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Machine learning is the state of the art for many recurring tasks in several heterogeneous domains. In the last 
decade, it has been also widely used in Precision Agriculture (PA) and Wild Flora Monitoring (WFM) to address 
a set of problems with a big impact on economy, society and academia, heralding a paradigm shift across the 
industry and academia. Many applications in those fields involve image processing and computer vision stages. 
Remote sensing devices are very popular choice for image acquisition in this context, and in particular, Unmanned 
Aerial Vehicles (UAVs) offer a good tradeoff between cost and area coverage. For these reasons, research literature 
is rich of works that face problems in Precision Agriculture and Wild Flora Monitoring domains with machine 
learning/computer vision methods applied to UAV imagery. In this work, we review this literature, with a special 
focus on algorithms, model sizing, dataset characteristics and innovative technical solutions presented in many 
domain-specific models, providing the reader with an overview of the research trend in recent years.
1. Introduction

In recent decades, interest of industry and academia for agroforestry 
has gradually grown, for several economic, social and environmen-
tal reasons [1]. Agricultural production has always been economically 
and livelihood relevant: the primary sector is critical to sustaining the 
world’s population, which in Food and Agriculture Organization projec-
tions is expected to increase to nearly 10 billion by 2050 [2], which will 
inevitably cause an increase in demand for food [3]. Urbanization and 
the gradual depopulation of rural areas is a well-known phenomenon, 
and now it is affecting developing countries, limiting the areas devoted 
to agriculture and the people willing to care for them [4]. The pandemic 
of COVID-19 and recent geopolitical crisis (Ukrainian War, Suez Canal 
problems) has shown the weaknesses of the global supply chain and the 
dependence of agriculture on human labor [5]. It is clear how mod-
ern agriculture requires automated, sustainable, and reliable systems 
especially when labor shortages occur. Automated and environmentally 
friendly crop management solutions1 are therefore increasingly in de-
mand, as it is required to scale food production with world population 
growth without generating adverse side effects. With the fight against 
climate change, the desire to reduce human environmental footprint has 
attracted further interest in precision agriculture.
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As well as interest in the primary sector, there has been a growing in-
terest in the development of smart, reliable and sustainable monitoring 
techniques to safeguard the biodiversity and conservation status of wild 
plant species, as they also have a direct impact on the animal world and 
the preservation of the delicate environmental balance of our planet 
[6,7]. As global temperatures rise, the ecosystem is changing rapidly 
to the detriment of local fauna and flora in many areas of the world 
[8]. Thus, automated and noninvasive observation of plant species is 
a task with cross-domain relevance. There are several open challenges 
for which there is a constant research (both in industry and academia) 
for the optimal solution (listed in the column “Goal” in Table 8). Infor-
mation required to face these challenges can be obtained from images, 
therefore, academia and industry have questioned which imagery sys-
tems are most suitable for these use cases. Unmanned Ground Vehicles 
(UGVs) allow images to be acquired at a very close range, maximizing 
the information obtained for each plant specimen, however, they di-
rectly affect the terrain, and their usage is expensive because of slow 
acquisition and low coverage [9]. For this reason, the use cases where 
this technology is the optimal choice are limited.

Remote sensing technologies, i.e. Unmanned Aerial Vehicles (UAVs) 
and satellites, have proven to have many characteristics that make them 
an attractive and versatile choices. Satellite imagery is a popular choice, 
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Fig. 1. Articles per year that matches the query. Source: Scopus. The last bar is updated to 1 Apr 2024. Query is the one written in Section 2.

Table 1

Table summarizing the surveys that we compared to our one. We highlighted the main topics.

Reference Year Core subject(s)

Zhang and Kovacs [18] 2012 UAVs in precision agriculture

Seng et al. [20] 2018 Computer vision and Machine Learning in Viticulture

Kamilaris and Prenafeta-Boldú [22] 2018 Deep Learning in Agriculture

Lu and Young [19] 2020 Public datasets in PA

Osco et al. [24] 2021 Deep learning techniques in UAV remote sensing

Bouguettaya et al. [21] 2022 Deep learning for crop classification in UAV imagery

Su et al. [23] 2022 AI empowered UAV perceptron systems for precision agriculture
[10–12] as it minimizes acquisition costs, allowing to obtain data any-
where on the planet with very large time coverage. However, due to the 
coarse resolution, while they are appropriate with large-scale observable 
phenomena [13,14], specific patterns of various plant species cannot be 
observed [15]; this aspect is critical for several challenges approached in 
literature and industry: species classification, yield prediction, specimen 
coverage ratio of target areas, biovolume estimation, instance counting, 
specific species monitoring are all examples of challenges that can only 
be accomplished by observing at Areas Of Interest (AOI) with higher 
resolution. The usage of UAVs, with the appropriate sensors/equipment, 
has proven to meet the necessary scale requirements while increasing 
acquisition costs sustainably [16]. Machine learning (specifically, deep 
learning) has been the state of the art in most computer vision tasks 
since the publication of Alex Krizhevsky’s work in 2012 [17]. For all 
the reasons outlined so far, scientific literature regarding the use of re-
mote sensing-acquired forestry and crop field images processed with 
deep-learning-based computer vision methods is very large, and it is 
continuously growing, attracting interest in all parts of the world as 
shown in Figs. 1, 3.

In this survey, we focus on UAV scale phenomenon, providing an 
overview of the state of the art of the methods used, the typical chal-
lenges that arise, the characteristics of the datasets and the cautions one 
must have when dealing with these use-case. The rest of this paper is 
structured as follows: In the following subsection we review recent sur-
veys on topics close to the one proposed in this work, and highlight the 
novelty and merit of our proposal, Section 2 provide a general literature 
analysis for deep learning in PA & WFM, our article selection criteria and 
a recurrent research pattern observed in most articles. Section 3 describes 
all issues and cautions related to PA&WFM datasets and common data 
pre/post-processing methods. Section 4 contains an in-depth analysis 
of the various specific solutions (data-driven and non data-driven) pro-
2

posed, while also providing a meta-analysis for benchmarking-oriented 
papers regarding machine learning in this domain. Finally, we end with 
Section 5 that provides an overview of the domain’s potential, indus-
trial outlets, and directions that will fuel this research area. At the end, 
to help the reader, we report in Tables 5, 6 and 7 a list of acronyms and 
abbreviations commonly used.

1.1. Previous surveys

Several surveys on those topics are already available in literature, 
but they differ in content and/or method from the work we propose, 
we recollect them in Table 1. One of the earliest works found in the lit-
erature is that of Zhang and Kovacs [18] which provide an exhaustive 
overview on application of UAVs in PA, however, at the time (2012) 
most of the research strands that led to modern deep-learning tech-
niques, that now result state of the art, had not yet sufficiently matured. 
Lu and Young [19] proposed a survey that provides an overview of pub-
licly available datasets for computer vision tasks in PA, with respect to 
this, our work also provides a detailed description of domain-specific 
models. Seng et al. [20] proposed a survey about computer vision and 
machine learning for viticulture; although it provides an accurate and 
comprehensive analysis of the state of the art, datasets and tasks, the 
latter are limited to ones that can be addressed with UGV (e.g. pres-
ence, evolution of diseases). Instead, we focus on UAVs and additionally 
provide a description of models. Bouguettaya et al. [21] proposed a 
survey on deep learning for classification of crops from UAV imagery; al-
though this paper has some points in common with our article, our work 
covers a larger amount of tasks, challenges and models. Kamilaris and 
Prenafeta-Boldú [22] analyze 40 papers on deep learning for agriculture, 
covering different acquisition devices and machine learning techniques; 
with respect to this, we also discuss the WFM domain, and, since this 

work is more satellite oriented, it also deals with different categories 
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Fig. 2. Most recurrent indexing keywords associated to metadata of the query shown in Section 2. Source: Scopus. For each category, only the 4 most popular words 
are shown. Total results available in Table 2. Query is the one written in Section 2.
of models (e.g., recurrent networks) that are better suited to analyze 
time-sequenced satellite images. In Su et al. [23] the authors proposed 
a survey on AI empowered UAV perceptron systems for PA: although 
this work has many points in common with our paper, we also discuss 
WFM domain, and even if it provides a good overview of deep learning 
models for computer vision, our paper also provides an analysis of spe-
cific domain-tailored machine learning models and an in-depth analysis 
of dataset characteristics to consider during the data acquisition stage. 
Osco et al. [24] proposed a survey on deep learning techniques in UAV 
remote sensing with a strong focus on tasks, domains and models tax-
onomy. However, even if it provides a comprehensive and exhaustive 
overview, our work is PA & WFM centered and thus covers domain-
specific models and concepts related to data acquisition and datasets. In 
conclusion, arguments that make our work useful despite the presence 
of previous valuable works are the following:

• The identification and schematization of a shared research frame-
work/pattern emerging from the state-of-the-art of works dealing 
with UAV imagery in PA & WFM,

• The analysis and consideration on the trend of research and devel-
opment of new data-driven methods, with some considerations and 
connections also with theoretical research and models proposed in 
other domains,

• The effort put into building a taxonomy of dataset characteristics, 
which we think can be very useful to those planning an image ac-
quisition campaign, so that it can be managed in a way that fits the 
target goal,

• The level of detail in analyzing and comparing models specifically 
proposed for this domain.

2. Deep learning in PA & WFM: literature analysis

Given the large (and increasing) number of articles available in the 
literature (as shown in Fig. 1), we propose a prior screening of the Sco-
3

pus meta-data. After performing this query:
TITLE-ABS-KEY ( ( ("deep learning" OR

"Artificial intelligence" OR

"neural network" OR

"machine learning" )

AND

( "agriculture" OR "crop" OR

"farm" OR "trees" OR

"Forestry" OR "Vegetation" )

AND

( "ugv" OR "remote sensing" ) ) )

we exported and processed the results as follows:

• Indexing keywords were counted and the 100 most used were cho-
sen,

• We chose six semantic clusters and used them as a grouping crite-
rion for keywords,

• We merged keywords pertaining to the same concept (and their 
count added up),

• We discarded very generic keywords with a very high count (e.g. 
“machine learning”).

Fig. 2 shows a summary of the most common words for each category, 
while Table 2 contains all the data. The semantic clusters are “Algo-
rithms”, “Device”, “Machine Learning”, “Task”, “Vegetation” and “Oth-
ers”. “Algorithms related keywords refer to specific algorithms (data 
driven and non-data driven) and technical details related to the algo-
rithms itself. “SVM” turns out to be very popular keyword as it is one 
of the first widely successful machine learning algorithms used in many 
different domains [25]. Device related keywords concern all hardware 
devices that are used in the chosen domain. As mentioned earlier, “UAV” 
and “Satellite” are very popular in the literature but they are tailored to 
deal with phenomena on different scales. Machine learning related key-

word pertain to all those machine learning concepts that are not specific 
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Table 2

Complete list of keywords from Scopus metadata. Query is the one written in Section 2. Semantic clusters (“Cat-
egory” column) were created to group keywords. Acronyms are explained in Table 5.

(a) (b)

Category Keyword Count

Algorithms Decision Tree 1914
SVM 1125
RF 924
Algorithm 609
MSE 460
Adaptive Boosting 191

Task Classification 867
Image Classification 822
Prediction 781
Mapping 591
Semantic Segmentation 515
Land Use 478
Image Enhancement 418
Image Processing 394
Regression Analysis 371
Spectroscopy 306
Feature Extraction 286
Accuracy Assessment 244
Classification Accuracy 234
Data Mining 233
Time Series 232
Reflection 208
Nearest Neighbor Search 207
Decision Making 201
Object Detection 188
Land Cover 171
Aircraft Detection 164

Vegetation Crop 1297
Forestry 1244
Vegetation 594
Agriculture 580
Soil 267
Soil Moisture 250
Vegetation Mapping 216
VIs 194
Biomass 193
Cultivation 190
Farm 188
Crop Yield 188
NDVI 180

Category Keyword Count

Device Satellite Imagery 1360
Antenna 724
UAV 616
Remote Sensing Data 566
Landsat 455
Sentinel 447
Agricultural Robot 375
Synthetic Aperture Radar 316
Satellite 276
Optical Radar 240
Aerial Vehicle 196
Infrared Device 194
Radiometer 193
Optical Remote Sensing 189
Unmanned Vehicle 178
Radar Imaging 175
Modis 173
Space Optic 164

Machine Learning Deep Learning 1660
Learning System 1393
CNN 987
Neural Network 943
Learning Algorithm 798
ANN 567
Convolution 553
AI 451
Machine Learning Method 342
DNN 339

Others China 454
Semantic 331
Ecosystem 317
Climate Change 287
Pixel 287
Extraction 283
Food Supply 257
Texture 235
Image Resolution 205
Dataset 204
Hyperspectral 194
USA 173
Geology 172
Article 166
or do not refer to unique models/concepts (otherwise they would fall un-
der the Algorithm cluster). Since the quantity of articles has a strongly 
increasing trend each year (as shown in Fig. 1), most of the articles 
have been published in the last 5 years, and are those that use keywords 
related to more modern machine learning methods (“deep learning”, 
“neural network”). Task related keywords refer to specific problems 
faced in the literature selected. Tasks that can be performed at different 
scales are most common, like “classification” or “semantic segmenta-
tion”, while ones applicable to specific scales of resolution (“land use”, 
“land coverage” for large scale, “object detection” on small scale) are 
also available at gradually decreasing counts. Vegetation related key-
words have to do with concepts pertaining to the agricultural/vegetable 
domain. Lastly, the “Others” cluster was created by putting words with a 
non-negligible count and that do not fit into the other clusters. It is inter-
esting how words pertaining to issues of common public interest, such 
as “climate change”, “food supply”, “ecosystem”, and “geology”, emerge 
in this category in addition to the two main competitors (“U.S.A.” and 
“China”).

2.1. Article selection criteria

We chose several articles among the results of the following query, 
4

made on Scopus:
TITLE-ABS-KEY ( ( ("deep learning" OR

"Artificial intelligence" OR

"neural network" OR

"machine learning" )

AND

( "agriculture" OR "crop" OR

"farm" OR

"trees" OR "Forestry" OR

"Vegetation" )

AND

( "UAV" ) ) )

We highlight that this query differs from that used in Section 2 only for 
the last line: this one selects only those items that rely on UAV as an 
acquisition device, while the previous one, as it aims to build the liter-
ature overview, selects both those that use UGV and remote sensing in 
general. From the results of this query, we chose 3 papers at a time ac-
cording to the following criteria until we felt that the amount of material 

reviewed was enough:
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Fig. 3. Location of areas of interest observed in the works examined.
1. Sort the articles by citation and take the most cited (ever),
2. Filter articles from the last 5 years, sort them by citation and take 

the most cited,
3. Filter the articles from the last 2 years and make a content-based 

selection.

After careful reading and analysis of the articles iteratively selected 
using these criteria, we chose to mention those that best highlight state-
of-the-art emerging topics discussed in Sections 2, 3 and 4. The inclusion 
and exclusion criteria (in addition to query, year of publication, and 
number of citations) are based primarily on the cutting edge of the im-
plemented machine learning techniques and the thoroughness of both 
the benchmarking and the data acquisition campaign. In the core of the 
paper (Sections 2, 3, 4) we examine the chosen articles from different 
perspectives, and we summarize in Table 8 the results of our analysis.

2.2. Common research pipeline

In almost every article analyzed, we observe a recurring research 
framework: Each author focus his work in a specific geographic area 
(AOI) and particular specimens, depending on the use case (i.e. endan-
gered plant species or industrial crops to be monitored) and therefore 
everyone provides for themselves in the construction of the dataset. In 
general, the research framework follows these steps:

1. The research team plans/performs flights over AOI in order to ac-
quire orthomosaics,

2. Orthomosaics are split into tiles/patches and preprocessed,
3. Agronomists/domain experts assign the ground truth to each 

tile/patch.
4. A supervised machine learning model is trained with these tiles/

patches.
5. Model is validated and its performances evaluated.

All articles roughly follow these steps, along with, more or less com-
plex intermediate data processing stages. We discuss the first 3 steps in 
5

the following subsections.
2.2.1. Data acquisition stage

Before the initial image acquisition stage, authors schedule flights 
based on the need to capture certain characteristics of the AOI. We dis-
cuss these characteristics in Section 3.1. Behera et al. [26] are the only 
authors that use a public dataset, therefore, they did not need to per-
form the image acquisition autonomously. Some authors perform sev-
eral flights of the same AOI to increase the representativeness of certain 
aspects (phenological state of the plant, different seasons, different light 
conditions). Egli and Höpke [15] adopt the Leave-Location-And-Time-
Out procedure (acquire test images in different zones and periods than 
those used for training) as described by Meyer et al. [27], this method in-
creases the reliability and representativeness of the data, enhancing the 
overall quality of the dataset, as it allows to minimize space-time corre-
lation of the samples. Gurumurthy et al. [13] focus on capturing images 
of trees of variable ages, also using images with plants different from the 
target plant (mango), nevertheless, they choose to remove ambiguous 
samples. In [28,15] authors acquire samples with variable conditions 
such weather, light and phenological stages. Ye et al. [29] point par-
ticular attention to vegetation pattern distribution: authors identify 4 
types of pattern distributions of olive trees and keep the proportion of 
these patterns balanced in both training and testing partitions. In gen-
eral, in the context of industrial cultivation, crops of the same species 
have fairly regular distribution patterns, as shown in Fig. 4, for this 
reason, there are cases in which authors only acquire patterns strictly 
necessary in their research work [30,31]. In these works, target plants 
are regularly arranged, and since the goal is to count their number, ac-
quiring additional images with specimens arranged in a different pattern 
may be reduntant [31–33]. In some works [31,32,34], in addition to 
UAV flights, the research team performs local physical inspections on 
the plants in order to acquire ground truth of specific parameters (such 
as height and crown size).

2.2.2. Image tiling

Tiling is a mandatory step, regardless of the task, as it allows the 
global analysis of an orthomosaic to be broken down into several less 
complex tasks that focus on local features of relatively small areas. 
Moreover, from a technical point of view, it allows to limit the re-

sources needed for training and inference. The use of pre-trained net-
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Fig. 4. Typical patterns of industrial crop. Source: TEBAKA project [35].
works/transfer learning introduce an additional constraint on the size 
of the tiles, as they must be coherent with that of the pre-trained model. 
Tiling is just one of the data pre-processing steps, which are rather 
numerous and heterogeneous in the literature. Several pre-processing 
methods are covered in Section 3.

2.2.3. Data labeling and ground truth

Data labeling is another one of those mandatory steps when col-
lecting training data for supervised models, the shape of ground truth 
changes depending on the task, and is almost always collected by relying 
on manual labeling by domain experts. In this subsection, we describe 
works that approaches labeling in a nonstandard way, respect to the 
vanilla way one would expect with datasets of this type. Gurumurthy 
et al. [13] proposed two labeled versions of the same dataset to solve 
an instance segmentation problem: the individual crown detection in 
the target crop, using a double step fully convolutional semantic seg-
mentation network. In the first version, they label samples with the 
“canopy/background” classes, while in the second they use three classes: 
“canopy/overlapping/background”; an U-Net inspired model is trained 
with the first version of the dataset and produces a score describing 
the probability that the given pixel belongs to a canopy. In the second 
step, they retrain the model by replacing the last layer so as to produce 
confidence scores according to the second version of the dataset: for 
the canopy, the background, and the overlapping surface between the 
canopies.

In [35] Epifani and Caruso propose an automatic labeling method 
implemented with several stacked traditional computer vision tech-
niques (erosion, dilation, fast non local means denoising and threshold-
ing) applied to the NDVI channel. In this way, they significantly reduce 
the time it takes to label the dataset, limiting human intervention to 
the manual tuning of the pipeline and to a quick visual inspection of 
the labeled samples. Ground truth is not always represented by truth 
masks associated with an image, and in some cases, it is related to phys-
ical/chemical properties of vegetation acquired with local inspections. 
Hao et al. [33] propose a method to detect crowns for Chinese firs and 
estimate the height of each specimen, therefore they measure height for 
265 trees, selected in order to form a reliable distribution set respect to 
height. Safonova et al. [31] use the results of instance segmentation to 
estimate the height of olive trees and their biovolume, therefore they 
had to measure those values for 6 different trees. In this case, few sam-
ples are sufficient, as the final estimation of biovolume and height is not 
performed with data-driven methods but with traditional algorithms. Yu 
et al. [36] measure several physical values of the plants in their AOI. Af-
ter that, they develop (using images and these physical values) several 
regression methods for estimation of the Above Ground Biomass (AGB) 
of plants. In our literature analysis, the only completely unsupervised 
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system is the one proposed by [37], even though they still use ground 
truth to compare their unsupervised system and several, state of the art, 
supervised models for semantic segmentation.

3. UAV datasets for agroforestry: features, methods and issues

In this section, we describe some characteristics of the datasets that 
must be known to properly schedule and perform the images acquisition 
campaign. We classify these characteristics into Reference Distribution 
(RD) and technical characteristics of samples (discussed respectively in 
Section 3.1, 3.2), and both represented and schematized in Fig. 5. By 
dataset we mean a list of tiles - i.e. - a “sample” means a single tile and 
a “batch” a list of tiles extracted from the dataset for a training cycle. 
Generally, in the use case analyzed, the role of the model is to infer 
some kind of knowledge about each sample given as input. It is reason-
able to assume that these samples come from an unknown probability 
RD, on which the dataset represents a statistical sampling. In PA & WFM 
domain, RD have recurring characteristics for which it is required to en-
sure their representativeness in the dataset (and therefore, also during 
flights planning and the samples selection). The RD characteristics are 
the set of all these characteristics, and we describe them in the follow-
ing subsection. During flights planning, the effort required in ensuring 
the representativeness of RD characteristics varies according to the use 
case, and it is often necessary to find a tradeoff between the model’s ex-
pected ability to generalize, and the effort spent in the data acquisition. 
Technical characteristics of the samples also influence the quality of the 
dataset, and they usually are homogeneous within the same dataset.

3.1. Reference distribution characteristics in agroforestry

The RD directly influence the effort required for data acquisition 
and the design, training and inference phases of the model. In our meta-
analysis, we identify three main categories of RD characteristics:

• Positioning: everything related with the positioning of instances 
(plant specimen) within tiles. The variability of the positioning pat-
terns and whether or not the canopies overlap are the two most 
important information. Canopies overlap makes the biggest differ-
ence in the difficulty to detect different instances belonging to the 
same semantic class [13,29].

• Organic: All features influencing the biophysical status and ap-
pearance of specimens. Vegetation appearance (even in the same 
species) can change more or less drastically according to several 
factors (i.e. irrigation treatment supplied to plants [34], fertilizers 
[36], phenological status [15] etc).

• Environmental: All characteristics that influence the context around 

the instances (weather, background, lighting conditions and so on).
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Fig. 5. Diagram representing the taxonomy of the datasets characteristics we proposed in this article.
Characteristics in the last category are more generic and well known 
even outside the PA & WFM literature. The representativeness of all 
these 3 groups of features should be managed in the scheduling phase 
of image acquisition, and many authors take this into account during 
the flight planning, as discussed in Section 2.2.1 [15,29,28,16,13]. We 
can find some exceptions, for example Ye et al. [29] propose a data 
augmentation procedure to simulate plant color variation (occurring 
at different phenological stages) and light conditions. They transform 
the color space of the original dataset from the RGB model to the Hue 
Saturation Value (HSV) mode, measuring the variation range of these 
parameters inside the dataset. Therefore, during data augmentation, 
they add noise to the HSV values, always keeping the parameters of the 
augmented tiles within the previously estimated range. Yu et al. [36]
exploit the HSV space in similar way. Background also plays an impor-
tant role, as it contributes directly to the disorder/noise available in the 
tiles, as evidenced by the fact that it is more difficult to classify tree 
species in an urban context than in an agricultural one [16].

3.2. Technical characteristics of samples and augmentation

Technical aspects of the acquired samples play a key role in the 
behavior of the overall systems (not only data drive ones), as they di-
rectly affect the quantity and the quality of information conveyed by 
each tile/patch. The most important are the GSD (Ground Sampling 
Distance), type/number of spectral channels available and the pres-
ence/absence of surface models.

3.2.1. Ground sample distance

As expected, the GSD plays a crucial role. Across the UAV imagery 
literature for PA&WFM, the GSD of the orthomosaics varies at most in 
the range [10−1, 101] cm2/pixel. In the “GSD” column of Table 8 we re-
ported this value for each paper analyzed. Many authors focus on this 
parameter trying to improve it or studying how it affects the overall 
performances. Ye et al. [29] implement an Enhanced Super-Resolution 
Generative Adversarial Network (ESRGAN [38]), that is a super resolu-
tion imaging technique, capable of generating realistic textures during 
7

single image super-resolution. In this way they increase the resolution 
of their samples. This technique has already proven interesting results in 
remote sensing [39]. In [15], Egli et al. perform 10 downsampling runs 
by means of bilinear interpolation on the test tiles, starting from 0.27 
cm/pixel and reaching 54.78 cm/pixel, a resolution in which each tile 
corresponds to a single pixel (in RGB, this correspond to 3 scalar values, 
1 per channel). Given that their classification task is a 4-class one and 
that they achieve a 56% accuracy with the lowest tile resolution, au-
thors conclude that the mean spectral values of the tiles already provide 
an explanatory content of 31%, assuming a base rate accuracy of 25%. 
In [40], Zhang et al. lower the resolution of the dataset using blurring 
kernels of several sizes (3,5 and 7). They assess the impact of the reso-
lution by training their DefoNet model on these new datasets observing 
a considerable drop in performance. While precision has a better toler-
ance over resolution loss, recall decreased from 80.6% to 73.8% (with 
a 7 × 7 kernel). Guirado et al. [14] use a dataset with tiles coming from 
images acquired by different devices (over the same AOI), namely satel-
lite (Google earth) an helicopter and UAV. The resolutions are 50,10 
and 3 cm2/pixel respectively.

3.2.2. Spectral bands and indexes

Acquisition costs heavily depend on the sensors with which UAVs are 
equipped: hyper-spectral/multi-spectral acquisition systems have signif-
icantly higher costs but are able to provide more information about veg-
etation than RGB cameras [36,32] especially in the Near Infra Red (NIR) 
and red edge channels. In Table 8, in the column “Sensors” we summa-
rize bands used in the literature reviewed. However, the information 
contained in the human observable patterns/spectrum at a resolution 
on the order of centimeters has proven to be sufficient to solve the com-
puter vision tasks required for the high level goals mentioned so far, and 
therefore RGB cameras, are a good cost/result trade-off in many cases 
[41]. Extra-RGB bands are very useful in the context of vegetation identi-
fication as they carry a lot of information related to plants [15,36,32]. In 
fact, various spectral indices are known in the literature to be obtained 
as a linear combination of other channels [42], for which correlation 
with the presence and vital parameters of vegetation has been widely 
demonstrated. In [34,36] authors make intensive use of these indexes 

12 and 29 respectively. Epifani and Caruso in [35] exploit the proper-
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ties of NDVI for automatic tile labeling. However, since these indexes 
do not take spatial correlation into account, being limited to the in-
formation independently conveyed by each pixel, they had to include 
intermediate stages of image processing based on classic computer vi-
sion methods. Some authors that use other spectral bands in addition 
to the RGB, such as NIR and Infrared [35,31,30,33] test the variation 
in model performance by using different subsets of available bands, for 
example Safonova et al. [31] perform several cross validation training 
runs with different combination of data fusion performed between RGB 
and spectral indices maps like NDVI and GNDVI. We provide some of 
these spectral indexes in Table 7.

3.2.3. Surface models

Surface models convey a different type of information respect to 
spectral bands, and they can be exploited in different stages of the 
research pipeline. In column “Surface Models” of Table 8, we specify 
which papers use this type of data and which do not. Egli and Höpke [15]
exploit the DSM (Digital Rurface Model) for tree marking in order to 
schedule flights in an optimized way. In [41,43], authors exploit the 
DSM to carry out the object proposal stage for the following image clas-
sification CNN, resulting in an instance segmentation system.

Hao et al. [33] have at their disposal 5 spectral channels (RGB, red 
edge and NIR) and 2 surface models: the DSM and the Canopy Height 
Model. They perform several cross-validated training runs of a Mask 
R-CNN using different combination of spectral channels and surface 
models. Therefore they use the surface models as a raw additional chan-
nel for the input tiles.

Before being fed as input to the models, UAV images/tiles are pro-
cessed in several ways, depending on how authors interpret the problem 
and how the model input is expected to be. There are many prepro-
cessing techniques that are recurrent in several works exploiting the 
use of surface models. Simple Linear Iterative Clustering is an unsuper-
vised K-means clustering superpixel generation method used in [37,44]. 
Superpixels are small cluster of pixels that share similar properties, al-
lowing to simplify images with a great number of pixels reducing the 
effort required in subsequent stages. In [43,36,37] authors use Marker 
Controlled Watershed Algorithm. This method is commonly used to-
gether with local maxima filtering. Both algorithms perform well in 
canopy identification when applied to surface models, indeed they can 
be used as object proposal upstream stage. Gaussian filters, erosion and 
dilations are a popular choice to remove artifacts and spurious elements 
in images or spectral maps [35,37,45].

4. Deep learning models and benchmarking

In this section, we analyze the solution proposed in the PA & WFM 
domain, also describing the connections with the rest of the reference 
deep learning and computer vision literature. All the use-case faced in 
the agroforestry literature reviewed require to elaborate captured raw 
images, in order to extract valuable additional information. When the 
goal is the prediction of a specific dependent variable, data coming from 
UAV sensors can be processed with more or less complex regression 
methods. In these cases, independent variables can be extracted by fea-
ture engineering (classical method) or with a black box deep learning 
based approach. In addition to these regression methods, four computer 
vision tasks were identified, and all together they cover all the use 
case addressed in the literature reviewed. These 5 categories of tasks 
represent the core part where most of the valuable information is ex-
tracted/processed. The four task of computer vision mentioned above 
are: image classification, semantic segmentation, instance segmentation 
and object detection. In the literature, different definitions of the same 
tasks can be found. In this paper we are using the taxonomy proposed 
by X. Shen in [46] as baseline, represented in Fig. 6.

In addition, we denote by object proposal the upstream task that deals 
with the identification of bounding boxes of potential objects of interest, 
8

without the class label. This task is described in several works dealing 
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Table 3

Number of parameters of different models, categorized by task. For 
some architectures, parameter numbers are variable. For others, 
we computed from the schematics provided by the authors. For 
CD-CNN this was not possible.

Task Model # Parameters (106)

Semantic 
Segmentation

[26] LW Aerial Segnet 2.48
[13] Mango Tree Net 0.663
[47] U-Net 10 to 30
[48] SegNet 10 to 20

IS/OD

[30] Osco et al. 0.009+0.0031*t
[49] Improved Yolo 14.5
[50] SEYOLOX 5.04
[51] Mask R-CNN 63.7

Image 
Classification

[15] Egli et al. 2.98
[40] DefoNet 4.43
[52] CD-CNN Unknown
[53] ResNet-50 23
[54] VGG-16 138

with object detection and instance segmentation problems [55]. In our 
analysis It is useful and consistent with the PA & WFM literature, the 
evolving state of the art, and from a practical point of view to merge ob-
ject detection and instance segmentation tasks. A well known model for 
offline instance segmentation (Mask R-CNN [51]) was developed from a 
set of models dedicated to object detection (Region Convolutional Neu-
ral Networks, R-CNN [56–58]) on which there was a rather fruitful line 
of research. Moreover, for several tasks approached in the literature re-
viewed, there is no difference in using an object detection or an instance 
segmentation network (for example, for counting specific specimen). 
Therefore, we use the acronym IS/OD to denote the tasks of instance 
segmentation e object detection. With the advent machine learning, 
state of the art in these four tasks is constantly evolving as they are 
milestone problems for computer vision. Increasingly high-performance 
architectures are being proposed as time goes on, often refining solu-
tions proposed by other researchers. State of the art models are designed 
as general purpose solutions [59,53,51,47], so they are a baseline for 
those who want to solve those tasks on specific domains. Exploiting do-
main specificities by translating them into adjustments/variations on the 
model or methodology enables better results and less parameters com-
pared to the vanilla versions, at the cost of developing domain-specific 
solutions, losing cross-domain versatility. In Table 3, we summarize the 
models for which the number of parameters was available in the refer-
ence paper (or we calculated them ourselves from the structure); we also 
added the number of parameters of the general purpose models for the 
reference task. In analyzing the models proposed in the UAV imagery 
for PA&WFM literature, we identify 3 main categories of works:

• those proposing variants of pre-existing or traditional models used 
in a domain-adapted manner (e.g. making ensembles, or changing 
some processing stages),

• those proposing novel (though sometimes inspired by well-known 
models) deep networks to solve specific tasks,

• those focusing on benchmarking and comparing multiple known 
models (sometimes even the one proposed in the article itself) on a 
reference dataset,

These categories should not be taken cleanly, as sometimes, works 
may fall into more than one category, but they have been chosen to 
facilitate the exposition of the results of our analysis.

4.1. Variants for object proposal and traditional methods

In this section, we describe domain specific methods found in PA 
& WFM, proposed to carry out the instance IS/OD task. Fig. 7a) and 

Fig. 7b) show the approach of the two most popular general purpose 
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Fig. 6. Computer vision tasks solved by architectures presented in this work. Image taken from [46].

Fig. 7. A summary of the various approaches found in literature (for agroforestry domain) used to carry out IS/OD.
IS/OD architectures, namely the Region Convolutional Neural Networks 
[56,58,57,51] and the YOLO [60–63] family. In many works analyzed, 
data driven components don’t operate in an end to end fashion: the us-
age of machine learning is limited only to certain stages of the pipeline, 
while the others are implemented with non data-driven methods. Many 
authors perform object proposal and image classification separately in 
order to carry out IS/OD, where only the second step is carried out with 
data-driven methods (as shown in Fig. 7c). Onishi and Ise in [41] pro-
pose a machine vision system for a 7 class CNN based classificator for 
tree crowns. In this article, they use a DSM to obtain a slope model. Af-
ter that, this slope model, the DSM itself and the RGB spectral bands 
are fed together to the eCognition Developer software, that returns the 
patches containing the crowns. In this use case, the eCognition software 
behaves as object proposal upstream stage. After manually labeling the 
patches in the 7 different classes, they train and compare 4 different 
standard image classification networks: VGG-16, ResNet-18, ResNet-152 
and AlexNet.

Xiao et al. [64] besides a fully data driven object detection pipeline 
based on YOLO v5, propose a method based on the Otsu algorithm [65]
applied on DSM and vegetation indices (NDVI and NDRE) in order to 
separate instances of corn trees. Natesan et al. [43] propose an object 
9

proposal pipeline based on classical computer vision techniques. They 
apply Gaussian Smoothing on the DSM and then marker controlled wa-
tershed segmentation algorithm, obtaining patches of tree crowns (as in 
[66]). Forestry experts provide ground truth labels for each patch ex-
tracted with this method, and authors train with these data (extracted 
patches and ground truth) a ResNet50 for patches classification. Ferreira 
et al. [45] perform a downstream instances separation, after carrying 
out semantic segmentation with a Deeplab v3+. They propose a post-
processing pipeline based on morphological operations (such as dilation 
and erosion) to force separation between nearby group of pixels belong-
ing to the same semantic class. In this way they count the instances of 
each class. This is an example of the pattern shown in the Fig. 7d. Epifani 
and Caruso in [35] also use erosion and dilation (together with thresh-
olding methods and fast non-local means denoising algorithm) but they 
implement them in a refinement process of the NDVI channel in order to 
use it as ground truth. In this way, they significantly reduce the time it 
takes to label the dataset, limiting human intervention to a quick visual 
inspection of the labeled samples. Fei et al. [34] use 180 wheat plots of 
fixed size as a sample, and for each plot they measure the yield, using it 
as ground truth. They also divide these 180 plots into 3 groups, each one 
irrigated in a different way (low, moderate, high). Finally, the conduct 
UAV flyovers with different types of sensors (thermal, multi-spectral). 

From these data, they extract 29 different types of well known spectral 
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Fig. 8. Network proposed by Osco et al. [30]. Reprocessing of the image in the original article. The number of 𝑡 stages is variable; the authors train networks with 
different numbers in 𝑡 stages in the head of the network. As 𝑡 increases, the cost of training/inference increases linearly, while performance gradually saturates.
indexes (some of them described in Section 3.2.2). The model is an en-
semble of 5 different classical machine learning algorithms. They feed 
each sub-models is with the features, and it returns a yield estimate. 
In this work authors do not address any computer vision tasks of those 
previously exposed, but they extract correlation patterns between the 
handcrafted features (spectral indexes) and the variable to be inferred 
(yield).

4.2. Domain-tailored neural networks

Several authors propose their own architecture that has usually been 
built starting from a well known model, or by developing a new one from 
scratch. Osco et al. [30] propose a new object detection architecture: 
their final goal was to estimate the number of Valencia-orange trees in-
side a region of interest. They generate ground truth mask associated 
with each UAV image by placing a Gaussian kernel centered on each 
tree. Their architecture, represented in Fig. 8, has 3 parts: the encoder, 
the segmentation stage 1, and a variable length tail. The tail is made by 
several stages similar to the stage 1. Authors refer to the output of the 
encoder as 𝐹 . The first segmentation stage (𝑆1) performs several con-
volutions (without reducing the output size), with the last two of size 
1 × 1. The output of this part is compared with the ground truth map 
(rescaled, in order to achieve the same resolution) using a loss function. 
A generic segmentation stage 𝑡 (called 𝑆𝑡 with 𝑡 ≥ 2) behaves in the same 
way as 𝑆1, (it applies more convolutions with different settings) and re-
turns an output that still has the same height and width of the ground 
truth map. The input of the 𝑆𝑡 is the concatenation between the out-
put of stage 𝑆𝑡−1 and the output 𝐹 of the encoder. With this solution, 
authors test the architecture with an increasing complexity by only tun-
ing a single hyperparameter (i.e. the number of tail stages 𝑡𝑚𝑎𝑥). They 
also perform loss computation and back propagation on every segmen-
tation map produced in each stage. This is coherent to the idea behind 
the residual block, that manages to solve the gradient vanish side ef-
fect.

Egli and Höpke [15] propose a multi-class 4-layer lightweight CNN 
classifier. Compared to state-of-the-art classifiers, this solution is sim-
pler and the one with fewer parameters. It consists of four consecutive 
convolution/pooling blocks (conv1 to conv4), a fully connected layer 
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(fc) and a final output layer that maps the four tree species considered 
in their study. The original schema of this solution is shown in Fig. 9. 
This network is fed with tiles obtained from the original orthomosaic.

They extract tiles following a uniform grid. In this way, by assigning 
a class to each tile, the model produces a semantic map of the orthomo-
saic. Although the map is coarse compared to other works, this work is 
coherent with the idea of performing a fully automated online classifica-
tion over an area, relying on IoT devices with limited computing power. 
In [26], Behera et al. propose a lightweight segmentation network called 
Lightweight Aerial SegNet. The final goal behind this work is to propose 
a fast and light solution that can be deployed on the internet of things 
edge devices to perform real time segmentation. This solution is an im-
provement of another network previously proposed by the same authors 
in another paper [67]. LW Aerial SegNet architecture implements depth-
wise separable convolution, which reduces the number of parameters 
compared to classical convolution. The authors compare several state-
of-the-art architectures. Although their solution has fewer parameters, 
the performance is similar. Their solution has only 2.48 M parameters, 
while all the other networks compared have between 9.42 M and 16 M 
parameters. The structure of the network is shown in Fig. 10, it is similar 
to other well known architectures [47,48]: it has the encoding/decoding 
paths whose stages communicate specularly with the skip connections.

Gurumurthy et al. [13] in their model, claim to have been inspired 
to the hour-glass shape of the U-Net. They used larger kernels (up to 
7×7) in order to increase the receptive field of the layers. A diagram of 
this network is shown in Fig. 11.

In [49] Junos et al. propose a system for the automatic detection of 
palm oil fruits from UAV images. They propose a variation of YOLO v3 
tiny, introducing Densenet as feature extractor, a feature Pyramid Net-
work as a multi-scale target detection network and a learnable Swish 
activation function. The diagram of this network is shown in Fig. 12. All 
these changes increase the complexity of the model compared to Yolo v3 
Tiny, but it still retains a quarter as many parameters as standard Yolo 
v3. In their tests, they compare the proposed model with several object 
detection architectures. Zhang et al. [40] explore the usage of several 
machine learning techniques to describe plant defoliation from UAV im-
ages. They test both classical techniques (Naive Bayes, KNN, RF, SVM, 
Gaussian Process) and those based on deep learning for image classifi-

cation (VGG-16 and ResNet-50). Finally, the authors propose DefoNet 



Smart Agricultural Technology 9 (2024) 100625L. Epifani and A. Caruso

Fig. 9. Network proposed by Egli et Al. Image from [15].

Fig. 10. Lightweight aerial SegNet proposed by Behera et al. Reprocessing of the image in the original article [26].
(whose diagram is shown in Fig. 13), a CNN network based on the clas-

sic LeNet network.

DefoNet performs better than all the other solutions and it is 6 to 
11

8 times faster to train compared to ResNet and VGG. In [52] Pandey 
and Jain propose an architecture called Conjugated Dense Convolutional 
Neural Network (CD-CNN) for the classification of crop patches acquired 
by UAV. Authors claim that this solution achieves a strong distinguishing 

capability between the 5 proposed crop types. However, it is not possible 
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Fig. 11. Mango Tree net architecture. Reprocessing of the image in the original article [13]. In the first network training, the last softmax outputs a pixel-wise value 
associated with the presence of trees (2 classes, tree or background). In the retraining, it outputs a probability for each of the 3 classes: tree - canopy overlap -
background.

Fig. 12. Improved Yolo V3 Tiny. Reprocessing of the image in the original article [49]. The structure of dense blocks is non-trivial, and it is described in the original 
12

article.
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Fig. 13. DefoNet schema. Reprocessing of the image in the original article [40].
to estimate the number of parameters in this model, and the authors 
do not provide any information on the complexity of the architecture. 
The CD-CNN uses the following components in addition to the standard 
convolutions:

• Dense blocks: it is a module widely used in CNN that connects all 
layers (with matching feature-map sizes) directly with each other. 
It was originally proposed by Huang et al. [68],

• Conversion blocks: this block is placed between two dense blocks 
and it consists of a convolutional layer and a 2×2 max pooling op-

eration,

• Composite activation function blocks: this block performs a batch 
normalization, a convolution and applies the SL-ReLu activation 
function, originally proposed by Wang et al. [69].

A schema of CD-CNN is shown in Fig. 14. D. Yu et al. in Yu et al. [36]

propose a neural network regression methods (called DCNN, whose 
schema is in Fig. 15) and compare it with several other data driven 
regression methods.

This network ends with a single regressor neuron whose output 
represents the variable they want to estimate, that is the AGB. Song 
et al. [50] propose many variations of the YOLOX-tiny [70] model, the 
best of which is the one that is called SEYOLOX-tiny. This model applies 
2 main modifications to YOLOX-tiny:

• It adds 2 Squeeze-and-Excitation(SE) [71] modules to YOLOX-tiny,

• It replaces the Varifocal loss [72] with binary cross entropy loss.

The authors justify these modifications because the baseline model is 
not very good for detecting small objects (maize tassels are). It inherits 
many different modules like Spatial Pyramid Pooling and Cross Stage 
Partial module [73]. The model of SEYOLOX-tiny is shown in Fig. 16.

Jaimes et al. in [37] propose a multi-stage fully parameterless and 
unsupervised method for semantic segmentation of UAV images. They 
compare their method with Segnet and DeepLab, resulting in slightly 
lower performance. The biggest advantage thus lies in its unsupervised 
13

and parameterless nature.
4.3. Vision transformers

A final mention to models belonging to the vision transformer (ViT) 
family in necessary. These architectures implement the attention mecha-
nism in image processing. Although they have comparable performance 
with classical convolutional models like U-Net, they are much more 
complex and require more data to be trained properly [74,75]. Research 
is still fervent in this direction, but the real potential of these meth-
ods is still being explored, they still have to prove to have a better 
cost-effectiveness than convolutional models. Despite this, the atten-
tion mechanism outperforms all other known methods in processing 
series of tokens (the biggest example is the field of natural language 
processing). Some hybrid tasks, for example between image and token 
processing (e.g., environmental change detection from image series) can 
be approached with attention-based methods with interesting results 
[76,77]. Doing this requires large amounts of images acquired at dif-
ferent time, which is why satellite imagery is better suited than UAVs 
in this context.

4.4. Benchmarking

As described in the introduction, in our literature analysis, machine 
learning models are used to solve intermediate computer vision tasks 
necessary to extract valuable information, with the final goal to solve 
more complex tasks. Several works focus on benchmarking and compar-
ing different deep learning and classic methods. Lobo Torres et al. [16]
propose a study in which they compared five deep fully convolutional 
networks: SegNet, U-Net, FC-DenseNet, and two DeepLabv3+ with dif-
ferent backbones. They also test the Conditional Random Field postpro-
cessing technique to improve the overall segmentation results. Guirado 
et al. [14] evaluate the performance of 2 instance segmentation tech-
niques and propose an ensemble model that fuses both of them. The first 
technique is the Object-based Image Analysis (OBIA), the second one is 
the Mask R-CNN with a ResNet-101 backbone. Their work shows that the 
performance of the ensemble is superior to that of the two separate mod-
els and it improves as the resolution increases (up to 25%). dos Santos 
et al. [28] propose an object detection system for UAV imagery for the 
detection of law protected tree species (Dipteryx alata) in urban environ-
ment. Their system relies on an instance segmentation stage, which they 

implement by comparing the performance of 3 different CNN: a Faster 
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Fig. 14. CD-CNN schema. Reprocessing of the image in the original article. [52].

Fig. 15. Regression DCNN proposed by Yu et al. Reprocessing of the image in the original article [36].
R-CNN, a YOLOv3 and a RetinaNet. The best model in their use case was 
the one based on RetinaNet. Lou et al. [78] segment and estimate the 
width of loblolly pines crowns using deep learning techniques. They test 
3 different architectures: Faster R-CNN, SSD (Single Shot Detector [79]) 
and YOLO v3. Onishi and Ise [41] propose a machine vision system for a 
7 class CNN based classificator for tree crowns. In this article, they test 
4 different standard image classification models: VGG-16, ResNet-18, 
ResNet-152 and AlexNet. In addition, they compare the results of these 
14

end-to-end models with an SVM-based classification with handcrafted 
features. Works that benchmark and compare various algorithms are 
grouped in the Table 4. Some of these have as their ultimate goal bench-
marking itself, while others compare the proposed model with reference 
ones.

5. Conclusions

Image processing from remote sensing sources (specifically, UAVs) 
is a task that has relevance in several activities of social, academic, eco-

nomic and environmental interest. The state of the art on many image 
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Fig. 16. SEYOLOX-tiny proposed by Song et al. [50]. CBL module performs a depthwise convolution and a standard one in parallel. Reprocessing of the image 
available in the original article.

Table 4

Studies that compares different architectures. Metrics abbreviations are explained in Table 6.

Metrics

Task Reference Models evaluated P/R F1 IoU OA R2 RMSE

Semantic 
segmentation

Lobo Torres et al. [16] U-Net, SegNet, DenseNet, Deeplab V3+ ∙ ∙ ∙ ∙

Behera et al. [26] FCN8, FCN16, FCN32, DenseNet, SegNet, Deeplab v3, U-Net, 
Aerial SegNet [67], LW aerial segnet

∙ ∙ ∙ ∙

Ye et al. [29] U-Net, U2-Net, HRNet, DeepLab v3+ ∙ ∙ ∙ ∙
Instance 
segmentation -
Object detection

Guirado et al. [14] Mask R-CNN, OBIA ∙ ∙

Osco et al. [30] RetinaNet, Faster R-CNN, proposed approach ∙ ∙
Song et al. [50] YOLOX variations and proposed ones ∙
dos Santos et al. [28] YOLO v3, Retinanet, Fast R-CNN ∙ ∙
Lou et al. [78] Faster R-CNN, Single Shot Detector, YOLO v3 ∙ ∙ ∙ ∙
Yu et al. [32] Mask R-CNN, Local Maxima, MCWS ∙ ∙
Junos et al. [49] SSD, YOLO v3, YOLO v3 tiny, improved YOLO v3 tiny, Yolo v2, Faster 

R-CNN
∙ ∙ ∙ ∙ ∙

Image Classification Onishi and Ise [41] AlexNet, VGG-16, ResNet-18, ResNet-512, SVM ∙
Zhang et al. [40] VGG-16, ResNet-50, DefoNet, classic methods ∙
Correa Martins et al. [44] Xception, EfficientNet, NasNetMobile ∙ ∙
Pandey and Jain [52] AlexNet, VGG16, VGG19, ResNet50, CD-CNN ∙ ∙

Regression Yu et al. [36] DCNN, RF, Multiple Linear Regression, Support Vector Machine ∙ ∙
processing tasks is based on the neural network paradigm. For industry, 
smart crops monitoring can have a direct impact on the economic return 
to companies, as it can, for example, allow them to control (and infer) 
several parameters related to the amount of crop yield. In this context, 
neural networks allow complex correlations to be found between het-
15

erogeneous datasets from different sources and target variables, even if 
their behavior is unexplainable and then does not provide an explicit 
analytical solution. With the increasing use of data-driven systems in 
PA & WFM, data-intensive labeling has costs (both in terms of time and 
money) that are less and less sustainable. It is often necessary to rely 
on domain experts (which is common in many application areas), and 

the areas to be labeled are often huge. Some authors pointed out this is-
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Table 5

Acronyms used in this paper.

Abbreviation Extended Introduced in

PA & WFM Precision Agriculture & Wild Flora Monitoring Section 1
UAV Unmanned Aerial Vehicle Section 1
UGV Unmanned Ground Vehicle Section 1
GSD Ground Sampling Distance Section 1
AOI Areas Of Interest Section 1
NIR Near Infra Red Section 1
SVM Support Vector Machine Table 2
RF Random Forest Table 2
MSE Mean Square Error Table 2
VIs Vegetation Indexes Table 2
NDVI Normalized Difference Vegetation Index Table 2

Abbreviation Extended Introduced in

CNN Convolution Neural Network Table 2
ANN Artificial Neural Network Table 2
DNN Deep Neural Network Table 2
AI Artificial Intelligence Table 2
AGB Above Ground Biomass Section 2.2.3
RD Reference Distribution Section 2.2.3
HSV Hue Saturation Value Section 3.1
DSM Digital Surface Model Section 3.2.3
IS/OD Instance Segmentation / Object Detection Section 4
OBIA Object-based Image Analysis Section 4.4
SSD Single Shot Detector Section 4.4
Table 6

Metrics abbreviations.

Abbreviation Extended name

F1 F1-Score
IoU Intersection Over Union
K Cohen’s Kappa Coefficient
OA Overall Accuracy
P Precision
R Recall
RMSE Root Mean Square Error
RRMSE Relative Root Mean Square Error

Table 7

Some of the indices well known in literature. Some of these were used in the 
works reviewed. A complete list is available at www.indexdatabase.de.

Name Formula Correlates with Reference

NDVI 𝑁𝐼𝑅−𝑅𝑒𝑑
𝑁𝐼𝑅+𝑅𝑒𝑑

Crop health [97]

NDWI 𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
Plant water content [98]

NDRE 𝑁𝐼𝑅−𝑅𝑒𝑑𝑒𝑑𝑔𝑒
𝑁𝐼𝑅+𝑅𝑒𝑑𝑒𝑑𝑔𝑒

Chlorophyll Content [99]

GNDVI 𝑁𝐼𝑅−𝐺𝑟𝑒𝑒𝑛 Chlorophyll concentration [100]

DVI NIR-Red Vegetation presence [101]

RVI 𝑅𝑒𝑑

𝑁𝐼𝑅
High density Vegetation / biomass [102]

sue, proposing automatic labeling methods [35] or fully unsupervised 
solutions [37]. Crop classification is essential to schedule and optimize 
farming [52] as it also helps to estimate the net yield production for 
each crop. There are biophysical parameters (qualitative and quantita-
tive) whose monitoring provides direct information on the health status 
of plants or the productivity expected from a crop. As example, as de-
scribed by Zhang et al. [40] the state of defoliation of soybean plants 
directly affects the productivity of the crop, which is why their system 
is able to categorize portions of the crop according to the severity of the 
defoliation. AGB is also considered an indicative parameter for produc-
tivity, as shown by Yu et al. in [36], who then tested various regression 
methods to estimate it. Biovolume was estimated for olive plants by Sa-
fonova et al. in [31], parameter that is correlated with oil productivity. 
Other parameters such as plant height, area, and canopy number are 
important for PA, and, although not always concurrent with industrial 
production, are issues addressed by several authors [13,35,78,33]. A 
wide interest in these techniques is also growing in the WFM domain: 
with climate change and global warming, the earth’s ecosystem is chang-
ing ever more rapidly. The conservation status of certain plant species 
directly impacts the ecosystem of which these species are a part. Reliable 
plant monitoring systems are therefore increasingly needed. Martins et 
al. in [44] have analyzed with data-driven methods kettle holes, whose 
characteristic internal ecosystem is considered an important indicator 
for the health of the environment. Classification and mapping of endan-
16

gered species can be successfully addressed with exposed technologies, 
as demonstrated by Lobo Torres et al. [16] for mapping of Dipteryx alata 
specimens in urban settings.

The chase to maximize standard performance scores on general-
purpose reference datasets led to a huge increase in models sizes, often 
excessive compared to the practical problems to be solved in specific do-
mains. This is a well-known problem in the machine learning literature, 
even in domains different than computer vision [80,81]. This model re-
sizing/optimization approach, in some cases, allows to perform online 
inference (sometimes even training [82]) and deploy deep models in 
embedded devices in an Internet of Things context [83–85]. This topic 
opened up further horizons for academia and industry, becoming popu-
lar under the name of Tiny Machine Learning [86] (TinyML) achieving 
results in many tasks [87,88]. For all these reasons, in last years the 
research for methods to optimize and under-scale over-parametrized 
machine learning models is very fervent, as shown by Frankle and 
Carbin [89] whom proposed and empirically proven the lottery ticket 
hypothesis, providing a very general, versatile and effective framework 
that allows to prune parameters in deep neural networks. In our liter-
ature analysis, this topic emerges (it is highlighted in Table 3) and it’s 
clear that domain-specific solutions allow parameters to be reduced at 
the cost of cross-domain versatility. With the emergence of foundation 
models/LLMs, the decision-making and planning activities have been 
greatly simplified, as these systems have already amply proven having 
cognitive abilities that improve as research progresses, being able to 
handle complex planning tasks and decision making reliably [90–96]. 
These innovations in LLM, combined with the deep learning for com-
puter vision and the versatility/low cost/ease of use of UAV imagery 
technologies make the prospects towards full automation of sectors such 
as PA & WFM become realistic in the near future, allowing to address 
social and environmental challenges crucial for the entire humanity, but 
also generating great business opportunities typical of technological rev-
olutions.
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collected instances used for model training (objects, tiles, 
hether surface models were used or not.

GSD (cm2px) Surface 
Models

Model(s)

2 U2-Net

4 Deeplab V3+

Not specified MangoTree Net
1 U-Net, SegNet, DenseNet, 

DeeplabV3+
10 and 3 U-Net
1.67 ∙ Random forest

10 Unsupervised parameterless 
pipeline

3 and 13 Mask R-CNN
3, 10 and 50 Mask R-CNN

YOLOX variations
1.17 and 1.24 Faster R-CNN SSD, YOLO v3
2 ∙ Mask R-CNN

YOLO v2/v3/v3 tiny, Faster 
R-CNN, SSD

2 ∙ Mask R-CNN
0.82 YOLO v3, RetinaNet, Fast 

R-CNN
12.9 Network proposal

0.8 RGB, 2 Multi ∙ YOLO v5, Otsu method

1, 2 and 4 ∙ ResNet-50
0.27 ∙ Lightweight proposed CNN

5 ∙ AlexNet, VGG-16, ResNet 
18-512, SVM

0.9 Xception, EfficientNet, 
NasNetMobile

Naive bayes, KNN, RF, 
SVM, Gaussian Process, 
VGG, ResNet, DefoNet

2.7 AlexNet, VGG16, VGG19, 
ResNet50, CD-CNN

∙ Ensemble of: Cubist, SVM, 
DNN, ridge regression, RF

∙ DCNN, multi linear 
regression, SVM, RF
Table 8

Summary of work reviewed grouped by core task. “Goal” column specifies the final goal of the related article. The column “#Instances” indicates the number of 
masks or crops, depending on the goal). The sensors column specifies which spectral channels are used by the models. The “Surface Models” column indicates w

Task Reference Goal Species #Instances Sensors

Semantic 
Segmentation

Ye et al. [29] Crowns surface and trees 
number estimation

Olive 751 RGB

Ferreira et al. [45] Individual tree detection, 
species classification

A. butyracea, E. precatoria, 
I. detoidea

RGB

Gurumurthy et al. [13] Crowns number estimation Mango 297 RGB
Lobo Torres et al. [16] Architectures comparison Cumbaru RGB

Epifani et al. [35] Crown segmentation Vineyard, Olive Multi(10)
Vélez et al. [103] Building heathmap for 

Botrytis Cinerea 
development risk

Grapevines 153 Multi (5)

Jaimes et al. [37] Fully unsupervised 
vegetation segmentation

All RGB

Instance 
segmentation 
/ Object 
detection

Safonova et al. [31] Biovolume Estimation Olive 2400 RGB, NDVI, GNDVI
Guirado et al. [14] OBIA and Mask R-CNN 

benchmarking
Ziziphus Lotus RGB

Song et al. [50] Maize tassel detection Maize RGB, Multi(5)
Lou et al. [78] Crowns size estimation Loblolly pine RGB
Hao et al. [33] Tree crown detection and 

height estimation
Chinese fir 1605 RGB, NDVI

Junos et al. [49] Fruits detection, network 
proposal

Oil palm RGB

Yu et al. [32] Tree detection Chinese fir 1816 Multi (5)
dos Santos et al. [28] Individual tree detection, 

architectures comparison
Dipteryx alata 110 RGB

Osco et al. [30] Individual tree detection 
and counting

Citrus 37353 Green, Red, Red edge, NIR

Xiao et al. [64] Growth monitoring across 
different treatments

Corn RGB, Multi (5)

Image 
Classification

Natesan et al. [43] Tree species classification White pine, red pine RGB
Egli and Höpke [15] Tree species classification 

for automatic observation 
system

Oak, beech, spruce, larch 477 RGB

Onishi and Ise [41] Tree species classification, 
manual vs cnn features 
comparison

Broad leaved tree, 
coniferous, evergreen broad 
leaved tree, C. obtuse, P. 
ellottii/P. taeda, strobus

RGB

Correa Martins et al. [44] Kettle holes monitoring C. riparia, C. arvense, O. 
aquatica, P. arundinacea, P. 
australis, S. alba, S. cinerea, 
T. latifolia, U. dioica

318 per class (after balancing) RGB

Zhang et al. [40] Defoliation detection Soybean RGB

Pandey and Jain [52] Crop classification Rice, sugarcane Wheat, 
beans, cumbu napier grass

2000 per class RGB

Regression
Fei et al. [34] Wheat yield prediction Wheat 180 crops RGB, multi(5), thermal

Yu et al. [36] AGB estimation, 
handcrafted features vs 
DCNN

Maize 57 Multi (5)
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