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Abstract: We investigated the thermal buckling temperature and nonlinear free vibration of func-
tionally graded fiber-reinforced composite laminated (FG-FRCL) beams. The governing nonlinear
partial differential equations were derived from the Euler–Bernoulli beam theory, accounting for
the von Kármán geometrical nonlinearity. Such equations were then reduced to a single equation
by neglecting the axial inertia. Thus, the Galerkin method was applied to discretize the governing
nonlinear partial differential equation in the form of a nonlinear ordinary differential equation, which
was then solved analytically according to the He’s variational method. Three different boundary
conditions were selected, namely simply, clamped and clamped-free supports. We also investigated
the effect of power-index, lay-ups, and uniform temperature rise on the nonlinear natural frequency,
phase trajectory and thermal buckling of FG-FRCL beams. The results showed that FG-FRCL beams
featured the highest fundamental frequency, whereas composite laminated beams were characterized
by the lowest fundamental frequency. Such nonlinear frequencies increase for an increased power
index and a decreased temperature. Finally, it was found that FG-FRCL beams with [0/0/0] lay-ups
featured the highest nonlinear natural frequency and the highest thermal buckling temperature,
followed by [0/90/0] and [90/0/90] lay-ups, while a [90/90/90] lay-up featured the lowest nonlinear
natural frequency and critical buckling temperature.

Keywords: nonlinear free vibration; phase plane; thermal buckling temperature; FGM beams; composite
beams; functionally graded fiber-reinforced composite laminated beam

1. Introduction

In recent decades, sandwich structures increasingly attracted the interest of most
researchers and designers, because of their outstanding engineering performances, i.e., high
flexural stiffness-to-weight ratio, corrosion resistance, thermal and acoustic insulation [1].
Sandwich structures are typically an assemblage of high strength layers, and low-density
cores, that can be made of metals, composites, or fiber-metal-laminate, foam, honeycomb or
functionally graded materials (FGMs) [2–5]. More specifically, FGM-based structures serve
as bi-phase beams, plates and shells, whose properties vary continuously throughout their
thickness or length, as observed in some natural FGMs, such as bamboo trees, teeth, bones
and human skin. Nowadays, it is common to find many structural examples of straight
and/or curved members with an optimized design and sustainable properties [6,7]. In such
a context, the vibration and buckling behavior represents a double aspect to account for a
proper selection of the reinforcement phase during a design process. From this perspective,
a rapid development of advanced theoretical strategies and computational methods was
observed in the literature to simulate the behavior of FGMs and sandwich structures, even
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considering the effect of different environmental conditions. Among some relevant works
on the topic, Duc and Cong [8] studied the vibrational response of FGM plates using the
Runge–Kutta method, whose model considered the possible effect of a thermomechanical
coupled loading condition. A thermomechanical post-buckling study of simply supported
FGM plates was performed by Shen [9], with the addition of piezoelectric fiber-reinforced
composites for actuators, sensors and active damping devices. In line with the previous
work, Kiani and Eslami [10] numerically studied the post-buckling behavior of sandwich
plates with FGM skins, while determining the sensitivity of the global response to the
power-law index, foundation parameters and imperfections. A homogenization technique
based on a Mori–Tanaka scheme was recently combined to a first-order shear deformation
theory by Lee and Kim [11] for an accurate evaluation of the thermal-dependent frequency
and buckling response of FGM beams, accounting for the micro-mechanical interaction
among particles within mixtures. An analytical formulation based on the first order beam
approach was also proposed in [12] to investigate the thermal buckling resistance of simply
supported FGM beams with a parabolic-concave thickness variation and temperature-
dependent material properties, whose solution was determined numerically based on a
finite difference method. A refined zigzag theory was proposed instead by Iurlaro et al. [13]
to formulate reliable and computationally efficient finite elements suited for large-scale
analyses of FG structures. In a further work, Li et al. [14] applied a three-dimensional linear
theory of elasticity along with a series of Chebyshev polynomials multiplied by appropriate
functions to study the free vibration of FGM sandwich rectangular plates with simple and
clamped supports, while accurately solving the problem according to the Ritz method with
a rapid rate of convergence.

Further efforts in the same direction can be found in Refs. [15–26], where different
higher-order formulations and computational approaches were recently implemented
to solve different vibration [15–20] and buckling [21–26] problems. More specifically, in
Ref. [15], the authors focused on the size-dependent computation of the natural frequency in
Euler–Bernoulli microbeams, as provided by a modified couple stress theory and Hamilton
principle, accounting for simply supported and cantilever beams. A microscale geomet-
rically nonlinear Timoshenko beam model was developed by Ramezani [16] based on a
general form of strain gradient elasticity theory, noticing a relevant sensitivity of the natural
frequency and nonlinear vibration to the geometric nonlinearity and size effect. A nonlinear
finite strain and velocity gradient theory was proposed instead, in Ref. [17], to study the
free and forced vibration of simply supported nanobeams for different values of static
and kinetic length scales, while using the method of multiple scales to solve the problem.
A large amount of attention was also paid to the thermal dependance of the mechanical
response of FG beams, as found in Refs. [18–20], where higher order thermomechanical
theories were proposed to study FG porous structures under different thermal loading
profiles. A modified porosity model was proposed in [21] to study the static bending,
the buckling and free vibrations of porous FG beams, where the material graduation was
assumed to be a continuous power function distributed through the beam thickness.

Among some advanced computational approaches, a generalized differential quadra-
ture method was proposed in [22] as an efficient and accurate tool to determine the vibra-
tion properties of conical shell members reinforced with agglomerated carbon nanotubes,
whereas a DSC regularized Dirac-delta method was applied in [23] for the dynamic re-
sponse of FG graphene platelet-reinforced porous beams on elastic foundations under a
moving load. In line with this last work, Chen et al. [24] studied the nonlinear dynamic
responses of fiber-metal laminated beams, under a moving harmonic load, as provided
by a finite difference method, Newmark method and Newton–Raphson method. Some
exact solutions for the buckling load of FG Timoshenko and Euler–Bernoulli beams with
different boundary conditions were proposed in [25,26], that could serve as useful tools
for an optimization design of affine structural elements, even from a computational per-
spective. A novel analytical solution was also provided in [27] for the buckling instability
of Euler–Bernoulli columns with arbitrarily axial nonhomogeneity and/or varying cross
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sections. More specifically, the governing differential equation associated with the problem
with variable coefficients was transformed in [27] to Fredholm integral equations by using
various end supports that were reduced, in turn, to a system of algebraic equations in
unknown coefficients, by expanding the mode shapes as power series.

Motivated by the above-mentioned studies, this work aims to further contribute to
the thermomechanical buckling and nonlinear vibration response of FG-FRCL beams, ac-
counting for different boundary conditions and von Kármán geometrical nonlinearities,
as typically used to assess the load-carrying capability for isotropic or laminated com-
posite structures in compression, in line with the experimental findings in [28,29]. The
Galerkin’s method was applied to simplify the governing nonlinear partially differential
equation of the problem to a nonlinear ordinary differential equation. In addition, a He’s
semi-inverse method was employed, as a powerful tool to search for various variational
principles for physical problems directly from field equations and boundary conditions.
Compared to other approximate analytical methods, indeed, variational methods are capa-
ble of providing a physical insight into the nature of the problem solution, such that the
obtained solutions are the best ones among all possible trial-functions. A large parametric
investigation was performed herein for different power indexes, lay-ups, temperatures and
boundary conditions, whose results could serve for further computational investigations on
the topic, also from a practical design perspective. In further detail, the work is organized as
follows: in the first part, the theoretical formulation is detailed in Section 2, followed by the
numerical basics applied to solve the problem in Section 3, and the numerical investigation
performed parametrically in Section 4. The main conclusions are finally summarized in
Section 5.

2. Theoretical Problem

Let us consider a straight composite laminated beam between two FG skins in a
Cartesian coordinate system. The FG-FRCL beam has length L, uniform width b and total
thickness H in x, y and z direction, respectively, as shown in Figure 1. The governing
equations are derived under the following assumptions: (a) external layers made of FGMs
with uniform thickness, h f , which are perfectly bonded on the top and bottom side of
the composite laminated beam; (b) fiber-reinforced laminated core, with thickness, hc,
made of n = 3 layers with the same material and different lay-ups. This means that the
FG-FRCL beam is made of N = n + 2 layers; (c) Euler–Bernoulli beam assumption, thus
neglecting the effect of shear deformation and rotary inertia; (d) geometric von Kármán
nonlinearity; (e) uniform temperature rise ∆T. According to the Euler–Bernoulli beam
theory, the cross-sections of the beam remain orthogonal to the mid-plane after beam along
x, y and z directions, denoted by ux, uy and uz respectively.

ux(x, z, t) = u(x, t)− z
∂w(x, t)

∂x
(1)

uy(x, z, t) = 0 (2)

uz(x, z, t) = w(x, t) (3)

where u and w represent the displacement unknowns at the midplane along the x and z
direction, respectively, ∂w(x,t)

∂x is the rotation angle of cross section about the y axis and
t is the time. As mentioned before, in order to consider the geometric nonlinearity, the
von Kármán strain tensor is here adopted. Based on the von Kármán strain tensor, the
total nonlinear strain–displacement relationship can be defined in compact notation as
follows [30,31]

εij =
1
2

[
∂ui
∂xj

+
∂uj

∂xi
+

∂uk
∂xi
·∂uk

∂xj

]
, (i, j, k) ε [1, 2, 3] (4)
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Using Equations (1)–(4), we obtain the following nonzero component of the strain tensor

εxx =
∂u
∂x
− z

∂2w
∂x2 +

1
2

(
∂w
∂x

)2
(5)
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To model the distribution of ceramic and metal phases along the thickness of both
FG layers (i.e., top and bottom layers), the rule of mixture is applied. The beam thickness
is, thus, numbered from the top surface at z = z0,

(
z0 = −H

2

)
, to the bottom surface at

z = z5,
(

z5 = H
2

)
. Based on the rule of mixture, the arbitrary Λ material properties of the

FGM layers, primarily, density, ρ, modulus of elasticity, E and Poisson’s ratio, vary from
pure ceramic to pure metal as follows [18]:

Λ1 = Λc + (Λm −Λc)
(

z−z5
z4−z5

)p
, z ∈ [z4, z5]

Λ3 = Λm + (Λc −Λm)
(

z−z1
z0−z1

)p
, z ∈ [z0, z1]

(6)

where Λ1 and Λ3 are the material properties at the bottom and top layer, respectively,
indices c and m refer to the ceramic and metal phase, respectively, and p is the volume
fraction exponent that indicates the material variation profile through the thickness of FG
layers. In presence of a thermal load, the stress–strain relationship for the k-th layer in the
axial direction is defined as

σ
(k)
x = Q(k)

11

(
εxx − α

(k)
x ∆T

)
(7)

In which ∆T = T − T0, is the temperature rise from the initial temperature T0, to
temperature T. Moreover, Q(k)

11 and α
(k)
x represent the elastic stiffness coefficient and the

thermal expansion coefficient of the k-th layer in the axial direction, respectively, and they
are defined as [32].

Q(k)
11 = Ck

11cos4(φ) + Ck
22sin4(φ) + 2

(
Ck

12 + 2Ck
66

)
sin2(φ)cos2(φ) (8)

α
(k)
x = αk

1cos2(φ) + αk
2sin2(φ) (9)

φ(k) being the angle of the fibers with respect to x-axis. Additionally, αk
1 and αk

2 represent
the thermal expansion coefficients in the axial and lateral direction of the fibers, respectively.
Moreover, Ck

ij, is defined as [32]

Ck
11 =

Ek
11

(1−ϑk
12ϑk

21)
Ck

12 =
ϑk

12Ek
22

(1−ϑk
12ϑk

21)
Ck

22 =
Ek

22
(1−ϑk

12ϑk
21)

Ck
44 = Gk

23

Ck
55 = Gk

13 Ck
66 = Gk

12 ϑk
21 =

ϑk
12Ek

22
Ek

11

(10)
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where Ek
11 and Ek

22 stand for the modulus of elasticity, in the axial and lateral direction, Gk
12,

Gk
13 and Gk

23 are three different shear moduli, ϑk
12 and ϑk

21 are two different Poisson’s ratios
for the k-th ply.

For the FG layers (i.e., upper and lower layers), the normal stress σx is defined as [33]

σx =
E(z)

1− ν2(z)
[εxx − α(z)∆T] (11)

where E(z), ν(z) and α(z) are defined in Equation (6). The first variation of the strain
energy reads as

δUs =
∫

Vol

(
σijδεij

)
dV (12)

Substituting Equations (5), (7) and (11) into Equation (12), we get

δUs = b
∫ L

0

∫ z1

z0

(σxδεxx)dzdx︸ ︷︷ ︸
Upper layer(FGM)

+ b
∫ L

0

[
n=4

∑
k=2

∫ zk

zk−1

(σxxδεxx)dz

]
dx︸ ︷︷ ︸

Middle layer(Composite laminate)

+b
∫ L

0

∫ z5

z4

(σxδεxx)dzdx︸ ︷︷ ︸
Lower layer(FGM)

=

=
∫ L

0

{[
A11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

]
δ
(

∂u
∂x

)
−
[

B11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− D11

∂2w
∂x2 +

MT ]δ
(

∂2w
∂x2

)
+ ∂w

∂x

[
A11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

]
δ
(

∂w
∂x

)}
dx =

= −
∫ L

0

{(
∂

∂x

[
A11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

])
δu +

(
∂

∂x

[
A11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

](
∂w
∂x

)
+

∂2w
∂x2

[
A11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

]
+ ∂2

∂x2

[
B11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− D11

∂2w
∂x2 + MT

])
δw
}

dx+[
A11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

]
δu
∣∣∣∣ L

0
+

[
D11

∂2w
∂x2 − B11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
−MT

]
δ
(

∂w
∂x

)∣∣∣∣ L
0
+(

∂w
∂x

[
A11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

]
+ ∂

∂x

[
B11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− D11

∂2w
∂x2 + MT

])
δw
∣∣∣∣ L

0

(13)

where

A11 = b
∫ z1

z0

E(z)
1−ϑ2 dz + b∑n=4

k=2
∫ zk

zk−1
Q(k)

11 dz + b
∫ z5

z4

E(z)
1−ϑ2 dz

B11 = b
∫ z1

z0

E(z)
1−ϑ2 zdz + b∑n=4

k=2
∫ zk

zk−1
Q(k)

11 zdz + b
∫ z5

z4

E(z)
1−ϑ2 zdz

D11 = b
∫ z1

z0

E(z)
1−ϑ2 z2dz + b∑n=4

k=2
∫ zk

zk−1
Q(k)

11 z2dz + b
∫ z5

z4

E(z)
1−ϑ2 z2dz

NT = −b
∫ z1

z0

E(z)
1−ϑ2 α(z)∆Tdz− b∑n=4

k=2
∫ zk

zk−1
Q(k)

11 α
(k)
x ∆Tdz− b

∫ z5
z4

E(z)
1−ϑ2 α(z)∆Tdz

MT = −b
∫ z1

z0

E(z)
1−ϑ2 α(z)z∆Tdz− b∑n=4

k=2
∫ zk

zk−1
Q(k)

11 α
(k)
x z∆Tdz− b

∫ z5
z4

E(z)
1−ϑ2 α(z)z∆Tdz

(14)

The first variation of kinetic energy of the composite laminate beam is defined as [34]

δK =
∫ L

0

∫ b
2

− b
2

[
∑n

k=1

∫ Zk

Zk−1

ρ(k)
(

∂u
∂t

)T
δ

(
∂u
∂t

)
dz

]
dydx (15)

Using the displacement field in Equations (1)–(3),(15), the first variation of kinetic
energy over the domain [0,T] is obtained as
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∫ T
0 δKdt =

∫ T
0


b
∫ L

0

∫ z1

z0

[
ρ(z)

(
∂u
∂t

)T

δ

(
∂u
∂t

)
dz

]
dx + b

∫ L

0

[
n=4

∑
k=2

∫ Zk

Zk−1
ρ(k)
(

∂u
∂t

)T

δ

(
∂u
∂t

)
dz

]
dx︸ ︷︷ ︸

Middle layers(Composite laminate)︸ ︷︷ ︸
Upper layer(FGM)

+b
∫ L

0

∫ z5

z4

[
ρ(z)

(
∂u
∂t

)T

δ

(
∂u
∂t

)
dz

]
dx︸ ︷︷ ︸

Lower layer(FGM)


dt =

=
∫ T

0

∫ L
0

{[
I0

∂u
∂t − I1

∂2w
∂x∂t

]
δ
(

∂u
∂t

)
−
[

I1
∂u
∂t − I2

∂2w
∂x∂t

]
δ
(

∂2w
∂x∂t

)
+
[
I0

∂w
∂t

]
δ
(

∂w
∂t

)}
dxdt

=
∫ T

0

([
I1

∂2u
∂t2
− I2

∂3w
∂x∂t2

]
δw
∣∣∣∣L0
)

dt +
∫ L

0

{([
I0

∂u
∂t − I1

∂2w
∂x∂t

]
δu +

[
I2

∂2w
∂x∂t − I1

∂u
∂t

]
δ
(

∂w
∂x

)
+
[
I0

∂w
∂t

]
δw
)∣∣∣∣T0

}
dx

−
∫ T

0

∫ L
0

{[
I0

∂2u
∂t2
− I1

∂3w
∂x∂t2

]
δu +

[
I0

∂2w
∂t2

+ ∂
∂x

(
I1

∂2u
∂t2
− I2

∂3w
∂x∂t2

)]
δw
}

dxdt

(16)

where
I0 = b

∫ z1

z0

ρ(z)dz + b∑n=4
k=2

∫ zk

zk−1

ρ(k)dz + b
∫ z5

z4

ρ(z)dz (17)

I1 = b
∫ z1

z0

ρ(z)zdz + b∑n=4
k=2

∫ zk

zk−1

ρ(k)zdz + b
∫ z5

z4

ρ(z)zdz (18)

I2 = b
∫ z1

z0

ρ(z)z2dz + b∑n=4
k=2

∫ zk

zk−1

ρ(k)z2dz + b
∫ z5

z4

ρ(z)z2dz (19)

The first variation of the virtual work carried out by the external forces takes the
following form,

δWExt =
∫ L

0
[Fu(x, t)δu + Fw(x, t)δw]dx +

[
Nδu + V̄δw + M̄δ

(
∂w
∂x

)]∣∣∣∣x = L
x = 0

(20)

where Fu and Fw refer to the distributed external forces along x and z directions, respectively.
Additionally, N̄, V̄ and M̄ stand for the axial force, transverse shear force, and bending
moment, respectively, acting on the end sections of the beam. The governing equation of
the system can be obtained based on the Hamiltonian principle as [35]

δ
∫ T

0

[
K−Us + WExt

]
dt = 0 (21)

where δ is the variational symbol. Substituting Equations (13), (16) and (20) into Equation (21)
leads to the following governing equations

∂

∂x

[
A11

(
∂u
∂x

+
1
2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

]
+ Fu = I0

∂2u
∂t2 − I1

∂3w
∂x∂t2 (22)

∂
∂x

[
A11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

](
∂w
∂x

)
+ ∂2w

∂x2

[
A11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

]
+ ∂2

∂x2

[
B11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− D11

∂2w
∂x2 + MT

]
+ Fw

= I0
∂2w
∂t2 + ∂

∂x

(
I1

∂2u
∂t2 − I2

∂3w
∂x∂t2

)
(23)

At the same time, the related boundary conditions at x = 0 and x = L are obtained as[
A11

(
∂u
∂x

+
1
2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

]
− N̄ = 0 or δu = 0 (24)

∂w
∂x

[
A11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

]
+ ∂

∂x

[
B11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− D11

∂2w
∂x2 + MT

]
−
[

I1
∂2u
∂t2 − I2

∂3w
∂x∂t2

]
− V̄ = 0 or δw = 0

(25)
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[
D11

∂2w
∂x2 −B11

(
∂u
∂x

+
1
2

(
∂w
∂x

)2
)
−MT

]
− M̄ = 0 or δ

(
∂w
∂x

)
= 0 (26)

It is worth noticing that the differential governing equations of motion are coupled
with respect to the displacement components u and w. Hence, in order to obtain a solitary
equation in terms of the lateral displacement, the contribution of rotational and axial inertia
is neglected [36]. Moreover, the axial and lateral loads are omitted for a free vibration
analysis. Therefore, Equations (22) and (23) take the following form

∂

∂x

[
A11

(
∂u
∂x

+
1
2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

]
= 0 (27)

∂
∂x

[
A11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

](
∂w
∂x

)
+ ∂2w

∂x2

[
A11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− B11

∂2w
∂x2 + NT

]
+ ∂2

∂x2

[
B11

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
− D11

∂2w
∂x2 + MT

]
= I0

∂2w
∂t2

(28)

Integrating Equation (27) with respect to the x-axis gives

∂u
∂x

= −1
2

(
∂w
∂x

)2
+

B11

A11

∂2w
∂x2 −

1
A11

NT +
N0

A11
(29)

Integrating both side of Equation (29) with respect to x yields

u =
∫ x

0
−1

2

(
∂w
∂x

)2
dx +

1
A11

(N0 − NT)x +
B11

A11

∂w
∂x

+ N1(t) (30)

where N0 and N1 are two constants of integration with respect to x, that must be deter-
mined by means of different boundary conditions. In this study, we selected three types
of boundary conditions, namely simply supported (S-S), clamped-clamped (C-C) and
clamped-Free (C-F) boundary conditions. Thus, the boundary conditions associated with
the axial displacement can be defined as [37]

u(0, t) = u(L, t) = 0 for S− S and C−C beams (31)

u(0, t) =
∂u(L, t)

∂x
= 0 for C− F Beam (32)

Using Equations (30)–(32) leads to the following expressions for S-S (or C-C) beam
and C-F beam, respectively.

N0 =


A11

L
∫ L

0
1
2

(
∂w
∂x

)2
dx− B11

L

[
∂w(L,t)

∂x − ∂w(0,t)
∂x

]
+ NT

A11
2

(
∂w(L,t)

∂x

)2
− B11

∂2w(L,t)
∂x2 + NT

N1 = − B11
A11

∂w(0,t)
∂x for S− S, C−C and C− F beam

(33)

By substitution of Equations (27) and (29) into Equation (28) the following differential
equation for the free vibration in terms of lateral displacement, i.e., is obtained

∂2

∂x2

[(
B11

2

A11
− D11

)
∂2w
∂x2 +

B11

A11
(N0 − NT)+MT

]
+ N0

∂2w
∂x2 = I0

∂2w
∂t2 (34)

Since N0, NT and MT are constant values, Equation (37) takes the following form

I0
∂2w
∂t2 +

(
D11 −

B11
2

A11

)
∂4w
∂x4 − N0

∂2w
∂x2 = 0 (35)
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3. Solution of the Nonlinear Problem
3.1. The Galerkin Method

In order to derive the ordinary differential equation of motion from the partial dif-
ferential Equation (35), the Galerkin method was here adopted, according to which the
displacement function w(x, t) can be expressed as [38]

w(x, t) = ψ(x)·(t) (36)

where q(t) is the unknown time dependent function and ψ(x) is the mode shape (test) func-
tion which must satisfy the kinematic boundary conditions. Based on the selected boundary
conditions (S-S, C-C and C-F), the following admissible functions are considered [39,40]

ψ(x) = sin
(

πx
L
)

For S− S Beam (37)

ψ(x) = 1
2
[
1− cos

( 2πx
L
)]

For C−C Beam (38)

ψ(x) = cos
( ϕx

L

)
− cosh

( ϕx
L

)
− κ
[
sin
( ϕx

L

)
− sinh

( ϕx
L

)]
For C− F Beam (39)

where
κ =

cosϕ + coshϕ

sinϕ + sinhϕ
, ϕ = 1.87510407 (40)

Substituting Equation (36) into Equation (35) yields

..
qψ + a1q + a2q2 + a3q3 = 0 (41)

where
..
q(t) is the second derivative of q(t) with respect to time, respectively. Additionally,

the coefficients a1, a2 and a3 are defined as

a1 =
1
I0

[(
D11 −

B11
2

A11

)
ψxxxx − NTψxx(x)

]
(42)

for S-S and C-C beam

a2 =
1
I0

[
B11

L
(ψx(L)− ψx(0))ψxx(x)

]
(43)

a3 =
1
I0

[
−A11

L

∫ L

0

1
2
(ψx)

2dx
]

ψxx(x) (44)

and for C-F beam
a2 =

B11

I0
ψxx(L)ψxx(x) (45)

a3 = −A11

2I0
(ψx(L))2ψxx(x) (46)

In which, ψx, ψxx, ψxxx and ψxxxx, are the first, second, third and fourth derivatives of
ψ(x) with respect to x, respectively. Multiplying Equation (41) with ψ(x) and integrating
over the domain (0,L) leads to the following nonlinear ordinary differential equation

..
q + ω2

0q + η2q2 + η3q3 = 0 (47)

where

ω2
0 =

∫ L
0 a1ψ(x)dx∫ L
0 ψ2(x)dx

(48)
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η2 =

∫ L
0 a2ψ(x)dx∫ L
0 ψ2(x)dx

(49)

η3 =

∫ L
0 a3ψ(x)dx∫ L
0 ψ2(x)dx

(50)

3.2. Approximate Analytical Solution for Nonlinear Oscillation

Consider the general form of the nonlinear differential equation governing the nonlin-
ear free oscillation as below

..
q + f (q) = 0 (51)

According to the He’s Method, the variational principle of Equation (51) can be defined
by using the semi-inverse method as follows [41]

J(q) =
∫ T

4

0

{
−1

2
.
q2

+ F(q)
}

dt (52)

where
.
q is the first derivative of q with respect to time, T is the period of the nonlinear

oscillation and F(q) is a function of q. The relation between F(q) and f (q) can be defined
as below [41]

∂F
∂q

= f (q) (53)

It is assumed that the approximate solution of Equation (51) can be expressed as follows

q(t) = A0cos(ωnlt) (54)

where A0 and ωnl are the amplitude and the nonlinear natural frequency of the oscilla-
tion, respectively. Substituting Equation (54) into Equation (52) and keeping in mind the
transformation ωnlt = τ yields

J(A0, ωnl) =
1

ωnl

∫ π
2

0

{
−1

2
A0

2ω2
nlsin2τ + F(A0cosτ)

}
dτ (55)

In order to determine ωnl , the following stationary conditions based on the Ritz
method should be satisfied [41]

∂J
∂ωnl

= 0 (56)

∂J
∂A0

= 0 (57)

It should be noted that for nonlinear oscillation, this approach will give inaccurate
results. Hence, by modifying the conditions (56) and (57) into a simpler form as below, we
will refer to the only condition (57).

In order to simplify the analysis, the governing Equation (48) was rewritten into the
general form mentioned in Equation (51), in which, f (q) is

f (q) = ω2
0q + η2q2 + η3q3 (58)

Using of Equations (53), (54) and (58) together with the transformation ωnlt = τ leads to

F(q) =
ω2

0
2

A0
2cos2τ +

η2

3
A0

3cos3τ+
η3

4
A0

4cos4τ (59)

Substituting Equation (59) into Equation (55) leads to the variational form of Equation (47)
as follows
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J(A0, ωnl) =
1

ωnl

∫ π
2

0

{
−1

2
A0

2ω2
nlsin2τ +

ω2
0

2
A0

2cos2τ +
η2

3
A0

3cos3τ+
η3

4
A0

4cos4τ
}

dτ (60)

Using Equations (57) and (60) leads to the stationary condition of Equation (60) with
respect to A0 as

∂J
∂A0

=
1

ωnl

∫ π
2

0

{
−A0ω2

nlsin2τ + ω2
0 A0cos2τ +η2 A0

2cos3τ+η3 A0
3cos4τ

}
dτ = 0 (61)

The nonlinear natural frequency of the system can be obtained from Equation (61)
as follows

ωnl =

√
ω2

0 +
8

3π
A0η2 +

3
4

A0
2η3 (62)

Using Equations (36), (54) and (62) leads to the following approximate solution

w(x, t) = ψ(x)·A0cos

((√
ω2

0 +
8

3π
A0η2 +

3
4

A0
2η3

)
t

)
(63)

3.3. Thermal Buckling Temperature

In thermoelasticity, the thermal stress occurs under the following conditions: (a) non-
uniform temperature rise; (b) immovable boundary conditions even with uniform temper-
ature rise; (c) anisotropic material, (i.e., for a plate made of several layers of different
materials, even with a uniform heating) [42]. Based on these assumptions, the ther-
mal buckling temperature, Tb, of the FG-composite laminated beam with immovable
boundary conditions in the axial direction (i.e., H-H and C-C) can be obtained by neglect-
ing the contribution of ω2

0 in Equation (48)
(
ω2

0 = 0
)
, together with the application of

Equations (14), (42) and (48) as follows

Tb =

∫ L
0

(
D11 − B11

2

A11

)
ψxxxxψ(x)dx

ΘT
∫ L

0 ψxxψ(x)dx
+ T0 (64)

where

ΘT = −b
∫ z1

z0

E(z)
1− ϑ2 α(z)dz− b∑n=4

k=2

∫ zk

zk−1

Q(k)
11 α

(k)
x dz− b

∫ z5

z4

E(z)
1− ϑ2 α(z)dz (65)

4. Numerical Results

In this section, we performed a large numerical investigation of the problem for an
FG-FRCL beam subjected to a uniform temperature rise ∆T = 50.0, and made of five layers
with width b = 0.40 m, length L = 4.0 m, total thickness H = 0.50 m, thickness of each FGM
layer, h f = 0.10 m and thickness of the composite layer hc = 0.3 m. The upper and lower
layers were made of an FGM varying through the thickness from a pure ceramic (Si3N4) to
a pure metal (SUS304) with a volume fraction exponent, p = 0.40. The middle layers were
made of three glass fiber-reinforced composite layers with [90/0/90] lay-ups. Additionally,
the maximum amplitude of the nonlinear oscillation read as A0 = 0.001 m. The material
properties of the structure are presented in Tables 1 and 2, in line with Refs. [18,43].

In order to validate the results of the current work, a comparison study was carried
out against the available literature. The linear and nonlinear fundamental frequencies were,
thus, determined from Equation (63), for simply supported composite laminated beams
(hFG = 0) and simply supported FGM beams (hc = 0), by neglecting the thermal load. The
results were obtained systematically for different values of slenderness ratio, in line with
predictions by Chen and Li [34], Wang et al. [44] and Alimoradzadeh et al. [45], as reported
in Tables 3 and 4, respectively. Based on the results in these two tables, it is worth observing
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the high accuracy of our model against the literature due to the perfect correspondence
with predictions from Refs. [34,44,45] for all slenderness ratios. It is worth observing, also,
that the nonlinear fundamental frequencies were much lower that the corresponding linear
ones for each slenderness ratio.

Table 1. Material properties of the FGM layers [18].

Material
Properties

E(GPa) ρ( Kg
m3 ) ϑ α

(
1
k

)
Si3N4 348.43 2370 0.24 5.8723 × 10−6

SUS304 201.04 8166 0.3262 12.330 × 10−6

Table 2. Material properties of the composite layers [43].

Material Properties (Glass-Polymer Composite)

E11, E22(GPa) G12(GPa) ρ( Kg
m3 ) ϑ12 α1

(
1
k

)
α2

(
1
k

)
50, 15.2 4.7 2000.0 0.254 6.34 × 10−6 23.3 × 10−6

Table 3. Comparison of linear fundamental frequency.

Slenderness Ratio Linear Fundamental Frequency (rad/s)

L
hc

Composite Laminated Beam [90/0/90]

Present Study Reference [34]

5.0 1370.2 1370.2

10.0 342.6 342.6

20.0 85.6 85.6

30.0 38.1 38.1

40.0 21.4 21.4

50.0 13.7 13.7

Table 4. Comparison of linear and nonlinear fundamental frequency.

Slenderness
Ratio

Linear Fundamental Frequency
(rad/s)

Nonlinear Fundamental Frequency
(rad/s)

L
hf

FGM Beam (n = 1) FGM Beam (n = 0)

Present Study Ref. [44] Present Study Ref. [45]

5.0 8485.27 8485.3 5655.3 5655.6

10.0 2121.3 2121.3 1413.8 1413.9

20.0 530.3 530.3 353.5 353.5

30.0 235.7 235.7 157.1 157.1

40.0 132.6 132.6 88.4 88.4

50.0 84.9 84.9 56.6 56.6

Figure 2 also plots the variation of the nonlinear natural frequency with the slenderness
ratio for three different types of simply supported beams, i.e., an FGM beam (n = 1.0), an
FG-FRCL beam (n = 1.0, and [90/0/90]), and a composite laminated beam ([90/0/90]).
Based on these plots, the nonlinear natural frequency of the system seems to decrease for
an increased slenderness ratio.

Based on the results, the FG-FRCL beams featured the highest nonlinear natural
frequency, followed by FGM beams, while the composite laminated beams exhibited the
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lowest nonlinear natural frequency. The important point is that FG-FRCL beams are
characterized by the highest nonlinear natural frequency compared with FGM beams
and composite laminated beams, lighter than FGM beams and with a higher resistance
against temperature rise (due to the presence of a ceramic phase) compared to composite
laminated beams.
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Figure 2. Variation of nonlinear natural frequency versus slenderness ratio.

Figures 3 and 4 show the effect of the power index and uniform temperature rise on the
nonlinear fundamental frequency of simply supported FG-FRCL beams. As can be observed
from the results, for an increased power index, the nonlinear fundamental frequency tended
to increase, whose effect became more pronounced for lower slenderness ratios. At the
same time, for an increased temperature, the fundamental frequency decreased, whose
effect was more pronounced for increased slenderness ratios.
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Figures 5 and 6 represent the effect of the stacking sequence on the nonlinear natu-
ral frequency and thermal buckling temperature of simply supported FG-FRCL beams,
respectively. The results demonstrate that FG-FRCL beams with [0/0/0] lay-ups exhibited
the highest nonlinear natural frequency and the highest thermal buckling temperature,
followed by [0/90/0] and [90/0/90] lay-ups, in sequence. A [90/90/90] lay-up, instead,
provided the lowest nonlinear natural frequency and the lowest critical buckling tempera-
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ture of the structure. Moreover, the results showed that the critical buckling temperature of
the system increased significantly, for an increased power index.
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Figure 6. Variation of the critical buckling temperature versus power index.

Figure 7 represents the phase trajectory of three different types of simply supported
beams including the FGM beam (n = 1.0), FG-FRCL beam (n = 1.0, and [90/0/90]) and
composite laminated beam ([90/0/90]). As can be seen, the phase trajectory exhibited a
limit cycle, denoting that the system was free from dynamic chaos. The results show that
the velocity of the nonlinear oscillation of the FG-FRCL beams assumed the highest value,
followed by FGM beams and composite laminated beams, in sequence.
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Figures 8 and 9 investigate the effect of the power index and temperature rise on the
phase trajectory of the system with simply support boundary conditions, respectively. The
results demonstrate that by increasing the power index, the phase trajectory tended to
expand outward and the nonlinear oscillation velocity increased, whereas by increasing
the temperature, the phase trajectory shrank inward and the nonlinear oscillation velocity
decreased, while the system maintained its own stability.
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5. Conclusions

This work focused on the nonlinear free vibration and thermal buckling tempera-
ture of functionally graded fiber-reinforced composite laminated (FG-FRCL) beams for
three different types of boundary conditions, i.e., simply supports, clamped-clamped and
clamped-free supports. The nonlinear partial differential equations associated with the
problem were derived based on the Euler–Bernoulli beam theory and von Kármán geomet-
rical nonlinearity. Such nonlinear equations were reduced to a single equation by neglecting
the axial inertia. The Galerkin method was adopted to discretize the governing nonlinear
partial differential equation in the form of nonlinear ordinary differential equation, which
was solved analytically using a semi-inverse method to study the nonlinear free vibration
time response of FG-FRCL beams. A parametric investigation focused on the effect of
power-index, different lay-ups, uniform temperature rise and slenderness ratio on the
nonlinear natural frequency and phase trajectory of the selected structural components.
A further systematic investigation investigated the sensitivity of the thermal buckling
response to different power-indexes and lay-ups. Based on such numerical investigations,
the following final remarks can be summarized:

(1) FG-FRCL beams showed the highest nonlinear natural frequency response, followed
by FGM beams and composite laminated beams;

(2) The nonlinear fundamental frequency increased for an increased power index, whose
effect became more pronounced for lower slenderness ratios;

(3) The fundamental frequency decreased for an increased temperature, especially for
higher slenderness ratios;

(4) Based on a parametric evaluation of the response for different reinforcement lay-ups,
FG-FRCL beams with [0/0/0] lay-ups showed the highest nonlinear natural frequency
and thermal buckling temperature, followed by [0/90/0], [90/0/90] and [90/90/90]
lay-ups, in sequence;

(5) An increased power index provided an increased critical buckling temperature of the
system, whereas the nonlinear oscillation velocity of FG-FRCL beams assumed the
highest value followed by FGM beams and composite laminated beams, which, in
turn, featured the lowest oscillation velocity;

(6) An increased power index expanded outward the phase trajectory and yielded an
increased oscillation velocity. At the same time, for an increased temperature, the
phase trajectory shrank inward and the oscillation velocity decreased, while the
system maintained its own stability.
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