linked with immunological and dietary traits.

2. Results

2.1. Southern Italian genetic structure

Genetic stratification of Eurasian individuals, inferred by *ADMIX*-*TURE* (K = 9), revealed the existence of three main components virtually shared by all the Europeans included in our dataset (Fig. 1A, Fig. S1). These were structured as follows: one (depicted in salmon in Fig. 1A), modal in Sardinia, was also present at high percentages in Italian and Greek present-day populations; another (yellow), most common in Germany and Slovakia, occurred at similar proportions across Greece, Kosovo and the Italian Peninsula. An additional component (green) is modal in the Caucasus area and also largely present in Italy and Greece.

f4 statistics showed a higher allele sharing of modern Caucasus individuals with present-day Central Europeans than with South-Eastern Europeans, possibly as the result of Bronze Age migrations (Table S1).

The first two PCs in the Principal Component Analysis (PCA) highlight genetic similarities between Southern Italians and the majority of the analysed Greek populations, with the only exception of the Peloponnesian groups (for sample location see Fig. S2) previously identified as peculiar groups [39], which form a tight cluster also when the third PC is evaluated (Fig. S3).

In order to further dissect the degree of affinity between populations across the Adriatic Sea, we applied a clustering approach on the first ten PCs of a PCA performed on a subset composed of 682 modern-day individuals (Fig. 1B, Fig. S4). We detected 12 clusters summarising the genetic similarity among these populations (Fig. S4), nine of them are found in Italy. Present-day Apulians and Calabrians are characterised by similar profiles, with three clusters (cl. 1, 4, 6) grouping most of their individuals. Western Sicilians mainly fall in cl. 4, which is virtually absent in Eastern Sicily, but it is modal in the Western Peloponnese. Cl. 6 is the second most represented cluster in Apulia, Calabria and Sicily and is found also in Western Peloponnese. Notably, cl. 1 is found at moderate frequencies (from $\sim 16\%$ to $\sim 23\%$) in the whole Southern Italy, is rare in the Western part of Peloponnese (absent in all Western Peloponnese with the exception of Messenia), but it is present in high proportions on its Eastern part (i.e. Laconia \sim 36%), Greece-Macedonia (\sim 33%) and Kosovo (~ 42%). Interestingly, a substantial proportion of Sicilians (between ~ 16 to $\sim 30\%$), are part of a cluster which includes Northern and Central Italian areas (cl. 9), and is absent in Greece and Peloponnese. East Sicily and Apulia are the only Italian groups with individuals assigned to a specific cluster observed in Tsakonians (North and South) (cl. 3). Similarly, one individual (out of 17) from Calabria and two Sardinians (out of 24) were assigned to a cluster (cl. 5) composed mainly of the Deep Mani and Taygetos samples, which were previously described as populations that had experienced genetic drift [39].

2.2. Modelling the relationship between modern Southern Italians and ancient Eurasians

We evaluated the genetic variation in Southern Italy with respect to ancient groups assembling a dataset composed of 138 ancient Eurasian individuals dating between the Palaeolithic and the Iron Age and 184 ancient Italian genomes from Palaeolithic to Middle Ages.

Ancient genetic profiles were preliminarily investigated through PCA by projecting ancient genotypes onto the first two eigenvectors inferred on modern individuals (Fig. 2A). Hunter Gatherers from West (WHG) and East (EHG) Europe cluster on the right side of the PCA delineating a West to East cline along the second PC, with Italian HGs being at one end of this cluster, possibly as the results of genetic drift after their arrival in the Peninsula \sim 17 kya [8]. Most of the individuals enriched in "Neolithic ancestry" are placed close to the genetic variability of

Fig. 1. Admixture and genetic relatedness in modern South-Eastern Europeans.

A) *ADMIXTURE* plot for K = 9 (lowest CV error) and 34 populations. Populations are ordered according to their geographical longitude. B) Barplots represent the proportion of individuals assigned to a specific cluster (pie in the inset) by the mclust clustering approach (see Fig. S4). Bars are placed on the population geographic origin.

present-day Sardinians, with the formation of two different groups characterised by high Anatolian Neolithic ancestry, as previously observed [40,41]. One group of samples is composed mainly by Sardinians from the Neolithic, Copper and Bronze Age together with Iberians from the Neolithic and Copper Age. This cluster also included few North/Central Italians from Copper and Bronze Age and British Isles populations from Neolithic period. The other group is mostly formed by Neolithic individuals from Anatolia, Central Italy, Sicily and Greece. Notably, modern-day Sardinians do not completely overlap with either of the two groups, confirming the lack of genetic continuity in the island. If the two groups reflect the so-called "Mediterranean" and "Danubian" route of farming expansion [42,43], these observations may indicate a major contribution of the latter in Sardinia, with later demographic events forming the genetic variability observed in the island nowadays. However, the observation that the PCA grouping is somewhat correlated to the magnitude of HG contribution, may also support the hypothesis of different admixture scenarios in different Neolithic groups. In detail, a Neolithic individual from Greece is close to European Early Neolithic samples and forms a cluster including Anatolians and two Peloponnesians from the Neolithic Age.

Modern Italians, with the exception of Sardinians, are very different from the Mesolithic, Neolithic and Bronze Age individuals from the same area, with some resemblance only in Iron Age samples [44]. A notable exception is the fact that the Iron Age Southern Italians here investigated do not overlap with the genetic variation observed in modern-day individuals from the same area, in line with previous observations [35]. Interestingly, three out of the five Neolithic Peloponnesians, together with the totality of Minoans and Mycenaeans included in our dataset, plot towards the genetic variability of people currently inhabiting Southern Peloponnese (Maniots and Tsakonians) and Southern Italian

Fig. 2. Ancient Eurasian genomes on European genetic variation. A) PCA results from present-day Europeans (not black-bordered symbols) with ancient individuals projected on the first two components. Label of the population is shown for modern individuals who have been indicated with grey not-filled symbols and it is placed in correspondence of the median values of the first two principal components (PCs) of those individuals. Smaller symbols refer to ancient Italian genomes B) Zoom in of the PCA corresponding to the rectangle shown in panel A. Label codes can be found in Table S4. C) Supported *qpAdm* proportions for the main ancestral populations of present-day South-Eastern Europeans. D) Modelling of ancestry proportions using a Steppe EMBA ancestry and Europe_EN instead of WHG-EHG and Anatolia_N, respectively, as indicated in the legend. Colours are as in A). Asterisk refers to populations for which the model with only the three ancestral populations of D) was not significative.

regions (Sicily, Calabria and Apulia) (Fig. 2B). Modern Southern Italians are closer to Southern European Neolithic and Bronze Age samples (Neolithic Peloponnesians and Minoans) than most modern Peloponnesian groups, with the exception of the Deep Mani and Taygetos individuals (Fig. 2B).

The affinity between Southern Italians and ancient samples was also investigated by the *f*-statistics. First, we tested the affinity symmetry of Northern Italians and other Italian groups (OIGs) with respect to Anatolia Neolithic (AN) samples. All the *f*4 (Mbuti, AN, OIG, Lombardy) show a significantly higher affinity between Lombardy and AN, with the only exception of Sardinia (Table 1). This pattern is also evident when Bronze Age Greeks (Table 1) or ancient Steppe groups (Table S2) are used in place of AN. These observations suggest that populations from Central and Southern Italy had a lower contribution from AN than Lombardy, or alternatively, that Central and Southern Italians received contributions from other different groups, possibly associated with present-day Middle Eastern or African regions [17,45,46].

Except for East Sicily and Calabria, no significant results were detected for the combination f4 (Mbuti, Steppe, OIG, DeepMani), suggesting similar Steppe contributions for Southern Italian populations and Maniots. In contrast, replacing Deep Mani with other groups from different Peloponnesian areas resulted in the latter showing a higher affinity to Steppe ancestry than present-day Southern Italians (Table S2).

We further explored the admixture model of Southern Italian groups using *qpAdm*, which fits a vector of *f4* values summarising the relationships of test and source groups (left populations) to a set of right populations. First, we used the main ancestral populations of presentday Europeans (Anatolia_N, WHG, Iran_N and EHG) [14,47] as

Table 1

f4-outgroup statistics to compare the relationships between Neolithic and Greek Bronze Age samples with Northern Italians and Sardinians.

Outgroup	Ancient sources	OIG ^a	North Italy	f4	SD	Z
Mbuti	Anatolia_N	Abruzzo		0.000591	0.000196	3.02
		Calabria		0.001111	0.000172	6.442
		EastSicily		0.001381	0.000177	7.789
		Apulia		0.000915	0.000153	5.995
		Sardinia		-0.001415	0.000177	-7.98
		Sicily		0.001393	0.000349	3.992
		Tuscany		0.000436	0.000138	3.172
		WestSicily	Lombardy	0.001421	0.000171	8.321
	Minoan	Abruzzo		0.000839	0.000235	3.573
		Calabria		0.001392	0.000212	6.576
		EastSicily		0.001676	0.000218	7.683
		Apulia		0.001016	0.000183	5.562
		Sardinia		-0.000835	0.000215	-3.884
		Sicily		0.001343	0.000433	3.099
		Tuscany		0.000582	0.00017	3.417
		WestSicily		0.001574	0.000206	7.628
	Mycenaean	Abruzzo		0.00077	0.000372	2.068
		Calabria		0.000832	0.000335	2.486
		EastSicily		0.001749	0.000348	5.025
		Apulia		0.001128	0.000299	3.772
		Sardinia		-0.000666	0.000339	-1.968
		Sicily		0.002023	0.000672	3.008
		Tuscany		0.000668	0.00028	2.387
		WestSicily		0.00142	0.000344	4.13

^a Other Italian Group

Fig. 3. Graph modelling of present-day Apulians and Greeks.

Z scores of both trees are between -3 and 3. Ancestries highlighted in shades of red are ancestries specifically shared with Bronze Age Greeks. Letters from A to F refer to unsampled ancestral populations. A) modelling of Apulians, B) modelling of Greek population.

putative sources (Fig. 2C). All the tested populations, with the exception of Sardinians (which are modelled having ~ 71% of Anatolia_N), show remarkably similar proportions of AN source, suggesting that any difference in ancestry observed with the *f4* statistics is very subtle. Moreover, most of the tested populations but Sardinians (which are modelled having ~ 18% of Iran_N) show a relatively high proportion (from ~ 29 to 36%) of ancestry related to samples inhabiting Iran in the Neolithic period (Fig. 2C).

Generally, similar European Neolithic proportions were observed when a model including Europe_EN, Steppe_EMBA and Iran_N was considered (Fig. 2D). When compared to the previous setting, we observed a sharp decrease in Iran_N contribution (from ~ 10 to 26%), due to the fact that a substantial proportion of Iran Neolithic-like ancestry might have arrived in the continent with Steppe Pastoralists. Furthermore, Sardinians and Northern Italian populations are not modelled using only the three above-mentioned sources, possibly because of an excess of WHG with respect of Europe_EN. In fact, all the three populations can be successfully modelled (p-value Sardinia = 0.90; p-value Tuscany = 0.48; p-value Lombardy = 0.53) using WHG as additional source.

The admixture graph (Fig. 3) helped in delineating ancestral genetic population differences and similarities between present-day Southern Italians and Greeks in whom an overall higher Steppe-related ancestry was detected (Fig. 2D, Table S2). In particular, we were able to fit a graph admixture model in which 63% of the Minoan genome was found in a population that contributed 97% to the genetic pool of present-day Apulians (Fig. 3A). Contrary, modern Greeks were successfully modelled as an admixture of populations related to present-day Balkan populations (Serbian, [48]) and Bronze Age Greek groups, here represented by Minoans (Fig. 3B). This could potentially explain the differences found in Steppe-related ancestries between the two present-day populations. Additionally, these results suggest a more recent gene exchange between Greeks and neighbouring Slavic-related populations. Alternatively, they could be explained by different ancient legacies between the two sides of the Adriatic Sea, as the result of pre-Bronze Age genetic structure in the Balkans.

2.3. Investigating putative signature of adaptation among Northern and Southern Italians

Following the differences in ancient ancestry contributions across the Italian Peninsula, we applied the Population Branch Statistics (PBS) analysis in order to identify markers showing significant allele frequency differences among pairs of Italian populations using CHB as an outgroup. We estimated the average PBS across windows of five consecutive SNPs and focused on the top ten windows with higher frequency in Northern (positive PBS values) and Southern Italy (negative PBS values), respectively (Fig. S5). We finally annotated the variants with the most extreme PBS values (above the 99.5 percentile and below 0.05) and evaluated if they were enriched for any biological or functional feature.

Among the top 20 windows, seven do not overlap with any known gene (Fig. 4, Table S3). Of those showing the highest allele frequencies in Northern Italy, one encompasses *PABPC4L* (*H. sapiens* poly(A) binding protein, cytoplasmic 4-like), a gene associated with venous thromboembolism [49], birth weight [50], blood protein level and alcohol consumption [51]; another, located on chromosome 1, encompasses the gene *NID1* (Nidogen 1), which is associated with blood proteins [52] and platelet levels [53,54], and a third on chromosome 3 maps within the *CBLB* (Cbl proto-oncogene, E3 ubiquitin protein ligase B) gene, involved in the immune response by regulating T- and B- cell receptors [55].

Of the windows with extreme negative PBS values, the two most divergent are located within chromosome 12 and encompass 15 genes (Fig. 4, Table S3). They include *ALDH2*, known to affect the metabolism of alcohol and correlated to different behavioural traits associated with alcohol consumption [56]. We note here that our dataset does not contain SNPs within this gene, and it is thus possible that this signal is led by variants in other regions. Finally, we found extreme divergence in a region within the *EDAR* (Ectodysplasin A receptor) gene, associated with variations in head hair morphology and facial hair thickness [57]. Although the SNP rs3827760 (chr2:109513601), affecting hair follicle thickness and shape, is not present in our dataset, it is unlikely that it is driving the adaptation signal, as also observed in a previous exome analysis [38].

Fig. 4. Karyotype plot of the top 10 windows from PBS analysis. In red and blue are indicated the chromosome locations for the top 10 PBS in North and South Italy, respectively. Where present, the set of annotated genes is presented.

3. Discussion

Since prehistoric times Southern Italy has been a cross-roads of many human migrations and interactions, and their genetic signatures are still present in the DNA of individuals currently living in this area [17,41,58,59].

In this study, we highlighted a high similarity between Southern Italy and the Peloponnese. In fact, our cluster analysis showed that presentday South-Eastern Peloponnesian populations have high genetic affinity with modern Apulians, Calabrians and South-Eastern Sicilians, all characterised by a cluster composition different from those displayed by other Greek groups (Fig. 1B, Fig. S3). Additionally, individuals from Western Sicily show similarities with populations inhabiting the Western part of Peloponnese (Fig. 1B, Fig. S4). Although establishing the chronological context for this affinity using present-day genomes might be challenging, our results are in accordance with archaeological and historical sources that attributed the origin of Greek colonies in South-Eastern Sicily and Apulia from populations inhabiting the southern and Eastern parts of the Peloponnese [31,32]. Uniparental Y-chromosome findings are also in agreement with these observations revealing Eastern Peloponnesian ancestries in East Sicily [33] and shared haplogroups among modern-day Greeks and populations living in Southern Italian areas colonised by Greeks such as the Salento (Apulia) and the Ionian coast of Calabria [60]. The lower affinity with other Balkan populations could be attributed to a lower influence by inland populations, such as Slavic-related people [61] and/or genetic drift in Tsakones and Maniots as suggested by historical sources [39]. However the observation that, in some analyses, Southern Italians and ancient Greeks share more alleles than modern and ancient Peloponnesians, may suggest a scenario including the preservation of an ancient population signal in the genome of Southern Italians that was likely diluted by inland migrations in Greece (Fig. 3). Therefore, our results imply a high affinity between Southern Italians and Peloponnesians, with some differentiation among the two sides of the Adriatic Sea possibly due to recent demographic events such as migrations and/or admixture as the one recorded during the Middle Age period [62].

Notably, a substantial genetic affinity was highlighted between Peloponnesian individuals from the Neolithic and the Bronze Age, whose signatures are also recorded in Italy. Recent genomic studies [17,34,37] detected a contribution ultimately derived from the Caucasus (CHG) in modern Southern Italians and likely brought to Italy as early as the Bronze Age, although their demographic dynamics are still unknown. Overall, these results are in agreement with the detection of a small proportion of Iranian-related ancestry in Sicilian Middle Bronze Age samples [18], which could be tentatively linked to the spread of the Mycenaean culture [63]. Interestingly, our results modelled the source of this contribution as a mixture of AN and Iran Neolithic ancestries [14]. The latter was found consistently across Southern Italy and the Peloponnese, confirming similar again common genetic sources ancestral profiles shared between these two regions (Fig. 2C, D). Furthermore, our comparison between ancient and modern samples, showing an overall similarity between Southern Italian and Iron Age Individuals, may suggest that the CHG/Iran_Neolithic signature reached the East side of the Adriatic Sea multiple times, or possibly as a continuous gene flow.

The largest degree of genetic heterogeneity across the European continent has been so far recorded in the Italian Peninsula [17], an important aspect to consider when epidemiological and translational studies in Italy are planned. Recent researches taking advantage of high coverage whole-genome and whole-exome sequences linked variants under selection in Italians to genes that were related to insulin secretion, obesity, thermogenesis, alcohol consumption, pathogenic-response, skin colour and cancer [37,38]. Here we assessed the occurrence of extreme differences in allele frequencies between Northern and Southern Italy close to the *ALDH2, NID1*, and *CBLB* genes that may have a role in alcohol metabolism, nevi features and immunological traits, respectively. Although the analysed dataset contained only \sim 100k SNPs, this

replication in the possibly affected phenotypes may suggest an actual important difference among groups on the two parts of the peninsula. Nevertheless, genomic scans are sometimes controversial and difficult to interpret, and a deeper investigation, possibly involving multiple tests on denser datasets, is highly desirable.

In conclusion, we provided new insights on the composition of modern genomes of individuals collected from Southern Italy, a still poorly sampled region of Europe. The fine characterisation of the time of arrival and routes of migrations related to the detected ancient signals is expected to be addressed only by the analysis of Apulian ancient genomes covering a period ranging from the Late Neolithic to the Early and Middle Bronze Age periods. The differences identified in modern-day Southern and Northern Italians have significant phenotypic implications and call for more extensive investigations on a larger number of markers and individuals.

4. Material and methods

4.1. Dataset

We assembled a dataset comprehensive of 2,662 present-day individuals from the Mediterranean basin, Europe and Africa genotyped with different Illumina SNP arrays [39,48,61,64–72] (Table S4).

Only SNPs and individuals with a missingness rate lower than 1% were retained (*-geno* and *-mind* flags equal to 0.01). Pairs of related individuals (PI_HAT > 0.05) were identified using PLINK1.9 and within each pair one was randomly removed [73]. After merging and pruning, we retained 93,647 linked and 56,956 unlinked (*-indep-pairwise* 100 25 0.2) SNPs. The modern-day dataset was merged with 330 publicly available ancient individuals [7,14–16,18,35,40–42,47,59,74–87], for whom genotypes of at least 20,000 markers were available (Table S4).

4.2. Genetic structure analyses

4.2.1. Admixture analysis

The present-day dataset was processed using *ADMIXTURE* [88]. Ten independent runs of unsupervised *ADMIXTURE* for different numbers of clusters (K), from 2 to 20, were performed. Runs were summarised, ordered and aligned using *CLUMPAK* [89]. The lowest *Cross Validation* (CV) median error across all the independent runs was observed for K= 9.

4.2.2. Principal component analysis (PCA)

Principal Component Analysis was performed to evaluate the genetic structure of Southern Italians in the context of other present-day and ancient Eurasian individuals. All the PCAs were performed with the *smartpca EIGENSOFT* package [90].

First, we considered a dataset including 826 present-day Europeans. Three iterations were initially used to remove outliers resulting in a final dataset of 804 individuals. Secondly, we projected 322 ancient samples on the PCs estimated from the genetic variability of 1,165 present-day Western Eurasians using the *lsqproject* and *autoshrink* options set to *YES* and five iterations to remove outliers.

4.2.3. Genetic clustering of Mediterranean populations

In order to group homogenous individuals at a more detailed resolution that offered by *ADMIXTURE* or by the first two PCAs, we applied the clustering approach to finite mixture models implemented in the *mclust* R package [91] using 36 as the number of mixture components for which the BIC is calculated. The approach was performed on the first 10 PCs estimated on 682 present-day individuals from Eastern regions of the Mediterranean basin using *smartpca* and five iterations to remove outliers. The highest BIC value was reported for 12 clusters.

4.3. F-statistics

*f*³ and *f*⁴ outgroup analyses were performed using *admixrv*0.7.1 R package [92] which exploits *ADMIXTOOLSv*4.2 package [93].

We preliminary explored both Denisovan [94] and the Mbuti, a rainforest African group of hunter-gatherers, as outgroups; since no differences were encountered, we selected Mbuti as the outgroup using the *allsnps* option set to YES. A |Z| score higher than 3 was considered significant.

4.4. Ancient admixture analyses

QpGraph models were generated using *ADMIXTOOLSv6.5* [93] with Mbuti or Japanese set as outgroups. We used the default settings and filtered out results with a maximum fit for f-statistics (|Z| score) lower than 3.

QpWave and *qpAdm* in *ADMIXTOOLSv5.0* package were used as in [17,95] by testing all the possible combinations of two, three and four sources on a set of target populations and setting the option *allsnps* as YES. We firstly used *qpWave* to establish, using *f-statistics* and a set of outgroups, whether the tested sources were significantly different and could be used to reconstruct the ancestry of a target population. Subsequently, *qpAdm* was employed to infer the proportions of the tested sources.

The threshold used for *qpWave* to establish the significance was set at 0.01, while the set of sources included: Minoan, Iran Neolithic (Iran_N), Anatolia Neolithic (Anatolia_N), Steppe Early Middle Bronze Age (Steppe_EMBA), Western Hunter Gatherer (WHG), Eastern Hunter Gatherer (EHG), Caucasus Hunter Gatherer (CHG), Peloponnese_Neolithic, Iran_ChL (Chalcholitic), Morocco, Europe Neolithic (Europe_N) (Table S4).

The set of outgroups comprised: Mota, AfontovaGora3, EHG, CHG, WHG, Goyet, Vestonice16, Malta1, ElMiron, Iran Neolithic (Iran_N), Levant Neolithic (Levant_N), Anatolia Neolithic (Anatolia_N), Kostenki14, Natufian, Ust_Ishim (Table S4).

4.5. Selection scan

The Population Branching Statistic (PBS), which harnesses the differences in pairwise F_{st} values between three populations, was estimated with the function *allel.pbs* of the *scikit-allel python* package (https:// zenodo.org/badge/latestdoi/7890/cggh/scikit-allel) using a window_size of 1 and setting the *normed* option as *True*, which normalised the PBS as in [96]. We focused on differences between Southern (Abruzzo, Calabria, East Sicily, West Sicily, Sicily, Apulia) and Northern Italy (Lombardy, Tuscany) using the Han Chinese in Beijing (CHB) population as an outgroup. We averaged the PBS score across windows comprising five consecutive SNPs. Gene annotation was performed with CADD (Combined Annotation Dependent Depletion) [97] and known genetic association for each variant was assessed interrogating the GWAS catalogue, considering only associations with a *p-value* < 5E⁻⁰⁸ (retrieved on November 2021; [98,99]).

Data availability

The data underlying this article are public available from the studies indicated in the Materials and Methods section and in Table S4.

CRediT authorship contribution statement

Alessandro Raveane: Conceptualization, Methodology, Software, Writing – original draft, Formal analysis, Data curation, Investigation, Writing – review & editing, Visualization. Ludovica Molinaro: Formal analysis, Data curation, Investigation, Writing – review & editing, Visualization. Serena Aneli: Formal analysis, Data curation, Investigation, Writing – review & editing. Marco Rosario Capodiferro: Formal

analysis, Data curation, Investigation, Writing - review & editing. Luciana de Gennaro: Formal analysis, Data curation, Investigation, Writing - review & editing, Visualization. Linda Ongaro: Formal analysis, Data curation, Investigation, Writing - review & editing. Nicola Rambaldi Migliore: Formal analysis, Data curation, Investigation, Writing - review & editing, Visualization. Sara Soffiati: Formal analysis, Data curation, Investigation, Writing - review & editing. Teodoro Scarano: Resources, Writing - review & editing. Antonio Torroni: Resources, Writing - review & editing. Alessandro Achilli: Resources, Writing - review & editing. Mario Ventura: Resources, Writing - review & editing. Luca Pagani: Resources, Writing - review & editing. Cristian Capelli: Resources, Writing - review & editing. Anna Olivieri: Resources, Writing - review & editing, Funding acquisition. Francesco Bertolini: Resources, Writing - review & editing, Funding acquisition. Ornella Semino: Conceptualization, Methodology, Software, Writing original draft, Resources, Writing - review & editing, Funding acquisition, Supervision, Project administration. Francesco Montinaro: Conceptualization, Methodology, Software, Writing - original draft, Formal analysis, Data curation, Investigation, Resources, Writing - review & editing, Visualization, Funding acquisition, Supervision, Project administration.

Declaration of Competing Interest

The authors declare no competing interests.

Acknowledgments

This research received support from: Fondazione Con il Sud (2018-PDR-01136) (F.M, M.V); AIRC (IG20109) (F.B, A.R); the Italian Ministry of Health (Ricerca Corrente) (F.B); the Italian Ministry of University and Research (MUR) for Dipartimenti di Eccellenza Program (2018–2022) - Department of Biology and Biotechnology "L. Spallanzani," University of Pavia (A.A., A.T., A.O., and O.S.) and Progetti PRIN2017 20174BTC4R (A.A.); the "Fondazione Adriano Buzzati – Traverso" for the Cavalli-Sforza fellowship (N.R.M). The authors would like to thank Ida Tiberi and Giovanni Boffa for helpful comments and advice during manuscript preparation.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ygeno.2022.110405.

References

- [1] S. Benazzi, K. Douka, C. Fornai, C.C. Bauer, O. Kullmer, J. Svoboda, I. Pap, F. Mallegni, P. Bayle, M. Coquerelle, S. Condemi, A. Ronchitelli, K. Harvati, G. W. Weber, Early dispersal of modern humans in Europe and implications for Neanderthal behaviour, Nature. 479 (2011) 525–528, https://doi.org/10.1038/ nature10617.
- [2] P. Mellars, The impossible coincidence. A single-species model for the origins of modern human behavior in Europe, Evol. Anthropol. Issues News Rev. 14 (2005) 12–27, https://doi.org/10.1002/evan.20037.
- [3] A. Moroni, A. Ronchitelli, A. Simona, D. Aureli, S.E. Bailey, P. Boscato, F. Boschin, G. Capecchi, J. Crezzini, K. Douka, G. Marciani, D. Panetta, F. Ranaldo, S. Ricci, S. Scaramucci, V. Spagnolo, S. Benazzi, P. Gambassini, Grotta del Cavallo (Apulia – Southern Italy). The Uluzzian in the mirror, J. Anthropol. Sci. 96 (2018) 125–160, https://doi.org/10.4436/JASS.96004.
- [4] P. Villa, L. Pollarolo, J. Conforti, F. Marra, C. Biagioni, I. Degano, J.J. Lucejko, C. Tozzi, M. Pennacchioni, G. Zanchetta, C. Nicosia, M. Martini, E. Sibilia, L. Panzeri, From Neandertals to modern humans: new data on the Uluzzian, PLoS One. 13 (2018), e0196786, https://doi.org/10.1371/journal.pone.0196786.
- [5] F. Martini, A. Ronchitelli, L. Sarti, Il Paleolitico e il Mesolitico della Puglia, in: Preistoria E Protostoria Della Puglia, Istituto italiano di preistoria e protostoria, 2017, pp. 25–38.
- [6] M. Pala, A. Olivieri, A. Achilli, M. Accetturo, E. Metspalu, M. Reidla, E. Tamm, M. Karmin, T. Reisberg, B.H. Kashani, U.A. Perego, V. Carossa, F. Gandini, J. B. Pereira, P. Soares, N. Angerhofer, S. Rychkov, N. Al-Zahery, V. Carelli, M. H. Sanati, M. Houshmand, J. Hatina, V. Macaulay, L. Pereira, S.R. Woodward, W. Davies, C. Gamble, D. Baird, O. Semino, R. Villems, A. Torroni, M.B. Richards, Mitochondrial DNA signals of late glacial recolonization of Europe from near

A. Raveane et al.

eastern Refugia, Am. J. Hum. Genet. 90 (2012) 915–924, https://doi.org/10.1016/ j.ajhg.2012.04.003.

- [7] Q. Fu, C. Posth, M. Hajdinjak, M. Petr, S. Mallick, D. Fernandes, A. Furtwängler, W. Haak, M. Meyer, A. Mittnik, B. Nickel, A. Peltzer, N. Rohland, V. Slon, S. Talamo, I. Lazaridis, M. Lipson, I. Mathieson, S. Schiffels, P. Skoglund, A. P. Derevianko, N. Drozdov, V. Slavinsky, A. Tsybankov, R.G. Cremonesi, F. Mallegni, B. Gély, E. Vacca, M.R.G. Morales, L.G. Straus, C. Neugebauer-Maresch, M. Teschler-Nicola, S. Constantin, O.T. Moldovan, S. Benazzi, M. Peresani, D. Coppola, M. Lari, S. Ricci, A. Ronchitelli, F. Valentin, C. Thevenet, K. Wehrberger, D. Grigorescu, H. Rougier, I. Crevecoeur, D. Flas, P. Semal, M. A. Mannino, C. Cupillard, H. Bocherens, N.J. Conard, K. Harvati, V. Moiseyev, D. G. Drucker, J. Svoboda, M.P. Richards, D. Caramelli, R. Pinhasi, J. Kelso,
- N. Patterson, J. Krause, S. Pääbo, D. Reich, The genetic history of Ice Age Europe, Nature. 534 (2016) 200–205.
 [8] E. Bortolini, L. Pagani, G. Oxilia, C. Posth, F. Fontana, F. Badino, T. Saupe,
- [6] E. Bortonini, E. Pagain, G. Oxina, C. Posti, F. Pontana, F. Batino, T. Sadpe, F. Montinaro, D. Margaritora, M. Romandini, F. Lugli, A. Papini, M. Boggioni, N. Perrini, A. Oxilia, R.A. Cigliano, R. Barcelona, D. Visentin, N. Fasser, S. Arrighi, C. Figus, G. Marciani, S. Silvestrini, F. Bernardini, J.C. Menghi Sartorio, L. Fiorenza, J.M. Cecchi, C. Tuniz, T. Kivisild, F. Gianfrancesco, M. Peresani, C. L. Scheib, S. Talamo, M. D'Esposito, S. Benazzi, Early Alpine occupation backdates westward human migration in Late Glacial Europe, Curr. Biol. 31 (2021)
- 2484–2493.e7, https://doi.org/10.1016/j.cub.2021.03.078.
 [9] V. Villalba-Mouco, M.S. van de Loosdrecht, C. Posth, R. Mora, J. Martínez-Moreno, M. Rojo-Guerra, D.C. Salazar-García, J.I. Royo-Guillén, M. Kunst, H. Rougier, I. Crevecoeur, H. Arcusa-Magallón, C. Tejedor-Rodríguez, I. García-Martínez de Lagrán, R. Garrido-Pena, K.W. Alt, C. Jeong, S. Schiffels, P. Utrilla, J. Krause, W. Haak, Survival of Late Pleistocene Hunter-Gatherer Ancestry in the Iberian Peninsula, Curr. Biol. 29 (2019) 1169–1177, e7, https://doi.org/10.1016/j.cub. 2019.02.006.
- [10] E. Cristiani, R. Farbstein, P. Miracle, Ornamental traditions in the Eastern Adriatic: the Upper Palaeolithic and Mesolithic personal adornments from Vela Spila (Croatia), J. Anthropol. Archaeol. 36 (2014) 21–31, https://doi.org/10.1016/j. jaa.2014.06.009.
- [11] D. Lo Vetro, F. Martini, Mesolithic in Central–Southern Italy: overview of lithic productions, Quat. Int. 423 (2016) 279–302, https://doi.org/10.1016/j. quaint.2015.12.043.
- [12] E. Natali, V. Forgia, The beginning of the Neolithic in Southern Italy and Sicily, Quat. Int. 470 (2018) 253–269, https://doi.org/10.1016/j.quaint.2017.07.004.
- [13] L. Betti, R.M. Beyer, E.R. Jones, A. Eriksson, F. Tassi, V. Siska, M. Leonardi, P. Maisano Delser, L.K. Bentley, P.R. Nigst, J.T. Stock, R. Pinhasi, A. Manica, Climate shaped how Neolithic farmers and European hunter-gatherers interacted after a major slowdown from 6,100 BCE to 4,500 BCE, Nat. Hum. Behav. 4 (2020) 1004–1010, https://doi.org/10.1038/s41562-020-0897-7.
- [14] I. Lazaridis, D. Nadel, G. Rollefson, D.C. Merrett, N. Rohland, S. Mallick, D. Fernandes, M. Novak, B. Gamarra, K. Sirak, S. Connell, K. Stewardson, E. Harney, Q. Fu, G. Gonzalez-Fortes, E.R. Jones, S.A. Roodenberg, G. Lengyel, F. Bocquentin, B. Gasparian, J.M. Monge, M. Gregg, V. Eshed, A.-S. Mizrahi, C. Meiklejohn, F. Gerritsen, L. Bejenaru, M. Blither, A. Campbell, G. Cavalleri, D. Comas, P. Froguel, E. Gilbert, S.M. Kerr, P. Kovacs, J. Krause, D. McGettigan, M. Merrigan, D.A. Merriwether, S. O'Reilly, M.B. Richards, O. Semino, M. Shamoon-Pour, G. Stefanescu, M. Stumvoll, A. Tönjes, A. Torroni, J.F. Wilson, L. Yengo, N.A. Hovhannisyan, N. Patterson, R. Pinhasi, D. Reich, Genomic insights into the origin of farming in the ancient Near East, Nature. 536 (2016) 419–424.
 [15] I. Mathieson, I. Lazaridis, N. Rohland, S. Mallick, N. Patterson, S.A. Roodenberg,
- E. Harney, K. Stewardson, D. Fernandes, M. Novak, K. Sirak, C. Gamba, E.R. Jones, B. Llamas, S. Dryomov, J. Pickrell, J.L. Arsuaga, J.M.B. de Castro, E. Carbonell, F. Gerritsen, A. Khokhlov, P. Kuznetsov, M. Lozano, H. Meller, O. Mochalov, V. Moiseyev, M.A.R. Guerra, J. Roodenberg, J.M. Vergès, J. Krause, A. Cooper, K. W. Alt, D. Brown, D. Anthony, C. Lalueza-Fox, W. Haak, R. Pinhasi, D. Reich, Genome-wide patterns of selection in 230 ancient Eurasians, Nature. 528 (2015) 499–503.
- [16] I. Lazaridis, A. Mittnik, N. Patterson, S. Mallick, N. Rohland, S. Pfrengle, A. Furtwängler, A. Peltzer, C. Posth, A. Vasilakis, P.J.P. McGeorge, E. Konsolaki-Yannopoulou, G. Korres, H. Martlew, M. Michalodimitrakis, M. Özsait, N. Özsait, A. Papathanasiou, M. Richards, S.A. Roodenberg, Y. Tzedakis, R. Arnott, D. M. Fernandes, J.R. Hughey, D.M. Lotakis, P.A. Navas, Y. Maniatis, J. A. Stamatoyannopoulos, K. Stewardson, P. Stockhammer, R. Pinhasi, D. Reich, J. Krause, G. Stamatoyannopoulos, Genetic origins of the Minoans and
- Mycenaeans, Nature. 548 (2017) 214–218, https://doi.org/10.1038/nature23310.
 [17] A. Raveane, S. Aneli, F. Montinaro, G. Athanasiadis, S. Barlera, G. Birolo, G. Boncoraglio, A.M. Di Blasio, C. Di Gaetano, L. Pagani, S. Parolo, P. Paschou, A. Piazza, G. Stamatoyannopoulos, A. Angius, N. Brucato, F. Cucca, G. Hellenthal, A. Mulas, M. Peyret-Guzzon, M. Zoledziewska, A. Baali, C. Bycroft, M. Cherkaoui, J. Chiaroni, J. Di Cristofaro, C. Dina, J.M. Dugoujon, P. Galan, J. Giemza, T. Kivisild, S. Mazieres, M. Melhaoui, M. Metspalu, S. Myers, L. Pereira, F.X. Ricaut, F. Brisighelli, I. Cardinali, V. Grugni, H. Lancioni, V.L. Pascali, A. Torroni,
- O. Semino, G. Matullo, A. Achilli, A. Olivieri, C. Capelli, Population structure of modern-day Italians reveals patterns of ancient and archaic ancestries in Southern Europe, Sci. Adv. 5 (2019) eaaw3492, https://doi.org/10.1126/sciadv.aaw3492.
 [18] D.M. Fernandes, A. Mittnik, I. Olalde, I. Lazaridis, O. Cheronet, N. Rohland,
- [10] D.M. Petruster, M. Michael, K. Ostade, F. Landar, S. O. Interford, T. Minnedy, S. Mallick, R. Bernardos, N. Broomandkhoshbacht, J. Carlsson, B.J. Culleton, M. Ferry, B. Gamarra, M. Lari, M. Mah, M. Michel, A. Modi, M. Novak, J. Oppenheimer, K.A. Sirak, K. Stewardson, K. Mandl, C. Schattke, K.T. Özdoğan, M. Lucci, G. Gasperetti, F. Candilio, G. Salis, S. Vai, E. Camarós, C. Calò, G. Catalano, M. Cueto, V. Forgia, M. Lozano, E. Marini, M. Micheletti, R.
 - M. Miccichè, M.R. Palombo, D. Ramis, V. Schimmenti, P. Sureda, L. Teira,

M. Teschler-Nicola, D.J. Kennett, C. Lalueza-Fox, N. Patterson, L. Sineo, A. Coppa, D. Caramelli, R. Pinhasi, D. Reich, The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean, Nat. Ecol. Evol. 4 (2020) 334–345, https://doi.org/10.1038/s41559-020-1102-0.

- [19] F. Clemente, M. Unterländer, O. Dolgova, C.E.G. Amorim, F. Coroado-Santos, S. Neuenschwander, E. Ganiatsou, D.I. Cruz Dávalos, L. Anchieri, F. Michaud, L. Winkelbach, J. Blöcher, Y.O. Arizmendi Cárdenas, B. Sousa da Mota, E. Kalliga, A. Souleles, I. Kontopoulos, G. Karamitrou-Mentessidi, O. Philaniotou, A. Sampson, D. Theodorou, M. Tsipopoulou, I. Akamatis, P. Halstead, K. Kotsakis, D. Urem-Kotsou, D. Panagiotopoulos, C. Ziota, S. Triantaphyllou, O. Delaneau, J.D. Jensen, J.V. Moreno-Mayar, J. Burger, V.C. Sousa, O. Lao, A.-S. Malaspinas, C. Papageorgopoulou, The genomic history of the Aegean palatial civilizations, Cell. 184 (2021) 2565–2586.e21, https://doi.org/10.1016/j.cell.2021.03.039.
- [20] C. Broodbank, The Making of the Middle Sea: A History of the Mediterranean from the Beginning to the Emergence of the Classical World, Oxford University Press, 2013.
- [21] B. Teržan, S. Karavanić, The Western Balkans in the Bronze Age, Oxf. Handb. Eur. Bronze Age. (2013) 837–863, https://doi.org/10.1093/oxfordhb/ 9780199572861.013.0045.
- [22] A. Cazzella, 2500-2000 BC: connectivity phenomena between the Balkans, Greece, Southern Italy, Eastern Sicily, the Aeolian Islands and Malta, Riv. Sci. Preistoriche LXX. S1 (2020) 181–197, https://doi.org/10.32097/1124.
- [23] L. Vagnetti, Western Mediterranean, Oxf. Handb. Bronze Age Aegean. (2012) 890–905, https://doi.org/10.1093/oxfordhb/9780199873609.013.0066.
- [24] M. Bettelli, L. Vagnetti, Southern Italy, in: Companion Archaeol. Early Greece Mediterr, John Wiley & Sons, Ltd, 2019, pp. 1261–1286, https://doi.org/10.1002/ 9781118769966.ch52.
- [25] R. Jung, R. Guglielmino, F. Iacono, H. Mommsen, Neutron activation analysis of aegean and aegeanising ceramics from Roca Vecchia and the circulation of pottery in southern Italy, in: Punta Zambrone, OAW, 2021, pp. 459–490.
- [26] T.R. Martin, Ancient Greece: From Prehistoric to Hellenistic Times, Second edition, Yale University Press, 2013.
- [27] C.M. Antonaccio, Colonization Greece on the move, 900-480, in: H.A. Shapiro (Ed.), Camb. Companion Archaic Greece, Cambridge University Press, Cambridge, 2007, pp. 201–224, https://doi.org/10.1017/CCOL9780521822008.009.
- [28] B. Agostino, Pithecusa e Cuma all'alba della colonizzazione, in Cuma, in: Atti 48° Convegno Studi Sulla Magna Grecia Taranto, 2009, pp. 3–28. https://www.acad emia.edu/3379850/Pithecusae_e_Cuma_allalba_della_colonizzazione (accessed February 2, 2022).
- [29] B. Agostino, M. D'Acunto, La città e le mura: nuovi dati dall'area nord della città antica, in Cuma, in: Atti 48° Convegno Studi Sulla Magna Grecia Taranto, 2009, pp. 481–522.
- [30] A. Mele, Greci in Campania, Scienze e Lettere. https://www.libreriauniversitaria. it/greci-campania-mele-alfonso-scienze/libro/9788866870692, 2014 (accessed February 2, 2022).
- [31] P.G. Guzzo, Fondazioni greche: l'Italia meridionale e la Sicilia (VIII e VII sec. a.C.), Carocci, 2011.
- [32] L. Braccesi, M. Nocita, HESPERÌA, 33. I Fondatori delle Colonie. Tra Sicilia e Magna Grecia., L'ERMA di BRETSCHNEIDER. https://www.academia.edu/31300 639/Hesperia_33_I_Fondatori_delle_Colonie_Tra_Sicilia_e_Magna_Grecia, 2016 (accessed February 2, 2022).
- [33] S. Tofanelli, F. Brisighelli, P. Anagnostou, G.B.J. Busby, G. Ferri, M.G. Thomas, L. Taglioli, I. Rudan, T. Zemunik, C. Hayward, D. Bolnick, V. Romano, F. Cali, D. Luiselli, G.B. Shepherd, S. Tusa, A. Facella, C. Capelli, The Greeks in the West: genetic signatures of the Hellenic colonisation in southern Italy and Sicily, Eur. J. Hum. Genet. 24 (2016) 429–436, https://doi.org/10.1038/ejhg.2015.124.
- [34] S. Sarno, A. Boattini, L. Pagani, M. Sazzini, S. De Fanti, A. Quagliariello, G. A. Gnecchi Ruscone, E. Guichard, G. Ciani, E. Bortolini, C. Barbieri, E. Cilli, R. Petrilli, I. Mikerezi, L. Sineo, M. Vilar, S. Wells, D. Luiselli, D. Pettener, Ancient and recent admixture layers in Sicily and Southern Italy trace multiple migration routes along the Mediterranean, Sci. Rep. 7 (2017) 1984, https://doi.org/10.1038/ s41598-017-01802-4.
- [35] S. Aneli, T. Saupe, F. Montinaro, A. Solnik, L. Molinaro, C. Scaggion, N. Carrara, A. Raveane, T. Kivisild, M. Metspalu, C.L. Scheib, L. Pagani, The genetic origin of Daunians and the Pan-Mediterranean southern Italian Iron Age context, Mol. Biol. Evol. (2022) msac014, https://doi.org/10.1093/molbev/msac014.
- [36] M. Sazzini, G.A. Gnecchi Ruscone, C. Giuliani, S. Sarno, A. Quagliariello, S. De Fanti, A. Boattini, D. Gentilini, G. Fiorito, M. Catanoso, L. Boiardi, S. Croci, P. Macchioni, V. Mantovani, A.M. Di Blasio, G. Matullo, C. Salvarani, C. Franceschi, D. Pettener, P. Garagnani, D. Luiselli, Complex interplay between neutral and adaptive evolution shaped differential genomic background and disease susceptibility along the Italian peninsula, Sci. Rep. 6 (2016) 32513.
- [37] M. Sazzini, P. Abondio, S. Sarno, G.A. Gnecchi-Ruscone, M. Ragno, C. Giuliani, S. De Fanti, C. Ojeda-Granados, A. Boattini, J. Marquis, A. Valsesia, J. Carayol, F. Raymond, C. Pirazzini, E. Marasco, A. Ferrarini, L. Xumerle, S. Collino, D. Mari, B. Arosio, D. Monti, G. Passarino, P. D'Aquila, D. Pettener, D. Luiselli, G. Castellani, M. Delledonne, P. Descombes, C. Franceschi, P. Garagnani, Genomic history of the Italian population recapitulates key evolutionary dynamics of both Continental and Southern Europeans, BMC Biol. 18 (2020) 51, https://doi.org/10.1186/s12915-020-00778-4.
- [38] G. Birolo, S. Aneli, C.D. Gaetano, G. Cugliari, A. Russo, A. Allione, E. Casalone, E. Giorgio, E.M. Paraboschi, D. Ardissino, S. Duga, R. Asselta, G. Matullo, Functional and clinical implications of genetic structure in 1686 Italian exomes, Hum. Mutat. 42 (2021) 272–289, https://doi.org/10.1002/humu.24156.
- [39] G. Stamatoyannopoulos, A. Bose, A. Teodosiadis, F. Tsetsos, A. Plantinga, N. Psatha, N. Zogas, E. Yannaki, P. Zalloua, K.K. Kidd, B.L. Browning,

J. Stamatoyannopoulos, P. Paschou, P. Drineas, Genetics of the peloponnesean populations and the theory of extinction of the medieval peloponnesean Greeks, Eur. J. Hum. Genet. 25 (2017) 637–645, https://doi.org/10.1038/ejhg.2017.18.

- [40] J.H. Marcus, C. Posth, H. Ringbauer, L. Lai, R. Skeates, C. Sidore, J. Beckett, A. Furtwängler, A. Olivieri, C.W.K. Chiang, H. Al-Asadi, K. Dey, T.A. Joseph, C.-C. Liu, C. Der Sarkissian, R. Radzevičiūtė, M. Michel, M.G. Gradoli, P. Marongiu, S. Rubino, V. Mazzarello, D. Rovina, A. La Fragola, R.M. Serra, P. Bandiera, R. Bianucci, E. Pompianu, C. Murgia, M. Guirguis, R.P. Orquin, N. Tuross, P. van Dommelen, W. Haak, D. Reich, D. Schlessinger, F. Cucca, J. Krause, J. Novembre, Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia, Nat. Commun. 11 (2020) 939, https://doi.org/10.1038/s41467-020-14523-6.
- [41] T. Saupe, F. Montinaro, C. Scaggion, N. Carrara, T. Kivisild, E. D'Atanasio, R. Hui, A. Solnik, O. Lebrasseur, G. Larson, L. Alessandri, I. Arienzo, F.D. Angelis, M. F. Rolfo, R. Skeates, L. Silvestri, J. Beckett, S. Talamo, A. Dolfini, M. Miari, M. Metspalu, S. Benazzi, C. Capelli, L. Pagani, C.L. Scheib, Ancient genomes reveal structural shifts after the arrival of Steppe-related ancestry in the Italian Peninsula, Curr. Biol. 31 (2021) 2576–2591,e12, https://doi.org/10.1016/j.cub.2021.04.022.
- [42] R. Martiniano, L.M. Cassidy, R. Ó'Maoldúin, R. McLaughlin, N.M. Silva, L. Manco, D. Fidalgo, T. Pereira, M.J. Coelho, M. Serra, J. Burger, R. Parreira, E. Moran, A. C. Valera, E. Porfirio, R. Boaventura, A.M. Silva, D.G. Bradley, The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-based methods, PLOS Genet. 13 (2017), e1006852, https://doi.org/10.1371/journal.pgen.1006852.
- [43] B. Ariano, V. Mattiangeli, E.M. Breslin, E.W. Parkinson, T.R. McLaughlin, J. E. Thompson, R.K. Power, J.T. Stock, B. Mercieca-Spiteri, S. Stoddart, C. Malone, S. Gopalakrishnan, L.M. Cassidy, D.G. Bradley, Ancient Maltese genomes and the genetic geography of Neolithic Europe, Curr. Biol. (2022), https://doi.org/ 10.1016/j.cub.2022.04.069.
- [44] H.M. Moots, M. Antonio, S. Sawyer, J.P. Spence, V. Oberreiter, C.L. Weiß, M. Lucci, Y.M.S. Cherifi, F.L. Pastina, F. Genchi, E. Praxmeier, B. Zagorc, O. Cheronot, K. T. Özdoğan, L. Demetz, S. Amrani, F. Candilo, D.D. Angelis, G. Gasperetti, D. Fernandes, Z. Gao, M. Fantar, A. Coppa, J.K. Pritchard, R. Pinhasi, A genetic history of continuity and mobility in the Iron Age Central Mediterranean (2022), https://doi.org/10.1101/2022.03.13.483276, 2022.03.13.483276.
- [45] B.M. Henn, L.R. Botigué, S. Gravel, W. Wang, A. Brisbin, J.K. Byrnes, K. Fadhlaoui-Zid, P.A. Zalloua, A. Moreno-Estrada, J. Bertranpetit, C.D. Bustamante, D. Comas, Genomic ancestry of North Africans supports back-to-Africa migrations, PLOS Genet. 8 (2012), e1002397, https://doi.org/10.1371/journal.pgen.1002397.
- [46] P. Moorjani, N. Patterson, J.N. Hirschhorn, A. Keinan, L. Hao, G. Atzmon, E. Burns, H. Ostrer, A.L. Price, D. Reich, The history of African gene flow into southern Europeans, Levantines, and Jews, PLOS Genet. 7 (2011), e1001373, https://doi. org/10.1371/journal.pgen.1001373.
- [47] I. Lazaridis, N. Patterson, A. Mittnik, G. Renaud, S. Mallick, K. Kirsanow, P. H. Sudmant, J.G. Schraiber, S. Castellano, M. Lipson, B. Berger, C. Economou, R. Bollongino, Q. Fu, K.I. Bos, S. Nordenfelt, H. Li, C. de Filippo, K. Prüfer, S. Sawyer, C. Posth, W. Haak, F. Hallgren, E. Fornander, N. Rohland, D. Delsate, M. Francken, J.-M. Guinet, J. Wahl, G. Ayodo, H.A. Babiker, G. Bailliet, E. Balanovska, O. Balanovsky, R. Barrantes, G. Bedoya, H. Ben-Ami, J. Bene, F. Berrada, C.M. Bravi, F. Brisighelli, G.B.J. Busby, F. Cali, M. Churnosov, D.E. C. Cole, D. Corach, L. Damba, G. van Driem, S. Dryomov, J.-M. Dugoujon, S. A. Fedorova, I. Gallego Romero, M. Gubina, M. Hammer, B.M. Henn, T. Hervig, U. Hodoglugil, A.R. Jha, S. Karachanak-Yankova, R. Khusainova, E. Khusnutdinova, R. Kittles, T. Kivisild, W. Klitz, V. Kučinskas, A. Kushniarevich, L. Laredj, S. Litvinov, T. Loukidis, R.W. Mahley, B. Melegh, E. Metspalu, J. Molina, J. Mountain, K. Näkkäläjärvi, D. Nesheva, T. Nyambo, L. Osipova, J. Parik, F. Platonov, O. Posukh, V. Romano, F. Rothhammer, I. Rudan, R. Ruizbakiev, H. Sahakyan, A. Sajantila, A. Salas, E.B. Starikovskaya, A. Tarekegn, D. Toncheva, S. Turdikulova, I. Uktveryte, O. Utevska, R. Vasquez, M. Villena, M. Voevoda, C.
 - A. Winkler, L. Yepiskoposyan, P. Zalloua, T. Zemunik, A. Cooper, C. Capelli, M.
 - G. Thomas, A. Ruiz-Linares, S.A. Tishkoff, L. Singh, K. Thangaraj, R. Villems,
 D. Comas, R. Sukernik, M. Metspalu, M. Meyer, E.E. Eichler, J. Burger, M. Slatkin,
 S. Pääbo, J. Kelso, D. Reich, J. Krause, Ancient human genomes suggest three ancestral populations for present-day Europeans, Nature. 513 (2014) 409–413.
- [48] L. Kovacevic, K. Tambets, A.-M. Ilumäe, A. Kushniarevich, B. Yunusbayev, A. Solnik, T. Bego, D. Primorac, V. Skaro, A. Leskovac, Z. Jakovski, K. Drobnic, H.-V. Tolk, S. Kovacevic, P. Rudan, E. Metspalu, D. Marjanovic, Standing at the Gateway to Europe - The Genetic Structure of Western Balkan Populations Based on Autosomal and Haploid Markers, 2014.
- [49] H. Deguchi, M. Shukla, M. Hayat, A. Torkamani, D.J. Elias, J.H. Griffin, Novel exomic rare variants associated with venous thrombosis, Br. J. Haematol. 190 (2020) 783–786, https://doi.org/10.1111/bjh.16613.
- [50] N.M. Warrington, R.N. Beaumont, M. Horikoshi, F.R. Day, Ø. Helgeland, C. Laurin, J. Bacelis, S. Peng, K. Hao, B. Feenstra, A.R. Wood, A. Mahajan, J. Tyrrell, N. R. Robertson, N.W. Rayner, Z. Qiao, G.-H. Moen, M. Vaudel, C.J. Marsit, J. Chen, M. Nodzenski, T.M. Schnurr, M.H. Zafarmand, J.P. Bradfield, N. Grarup, M. N. Kooijman, R. Li-Gao, F. Geller, T.S. Ahluwalia, L. Paternoster, R. Rueedi, V. Huikari, J.-J. Hottenga, L.-P. Lyytikäinen, A. Cavadino, S. Metrustry, D. L. Cousminer, Y. Wu, E. Thiering, C.A. Wang, C.T. Have, N. Vilor-Tejedor, P. K. Joshi, J.N. Painter, I. Ntalla, R. Myhre, N. Pitkänen, E.M. van Leeuwen, R. Joro, V. Lagou, R.C. Richmond, A. Espinosa, S.J. Barton, H.M. Inskip, J.W. Holloway, L. Santa Mazine, X. Estivillo, Marchane, T. Martillo, P. P. Martina, M. Santa Mazine, Y. Ethio, P. K. Painte, J. Martilo, P. K. Joshi, J.N. Painter, J. Natina, S. J. Barton, H.M. Inskip, J.W. Holloway, L. Santa Mazine, X. Estivillo, Martina, J. Marth. C. Paintedard, J. Marth. P. P. Martina, P. K. Painte, M. Holloway, L. Santa Mazine, Y. Ethio, P. K. Joshi, J. K. Patri, Y. Kullo, P. K. Joshi, Y. Holloway, K. Santa Mazine, Y. Ethio, Y. Ethio, P. Santa Mazine, Y. Ethio, Y. Ethio, P. Santa Mazine, Y. Ethio, P. Santa Mazine, Y. Kullo, P. K. Joshi, Y. Kanta Mazine, Y. Ethio, P. K. Joshi, Y. Kulloway, K. Santa Mazine, Y. Ethio, P. Santa, P. Santa, Y. Ethio, P. Santa, P. Santa
 - L. Santa-Marina, X. Estivill, W. Ang, J.A. Marsh, C. Reichetzeder, L. Marullo,
 - B. Hocher, K.L. Lunetta, J.M. Murabito, C.L. Relton, M. Kogevinas, L. Chatzi,
 - C. Allard, L. Bouchard, M.-F. Hivert, G. Zhang, L.J. Muglia, J. Heikkinen, E.G.
 - G. Consortium, C.S. Morgen, A.H.C. van Kampen, B.D.C. van Schaik, F.D. Mentch, C. Langenberg, J. Luan, R.A. Scott, J.H. Zhao, G. Hemani, S.M. Ring, A.J. Bennett,

K.J. Gaulton, J. Fernandez-Tajes, N.R. van Zuydam, C. Medina-Gomez, H.G. de Haan, F.R. Rosendaal, Z. Kutalik, P. Marques-Vidal, S. Das, G. Willemsen, H. Mbarek, M. Müller-Nurasyid, M. Standl, E.V.R. Appel, C.E. Fonvig, C. Trier, C.E. M. van Beijsterveldt, M. Murcia, M. Bustamante, S. Bonas-Guarch, D.M. Hougaard, J.M. Mercader, A. Linneberg, K.E. Schraut, P.A. Lind, S.E. Medland, B.M. Shields, B.A. Knight, J.-F. Chai, K. Panoutsopoulou, M. Bartels, F. Sánchez, J. Stokholm, D. Torrents, R.K. Vinding, S.M. Willems, M. Atalay, B.L. Chawes, P. Kovacs, I. Prokopenko, M.A. Tuke, H. Yaghootkar, K.S. Ruth, S.E. Jones, P.-R. Loh, A. Murray, M.N. Weedon, A. Tönjes, M. Stumvoll, K.F. Michaelsen, A.-M. Eloranta, T.A. Lakka, C.M. van Duijn, W. Kiess, A. Körner, H. Niinikoski, K. Pahkala, O. T. Raitakari, B. Jacobsson, E. Zeggini, G.V. Dedoussis, Y.-Y. Teo, S.-M. Saw, G. W. Montgomery, H. Campbell, J.F. Wilson, T.G.M. Vrijkotte, M. Vrijheid, E.J.C. N. de Geus, M.G. Hayes, H.N. Kadarmideen, J.-C. Holm, L.J. Beilin, C.E. Pennell, J. Heinrich, L.S. Adair, J.B. Borja, K.L. Mohlke, J.G. Eriksson, E.E. Widén, A. T. Hattersley, T.D. Spector, M. Kähönen, J.S. Viikari, T. Lehtimäki, D.I. Boomsma, S. Sebert, P. Vollenweider, T.I.A. Sørensen, H. Bisgaard, K. Bønnelykke, J. C. Murray, M. Melbye, E.A. Nohr, D.O. Mook-Kanamori, F. Rivadeneira, A. Hofman, J.F. Felix, V.W.V. Jaddoe, T. Hansen, C. Pisinger, A.A. Vaag, O. Pedersen, A.G. Uitterlinden, M.-R. Järvelin, C. Power, E. Hyppönen, D. M. Scholtens, W.L. Lowe, G. Davey Smith, N.J. Timpson, A.P. Morris, N. J. Wareham, H. Hakonarson, S.F.A. Grant, T.M. Frayling, D.A. Lawlor, P. R. Njølstad, S. Johansson, K.K. Ong, M.I. McCarthy, J.R.B. Perry, D.M. Evans, R. M. Freathy, Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors, Nat. Genet. 51 (2019) 804-814, https://doi.org/ 10.1038/s41588-019-0403-1.

- [51] S. Cheng, Y. Wen, L. Liu, B. Cheng, C. Liang, J. Ye, X. Chu, Y. Yao, Y. Jia, O.P. Kafle, F. Zhang, Traumatic events during childhood and its risks to substance use in adulthood: an observational and genome-wide by environment interaction study in UK Biobank, Transl. Psychiatry. 11 (2021) 431, https://doi.org/10.1038/s41398-021-01557-7.
- [52] V. Emilsson, M. Ilkov, J.R. Lamb, N. Finkel, E.F. Gudmundsson, R. Pitts, H. Hoover, V. Gudmundsdottir, S.R. Horman, T. Aspelund, L. Shu, V. Trifonov, S. Sigurdsson, A. Manolescu, J. Zhu, Ö. Olafsson, J. Jakobsdottir, S.A. Lesley, J. To, J. Zhang, T. B. Harris, L.J. Launer, B. Zhang, G. Eiriksdottir, X. Yang, A.P. Orth, L.L. Jennings, V. Gudnason, Co-regulatory networks of human serum proteins link genetics to disease, Science. 361 (2018) 769–773, https://doi.org/10.1126/science.aaq1327.
- [53] M.-H. Chen, L.M. Raffield, A. Mousas, S. Sakaue, J.E. Huffman, A. Moscati, B. Trivedi, T. Jiang, P. Akbari, D. Vuckovic, E.L. Bao, X. Zhong, R. Manansala, V. Laplante, M. Chen, K.S. Lo, H. Qian, C.A. Lareau, M. Beaudoin, K.A. Hunt, M. Akiyama, T.M. Bartz, Y. Ben-Shlomo, A. Beswick, J. Bork-Jensen, E.P. Bottinger, J.A. Brody, F.J.A. van Rooij, K. Chitrala, K. Cho, H. Choquet, A. Correa, J. Danesh, E. Di Angelantonio, N. Dimou, J. Ding, P. Elliott, T. Esko, M.K. Evans, J.S. Floyd, L. Broer, N. Grarup, M.H. Guo, A. Greinacher, J. Haessler, T. Hansen, J.M. M. Howson, Q.Q. Huang, W. Huang, E. Jorgenson, T. Kacprowski, M. Kähönen, Y. Kamatani, M. Kanai, S. Karthikevan, F. Koskeridis, L.A. Lange, T. Lehtimäki, M. M. Lerch, A. Linneberg, Y. Liu, L.-P. Lyytikäinen, A. Manichaikul, H.C. Martin, K. Matsuda, K.L. Mohlke, N. Mononen, Y. Murakami, G.N. Nadkarni, M. Nauck, K. Nikus, W.H. Ouwehand, N. Pankratz, O. Pedersen, M. Preuss, B.M. Psaty, O. T. Raitakari, D.J. Roberts, S.S. Rich, B.A.T. Rodriguez, J.D. Rosen, J.I. Rotter, P. Schubert, C.N. Spracklen, P. Surendran, H. Tang, J.-C. Tardif, R.C. Trembath, M. Ghanbari, U. Völker, H. Völzke, N.A. Watkins, A.B. Zonderman, V.A. Million Veteran Program, P.W.F. Wilson, Y. Li, A.S. Butterworth, J.-F. Gauchat, C.W. K. Chiang, B. Li, R.J.F. Loos, W.J. Astle, E. Evangelou, D.A. van Heel, V. G. Sankaran, Y. Okada, N. Soranzo, A.D. Johnson, A.P. Reiner, P.L. Auer, G. Lettre, Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations, Cell. 182 (2020) 1198-1213, e14, https://doi.org/10.1016/j. ell.2020.06.045
- [54] H. Nan, M. Xu, J. Zhang, M. Zhang, P. Kraft, A.A. Qureshi, C. Chen, Q. Guo, F. B. Hu, E.B. Rimm, G. Curhan, Y. Song, C.I. Amos, L.-E. Wang, J.E. Lee, Q. Wei, D. J. Hunter, J. Han, Genome-wide association study identifies nidogen 1 (NID1) as a susceptibility locus to cutaneous nevi and melanoma risk, Hum. Mol. Genet. 20 (2011) 2673–2679, https://doi.org/10.1093/hmg/ddr154.
- [55] G. Voisinne, A. García-Blesa, K. Chaoui, F. Fiore, E. Bergot, L. Girard, M. Malissen, O. Burlet-Schiltz, A. Gonzalez de Peredo, B. Malissen, R. Roncagalli, Corecruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation, Mol. Syst. Biol. 12 (2016) 876, https://doi.org/10.15252/msb.20166837.
- [56] E. Jorgenson, K.K. Thai, T.J. Hoffmann, L.C. Sakoda, M.N. Kvale, Y. Banda, C. Schaefer, N. Risch, J. Mertens, C. Weisner, H. Choquet, Genetic contributors to variation in alcohol consumption vary by race/ethnicity in a large multi-ethnic genome-wide association study, Mol. Psychiatry. 22 (2017) 1359–1367, https:// doi.org/10.1038/mp.2017.101.
- [57] C. Endo, T.A. Johnson, R. Morino, K. Nakazono, S. Kamitsuji, M. Akita, M. Kawajiri, T. Yamasaki, A. Kami, Y. Hoshi, A. Tada, K. Ishikawa, M. Hine, M. Kobayashi, N. Kurume, Y. Tsunemi, N. Kamatani, M. Kawashima, Genome-wide association study in Japanese females identifies fifteen novel skin-related trait associations, Sci. Rep. 8 (2018) 8974, https://doi.org/10.1038/s41598-018-27145-2.
- [58] S. Aneli, M. Caldon, T. Saupe, F. Montinaro, L. Pagani, Through 40,000 years of human presence in Southern Europe: the Italian case study, Hum. Genet. 140 (2021) 1417–1431, https://doi.org/10.1007/s00439-021-02328-6.
- [59] M.L. Antonio, Z. Gao, H.M. Moots, M. Lucci, F. Candilio, S. Sawyer, V. Oberreiter, D. Calderon, K. Devitofranceschi, R.C. Aikens, S. Aneli, F. Bartoli, A. Bedini, O. Cheronet, D.J. Cotter, D.M. Fernandes, G. Gasperetti, R. Grifoni, A. Guidi, F. L. Pastina, E. Loreti, D. Manacorda, G. Matullo, S. Morretta, A. Nava, V.F. Nicolai, F. Nomi, C. Pavolini, M. Pentiricci, P. Pergola, M. Piranomonte, R. Schmidt,

G. Spinola, A. Sperduti, M. Rubini, L. Bondioli, A. Coppa, R. Pinhasi, J.K. Pritchard, Ancient Rome: a genetic crossroads of Europe and the Mediterranean, Science. (2019), https://doi.org/10.1126/science.aay6826.

- [60] V. Grugni, A. Raveane, F. Mattioli, V. Battaglia, C. Sala, D. Toniolo, L. Ferretti, R. Gardella, A. Achilli, A. Olivieri, A. Torroni, G. Passarino, O. Semino, Reconstructing the genetic history of Italians: new insights from a male (Ychromosome) perspective, Ann. Hum. Biol. 45 (2018) 44–56, https://doi.org/ 10.1080/03014460.2017.1409801.
- [61] G.B.J. Busby, G. Hellenthal, F. Montinaro, S. Tofanelli, K. Bulayeva, I. Rudan, T. Zemunik, C. Hayward, D. Toncheva, S. Karachanak-Yankova, D. Nesheva, P. Anagnostou, F. Cali, F. Brisighelli, V. Romano, G. Lefranc, C. Buresi, J. Ben Chibani, A. Haj-Khelil, S. Denden, R. Ploski, P. Krajewski, T. Hervig, T. Moen, R. J. Herrera, J.F. Wilson, S. Myers, C. Capelli, The role of recent admixture in forming the contemporary West Eurasian genomic landscape, Curr. Biol. 25 (2015) 2518–2526.
- [62] S. McKee, Uncommon Dominion: Venetian Crete and the Myth of Ethnic Purity, University of Pennsylvania Press, 2000.
- [63] The Oxford Handbook of the Bronze Age Aegean, Oxford University Press (2012), https://doi.org/10.1093/oxfordhb/9780199873609.001.0001.
- [64] A. Auton, G.R. Abecasis, D.M. Altshuler, R.M. Durbin, G.R. Abecasis, D.R. Bentley, A. Chakravarti, A.G. Clark, P. Donnelly, E.E. Eichler, P. Flicek, S.B. Gabriel, R. A. Gibbs, E.D. Green, M.E. Hurles, B.M. Knoppers, J.O. Korbel, E.S. Lander, C. Lee, H. Lehrach, E.R. Mardis, G.T. Marth, G.A. McVean, D.A. Nickerson, J.P. Schmidt, S. T. Sherry, J. Wang, R.K. Wilson, R.A. Gibbs, E. Boerwinkle, H. Doddapaneni, Y. Han, V. Korchina, C. Kovar, S. Lee, D. Muzny, J.G. Reid, Y. Zhu, J. Wang, Y. Chang, Q. Feng, X. Fang, X. Guo, M. Jian, H. Jiang, X. Jin, T. Lan, G. Li, J. Li, Y. Li, S. Liu, X. Liu, Y. Lu, X. Ma, M. Tang, B. Wang, G. Wang, H. Wu, R. Wu, X. Xu, Y. Yin, D. Zhang, W. Zhang, J. Zhao, M. Zhao, X. Zheng, E.S. Lander, D. M. Altshuler, S.B. Gabriel, N. Gupta, N. Gharani, L.H. Toji, N.P. Gerry, A.M. Resch, P. Flicek, J. Barker, L. Clarke, L. Gil, S.E. Hunt, G. Kelman, E. Kulesha, R. Leinonen, W.M. McLaren, R. Radhakrishnan, A. Roa, D. Smirnov, R.E. Smith, I. Streeter, A. Thormann, I. Toneva, B. Vaughan, X. Zheng-Bradley, D.R. Bentley, R. Grocock, S. Humphray, T. James, Z. Kingsbury, H. Lehrach, R. Sudbrak, M.W. Albrecht, V. S. Amstislavskiy, T.A. Borodina, M. Lienhard, F. Mertes, M. Sultan, B. Timmermann, M.-L. Yaspo, E.R. Mardis, R.K. Wilson, L. Fulton, R. Fulton, S. T. Sherry, V. Ananiev, Z. Belaia, D. Beloslyudtsev, N. Bouk, C. Chen, D. Church, R. Cohen, C. Cook, J. Garner, T. Hefferon, M. Kimelman, C. Liu, J. Lopez, P. Meric, C. O'Sullivan, Y. Ostapchuk, L. Phan, S. Ponomarov, V. Schneider, E. Shekhtman, K. Sirotkin, D. Slotta, H. Zhang, G.A. McVean, R.M. Durbin, S. Balasubramaniam, J. Burton, P. Danecek, T.M. Keane, A. Kolb-Kokocinski, S. McCarthy, J. Stalker, M. Quail, J.P. Schmidt, C.J. Davies, J. Gollub, T. Webster, B. Wong, Y. Zhan, A. Auton, C.L. Campbell, Y. Kong, A. Marcketta, R.A. Gibbs, F. Yu, L. Antunes, M. Bainbridge, D. Muzny, A. Sabo, Z. Huang, J. Wang, L.J.M. Coin, L. Fang, X. Guo, X. Jin, G. Li, Q. Li, Y. Li, Z. Li, H. Lin, B. Liu, R. Luo, H. Shao, Y. Xie, C. Ye, C. Yu, F. Zhang, H. Zheng, H. Zhu, C. Alkan, E. Dal, F. Kahveci, G.T. Marth, E.P. Garrison, D. Kural, W.-P. Lee, W. Fung Leong, M. Stromberg, A.N. Ward, J. Wu, M. Zhang, M. J. Daly, M.A. DePristo, R.E. Handsaker, D.M. Altshuler, E. Banks, G. Bhatia, G. del Angel, S.B. Gabriel, G. Genovese, N. Gupta, H. Li, S. Kashin, E.S. Lander, S. A. McCarroll, J.C. Nemesh, R.E. Poplin, S.C. Yoon, J. Lihm, V. Makarov, A.G. Clark, S. Gottipati, A. Keinan, J.L. Rodriguez-Flores, J.O. Korbel, T. Rausch, M.H. Fritz, A. M. Stütz, P. Flicek, K. Beal, L. Clarke, A. Datta, J. Herrero, W.M. McLaren, G.R. S. Ritchie, R.E. Smith, D. Zerbino, X. Zheng-Bradley, P.C. Sabeti, I. Shlyakhter, S. F. Schaffner, J. Vitti, D.N. Cooper, E.V. Ball, P.D. Stenson, D.R. Bentley, B. Barnes, M. Bauer, R. Keira Cheetham, A. Cox, M. Eberle, S. Humphray, S. Kahn, L. Murray, J. Peden, R. Shaw, E.E. Kenny, M.A. Batzer, M.K. Konkel, J.A. Walker, D. G. MacArthur, M. Lek, R. Sudbrak, V.S. Amstislavskiy, R. Herwig, E.R. Mardis, L. Ding, D.C. Koboldt, D. Larson, K. Ye, S. Gravel, The 1000 Genomes Project Consortium, Corresponding authors, Steering committee, Production group, Baylor College of Medicine, BGI-Shenzhen, Broad Institute of MIT and Harvard, Coriell Institute for Medical Research, E.B.I. European Molecular Biology Laboratory Illumina, Max Planck Institute for Molecular Genetics, McDonnell Genome Institute at Washington University, US National Institutes of Health, University of Oxford, Wellcome Trust Sanger Institute, Analysis group, Affymetrix, Albert Einstein College of Medicine, Bilkent University, Boston College, Cold Spring Harbor Laboratory, Cornell University, European Molecular Biology Laboratory, Harvard University, Human Gene Mutation Database, Icahn School of Medicine at Mount Sinai, Louisiana State University, Massachusetts General Hospital, McGill University, N. National Eye Institute, A global reference for human genetic variation, Nature 526 (2015) 68-74, https://doi.org/10.1038/nature15393.
- [65] D.M. Behar, B. Yunusbayev, M. Metspalu, E. Metspalu, S. Rosset, J. Parik, S. Rootsi, G. Chaubey, I. Kutuev, G. Yudkovsky, E.K. Khusnutdinova, O. Balanovsky, O. Semino, L. Pereira, D. Comas, D. Gurwitz, B. Bonne-Tamir, T. Parfitt, M. F. Hammer, K. Skorecki, R. Villems, The genome-wide structure of the Jewish people, Nature. 466 (2010) 238–242, https://doi.org/10.1038/nature09103.
 [66] A. Kushniarevich, O. Utevska, M. Chuhryaeva, A. Agdzhoyan, K. Dibirova.
- [66] A. Kushniarevich, O. Utevska, M. Chuhryaeva, A. Agdzhoyan, K. Dibirova, I. Uktveryte, M. Möls, L. Mulahasanovic, A. Pshenichnov, S. Frolova, A. Shanko, E. Metspalu, M. Reidla, K. Tambets, E. Tamm, S. Koshel, V. Zaporozhchenko, I. Mitsparu, M. William, O. D. Andrek, G. Oscarka, and T. Darbetko, J. Status, J. St
 - L. Atramentova, V. Kučinskas, O. Davydenko, O. Goncharova, I. Evseeva, M. Churnosov, E. Pocheshchova, B. Yunusbayev, E. Khusnutdinova, D. Marjanović, P. Rudan, S. Rootsi, N. Yankovsky, P. Endicott, A. Kassian, A. Dybo, Genographic Consortium, C. Tyler-Smith, E. Balanovska, M. Metspalu, T. Kivisild, R. Villems, O. Balanovsky, Genetic heritage of the Balto-Slavic speaking populations: a synthesis of autosomal, mitochondrial and Y-chromosomal data, PLoS One. 10 (2015), e0135820.
- [67] J.Z. Li, D.M. Absher, H. Tang, A.M. Southwick, A.M. Casto, S. Ramachandran, H. M. Cann, G.S. Barsh, M. Feldman, L.L. Cavalli-Sforza, R.M. Myers, Worldwide

human relationships inferred from genome-wide patterns of variation, Science. 319 (2008) 1100–1104, https://doi.org/10.1126/science.1153717.

- [68] L. Pagani, T. Kivisild, A. Tarekegn, R. Ekong, C. Plaster, I. Gallego Romero, Q. Ayub, S.Q. Mehdi, M.G. Thomas, D. Luiselli, E. Bekele, N. Bradman, D. J. Balding, C. Tyler-Smith, Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool, Am. J. Hum. Genet. 91 (2012) 83–96, https://doi.org/10.1016/j.ajhg.2012.05.015.
- [69] F. Sallustio, S.N. Cox, G. Serino, C. Curci, F. Pesce, G. De Palma, A. Papagianni, D. Kirmizis, M. Falchi, F.P. Schena, Genome-wide scan identifies a copy number variable region at 3p21.1 that influences the TLR9 expression levels in IgA nephropathy patients, Eur. J. Hum. Genet. 23 (2015) 940–948, https://doi.org/ 10.1038/ejhg.2014.208.
- [70] B. Yunusbayev, M. Metspalu, M. Järve, I. Kutuev, S. Rootsi, E. Metspalu, D. M. Behar, K. Varendi, H. Sahakyan, R. Khusainova, L. Yepiskoposyan, E. K. Khusnutdinova, P.A. Underhill, T. Kivisild, R. Villems, The Caucasus as an asymmetric semipermeable barrier to ancient human migrations, Mol. Biol. Evol. 29 (2012) 359–365, https://doi.org/10.1093/molbev/msr221.
- [71] B. Yunusbayev, M. Metspalu, E. Metspalu, A. Valeev, S. Litvinov, R. Valiev, V. Akhmetova, E. Balanovska, O. Balanovsky, S. Turdikulova, D. Dalimova, P. Nymadawa, A. Bahmanimehr, H. Sahakyan, K. Tambets, S. Fedorova, N. Barashkov, I. Khidiyatova, E. Mihailov, R. Khusainova, L. Damba, M. Derenko, B. Malyarchuk, L. Osipova, M. Voevoda, L. Yepiskoposyan, T. Kivisild, E. Khusnutdinova, R. Villems, The genetic legacy of the expansion of Turkic-speaking nomads across Eurasia, PLoS Genet. 11 (2015), e1005068.
- [72] D.M. Behar, M. Metspalu, Y. Baran, N.M. Kopelman, B. Yunusbayev, A. Gladstein, S. Tzur, H. Sahakyan, A. Bahmanimehr, L. Yepiskoposyan, K. Tambets, E. K. Khusnutdinova, A. Kushniarevich, O. Balanovsky, E. Balanovsky, L. Kovacevic, D. Marjanovic, E. Mihailov, A. Kouvatsi, C. Triantaphyllidis, R.J. King, O. Semino, A. Torroni, M.F. Hammer, E. Metspalu, K. Skorecki, S. Rosset, E. Halperin, R. Villems, N.A. Rosenberg, No evidence from genome-wide data of a Khazar origin for the Ashkenazi Jews, Hum. Biol. 85 (2013) 859–900, https://doi.org/10.3378/ 027.085.0604.
- [73] C.C. Chang, C.C. Chow, L.C. Tellier, S. Vattikuti, S.M. Purcell, J.J. Lee, Secondgeneration PLINK: rising to the challenge of larger and richer datasets, GigaScience. 4 (2015), https://doi.org/10.1186/s13742-015-0047-8 s13742-015-0047-8.
- [74] I. Mathieson, S. Alpaslan-Roodenberg, C. Posth, A. Szécsényi-Nagy, N. Rohland, S. Mallick, I. Olalde, N. Broomandkhoshbacht, F. Candilio, O. Cheronet, D. Fernandes, M. Ferry, B. Gamarra, G.G. Fortes, W. Haak, E. Harney, E. Jones, D. Keating, B. Krause-Kyora, I. Kucukkalipci, M. Michel, A. Mittnik, K. Nägele, M. Novak, J. Oppenheimer, N. Patterson, S. Pfrengle, K. Sirak, K. Stewardson, S. Vai, S. Alexandrov, K.W. Alt, R. Andreescu, D. Antonović, A. Ash, N. Atanassova, K. Bacvarov, M.B. Gusztáv, H. Bocherens, M. Bolus, A. Boroneant, Y. Boyadzhiev, A. Budnik, J. Burmaz, S. Chohadzhiev, N.J. Conard, R. Cottiaux, M. Čuka, C. Cupillard, D.G. Drucker, N. Elenski, M. Francken, B. Galabova, G. Ganetsovski, B. Gély, T. Hajdu, V. Handzhyiska, K. Harvati, T. Higham, S. Iliev, I. Janković, I. Karavanić, D.J. Kennett, D. Komšo, A. Kozak, D. Labuda, M. Lari, C. Lazar, M. Leppek, K. Leshtakov, D.L. Vetro, D. Los, I. Lozanov, M. Malina, F. Martini, K. McSweeney, H. Meller, M. Menđušić, P. Mirea, V. Moiseyev, V. Petrova, T. D. Price, A. Simalcsik, L. Sineo, M. Šlaus, V. Slavchev, P. Stanev, A. Starović, T. Szeniczey, S. Talamo, M. Teschler-Nicola, C. Thevenet, I. Valchev, F. Valentin, S. Vasilyev, F. Veljanovska, S. Venelinova, E. Veselovskaya, B. Viola, C. Virag, J. Zaninović, S. Zäuner, P.W. Stockhammer, G. Catalano, R. Krauß, D. Caramelli, G. Zariņa, B. Gaydarska, M. Lillie, A.G. Nikitin, I. Potekhina, A. Papathanasiou, D. Borić, C. Bonsall, J. Krause, R. Pinhasi, D. Reich, The genomic history of southeastern Europe, Nature. 555 (2018) 197-203, https://doi.org/10.1038/ nature257
- [75] M.E. Allentoft, M. Sikora, K.-G. Sjögren, S. Rasmussen, M. Rasmussen, J. Stenderup, P.B. Damgaard, H. Schroeder, T. Ahlström, L. Vinner, A.-S. Malaspinas, A. Margaryan, T. Higham, D. Chivall, N. Lynnerup, L. Harvig, J. Baron, P.D. Casa, P. Dąbrowski, P.R. Duffy, A.V. Ebel, A. Epimakhov, K. Frei, M. Furmanek, T. Gralak, A. Gromov, S. Gronkiewicz, G. Grupe, T. Hajdu, R. Jarysz, V. Khartanovich, A. Khokhlov, V. Kiss, J. Kolář, A. Kriiska, I. Lasak, C. Longhi, G. McGlynn, A. Merkevicius, I. Merkyte, M. Metspalu, R. Mkrtchyan, V. Moiseyev, L. Paja, G. Pálfi, D. Pokutta, Ł. Pospieszny, T.D. Price, L. Saag, M. Sablin, N. Shishlina, V. Smrčka, V.I. Soenov, V. Szeverényi, G. Tóth, S.V. Trifanova, L. Varul, M. Vicze, L. Yepiskoposyan, V. Zhitenev, L. Orlando, T. Sicheritz-Pontén, S. Brunak, R. Nielsen, K. Kristiansen, E. Willerslev, Population genomics of Bronze Age Eurasia, Nature. 522 (2015) 167–172, https://doi.org/10.1038/nature14507.
- [76] F. Broushaki, M.G. Thomas, V. Link, S. López, L. van Dorp, K. Kirsanow, Z. Hofmanová, Y. Diekmann, L.M. Cassidy, D. Díez-del-Molino, A. Kousathanas, C. Sell, H.K. Robson, R. Martiniano, J. Blöcher, A. Scheu, S. Kreutzer, R. Bollongino, D. Bobo, H. Davoudi, O. Munoz, M. Currat, K. Abdi, F. Biglari, O. E. Craig, D.G. Bradley, S. Shennan, K.R. Veeramah, M. Mashkour, D. Wegmann, G. Hellenthal, J. Burger, Early Neolithic genomes from the eastern Fertile Crescent, Science. 353 (2016) 499–503, https://doi.org/10.1126/science.aaf7943.
- [77] Z. Hofmanová, S. Kreutzer, G. Hellenthal, C. Sell, Y. Diekmann, D. Díez-del-Molino, L. van Dorp, S. López, A. Kousathanas, V. Link, K. Kirsanow, L.M. Cassidy, R. Martiniano, M. Strobel, A. Scheu, K. Kotsakis, P. Halstead, S. Triantaphyllou, N. Kyparissi-Apostolika, D. Urem-Kotsou, C. Ziota, F. Adaktylou, S. Gopalan, D. M. Bobo, L. Winkelbach, J. Blöcher, M. Unterländer, C. Leuenberger, Ç. Çilingiroğlu, B. Horejs, F. Gerritsen, S.J. Shennan, D.G. Bradley, M. Currat, K. R. Veeramah, D. Wegmann, M.G. Thomas, C. Papageorgopoulou, J. Burger, Early farmers from across Europe directly descended from Neolithic Aegeans, Proc. Natl. Acad. Sci. 113 (2016) 6886–6891, https://doi.org/10.1073/pnas.1523951113.

A. Raveane et al.

- [78] E.R. Jones, G. Gonzalez-Fortes, S. Connell, V. Siska, A. Eriksson, R. Martiniano, R. L. McLaughlin, M. Gallego Llorente, L.M. Cassidy, C. Gamba, T. Meshveliani, O. Bar-Yosef, W. Müller, A. Belfer-Cohen, Z. Matskevich, N. Jakeli, T.F.G. Higham, M. Currat, D. Lordkipanidze, M. Hofreiter, A. Manica, R. Pinhasi, D.G. Bradley, Upper Palaeolithic genomes reveal deep roots of modern Eurasians, Nat. Commun. 6 (2015) 8912, https://doi.org/10.1038/ncomms9912.
- [79] A. Keller, A. Graefen, M. Ball, M. Matzas, V. Boisguerin, F. Maixner, P. Leidinger, C. Backes, R. Khairat, M. Forster, B. Stade, A. Franke, J. Mayer, J. Spangler, S. McLaughlin, M. Shah, C. Lee, T.T. Harkins, A. Sartori, A. Moreno-Estrada, B. Henn, M. Sikora, O. Semino, J. Chiaroni, S. Rootsi, N.M. Myres, V.M. Cabrera, P. A. Underhill, C.D. Bustamante, E.E. Vigl, M. Samadelli, G. Cipollini, J. Haas, H. Katus, B.D. O'Connor, M.R.J. Carlson, B. Meder, N. Blin, E. Meese, C.M. Pusch, A. Zink, New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing, Nat. Commun. 3 (2012) 698, https://doi.org/ 10.1038/ncomms1701.
- [80] G.M. Kılınç, A. Omrak, F. Özer, T. Günther, A.M. Büyükkarakaya, E. Bıçakçı, D. Baird, H.M. Dönertaş, A. Ghalichi, R. Yaka, D. Koptekin, S.C. Acan, P. Parvizi, M. Krzewińska, E.A. Daskalaki, E. Yüncü, N.D. Dağtacs, A. Fairbairn, J. Pearson, G. Mustafaoğlu, Y.S. Erdal, Y.G. Çakan, İ. Togan, M. Somel, J. Storaa, M. Jakobsson, A. Götherström, The demographic development of the first farmers in Anatolia, Curr. Biol. 26 (2016) 2659–2666.
- [81] M. Lipson, A. Szécsényi-Nagy, S. Mallick, A. Pósa, B. Stégmár, V. Keerl, N. Rohland, K. Stewardson, M. Ferry, M. Michel, J. Oppenheimer, N. Broomandkhoshbacht, E. Harney, S. Nordenfelt, B. Llamas, B. Gusztáv Mende, K. Köhler, K. Oross, M. Bondár, T. Marton, A. Osztás, J. Jakucs, T. Paluch, F. Horváth, P. Csengeri, J. Koós, K. Sebők, A. Anders, P. Raczky, J. Regenye, J.P. Barna, S. Fábián, G. Serlegi, Z. Toldi, E. Gyöngyvér Nagy, J. Dani, E. Molnár, G. Pálfi, L. Márk, B. Melegh, Z. Bánfai, L. Domboróczki, J. Fernández-Eraso, J. Antonio Mujika-Alustiza, C. Alonso Fernández, J. Jiménez Echevarría, R. Bollongino, J. Orschiedt, K. Schierhold, H. Meller, A. Cooper, J. Burger, E. Bánffy, K.W. Alt, C. Lalueza-Fox, W. Haak, D. Reich, Parallel palaeogenomic transects reveal complex genetic history of early European farmers, Nature. 551 (2017) 368–372, https://doi.org/10.1038/nature24476.
- [82] A. Mittnik, C.-C. Wang, S. Pfrengle, M. Daubaras, G. Zariņa, F. Hallgren, R. Allmäe, V. Khartanovich, V. Moiseyev, M. Törv, A. Furtwängler, A. Andrades Valtueña, M. Feldman, C. Economou, M. Oinonen, A. Vasks, E. Balanovska, D. Reich, R. Jankauskas, W. Haak, S. Schiffels, J. Krause, The genetic prehistory of the Baltic Sea region, Nat. Commun. 9 (2018) 442, https://doi.org/10.1038/s41467-018-02825-9.
- [83] V.M. Narasimhan, N. Patterson, P. Moorjani, N. Rohland, R. Bernardos, S. Mallick, I. Lazaridis, N. Nakatsuka, I. Olalde, M. Lipson, A.M. Kim, L.M. Olivieri, A. Coppa, M. Vidale, J. Mallory, V. Moiseyev, E. Kitov, J. Monge, N. Adamski, N. Alex, N. Broomandkhoshbacht, F. Candilio, K. Callan, O. Cheronet, B.J. Culleton, M. Ferry, D. Fernandes, S. Freilich, B. Gamarra, D. Gaudio, M. Hajdinjak, É. Harney, T.K. Harper, D. Keating, A.M. Lawson, M. Mah, K. Mandl, M. Michel, M. Novak, J. Oppenheimer, N. Rai, K. Sirak, V. Slon, K. Stewardson, F. Zalzala, Z. Zhang, G. Akhatov, A.N. Bagashev, A. Bagnera, B. Baitanayev, J. Bendezu-Sarmiento, A.A. Bissembaev, G.L. Bonora, T.T. Chargynov, T. Chikisheva, P. K. Dashkovskiy, A. Derevianko, M. Dobes, K. Douka, N. Dubova, M.N. Duisengali, D. Enshin, A. Epimakhov, A.V. Fribus, D. Fuller, A. Goryachev, A. Gromov, S. P. Grushin, B. Hanks, M. Judd, E. Kazizov, A. Khokhlov, A.P. Krygin, E. Kupriyanova, P. Kuznetsov, D. Luiselli, F. Maksudov, A.M. Mamedov, T. B. Mamirov, C. Meiklejohn, D.C. Merrett, R. Micheli, O. Mochalov, S. Mustafokulov, A. Nayak, D. Pettener, R. Potts, D. Razhev, M. Rykun, S. Sarno, T. M. Savenkova, K. Sikhymbaeva, S.M. Slepchenko, O.A. Soltobaev, N. Stepanova, S. Svyatko, K. Tabaldiev, M. Teschler-Nicola, A.A. Tishkin, V.V. Tkachev, S. Vasilyev, P. Velemínský, D. Voyakin, A. Yermolayeva, M. Zahir, V.S. Zubkov, A. Zubova, V.S. Shinde, C. Lalueza-Fox, M. Meyer, D. Anthony, N. Boivin, K. Thangaraj, D.J. Kennett, M. Frachetti, R. Pinhasi, D. Reich, The formation of human populations in South and Central Asia, Science. 365 (2019) eaat7487 doi.org/10.1126/science.aat7487 [84] I. Olalde, S. Brace, M.E. Allentoft, I. Armit, K. Kristiansen, T. Booth, N. Rohland,
- S. Mallick, A. Szécsényi-Nagy, A. Mittnik, E. Altena, M. Lipson, I. Lazaridis, T. K. Harper, N. Patterson, N. Broomandkhoshbacht, Y. Diekmann, Z. Faltyskova, D. Fernandes, M. Ferry, E. Harney, P. de Knijff, M. Michel, J. Oppenheimer, K. Stewardson, A. Barclay, K.W. Alt, C. Liesau, P. Ríos, C. Blasco, J.V. Miguel, R. M. García, A.A. Fernández, E. Bánffy, M. Bernabò-Brea, D. Billoin, C. Bonsall, L. Bonsall, T. Allen, L. Büster, S. Carver, L.C. Navarro, O.E. Craig, G.T. Cook, B. Cunliffe, A. Denaire, K.E. Dinwiddy, N. Dodwell, M. Ernée, C. Evans, M. Kuchařík, J.F. Farré, C. Fowler, M. Gazenbeek, R.G. Pena, M. Haber-Uriarte, E. Haduch, G. Hey, N. Jowett, T. Knowles, K. Massy, S. Pfrengle, P. Lefrance O. Lemercier, A. Lefebvre, C.H. Martínez, V.G. Olmo, A.B. Ramírez, J.L. Maurandi, T. Majó, J.I. McKinley, K. McSweeney, B.G. Mende, A. Modi, G. Kulcsár, V. Kiss, A. Czene, R. Patay, A. Endrődi, K. Köhler, T. Hajdu, T. Szeniczey, J. Dani, Z. Bernert, M. Hoole, O. Cheronet, D. Keating, P. Velemínský, M. Dobeš, F. Candilio, F. Brown, R.F. Fernández, A.-M. Herrero-Corral, S. Tusa, E. Carnieri, L. Lentini, A. Valenti, A. Zanini, C. Waddington, G. Delibes, E. Guerra-Doce, B. Neil, M. Brittain, M. Luke, R. Mortimer, J. Desideri, M. Besse, G. Brücken, M. Furmanek, A. Hałuszko, M. Mackiewicz, A. Rapiński, S. Leach, I. Soriano, K.T. Lillios, J. L. Cardoso, M.P. Pearson, P. Włodarczak, T.D. Price, P. Prieto, P.-J. Rey, R. Risch, M.A. Rojo Guerra, A. Schmitt, J. Serralongue, A.M. Silva, V. Smrčka, L. Vergnaud, J. Zilhão, D. Caramelli, T. Higham, M.G. Thomas, D.J. Kennett, H. Fokkens, V. Heyd, A. Sheridan, K.-G. Sjögren, P.W. Stockhammer, J. Krause, R. Pinhasi, W. Haak, I. Barnes, C. Lalueza-Fox, D. Reich, The Beaker phenomenon and the genomic transformation of northwest Europe, Nature. 555 (2018) 190-196, ttps://doi.org/10.1038/nature25738.

- [85] C.-C. Wang, S. Reinhold, A. Kalmykov, A. Wissgott, G. Brandt, C. Jeong, O. Cheronet, M. Ferry, E. Harney, D. Keating, S. Mallick, N. Rohland, K. Stewardson, A.R. Kantorovich, V.E. Maslov, V.G. Petrenko, V.R. Erlikh, B. C. Atabiev, R.G. Magomedov, P.L. Kohl, K.W. Alt, S.L. Pichler, C. Gerling, H. Meller, B. Vardanyan, L. Yeganyan, A.D. Rezepkin, D. Mariaschk, N. Berezina, J. Gresky, K. Fuchs, C. Knipper, S. Schiffels, E. Balanovska, O. Balanovsky, I. Mathieson, T. Higham, Y.B. Berezin, A. Buzhilova, V. Trifonov, R. Pinhasi, A. B. Belinskij, D. Reich, S. Hansen, J. Krause, W. Haak, Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions, Nat. Commun. 10 (2019) 590, https://doi.org/10.1038/s41467-018-08220-8.
- [86] C.E.G. Amorim, S. Vai, C. Posth, A. Modi, I. Koncz, S. Hakenbeck, M.C. La Rocca, B. Mende, D. Bobo, W. Pohl, L.P. Baricco, E. Bedini, P. Francalacci, C. Giostra, T. Vida, D. Winger, U. von Freeden, S. Ghirotto, M. Lari, G. Barbujani, J. Krause, D. Caramelli, P.J. Geary, K.R. Veeramah, Understanding 6th-century barbarian social organization and migration through paleogenomics, Nat. Commun. 9 (2018) 3547, https://doi.org/10.1038/s41467-018-06024-4.
- [87] M. Raghavan, P. Skoglund, K.E. Graf, M. Metspalu, A. Albrechtsen, I. Moltke, S. Rasmussen, T.W. Stafford Jr., L. Orlando, E. Metspalu, M. Karmin, K. Tambets, S. Rootsi, R. Mägi, P.F. Campos, E. Balanovska, O. Balanovsky, E. Khusnutdinova, S. Litvinov, L.P. Osipova, S.A. Fedorova, M.I. Voevoda, M. DeGiorgio, T. Sicheritz-Ponten, S. Brunak, S. Demeshchenko, T. Kivisild, R. Villems, R. Nielsen, M. Jakobsson, E. Willerslev, Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans, Nature. 505 (2014) 87–91.
- [88] D.H. Alexander, J. Novembre, K. Lange, Fast model-based estimation of ancestry in unrelated individuals, Genome Res. 19 (2009) 1655–1664, https://doi.org/ 10.1101/gr.094052.109.
- [89] N.M. Kopelman, J. Mayzel, M. Jakobsson, N.A. Rosenberg, I. Mayrose, Clumpak: a program for identifying clustering modes and packaging population structure inferences across K, Mol. Ecol. Resour. 15 (2015) 1179–1191, https://doi.org/ 10.1111/1755-0998.12387.
- [90] N. Patterson, A.L. Price, D. Reich, Population structure and eigenanalysis, PLoS Genet. 2 (2006), e190, https://doi.org/10.1371/journal.pgen.0020190.
- [91] L. Scrucca, M. Fop, T.B. Murphy, A.E. Raftery, mclust 5: clustering, classification and density estimation using gaussian finite mixture models, R J. 8 (2016) 289–317.
- [92] M. Petr, B. Vernot, J. Kelso, admixr—R package for reproducible analyses using ADMIXTOOLS, Bioinformatics. 35 (2019) 3194–3195, https://doi.org/10.1093/ bioinformatics/btz030.
- [93] N. Patterson, P. Moorjani, Y. Luo, S. Mallick, N. Rohland, Y. Zhan, T. Genschoreck, T. Webster, D. Reich, Ancient admixture in human history, Genetics. 192 (2012) 1065–1093, https://doi.org/10.1534/genetics.112.145037.
- [94] K. Prüfer, C. de Filippo, S. Grote, F. Mafessoni, P. Korlević, M. Hajdinjak, B. Vernot, L. Skov, P. Hsieh, S. Peyrégne, D. Reher, C. Hopfe, S. Nagel, T. Marrici, Q. Fu, C. Theunert, R. Rogers, P. Skoglund, M. Chintalapati, M. Dannemann, B.J. Nelson, F.M. Key, P. Rudan, Z. Kućan, I. Gušić, L.V. Golovanova, V.B. Doronichev, N. Patterson, D. Reich, E.E. Eichler, M. Slatkin, M.H. Schierup, A.M. Andrés, J. Kelso, M. Meyer, S. Pääbo, A high-coverage Neandertal genome from Vindija Cave in Croatia, Science. 358 (2017) 655–658, https://doi.org/10.1126/science. aa01887.
- [95] E. Tamm, J. Di Cristofaro, S. Mazières, E. Pennarun, A. Kushniarevich, A. Raveane, O. Semino, J. Chiaroni, L. Pereira, M. Metspalu, F. Montinaro, Genome-wide analysis of Corsican population reveals a close affinity with Northern and Central Italy, Sci. Rep. 9 (2019) 13581, https://doi.org/10.1038/s41598-019-49901-8.
- [96] A.-S. Malaspinas, M.C. Westaway, C. Muller, V.C. Sousa, O. Lao, I. Alves, A. Bergström, G. Athanasiadis, J.Y. Cheng, J.E. Crawford, T.H. Heupink, E. Macholdt, S. Peischl, S. Rasmussen, S. Schiffels, S. Subramanian, J.L. Wright, A. Albrechtsen, C. Barbieri, I. Dupanloup, A. Eriksson, A. Margaryan, I. Moltke, I. Pugach, T.S. Korneliussen, I.P. Levkivskyi, J.V. Moreno-Mayar, S. Ni, F. Racimo, M. Sikora, Y. Xue, F.A. Aghakhanian, N. Brucato, S. Brunak, P.F. Campos, W. Clark, S. Ellingväg, G. Fourmile, P. Gerbault, D. Injie, G. Koki, M. Leavesley, B. Logan, A. Lynch, E.A. Matisoo-Smith, P.J. McAllister, A.J. Mentzer, M. Metspalu, A. B. Migliano, L. Murgha, M.E. Phipps, W. Pomat, D. Reynolds, F.-X. Ricaut, P. Siba, M.G. Thomas, T. Wales, C.M. Wall, S.J. Oppenheimer, C. Tyler-Smith, R. Durbin, J. Dortch, A. Manica, M.H. Schierup, R.A. Foley, M.M. Lahr, C. Bowern, J.D. Wall, T. Mailund, M. Stoneking, R. Nielsen, M.S. Sandhu, L. Excoffier, D.M. Lambert, E. Willerslev, A genomic history of Aboriginal Australia, Nature. 538 (2016) 207–214, https://doi.org/10.1038/nature18299.
- [97] P. Rentzsch, M. Schubach, J. Shendure, M. Kircher, CADD-Splice—improving genome-wide variant effect prediction using deep learning-derived splice scores, Genome Med. 13 (2021) 31, https://doi.org/10.1186/s13073-021-00835-9.
- [98] J.C. Denny, L. Bastarache, M.D. Ritchie, R.J. Carroll, R. Zink, J.D. Mosley, J. R. Field, J.M. Pulley, A.H. Ramirez, E. Bowton, M.A. Basford, D.S. Carrell, P. L. Peissig, A.N. Kho, J.A. Pacheco, L.V. Rasmussen, D.R. Crosslin, P.K. Crane, J. Pathak, S.J. Bielinski, S.A. Pendergrass, H. Xu, L.A. Hindorff, R. Li, T.A. Manolio, C.G. Chute, R.L. Chisholm, E.B. Larson, G.P. Jarvik, M.H. Brilliant, C.A. Mccarty, I. J. Kullo, J.L. Haines, D.C. Crawford, D.R. Masys, D.M. Roden, Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data, Nat. Biotechnol. 31 (2013) 1102–1110, https://doi.org/10.1038/nbt.2749.
- [99] J. MacArthur, E. Bowler, M. Cerezo, L. Gil, P. Hall, E. Hastings, H. Junkins, A. McMahon, A. Milano, J. Morales, Z.M. Pendlington, D. Welter, T. Burdett, L. Hindorff, P. Flicek, F. Cunningham, H. Parkinson, The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog), Nucleic Acids Res. 45 (2017) D896–D901, https://doi.org/10.1093/nar/gkw1133.