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A B S T R A C T

Modelling multivariate spatio-temporal data with complex dependency structures is a challenging task but
can be simplified by assuming that the original variables are generated from independent latent components.
If these components are found, they can be modelled univariately. Blind source separation aims to recover
the latent components by estimating the unknown linear or nonlinear unmixing transformation based on the
observed data only. In this paper, we extend recently introduced identifiable variational autoencoder to the
nonlinear nonstationary spatio-temporal blind source separation setting and demonstrate its performance using
comprehensive simulation studies. Additionally, we introduce two alternative methods for the latent dimension
estimation, which is a crucial task in order to obtain the correct latent representation. Finally, we illustrate
the proposed methods using a meteorological application, where we estimate the latent dimension and the
latent components, interpret the components, and show how nonstationarity can be accounted and prediction
accuracy can be improved by using the proposed nonlinear blind source separation method as a preprocessing
method.
1. Introduction

Many real world phenomena, such as weather, epidemiological
patterns and ecosystem dynamics, are multivariate spatio-temporal,
meaning that multivariate observations 𝒙(𝒔, 𝑡) ∶= 𝒙 ∈ R𝑆 are observed
in a spatial location 𝒔 ∈  ⊂ R𝐷 at time 𝑡 ∈  ⊂ R, where  is called
a spatial domain,  is called a temporal domain and 𝐷 is a spatial
dimension. Without loss of generality, we assume from now on that
𝐷 = 2. A multivariate observation 𝒙 contains measurements of multiple,
usually dependent, random variables describing the phenomenon of
interest. When modelling such multivariate spatio-temporal data, one
has to account not only the dependence between the variables, but
also the dependences in space and in time. The dependence struc-
ture is often described through spatio-temporal covariance function
𝑪(𝒙(𝒔, 𝑡),𝒙(𝒔′, 𝑡′)), where (𝒔, 𝑡) and (𝒔′, 𝑡′) are two spatio-temporal lo-
cations. The covariance 𝑪 is a 𝑆 × 𝑆 matrix valued functional with
elements 𝐶𝑖𝑗 , 𝑖, 𝑗 = 1,… , 𝑆, defined as 𝐶𝑖𝑗 = 𝐶(𝑥𝑖(𝒔, 𝑡), 𝑥𝑗 (𝒔′, 𝑡′)) =
𝐸(𝑥𝑖(𝒔, 𝑡)𝑥𝑗 (𝒔′, 𝑡′))−𝐸(𝑥𝑖(𝒔, 𝑡))𝐸(𝑥𝑗 (𝒔′, 𝑡′)). Modelling the covariance func-
tion 𝑪 is usually a highly demanding task, and often, in order to make
the modelling feasible, some severely restricting assumptions, such as
stationarity or separability, are made. When the spatio-temporal field
is assumed to be stationary, the covariance function can be simplified
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to

𝑪(𝒙(𝒔, 𝑡),𝒙(𝒔′, 𝑡′)) = 𝑪(‖𝒔 − 𝒔′‖, |𝑡 − 𝑡′|), (1)

meaning that the value of the function depends only on the distance
between the spatial locations and the distance between temporal loca-
tions. If (1) does not hold, the data are nonstationary, meaning that
the covariance function may differ when spatial or temporal location is
altered. When separability is assumed, the spatio-temporal covariance
function can be written as a product of spatial and temporal covariance
functions as

𝑪(𝒙(𝒔, 𝑡),𝒙(𝒔′, 𝑡′)) = 𝑪 (𝒔, 𝒔′)𝑪 (𝑡, 𝑡′),

meaning that the spatial and temporal covariance models can be fitted
independently and that the spatio-temporal interaction is not con-
sidered. The assumptions of stationarity or separability often lead
to unrealistically simple models that hence produce nonoptimal re-
sults under nonstationary or nonseparable data. Accounting complex
nonseparable and nonstationary correlation structures is complicated
already in the univariate case, for which an overview can be found
in Chen, Genton, and Sun (2021). For multivariate data, the task is
even more demanding and computationally challenging as the cross-
dependencies between the variables have to be taken into account.
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For more details of complexity of nonstationary covariance functions
for multivariate spatio-temporal data, see Porcu, Furrer, and Nychka
(2021), Salvana and Genton (2020).

Another approach to simplify the modelling is to assume that the
observations are composed of 𝑃 latent, mutually independent com-
onents (ICs) 𝒛(𝒔, 𝑡) ∶= 𝒛 ∈ R𝑃 through some mixing environment.
he main motivation for assuming the ICs is, that if the latent com-
onents 𝒛 are recovered, they can be modelled univariately making
or example nonstationarity much easier to account for. Being able
o model components univariately is especially desirable in spatio-
emporal settings, where multivariate modelling is highly demanding
nd computationally challenging as discussed previously. Additionally,
he ICs may reveal some meaningful patterns and structures in the
bserved data that can lead to new insights of the phenomenon of
nterest. A linear blind source separation (BSS) (Comon & Jutten, 2010)
s a popular approach to recover the latent components 𝒛. In linear

BSS, it is assumed that the mixing environment is linear and usually
also that 𝑆 = 𝑃 meaning that a 𝑃 -variate observable random vector
= (𝑥1,… , 𝑥𝑃 )⊤ is generated as

= 𝑨𝒛, (2)

here 𝑨 is an invertible 𝑃 × 𝑃 mixing matrix and 𝒛 = (𝑧1,… , 𝑧𝑃 )⊤ are
he 𝑃 -variate latent components. The objective is to recover 𝑨 and 𝒛
sing only 𝒙 and varying assumptions on 𝒛 depending on the method
sed. For example, spatial BSS (SBSS) (Bachoc, Genton, Nordhausen,
uiz-Gazen, & Virta, 2020; Nordhausen, Oja, Filzmoser, & Reimann,
015), which is a method for multivariate stationary spatial data,
ssumes spatially stationary 𝒛, and a nonstationary extension of SBSS,
patial nonstationary source separation (SNSS) (Muehlmann, Bachoc, &
ordhausen, 2022), assumes 𝒛 to have nonstationary spatial covariance

unction. SBSS and SNSS recover the latent components by jointly
iagonalizing two or more moment-based matrices. Recently, SBSS
as also extended for stationary spatio-temporal data yielding spatio-

emporal BSS (STBSS) (Muehlmann, De Iaco, & Nordhausen, 2023).
drawback of STBSS and linear BSS methods in general is that they

ssume linear mixing (2) which may be too restrictive assumption
or many real life applications. Similarly, the assumption that there
re as many latent ‘‘signal’’ components as observed variables is in
any applications undesirable and it is often hoped that there are

ignificantly fewer signals. This assumption is often needed simply due
o the lack of tools for estimating the correct number of signals. Finally,
TBSS is developed only for stationary data, and to our knowledge,
here are no spatio-temporal alternatives available for nonstationary
ata cases.

Recent advancements in unsupervised deep learning, such as varia-
ional autoencoders (VAEs) (Kingma & Welling, 2013) and generative
dversarial networks (GANs) (Goodfellow et al., 2020), have increased
nterest for developing nonlinear BSS methods, where the mixing func-
ion is not restricted to be linear, but can be any injective function
∶ R𝑃 → R𝑆 , which generates the observed data 𝒙 as

= 𝒇 (𝒛). (3)

he objective is then to identify an unmixing transformation 𝒒 ∶ R𝑆 →
𝑃 , which returns the latent components 𝒛 as

= 𝒒(𝒙)

ased on the observations 𝒙 only. Without any additional assumptions
n the mixing transformations 𝒇 or on the latent components 𝒛, the
odel is unidentifiable as there exists infinite nonlinear transforma-

ions to generate mutually independent components from the obser-
ations (Hyvärinen & Pajunen, 1999). For this reason both VAEs and
ANs, in general, suffer from the unidentifiability issue. However, in
any recent studies (Hälvä & Hyvärinen, 2020; Hyvärinen & Morioka,
016, 2017; Hyvärinen, Sasaki, & Turner, 2019; Khemakhem, Kingma,
onti, & Hyvärinen, 2020) the identifiability have been achieved by
2 
ntroducing some constraints on the distribution of the latent com-
onents 𝒛. The main assumption leading to identifiability is that the
omponents 𝑧1,… , 𝑧𝑃 are statistically dependent on a 𝑚-dimensional
uxiliary variable 𝒖, and that the components are conditionally inde-
endent yielding the joint distribution 𝑝(𝒛|𝒖) =

∏𝑃
𝑖=1 𝑝(𝑧𝑖|𝒖). In previous

tudies, the main focus has been in time series data for which several
lgorithms and examples for auxiliary variables exist in the literature.
n case of stationary time series data, permutation contrastive learning
PCL) (Hyvärinen & Morioka, 2017) can be used, for which 𝒖 is usually
iven by one or more previous observations in time. For nonstationary
ime series data, the available methods are time contrastive learning
TCL) (Hyvärinen & Morioka, 2016), hidden Markov nonlinear ICA
HM-NICA) (Hälvä & Hyvärinen, 2020) and temporal identifiable VAE
iVAE) (Khemakhem et al., 2020), all of which use the time segment of
he observation as 𝒖. Generalized contrastive learning (Hyvärinen et al.,
019) and nonlinear ICA with switching linear dynamical systems (𝛥-
NICA) (Hälvä, Le Corff, Lehéricy, So, Zhu, Gassiat, & Hyvärinen, 2021)
an account both stationary and nonstationary time series. In HM-NICA
nd 𝛥-SNICA, the auxiliary variables 𝒖 are not explicitly provided by the

user, but they are instead assumed to be hidden states that are modelled
simultaneously by the algorithms. In Sipilä, Nordhausen and Taskinen
(2024), iVAE was studied further and extended to nonstationary spatial
setting, where spatial segmentation was used as 𝒖. Hälvä et al. (2021)
also introduced a structured nonlinear ICA framework which could
be used for spatial process, but did not provide any algorithm for
the method. In addition to these more general identifiable nonlinear
BSS methods, many other deep learning based BSS methods (Ansari,
Alatrany, Alnajjar, Khater, Mahmoud, Al-Jumeily, & Hussain, 2023)
have been introduced for mainly acoustic signal specific settings, where
only serial dependence is present. However, the spatio-temporal data as
discussed in this paper is special in sense that in the temporal domain
there is natural direction of dependence (past-future) while in the
spatial domain such direction is missing and the dependence is usually
considered as a function of the distance between two points. Hence,
none of the previous methods are directly applicable or optimal for
such spatio-temporal data. Note that regularly spaced spatio-temporal
data is often represented as tensor data, and BSS methods developed
for such specific cases, like those in Virta and Nordhausen (2017), are
generally not applicable to broader spatio-temporal settings.

In particular, we are interested in iVAE, which utilizes the auxil-
iary variable to make VAE identifiable. iVAE is capable of estimating
nonlinear injective mixing function, meaning that it allows the latent
dimension 𝑃 to be less or equal to the observed dimension 𝑆. However,
the latent dimension 𝑃 has to be estimated beforehand, and currently
the nonlinear BSS framework lacks methods for the latent dimension
estimation.

In this paper, iVAE is extended to nonstationary spatio-temporal
setting by introducing three novel approaches to construct the auxiliary
variables. The proposed methods address two key limitations of previ-
ous STBSS approaches: they accommodate nonlinear mixing functions
and allow for more observed variables than latent components. More-
over, the developed methods are suitable for nonstationary data, unlike
earlier STBSS methods, which rely on the assumption of stationarity.
The three developed methods, coordinate based, segmentation based
and radial basis function based iVAE algorithms, are studied using
comprehensive simulation studies to find how various types of nonsta-
tionarity affect the performance of the methods. The best performing
method, radial basis function based iVAE, is illustrated in real life
meteorological application where the recovered latent components are
interpreted, and a new procedure to account for nonstationarity in
modelling and predicting multivariate data is demonstrated. Moreover,
nonlinear BSS framework currently lacks methods for estimating the
latent dimension 𝑃 , which is a crucial task in order to recover the true
latent components and to obtain as low dimensional representation of
the data as possible without losing much information. Therefore, two
alternative procedures for latent dimension estimation are introduced.

To conclude, the main contributions of this paper are:
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Fig. 1. Schematic representations of VAE (left) and iVAE (right) models. For VAE, the lower bound of the data log likelihood (ELBO) is formed of 𝒙, 𝒙′, 𝒛′, 𝝁𝒛|𝒙 and 𝝈𝒛|𝒙. In
VAE, ELBO has in addition 𝝁𝒛|𝒖 and 𝝈𝒛|𝒖 which are provided by the auxiliary function. The latent components are obtained as 𝝁𝒛|𝒙,𝒖.
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1. Extending iVAE to the nonstationary spatio-temporal setting
by proposing three novel approaches for constructing auxiliary
variables.

2. Introducing two alternative procedures for latent dimension es-
timation.

3. Developing a new iVAE-based method for addressing nonsta-
tionarity in the modelling and prediction of spatio-temporal
data.

The rest of the paper is organized as follows. In Section 2 we review
asic theory behind VAE and iVAE, and discuss the identifiability, after
hich the spatio-temporal iVAE extensions are introduced in Section 3.

n Section 4, the introduced methods are compared using simulation
tudies, and two alternative latent dimension estimation methods are
tudied. Finally, Section 5 shows a real data example and Section 6
oncludes the paper.

. Variational autoencoders and identifiability

Let 𝒙 ∈ R𝑆 be an observable random vector and 𝒛 ∈ R𝑃 , 𝑃 ≤ 𝑆, be
latent random vector, i.e., a source vector. Variational autoencoders

VAE) (Kingma & Welling, 2013) assume that the observed data are
enerated from a deep latent variable model with the structure
∗(𝒙, 𝒛) = 𝑝∗(𝒙|𝒛)𝑝∗(𝒛),

here 𝑝∗ is a true, unknown generative distribution, 𝒛 ∼ 𝑝∗(𝒛) and
∼ 𝑝∗(𝒙|𝒛). The distribution of the observed data is then obtained as

∗(𝒙) = ∫ 𝑝∗(𝒙, 𝒛)𝑑𝒛.

AE consists of an encoder 𝒈(𝒙) and a decoder 𝒉(𝒛), which are pa-
ameterized by deep neural networks with parameters 𝜽 = (𝜽⊤𝒈 ,𝜽

⊤
𝒉 )

⊤.
he encoder maps the observed data to mean vector 𝝁𝒛|𝒙 ∈ R𝑃 and
ariance vector 𝝈𝒛|𝒙 ∈ R𝑃 , which are used to sample a new latent
epresentation 𝒛′ by applying the reparametrization trick (Kingma &
elling, 2013). The decoder transforms the latent representation 𝒛′

ack to the observable data 𝒙′. The VAE framework allows effective
ptimization of the parameters 𝜽 so that after optimization we have
hat

𝜽(𝒙) ≈ 𝑝∗(𝒙).

The VAE framework learns the full generative model 𝑝𝜽(𝒙, 𝒛) =
𝜽(𝒙|𝒛)𝑝𝜽(𝒛) and a variational approximation 𝑞𝜽(𝒛|𝒙) of the posterior
istribution 𝑝𝜽(𝒛|𝒙) by maximizing the lower bound of the data log-
ikelihood, or evidence lower bound (ELBO), defined as

( )
(𝜽|𝒙) ≥ 𝐸𝑞𝜽(𝒛|𝒙) log 𝑝𝜽(𝒙|𝒛) + log 𝑝𝜽(𝒛) − log 𝑞𝜽(𝒛|𝒙) w

3 
ith respect to the parameter vector 𝜽. The problem however is that
he model is not identifiable, meaning that even though we have a good
stimate of the marginal distribution 𝑝∗(𝒙), there is no guarantee that
𝜽(𝒙, 𝒛) ≈ 𝑝∗(𝒙, 𝒛). More formally, the model is identifiable if for all
𝒙, 𝒛) it holds that

(𝜽,𝜽′) ∶ 𝑝𝜃(𝒙) = 𝑝𝜃′ (𝒙) ⟹ 𝑝𝜽(𝒙, 𝒛) = 𝑝𝜽′ (𝒙, 𝒛).

his means that if we find a parameter vector 𝜽 for which 𝑝𝜃(𝒙) = 𝑝∗(𝒙),
e also have that 𝑝𝜽(𝒙, 𝒛) = 𝑝∗(𝒙, 𝒛). This leads to the fact that we
ave found the correct source density distribution 𝑝𝜽(𝒛) = 𝑝∗(𝒛) and
orrect conditional distributions 𝑝𝜽(𝒙|𝒛) = 𝑝∗(𝒙|𝒛) and 𝑝𝜽(𝒛|𝒙) = 𝑝∗(𝒛|𝒙).
he whole VAE model is illustrated in Fig. 1.

In the nonlinear BSS framework, the identifiability has been recently
chieved by assuming that the latent sources 𝒛 have a conditional
istribution 𝑝(𝒛|𝒖), where 𝒖 ∈ R𝑚 is an auxiliary variable. The auxiliary
ariable can for example be previous observations in time (Hyvärinen

Morioka, 2017) or current time index (Hälvä & Hyvärinen, 2020;
yvärinen & Morioka, 2016; Hyvärinen et al., 2019). Similarly, by
ssuming that the true latent generating model has the form
∗(𝒙, 𝒛|𝒖) = 𝑝∗(𝒙|𝒛)𝑝∗(𝒛|𝒖), (4)

he identifiability can be achieved in the VAE framework, yielding iden-
ifiable VAE (iVAE) (Khemakhem et al., 2020). In iVAE, the distribution
∗(𝒙|𝒛) is defined as
∗(𝒙|𝒛) = 𝑝∗𝝐(𝒙 − 𝒇 (𝒛)),

hich means that 𝒙 can be decomposed into 𝒙 = 𝒇 (𝒛) + 𝝐, where
is an independent noise vector with density 𝑝𝝐 . Assuming the non-

oisy nonlinear BSS model (3), the distribution 𝑝𝝐 can be modelled
ith Gaussian distribution with infinitesimal variance. The function
∶ R𝑃 → R𝑆 is an injective, but possibly nonlinear function. The

onditional distribution of latent sources 𝒛 is assumed to be a part of
he exponential family, that is,

𝑻 ,𝝀(𝒛|𝒖) =
𝑃
∏

𝑖=1

𝑄𝑖(𝑧𝑖)
𝑍𝑖(𝒖)

exp
[ 𝑘
∑

𝑗=1
𝑇𝑖,𝑗 (𝑧𝑖)𝜆𝑖,𝑗 (𝒖)

]

, (5)

where 𝑄𝑖(𝑧𝑖) is a base measure, 𝑍𝑖(𝒖) is a normalizing constant, 𝑻 𝑖(𝑧𝑖) =
(𝑇𝑖,1(𝑧𝑖),… , 𝑇𝑖,𝑘(𝑧𝑖))⊤ contains sufficient statistics, and 𝝀𝑖(𝒖) = (𝜆𝑖,1(𝒖),… ,
𝑖,𝑘(𝒖))⊤ contains the parameters depending on 𝒖. The dimension 𝑘 of
ach sufficient statistic 𝑻 𝑖(𝑧𝑖) and 𝝀𝑖(𝒖) is assumed to be fixed. The
atent components 𝒛 are identifiable up to permutation and signed
caling under some generally mild conditions on the mixing function
, the sufficient statistics 𝑻 and the auxiliary variable 𝒖. In this study,

e construct iVAE assuming Gaussian latent components. Then, for
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identifiability, the variances of the latent components are required
to vary enough based on the auxiliary variable 𝒖 and the mixing
function 𝒇 is required to have continuous partial derivatives. The exact
identifiability conditions can be found in Khemakhem et al. (2020).

The iVAE model is similar to the regular VAE model with the
exception that iVAE has an additional auxiliary function 𝒘(𝒖) and its
parameters 𝜽𝒘 to be estimated, and the encoder 𝒈(𝒙, 𝒖) takes both,
observations 𝒙 and the auxiliary variables 𝒖 as an input. The auxiliary
function 𝒘 maps 𝒖 into 𝝁𝒛|𝒖 and 𝝈𝒛|𝒖, which are used to calculate the
loss. For iVAE model, ELBO is obtained as

(𝜽|𝒙, 𝒖) ≥ 𝐸𝑞𝜽(𝒛|𝒙,𝒖)
(

log 𝑝𝜽𝒉 (𝒙|𝒛) + log 𝑝𝜽𝒘 (𝒛|𝒖) − log 𝑞𝜽𝒈 (𝒛|𝒙, 𝒖)
)

,

where log 𝑝𝜽𝒉 (𝒙|𝒛) controls the reconstruction accuracy and log
𝑝𝜽𝒘 (𝒛|𝒖) − log 𝑞𝜽𝒈 (𝒛|𝒙, 𝒖) is a Kullback–Leibler (KL) divergence between
𝑝𝜽𝒘 (𝒛|𝒖) and 𝑞𝜽𝒈 keeping the distributions 𝑝𝜽𝒘 and 𝑞𝜽𝒈 as similar
as possible. ELBO is maximized to obtain the estimated parameters
𝜽 = (𝜽⊤𝒈 ,𝜽

⊤
𝒉 ,𝜽

⊤
𝒘)

⊤. The distributions 𝑝𝜽𝒉 , 𝑝𝜽𝒘 and 𝑞𝜽𝒈 are typically
Gaussian distributions, where the functions 𝒉, 𝒘 and 𝒈 give the mean
and variance parameters of the distributions. The distributions can
also be other than Gaussian as long as the resampling can be done
using the reparametrization trick to allow the backpropagation go
through the resampling node. Then, the functions 𝒉, 𝒘 and 𝒈 do not
give mean and variance, but the parameters according the chosen
distributions. As we assume Gaussian latent data in this paper, we
have 𝑝𝜽𝒘 = 𝑁(𝒛|𝝁𝒛|𝒖,diag(𝝈𝒛|𝒖)), 𝑞𝜽𝒈 = 𝑁(𝒛|𝝁𝒛|𝒙,𝒖,diag(𝝈𝒛|𝒙,𝒖)) and
𝑝𝜽𝒉 = 𝑁(𝒙|𝒙′, 𝛽𝑰), where 𝛽 > 0 is a small constant as 𝑝𝜽𝒉 (𝒙|𝒛) estimates
the true distribution 𝑝∗(𝒙|𝒛) with infinitesimal variance. By increasing
𝛽, the weight of the reconstruction accuracy in the ELBO decreases.
Based on our empirical investigations, we use 𝛽 = 0.02 which provides
a good balance between the reconstruction error and KL divergence
in ELBO, and leads to good performance. Fig. 1 has representations of
both VAE and iVAE models and illustrates the difference between the
models.

3. iVAE for STBSS

To perform nonlinear spatio-temporal blind source separation using
iVAE, the auxiliary variables 𝒖 must be selected appropriately. The
main assumption for identifiability in spatio-temporal setting is that
the variances of the latent components are varying in space and/or
in time. This assumption is met by assuming that the latent com-
ponents are second-order nonhomogeneous, meaning that the second
moment of the marginal distribution 𝑝(𝑧𝑖) is not invariant with respect
to the location shift in space and/or in time. In addition, the latent
components are allowed to be first-order nonhomogeneous, meaning
that the components can have nonconstant spatio-temporal trend. The
auxiliary variables are constructed in a way that the auxiliary func-
tion 𝒘 is capable to learn and estimate the mean and the variance
vectors of the location of the corresponding multivariate observation.
We propose three spatio-temporal iVAE methods; a naive coordinate
based method, a segmentation based method extended from spatial
iVAE (Sipilä et al., 2024) and a radial basis function based method
utilizing ideas of Nag, Sun, and Reich (2023). Each of the three methods
construct the auxiliary data differently based on the spatio-temporal
location of the observation. Notice that although in many options
below the auxiliary variables are constructed separately for spatial
coordinates and temporal coordinates, the auxiliary functions can still
learn complex spatio-temporal interactions in the mean and in the vari-
ance as the auxiliary functions are modelled by deep neural networks.
Furthermore, even though the methods for constructing the auxiliary
data are defined here for spatial dimension 𝐷 = 2, the same ideas apply
also for higher 𝐷.

The approaches presented here are well scalable in terms of com-
putation time. The computation time grows sublinearly with respect to
the sample size 𝑛 (as fewer training epochs are typically needed with

larger datasets) and linearly with respect to the dimensions of observed
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data, latent data and auxiliary data. However, if the dimension of the
auxiliary data and sample sizes are large, the memory usage may grow
unless the auxiliary data are formed batch-wise. An in-depth analysis
of computational complexity is provided in Appendix A.

3.1. Coordinate based algorithm

In coordinate based iVAE, the preprosessed coordinates are used
directly as auxiliary variable. The preprosessed coordinates are ob-
tained by applying min–max normalization to each dimension. The
preprosessed coordinates are then

𝑠̃1 =
𝑠1 − 𝑠min

1

𝑠max
1 − 𝑠min

1

, 𝑠̃2 =
𝑠2 − 𝑠min

2

𝑠max
2 − 𝑠min

2

and 𝑡 = 𝑡 − 𝑡min

𝑡max − 𝑡min ,

here 𝑠min
1 , 𝑠min

2 and 𝑡min are the minimum coordinates of the locations
f the observations, and 𝑠max

1 , 𝑠max
2 and 𝑡max are the maximum coor-

inates of the locations of the observations. The algorithm with the
reprosessed coordinates, 𝒖(𝒔, 𝑡) = (𝑠̃1, 𝑠̃2, 𝑡)⊤, as auxiliary variable is
enoted by iVAEc.

.2. Segmentation based algorithm

In segmentation based iVAE, a spatio-temporal segmentation is used
s an auxiliary variable. The spatio-temporal segmentation means that
he domain × is divided into 𝑚 nonintersecting segments 𝑖 ∈ ×
o that 𝑖 ∩𝑗 = ∅ for all 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,… , 𝑚, and ∪𝑚

𝑖=1𝑖 =  ×  . By
sing an indicator function 1, the auxiliary variable for the observation
(𝒔, 𝑡) can be written as 𝒖(𝒔, 𝑡) = (1((𝒔, 𝑡) ∈ 1),… ,1((𝒔, 𝑡) ∈ 𝑚)))⊤,

where 1((𝒔, 𝑡) ∈ 𝑖) = 1, if the location (𝒔, 𝑡) is within the segment
𝑖, and otherwise 1((𝒔, 𝑡) ∈ 𝑖) = 0. This results into 𝑚-dimensional
standard basis vector, where the value 1 gives the spatio-temporal
segment in which the location of the observation belongs.

If the spatio-temporal domain is large and small segments are used,
the dimension 𝑚 of the auxiliary variable becomes very large. To
lower the dimension, the spatial and temporal segmentations can be
considered separately. This means that the auxiliary data is composed
of 𝑚𝑆 spatial segments 𝑖 ∈  and 𝑚𝑇 temporal segments 𝑖 ∈  so
that 𝑖 ∩ 𝑗 = ∅ for all 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,… , 𝑚𝑆 , ∪𝑚𝑆

𝑖=1𝑖 = , 𝑖 ∩ 𝑗 = ∅ for
all 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,… , 𝑚𝑇 , and ∪𝑚𝑇

𝑖=1𝑖 =  . Then, the auxiliary variable
for the observation 𝒙(𝒔, 𝑡) is 𝒖(𝒔, 𝑡) = (1(𝒔 ∈ 1),… ,1(𝒔 ∈ 𝑚𝑆

),1(𝑡 ∈
1),… ,1(𝑡 ∈ 𝑚𝑇

)))⊤. The auxiliary variable is (𝑚𝑆 + 𝑚𝑇 )-dimensional
and has two nonzero entries for each observation. The dimension can
be reduced even further by considering also the 𝑥-axis and 𝑦-axis of
the spatial domain separately. Segmentation based auxiliary variables
are illustrated in Fig. 2, in which spatial and temporal segmentations
are considered separately. We denote the algorithm with all dimensions
segmented separately as iVAEs1, with space and time segmented sep-
arately as iVAEs2, and with spatio-temporal segmentation as iVAEs3,
respectively.

3.3. Radial basis function based algorithm

In radial basis function based iVAE, the auxiliary variable is defined
using radial basis functions (see e.g. Hastie, Tibshirani, Friedman, and
Friedman (2009)). The idea is that with large number of appropriate ra-
dial basis functions, the model incorporates much more spatio-temporal
information than by using the coordinates only. Similar ideas have been
used recently in Chen, Li, Reich, and Sun (2024), Nag et al. (2023) to
perform deep learning based spatial and spatio-temporal predicting by
using the spatial and spatio-temporal locations transformed into radial
basis functions as input for deep neural networks. Following Nag et al.
(2023), we transform spatial and temporal locations separately into
radial basis functions. Let {𝒐𝑖 }, 𝑖 = 1,… , 𝐾 , where 𝒐𝑖 ∈ , be a set

 
of spatial node points, and let {𝑜𝑖 }, 𝑖 = 1,… , 𝐾 , where 𝑜𝑖 ∈  , be a
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Fig. 2. Illustrations of auxiliary variables of segmentation based iVAE (iVAEs2) (a) and radial basis function based iVAE (b). The top figure of (a) illustrates spatial segmentation,
where each segment has size 20 × 20 producing 25 spatial segments, and the bottom figure illustrates temporal segmentation, where each segment has 5 time points, producing
20 temporal segments. In (b), the black lines in the top figure are the normalized 𝑥 and 𝑦 values at 1∕(𝐻 + 2) = 1∕4 and 1∕(𝐻 + 2) + 1∕𝐻 = 3∕4 formed by resolution level 𝐻 = 2,
and the red points represent the produced spatial node points. The blue points represent temporal node points for resolution level 𝐺 = 5. Spatial and temporal Gaussian radial
basis functions are illustrated in (c) and (d), respectively. The radial basis functions are functions of distance between node point and a spatial or temporal location.
set of temporal node points. The parameter 𝜁 is a scale parameter. The
spatial and temporal radial basis functions are given as

𝑣 (𝒔; 𝜁,𝒐𝑖 ) = 𝑣(‖𝒔 − 𝒐𝑖 ‖∕𝜁 ) and 𝑣 (𝑡; 𝜁, 𝑜𝑖 ) = 𝑣(|𝑡 − 𝑜𝑖 |∕𝜁 ),

where 𝑣 is a kernel function such as the Gaussian kernel 𝑣𝐺(𝑑) = 𝑒−𝑑2 ,
or one of the Wendland kernels (Wendland, 1995) such as

𝑣𝑊 (𝑑) =

{

(1 − 𝑑)6(35𝑑2 + 18𝑑 + 3)∕3, 𝑑 ∈ [0, 1]
0, otherwise.

Following Nychka, Bandyopadhyay, Hammerling, Lindgren, and Sain
(2015), we use a multi-resolution approach to form the spatial and
temporal radial basis functions. Each resolution level is composed of its
own number of evenly spaced node points and own scaling parameter.
A low level resolution with small number of node points and large value
of the scaling parameter aims to capture large-scale spatial or temporal
dependencies, while a high level resolution with many node points and
small scaling parameter aims to find finer details of the dependence
structure.

To form the radial basis functions, we first preprocess the spatial and
temporal locations to range [0, 1] using min–max normalization. A 𝐻-
level spatial resolution is formed of evenly spaced grid of node points
{𝒐𝑖 } with spacing 1∕𝐻 and an offset 1∕(𝐻 + 2) before the first node
point, meaning that 𝐻-level resolution has the node points {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈
{ 1
𝐻+2 ,

1
𝐻+2 + 1

𝐻 ,… , 1 − 1
𝐻+2 }}. For example 2-level spatial resolution

is then composed of the node points {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ {0.25, 0.75}}.
Similarly, a 𝐺-level temporal resolution is formed of evenly spaced one
dimensional node points {𝑜𝑖 } with spacing 1∕𝐺 and an offset 1∕(𝐺+2),
meaning that 𝐺-level temporal resolution is composed of the node
points { 1

𝐺+2 ,
1

𝐺+2 + 1
𝐺 ,… , 1 − 1

𝐺+2 }. As the scaling parameters 𝜁𝐻 and
𝜁𝐺, for spatial and temporal radial basis functions, we use 𝜁𝐻 = 1

2.5𝐻

following Nychka et al. (2015) and 𝜁𝐺 =
|𝑜1 −𝑜2 |

√

2
following Nag et al.

(2023). Spatial and temporal node points and radial basis functions are
5 
illustrated in Fig. 2 for 𝐻 = 2 spatial resolution, producing 4 spatial
radial basis functions, and 𝐺 = 5, producing 5 temporal radial basis
functions. In practice, multiple spatial and temporal resolution levels,
such as 𝐻 = (𝐻1,𝐻2) = (2, 9), and 𝐺 = (𝐺1, 𝐺2, 𝐺3) = (9, 17, 37),
should be used to capture both large scale and finer dependencies. An
advantage of using radial basis functions as auxiliary variables instead
of spatio-temporal segments is that by using radial basis functions,
iVAE’s auxiliary function provides a smooth spatio-temporal trend and
variance functions, which can be used later for further analysis such as
for prediction purposes. The radial basis function based iVAE is denoted
as iVAEr in the rest of the paper.

4. Simulation studies

The aim of this section is to demonstrate and compare the perfor-
mances of iVAE methods using simulation studies and to discover how
various types of nonstationarity in variance affect the performance.
The section begins with a short review of some common procedures
for generating spatio-temporal data and ways to introduce nonstation-
arity in it. The remainder of the section contains a large simulation
study showing the unmixing performances of the iVAE methods under
different types of nonstationarity scenarios, and then introduces two
methods to estimate the number of latent signals. Finally, the latent
dimension estimation methods are illustrated in a small simulation
study. All simulations can be reproduced using R 4.3.0 (R Core Team,
2023) together with R packages fastICA (Marchini, Heaton, & Ripley,
2021), SpaceTimeBSS (Muehlmann, Piccolotto, Cappello, De Iaco, &
Nordhausen, 2022) and NonlinearBSS. NonlinearBSS package contains
R implementations of all proposed spatio-temporal iVAE variants, and
is available in https://github.com/mikasip/NonlinearBSS. The simu-
lations were executed on the CSC Puhti cluster, a high-performance
computing environment.

https://github.com/mikasip/NonlinearBSS
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4.1. Nonstationary spatio-temporal data generation

Spatio-temporal data are typically composed of 𝑛𝑠 spatial locations
nd 𝑛𝑡 temporal points, making the total number of observations 𝑛 =

𝑛𝑠𝑛𝑡 usually very high. The observations are often collected regularly,
or example daily or hourly, by some monitoring stations in different
ocations. This makes the observed data quickly very dense in time but
ore sparse in space. To study the properties of the models under the
ature of real life spatio-temporal data, generating large datasets with
arious spatio-temporal covariance models is required. In the following
imulations, we exploit a computationally efficient vector autoregres-
ive process, see for example (Papalexiou & Serinaldi, 2020; Sigrist,
ünsch, & Stahel, 2012; Xu & Gardoni, 2018; Yan, Huang, & Genton,
021), and a simplified version of improved latent space approach
ILSA) (Xu & Gardoni, 2018) to generate nonstationary spatio-temporal
ata.

Assume spatial field at time 𝑡 = 1,… , 𝑛𝑡 to be 𝜹(𝑡) = (𝛿(𝒔1, 𝑡),… ,
𝛿(𝒔𝑛𝑠 , 𝑡))

⊤, where 𝒔1,… 𝒔𝑛𝑠 are the spatial locations in the spatio-tempora
field. The vector autoregressive process can be written as

𝜹(𝑡) =
𝑅
∑

𝑟=1
𝜌𝑟𝑲𝑟𝜹(𝑡 − 𝑟) + 𝝐𝜹(𝑡), (6)

where 𝑟 = 1,… , 𝑅 is an autoregressive order, 𝜌𝑟 is 𝑟th baseline autore-
gressive coefficient, 𝑲𝑟 is a 𝑛𝑠 × 𝑛𝑠 spatial kernel matrix determining
the change of temporal correlation with spatial locations, and 𝜖𝜹(𝑡) is
a 𝑛𝑠-dimensional noise vector with covariance 𝐶(𝜖𝜹(𝒔, 𝑡), 𝜖𝜹(𝒔′, 𝑡)) with
𝒔, 𝒔′ ∈ {𝒔1,… , 𝒔𝑛𝑠}.

With a simplified version of ILSA, one can generate nonstationary
spatio-temporal data by using vector autoregressive process (6) as for-
mulated next. Let 𝒔̃(𝒔) = [𝑠̃1,… , 𝑠̃𝑑 ] be a 𝑑-dimensional transformation
of the original coordinate 𝒔, where the transformed coordinates 𝑠̃𝑖,
𝑖 = 1,… , 𝑑, are called regressors or latent coordinates. Let 𝑑𝒔𝑖𝒔𝑗 =
[‖𝑠11 − 𝑠21‖, ‖𝑠

1
2 − 𝑠22‖]

⊤, 𝑑𝒔̃𝑖 𝒔̃𝑗 = [‖𝑠̃11 − 𝑠̃21‖,… , ‖𝑠̃1𝑑 − 𝑠̃2𝑑‖]
⊤ and 𝑉 to be any

stationary covariance function. Simplified ILSA has the formulations

𝐾𝑟{𝑖,𝑗} =
|

|

|

|

𝜽𝒔,𝑟
𝜽𝒔̃,𝑟

|

|

|

|

− 1
2

exp
(

−
[𝒅𝒔𝑖𝒔𝑗 𝒅𝒔̃𝑖 𝒔̃𝑗

]

[

𝜽𝒔,𝑟
𝜽𝒔̃,𝑟

] [𝒅𝒔𝑖𝒔𝑗
𝒅𝒔̃𝑖 𝒔̃𝑗

])

,

(𝜖𝜹(𝒔, 𝑡), 𝜖𝜹(𝒔′, 𝑡)) = 𝜎[𝒔̃(𝒔), 𝒔, 𝑡]𝜎[𝒔̃(𝒔′), 𝒔′, 𝑡]𝑉 (𝑄𝑡) (7)

where 𝑄𝑡 =
(

[𝒅𝒔𝑖𝒔𝑗 𝒅𝒔̃𝑖 𝒔̃𝑗
]

[𝜽𝒔
𝜽𝒔̃

]

[𝒅𝒔𝑖𝒔𝑗
𝒅𝒔̃𝑖 𝒔̃𝑗

])
1
2

and 𝜽𝒔,𝑟 = diag(𝜃𝑠1 ,𝑟, 𝜃𝑠2 ,𝑟),𝜽𝒔̃,𝑟 = diag(𝜃𝑠̃1 ,𝑟,… , 𝜃𝑠̃𝑑 ,𝑟),𝜽𝒔 = diag(𝜃𝑠1 , 𝜃𝑠2 )
and 𝜽𝒔̃ = diag(𝜃𝑠̃1 ,𝑟,… , 𝜃𝑠̃𝑑 ,𝑟) are diagonal matrices giving scaling pa-
rameters for the spatial coordinates and for the latent coordinates. The
function 𝑄𝑡 transforms the original coordinates based on the scaling
parameters and the latent coordinates. By using this approach, one can
easily introduce complex, nonstationary and nonseparable covariance
structures through latent coordinates 𝒔̃, time varying spatial kernel
matrices 𝑲𝑟 and nonstationary variance function 𝜎. In the following
simulations, we are mainly interested in having nonstationarity in
the variance as that is required for the identifiability of the latent
components.

4.2. Finite sample efficiencies

In this section, four different iVAE configurations – regular VAE,
symmetric FastICA (FICA) (Hyvärinen, 1999) with hyperbolic tan-
gent nonlinearity, and STBSS – are compared using simulated spatio-
temporal data. Although FICA is not designed for spatio-temporal data
or nonlinear mixing, it is included as a linear baseline for data with non-
stationary variances. STBSS, developed for stationary spatio-temporal
data and linear mixing, serves as a spatio-temporal baseline.

While there are several deep learning-based approaches for nonlin-
ear BSS in the literature, see Ansari et al. (2023) for a recent review,
most lack identifiability and focus on acoustic data, which primarily ex-
hibits serial dependence, making them suboptimal for spatio-temporal
6 
data. Nonetheless, we include regular VAE as an unidentifiable deep
learning baseline.

The aim of the simulations is to identify how the proposed iVAE
methods perform as compared to other existing methods under various
types of nonstationary spatio-temporal data, and how the type of
nonstationary affects the performance. To identify how the reduction
of either temporal or spatial observations affect the performance of
the algorithms, we consider three sample sizes composed of 𝑛𝑠 spatial
locations and 𝑛𝑡 temporal observations for each spatial location. The
sample dimensions considered are (𝑛𝑠, 𝑛𝑡) = (150, 300), (𝑛𝑠, 𝑛𝑡) = (50, 300)
and (𝑛𝑠, 𝑛𝑡) = (150, 75) yielding 𝑛 = 45000, 𝑛 = 15000 and 𝑛 = 11250
observations, respectively. We generate the latent data 𝒛 according to
six different simulation settings. In some settings the nonstationarity is
introduced only in time, in some settings only in space, and in some
settings both in space and in time. In each simulation setting, 𝑛𝑠 spatial
locations 𝒔𝑖 are sampled uniformly in spatial domain  = [0, 1] × [0, 1],
nd for each spatial location 𝒔𝑖, 𝑛𝑡 observations 𝒙(𝒔𝑖, 𝑡) are generated.
he true latent dimension is 𝑃 = 5 and the dimension of the obser-
ations is 𝑆 = 8. Every setting is repeated 500 times for each sample
ize and for each algorithm. Finally, each trial is repeated using three
ncreasingly nonlinear mixing functions as described hereafter. The
irst three simulation settings are more simple ones, followed by three
ore complex ones which utilize the ILSA framework. The simulation

ettings and the mixing procedure are defined in the following. After
ntroducing the data generation of the settings, the motivation behind
ach setting is carefully explained.

Setting 1. The latent spatio-temporal field consists of three clusters
n space and five segments in time yielding 15 spatio-temporal clusters,
ach of which has their own unique diagonal covariance matrix and
nique mean vector. For 𝑘th cluster, 𝑘 = 1,… , 15, the covariance matrix

is given as 𝑪𝑘 = diag(𝜎1,𝑘,… , 𝜎5,𝑘), where 𝜎𝑖,𝑘,∼ Unif(0.1, 5) and unique
mean vector is given as 𝝁𝑘 = (𝜇1,𝑘,… , 𝜇5,𝑘)⊤, where 𝜇𝑖,𝑘 ∼ Unif(−5, 5),
𝑖 = 1,… , 5.

Setting 2. The latent spatio-temporal field consists of 10 segments
in time. The latent components are simulated by generating first Gaus-
sian spatial data with Matern covariance function using unique pa-
rameters (𝜈𝑖, 𝜙𝑖) for each component 𝑖 = 1,… , 5, and then adding
Gaussian iid data with unique covariance matrix and mean vector for
each time segment. The Matern parameters are (𝜈1, 𝜙1) = (0.5, 0.30),
(𝜈2, 𝜙2) = (0.1, 0.25), (𝜈3, 𝜙3) = (1, 0.35), (𝜈4, 𝜙4) = (2, 0.20), (𝜈5, 𝜙5) =
(0.25, 0.15) and the parameters for the time segment 𝑘 = 1,… , 10
are 𝝁𝑘 = (𝜇1,𝑘,… , 𝜇5,𝑘)⊤, where 𝜇𝑖,𝑘 ∼ Unif(−0.3, 0.3), and 𝜮𝑘 =
diag(𝜎1,𝑘,… , 𝜎5,𝑘), where 𝜎𝑖,𝑘,∼ Unif(0, 0.4), 𝑖 = 1,… , 5.

Setting 3. The latent spatio-temporal field consists of five clusters
in space and follows AR1 model. In 𝑘th cluster, 𝑘 = 1,… , 5, the latent
components 𝑧𝑖, 𝑖 = 1,… , 5, are generated as

𝑧𝑖(𝒔, 𝑡 + 1) = 𝜌𝑖,𝑘𝑧𝑖(𝒔, 𝑡) + 𝜖𝑖,𝑘,𝑡,

𝜖𝑖,𝑘,𝑡 ∼ 𝑁(𝜇𝑖,𝑘, 𝜎𝑖,𝑘),

where 𝑡 = 1,… , 𝑛𝑡 − 1 and 𝑧𝑖(𝒔, 1) ∼ 𝑁(𝜇𝑖,𝑘, 𝜎𝑖,𝑘). Each cluster has
unique parameters 𝝆𝑘 = (𝜌1,𝑘,… 𝜌5,𝑘)⊤, 𝝁𝑘 = (𝜇1,𝑘,…𝜇5,𝑘)⊤ and 𝝈𝑘 =
(𝜎1,𝑘,… 𝜎5,𝑘)⊤ generated as 𝜌𝑖,𝑘 ∼ Unif(0.05, 0.95), 𝜇𝑖,𝑘 ∼ Unif(−1, 1) and
𝜎𝑖,𝑘 ∼ Unif(0.1, 5).

Settings 4–6. The latent spatio-temporal field is generated using
ILSA framework. Each setting has the same highly nonstationary co-
variance structure. In addition, Setting 4 has a variance 𝜎 changing in
space, Setting 5 has a variance changing in time, and Setting 6 has a
variance changing both in space and in time. The latent coordinates 𝒔̃ =
(𝑠̃1, 𝑠̃2)⊤ are transformed from the spatial coordinates 𝒔 = (𝑠1, 𝑠2)⊤ by
using a swirl-like coordinate transformation according to Papalexiou,
Serinaldi, and Porcu (2021) given by

1̃ = (𝑠1 − 𝑠∗1) cos
(

𝜂 exp
(

−( ℎ∗

𝑏swirl
)2
)

)

− (𝑠2 − 𝑠∗2) sin
(

𝜂 exp
(

−( ℎ∗ )2
)

)

+ 𝑠∗1 ,
𝑏swirl
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Table 1
The ILSA parameters and coordinate deformation parameters for Settings 4–6.

𝜽𝒔,𝑙 𝜽𝒔̃,𝑙 𝜽𝒔 𝜽𝒔̃ 𝜌1 𝒔∗ 𝑏swirl 𝜂 𝜈 𝜙

IC1 (6, 4) (7, 7) (0.2, 0.7) (0.7, 0.2) 0.9 (0.5, 0.5) 0.7 1.8𝜋 0.25 0.5
IC2 (3, 6) (4, 7) (0.7, 0.2) (0.25, 0.5) 0.8 (0.7, 0.7) 0.4 1.2𝜋 0.2 0.9
IC3 (3, 3) (6, 3) (0.5, 0.5) (0.7, 0) 0.7 (0.3, 0.3) 0.2 2𝜋 0.05 1.5
IC4 (7, 3) (2, 6) (0.2, 0.4) (0.3, 0.7) 0.6 (0.7, 0.3) 1 0.5𝜋 0.1 0.25
IC5 (2, 1) (6, 2) (0.3, 0.3) (0, 0.7) 0.5 (0.3, 0.7) 0.9 0.9𝜋 0.15 1

2̃ = (𝑠1 − 𝑠∗1) sin
(

𝜂 exp
(

−( ℎ∗

𝑏swirl
)2
)

)

− (𝑠2 − 𝑠∗2) cos
(

𝜂 exp
(

−( ℎ∗

𝑏swirl
)2
)

)

+ 𝑠∗2 ,

where 𝒔∗ = (𝑠∗1 , 𝑠
∗
2) is the centre point of the deformation, ℎ∗ = ‖𝒔− 𝒔∗‖

is Euclidean distance between the original location and the centre
point, 𝜂 is a rotation angle, and 𝑏swirl is a scaling parameter controlling
the magnitude of the swirl. Each latent component has their own
set of deformation parameters. The stationary covariance function 𝑉
in (7) is the Matern covariance function with parameters (𝜈𝑖, 𝜙𝑖) for
all Settings 4–6. The deformation parameters, ILSA parameters and
Matern parameters mutual for Settings 4–6 are given in Table 1. The
autoregressive order is 𝑅 = 1 for all settings.

In Setting 4, we have 𝜎[𝒔̃(𝒔), 𝒔, 𝑡] = exp(𝜃𝑖𝜎𝑠 (𝑠̃1−0.5)), where 𝜃𝑖𝜎𝑠 is the
scaling parameter of variance in space for 𝑖th latent component. This
means that the variance of the latent fields vary in space based on the
first latent coordinate. The variance scaling parameters for the latent
components 𝑧𝑖, 𝑖 = 1,… , 5, are 𝜃1𝜎𝑠 = 1, 𝜃2𝜎𝑠 = 2, 𝜃3𝜎𝑠 = 3, 𝜃4𝜎𝑠 = −1 and
𝜃5𝜎𝑠 = −2.

In Setting 5, the variances of the latent fields are changing in time.
We set 𝜎[𝒔̃(𝒔), 𝒔, 𝑡] = exp(sin((𝑡 + 𝜃𝑖𝜎𝑡1 ) + 𝜃𝑖𝜎𝑡2 )∕2), where 𝜃𝑖𝜎𝑡1 and 𝜃𝑖𝜎𝑡2
are variance coefficient and variance scaling parameter in time for 𝑖th
latent component. The parameters (𝜃𝑖𝜎𝑡1 , 𝜃

𝑖
𝜎𝑡2

) for the latent components
𝑧𝑖, 𝑖 = 1,… , 5, are (𝜃1𝜎𝑡1 , 𝜃

1
𝜎𝑡2

) = (50, 0.1), (𝜃2𝜎𝑡1 , 𝜃
2
𝜎𝑡2

) = (0, 0.05), (𝜃3𝜎𝑡1 , 𝜃
3
𝜎𝑡2

) =
(100, 0.005), (𝜃4𝜎𝑡1 , 𝜃

4
𝜎𝑡2

) = (20, 0.01) and (𝜃5𝜎𝑡1 , 𝜃
5
𝜎𝑡2

) = (10, 0.03).
In Setting 6, the variances of the latent fields are changing in space

and in time. We set 𝜎[𝒔̃(𝒔), 𝒔, 𝑡] = exp(𝜃𝑖𝜎𝑠 (𝑠̃1−0.5)+sin((𝑡+𝜃𝑖𝜎𝑡1 )+𝜃𝑖𝜎𝑡2 )∕2).
The parameters 𝜃𝑖𝜎𝑠 , 𝜃

𝑖
𝜎𝑡1

, 𝜃𝑖𝜎𝑡2 for the latent fields 𝑧𝑖, 𝑖 = 1,… , 5, are
identical as in Settings 4 and Setting 5.

Setting 1 has the simplest latent fields by having a diagonal spatio-
temporal covariance for each latent field. The variance and mean are
changing explicitly between the spatio-temporal clusters as is assumed
for segmentation based iVAE. This setting is a spatio-temporal variant
of the simulation setting used in time series context in Hyvärinen and
Morioka (2016), Khemakhem et al. (2020), where the latent com-
ponents had multiple temporal segments with unique mean and/or
variance parameters. Settings 2 and 3 are still relatively simple with
no spatio-temporal interaction in the latent fields. Setting 2 is used
to compare performances in cases where latent fields are stationary
in space, but variance is changing over time. Setting 3 illustrates a
scenario where the latent fields are stationary in time, but the variance
is changing over the clusters in space. By having less variability in the
variance, Settings 2 and 3 should be less optimal for iVAE. Settings 4–
6 have latent fields with a complex spatio-temporal covariance model
and strong spatio-temporal interaction. The variance is not changing
explicitly over segments, but instead through a nonstationary covari-
ance function. In Setting 4, the latent fields have smoothly changing
nonstationary variance in space, but the variance is stationary in time,
and in Setting 5, the variance is nonstationary in time, but station-
ary in space. Setting 6 introduces nonstationarity in variance both in
space and in time. With Settings 4–6 the aim is thus to find out how
the presence of nonstationarity in variance affects the performances
of iVAE methods in settings with more realistic and more complex

spatio-temporal structures.

7 
Nonlinear mixing functions. The mixing function 𝑓𝐿 is generated
using multilayer perceptron (MLP) following Hyvärinen and Morioka
(2016), Hyvärinen et al. (2019), Khemakhem et al. (2020). Here 𝐿
denotes the number of mixing layers used in MLP. To obtain an
injective and differentiable mixing function, each layer of MLP has
𝑆 = 8 hidden units with the activation function 𝜔𝑖 being either linear
or exponential linear unit (ELU). The matrices 𝑩𝑖, 𝑖 = 1,… , 𝐿, in the
mixing procedure are normalized to have unit length row and column
vectors to guarantee that none of the independent components vanish
in the mixing process. The mixing function 𝑓𝐿 is defined as

𝒇𝐿(𝒛) =

{

𝜔𝐿(𝑩𝐿𝒛), 𝐿 = 1,
𝜔𝐿(𝑩𝐿𝒇𝐿−1(𝒛)), 𝐿 ∈ {2, 3,…},

where 𝑩1 is a 8 × 5 matrix and the other matrices, 𝑩𝑖, 𝑖 ≠ 1, are 8 × 8
matrices. In simulations we use linear activation 𝜔𝐿(𝑥) = 𝑥 for the last
layer and ELU activation

𝜔𝑖(𝑥) =

{

𝑥, 𝑥 ≥ 0,
exp(𝑥) − 1, 𝑥 < 0,

𝑖 = 1,… , 𝐿 − 1, for the other layers. By this procedure, with the
number of mixing layers 𝐿 = 1, we obtain 𝑆 = 8 linear mixtures
of the independent components. When the number of mixing layers
increase, the mixtures become increasingly nonlinear. In simulations,
we consider three different mixing functions with the number of mixing
layers 𝐿 = 1, 3, 5.

Model specifications. All iVAE models are set up with encoder,
decoder and auxiliary function with three hidden layers in each. The
hidden layers consist of 128 neurons and leaky rectified linear unit
(leaky ReLU) activation (Maas, Hannun, Ng, et al., 2013). iVAEs1,
iVAEs2 and iVAEs3 use 4 × 4 spatial segmentation, resulting a grid
of 𝑚𝑆 = 16 equally sized squares. The temporal segmentation is done
by dividing the temporal domain to equally sized segments of length 5.
This results the number of temporal segments 𝑚𝑇 = 60 when 𝑛𝑡 = 300
and 𝑚𝑇 = 15 when 𝑛𝑡 = 75. For iVAEr, we use spatial resolution levels
𝐻 = (2, 9), and temporal resolution levels 𝐺 = (9, 17, 37). The iVAE
models are trained for 60 epochs when (𝑛𝑠, 𝑛𝑡) = (150, 300), for 120
epochs when (𝑛𝑠, 𝑛𝑡) = (50, 300) and for 150 epochs when (𝑛𝑠, 𝑛𝑡) =
(150, 75). The number of epochs is increased when the sample size is
decreased, as the number of training steps in each epoch is lower for
the smaller sample size. For all sample sizes, the number of epochs are
selected large enough to guarantee that the training converges. All iVAE
models use learning rate of 0.001 with polynomial decay of second-
order over 10000 training steps, where the learning rate after the first
10000 training steps is 0.0001. VAE uses similar parameters as iVAE,
but it does not use any auxiliary data or have an auxiliary function.
The STBSS model is fitted with multiple different kernel settings, and
the best one is selected, which is having two spatial ring kernels (0, 0.15)
and (0.15, 0.3) and time lag of 1. For more about STBSS and its kernel
settings, see Muehlmann et al. (2023).

Performance index. To measure the performance of the methods,
the mean correlation coefficient (MCC) is used following the previous
studies, e.g., Hälvä and Hyvärinen (2020), Hyvärinen and Morioka
(2017), Hyvärinen et al. (2019), Sipilä et al. (2024). MCC is a func-
tion of the correlation matrix 𝜴 = 𝐶𝑜𝑟(𝒛, 𝒛̂) between the true latent
components 𝒛 and the estimated ones 𝒛̂. MCC is calculated as

MCC(𝜴) = 1
𝑃

sup
𝑷∈

tr(𝑷 abs(𝜴)), (8)

where  is a set of all possible 𝑃 × 𝑃 permutation matrices, tr(⋅) is the
trace of a matrix and abs(⋅) denotes taking elementwise absolute values
of a matrix. MCC gets values in range [0, 1], where the optimal value 1
is obtained when the estimated sources are correlated perfectly up to
their signs with the true sources.

Results. The simulation results are provided in Fig. 3 for (𝑛𝑠, 𝑛𝑡) =
(150, 300) and in Figs. B.8 and B.9 in the Appendix B for (𝑛 , 𝑛 ) =
𝑠 𝑡
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Fig. 3. Mean correlation coefficients of 500 trials for Settings 1–6 for sample size with the number of spatial locations 𝑛𝑠 = 150 and the number of temporal observations 𝑛𝑡 = 300.
i
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(50, 300) and (𝑛𝑠, 𝑛𝑡) = (150, 75), respectively. Based on the results, it
is clear that only the iVAE methods are capable of recovering sources
through nonlinear unmixing environment. The performances of iVAE
methods are better, when the sample size grows, although the dif-
ferences are small in some settings. The performance of iVAEc is
slightly worse than the performances of the other iVAE methods in
every setting. FICA performs well in the linear mixing settings, when
the latent fields do not contain trend in mean. In nonlinear settings,
its performance drops dramatically in all simulation settings. Similar
behaviour is present for STBSS, although the performance in zero
mean settings does not reach FICA. This is not surprising as STBSS is
developed for stationary spatio-temporal random fields. VAE performs
poorly in almost all settings, which is expected as the model is not
identifiable.

In Settings 1–3 all iVAE methods outperform FICA, STBSS and VAE.
In these settings, the best performing method is iVAEr, followed by
iVAEs1, iVAEs2 and iVAEs3, respectively. They all perform very well
under the linear mixing, but when the number of mixing layers is
increased, iVAEr outperforms the three other methods. iVAEs1 and
iVAEs2 have very similar performance, and they perform slightly better
than iVAEs3. The performance of iVAEc is worse than performances of
other iVAE methods, especially in Setting 2. FICA performs relatively
well in Setting 3 under the linear mixing, but the performance is poor
8 
in other settings. STBSS fails to recover the latent fields in Settings 1–3
even under the linear setting. VAE fails in Settings 1 and 2, but performs
moderately in Setting 3 under linear mixing.

In Settings 4–6, the best method under linear mixing is FICA, but
its performance drops considerably in nonlinear settings. In case of
nonlinear mixing, the best methods are iVAEs1 and iVAEs2 and iVAEr
followed by iVAEs3 and iVAEc, in the order from best to worst. iVAEs1,
iVAEs2 and iVAEr perform nearly as well as FICA in linear setting
and keep up their good performance also in nonlinear settings. STBSS
performs rather well under linear mixing, but is still worse than FICA
and iVAE variants. VAE has slightly lower performance than STBSS
under linear mixing, but it also fails under nonlinear mixing. In Setting
5, when 𝑛𝑡 = 75, the performances of all the methods drop considerably.
This is probably due to the fact that in Setting 5, the variance is
varying less over the whole temporal domain when the number of
time points is lower. The best performing methods, when 𝑛𝑡 = 75, are
VAEs1 and iVAEs2 in both linear and nonlinear cases. In Setting 6, the
erformance of iVAE methods drop only slightly when the number of
ixing layers is increased, especially when the sample size is high. The

est performing methods for nonlinear mixing environment are iVAEr,
VAEs1 and iVAEs2.
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In general, if the variability of the variance remains the same,
increasing the sample size improves the results only a little. The dif-
ferences in MCC between the smallest and the largest sample sizes are
between 0.005 and 0.03 for all iVAE methods and all settings except
the Setting 5, which has lower MCCs when 𝑛𝑡 = 75. Increasing the
variability of the variance has stronger impact, which is evident when
the results of Settings 4, 5 and 6 are compared. The average MCCs are
higher and the results are more consistent for Setting 6 than for Settings
4 and 5. Based on the results, the best three models are iVAEr, iVAEs1
and iVAEs2. Compared to segmentation based iVAE, iVAEr has an
advantage of estimating a smooth spatio-temporal trend and variance
functions, which are provided by the auxiliary function. These can be
useful for further analysis or for prediction purposes, as is demonstrated
in Section 5. Taking the previous facts into account, we consider the
best method to be iVAEr.

Radial basis function parameter sensitivity. To examine the
sensitivity of iVAEr to the choice of resolution levels for forming radial
basis functions, we conduct an additional small-scale simulation by
replicating Setting 6 with 𝑛𝑠 = 150 and 𝑛𝑡 = 300, using iVAEr with
three different radial basis function parameter configurations. The first
configuration uses resolution levels 𝐻 = (2) and 𝐺 = (9), resulting
in a total of 13 basis functions. The second configuration, used in
previous simulations, has 𝐻 = (2, 9) and 𝐺 = (9, 17, 39), producing
50 basis functions. The third configuration uses 𝐻 = (2, 9, 17) and

𝐺 = (9, 17, 39, 99), producing 538 basis functions.
The results, presented in Fig. B.10 in Appendix B, indicate that using

too few radial basis functions leads to lower performance, as seen with
the first setting (𝐻 = (2), 𝐺 = (9)). The other two settings produced
nearly identical results, suggesting that the algorithm is not highly sen-
sitive to the choice of resolution levels, provided the number of spatial
and temporal basis functions is sufficient. As a general guideline, we
recommend starting with resolution levels 𝐻 = (2, 9) and 𝐺 = (9, 17, 39)
for good performance with relatively low computational complexity.
Additionally, it is advantageous to use multiple varying spatial and
temporal resolution levels (e.g., 𝐻 = (2, 9) instead of 𝐻 = (10)) to
capture both large-scale dependencies and finer dependency structures.

4.3. Latent dimension estimation

In the previous section, we demonstrated through simulations that
when the number of latent components 𝑃 is known, iVAE effectively
recovers these components. However, in practical applications, the true
number of latent components is often unknown and must be estimated.
Accurately determining the dimension is critical; too few components
may lead to the omission of vital information, flawed interpretations,
and erroneous predictions. Conversely, too many components can com-
plicate interpretation and typically result in overly noisy predictions.
One of the reasons for the success of BSS is that it generally sim-
plifies interpretability and enhances predictions, which is particularly
valuable in handling complex data such as in spatio-temporal contexts.

Note that the estimation of the number of components in BSS
models with linear mixing has only been considered recently. These
approaches typically handle iid data, or temporal or spatial data, but,
to the best of our knowledge, they have not yet been applied to spatio-
temporal data. Moreover, these methods often rely on eigenvalues of
specially constructed scatter matrices, which precludes their extension
to nonlinear scenarios. For more details on these approaches, see Luo
and Li (2016, 2021), Muehlmann, Bachoc, Nordhausen, and Yi (2024),
Nordhausen, Taskinen, and Virta (2022), Radojičić and Nordhausen
(2024), Virta and Nordhausen (2021), Yi and Nordhausen (2023) and
the references therein.

To facilitate the estimation of the number of components within our
framework, this section proposes two alternatives: a visual procedure
to select the latent dimension and a more formal latent dimension
estimation method. We illustrate these methods using simulations. In

all simulations, we adopt two setups: one where 𝑃 = 5 and 𝑆 = 8, as

9 
Table 2
The proportions of the estimated latent dimensions 𝑅 for setups where
𝑃 = 5, 𝑆 = 8 (a) and 𝑃 = 10, 𝑆 = 15 (b). Each setup was repeated 100
times for each number of mixing layers 𝐿 = 1, 3, 5. The latent dimensions
were estimated using the AIC based method.

(a)

L 𝑅 = 4 𝑅 = 5

1 0.00 1.00
3 0.00 1.00
5 0.03 0.97

(b)

L 𝑅 = 9 𝑅 = 10 𝑅 = 11

1 0.00 0.99 0.01
3 0.00 0.99 0.01
5 0.07 0.92 0.01

in the previous simulations, and another where 𝑃 = 10 and 𝑆 = 15.
In both setups, the latent components are generated as in Setting 6
of the previous section with randomly generated parameters from
appropriate uniform distributions, and the observed data is generated
using the same mixing process as in the previous simulations. For these
simulations, we employ only iVAEr with the same parameters as in the
previous section and train it for 60 epochs in each trial.

Visual knee point detection. As iVAE is capable of estimating in-
ective mixing functions, it is possible to fit multiple iVAE models using
he latent dimension 𝑅 = 2,… , 𝑆 and compare ELBOs of fitted models.
he likelihood has its maximum when the true latent components are
ound, and hence, ELBO tends to increase rapidly when 𝑅 < 𝑃 and stay
pproximately the same when 𝑅 ≥ 𝑃 . Because of this behaviour, when
LBOs are plotted against the selected latent dimensions 𝑅 = 2,… , 𝑆,

a ‘‘knee’’ point is visible at the point of the correct latent dimension.
The knee point detection method based on ELBO was also discussed
in Khemakhem et al. (2020). The knee point behaviour is illustrated in
Fig. 4 for the both setups. Here, the number of mixing layers 𝐿 = 3

ere used.
AIC based on ELBO. A natural approach for automatic model selec-

ion is to compare Akaike information criteria (AIC) between different
odels. In case of latent dimension selection, we are only interested in

he latent dimension 𝑅, and treat the other parameters of the model as
uisance. Hence, we compare the profile AICs (pAIC, see e.g. Xu, Vaida,

and Harrington (2009)) calculated as

pAIC = −2log((𝑅|𝒙, 𝒖; 𝜽̂𝑅)) + 2𝑅,

where (𝑅|𝒙, 𝒖; 𝜽̂𝑅) is the profile likelihood in which all the parameters
𝜽 excluding the latent dimension 𝑅 have been profiled out. The data
log likelihood is intractable for the generative model (4) which is why
the we cannot use pAIC directly. However, if the profile log likelihood
log((𝑅|𝒙, 𝒖; 𝜽̂𝑅)) is replaced with profiled ELBO, we obtain an upper
bound for pAIC:

uAIC = −2ELBO(𝑅|𝒙, 𝒖; 𝜽̂𝑅) + 2𝑅,

which can be used for model selection. Similarly as for regular AIC, the
latent dimension which produces the lowest uAIC value is selected. To
demonstrate the method, we simulated 100 datasets from both setups,
(𝑃 , 𝑆) = (5, 8) and (𝑃 , 𝑆) = (10, 15), and then fitted iVAEr for each
possible latent dimension 𝑅 = 2,… , 𝑆 and selected the latent dimension
based on uAIC. The proportions of the selected dimensions are provided
in Table 2 for both setups.

In both setups, AIC based method estimated well the latent dimen-
sion for each mixing function. When the number of mixing layers is
𝐿 = 1 or 𝐿 = 3, the true latent dimension was obtained nearly every
time (100 out of 100 times for setup with (𝑃 , 𝑆) = (5, 8) and 99 out of
100 times for setup with (𝑃 , 𝑆) = (10, 15)). When 𝐿 = 5, the method
underestimated the latent dimension in three trials out of 100. In setup
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Fig. 4. The lower bounds of the data log likelihoods plotted for different latent dimensions. The true latent dimension is marked with red. The first figure (a) has the setting with
𝑃 = 5 and 𝑆 = 8, and the second one (b) has the setting with 𝑃 = 10 and 𝑆 = 15. In second figure, the latent dimensions 𝑅 = 2,… , 6 are cut out to make the differences more
visible for larger latent dimensions.
with (𝑃 , 𝑆) = (10, 15), the method overestimated the latent dimension
once for each mixing function. Based on the results, uAIC can thus be
seen as a promising metric for automatic latent dimension selection.

5. Real data example

Due to the best overall performance of the proposed radial basis
function based spatio-temporal iVAE method, iVAEr, we now demon-
strate how to apply it using a meteorological dataset collected from
Veneto region in Italy. The data are collected over 23 years (2000–
2022) from 101 different meteorological stations. The data consist
of weekly data of evapotranspiration level (ET_0, in mm), minimum
and maximum temperature (T_min and T_max, respectively, in ◦C),
minimum and maximum humidity (H_min and H_max, respectively, in
%), the average wind velocity (m/s) and precipitation (mm). Therefore,
we have 𝑆 = 7. We remove 11 stations and all time points before week
28 of year 2005 to have a as little missing values as possible. After this,
we have data on 90 stations and 892 time points. The remaining 133
rows with missing values are imputed using CUTOFF method (Feng,
Nowak, O’Neill, & Welsh, 2014), which is designed for spatio-temporal
imputation. We perform a log transformation log(𝑥+1) to precipitation
level to make its distribution less skew. The goal is then to find a latent
representation for the data, interpret the latent components and predict
the observed variables to future and to new locations by using iVAE
preprocessing. We select nine random stations and all time points from
beginning of May 2022 for validation purposes. As a result, we have
𝑛𝑠 = 81 and 𝑛𝑡 = 874 in the training data. The validation stations are
presented as triangles in Fig. 5 together with the rest of the stations.

In the Veneto region, the elevation of the meteorological stations
vary a lot; the maximum altitude is in the north (i.e. Dolomites moun-
tain area) and the minimum altitude can be recognized in the south-east
(i.e. Venetian plan). Hence, in this application we consider the spatial
dimension 𝐷 = 3, which is composed of the X coordinate, the Y coordi-
nate and the elevation. The locations and the elevations of the stations
are presented in Fig. 5. To account for the differences in elevation, we
construct radial basis functions also based on the elevation from the
sea.

5.1. Interpretation of the latent components

In this section, we use same iVAEr hyperparameters as in Section 4,
but we add the radial basis functions based on the elevation. For eleva-
tion, we use resolution levels 𝐸 = (2, 9). We begin with estimating the
number of latent components by fitting iVAEr with latent dimensions
𝑃 = 3,… , 7 and comparing the ELBOs. For each latent dimension, the
method is run for 30 epochs. The ELBOs are presented against different
latent dimensions in Fig. 6. The figure shows a clear knee point at 𝑃 = 5
after which the ELBO remains stable. The lowest uAIC is also obtained
10 
Fig. 5. The spatial locations of meteorological stations in Veneto region. The validation
stations are marked as triangles. The colours of the point represent the elevation
differences of the stations.

Fig. 6. ELBOs for iVAEr models fitted with the latent dimensions 𝑃 = 3,… , 7. The
selected latent dimension 𝑃 = 5 is marked as red.

at 𝑃 = 5. Hence, we select the latent dimension 𝑃 = 5 for further
analysis.

Next, iVAEr is fitted to the whole dataset by training the model for
60 epochs. To interpret the obtained latent components, we calculate
the scaled mean absolute Shapley additive explanations (MASHAP)
(Sipilä et al., 2024) for fitted iVAEr’s decoder. The scaled MASHAP
are based on Shapley additive explanations (SHAP) (Lundberg & Lee,
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Table 3
The scaled MASHAP and the average scaled MASHAP values calculated for iVAEr’s
decoder after the training process.

IC1 IC2 IC3 IC4 IC5

ET_0 0.125 0.026 0.029 0.721 0.099
T_max 0.037 0.036 0.090 0.722 0.115
T_min 0.148 0.029 0.095 0.659 0.069
H_max 0.170 0.026 0.484 0.037 0.284
H_min 0.129 0.045 0.280 0.160 0.386
log_prec 0.031 0.014 0.214 0.190 0.551
wind_vel 0.038 0.798 0.106 0.029 0.028

Average 0.097 0.139 0.185 0.360 0.219

Fig. 7. Spatial map of ICs (left column) for the first time point and a time series of
ICs (right column) for the point circled in the spatial maps.

2017) and MASHAP values (Marcílio & Eler, 2020), but modified
for obtaining population level feature importances for functions with
vector valued output. The scaled MASHAP values can be interpreted as
feature importance values for function’s input variables, where higher
value means that the input variable has more importance for the output
variable. By averaging over the scaled MASHAP values for each input
variable, the average scaled MASHAP values are obtained, which can be
interpreted as population level importances for functions with multiple
outputs.

The scaled MASHAP values are calculated for decoder part by using
500 randomly selected observations as background data. The MASHAP
values for the decoder part are presented in Table 3. Spatial and
temporal behaviours of the latent components are illustrated in Fig. 7.
Based on the average scaled MASHAP values, the latent components
IC4 and IC5 explain the most of the observed data.

IC1 has small scaled MASHAP values for all variables, which indi-
cates that IC1 is more of a residual component. It still has some seasonal
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variability based on the temporal behaviour. IC2 explains only the
wind. It has some seasonal variability and high peaks in time irregularly
and does not show any clear spatial behaviour. The wind is not highly
present in any other components meaning that wind might not share
any common latent components with the other variables. IC3 and IC5
together explain the most of the precipitation and humidity. IC3 has
the smallest values in east while IC5 has the lowest ones in north-
west. Both components seem to have higher values in the mountain
area. The components do not have clear trend in time but differently
from IC3, IC5 captures high frequency oscillations in time. IC4 captures
the seasonal changes as well as elevation based spatial changes. When
looking at temporal changes, it has low values during the winter and
high values during the summer. Moreover, the low values occur in
spatial locations where elevation is high and the high values occur in
lowlands. In addition, the coastal area (on the right side of the map)
seem to have slightly lower values than inland (the centre and the
left side of the map). Evapotranspiration, maximum temperature and
minimum temperature have high scaled MASHAP values in IC4 and
low values in other ICs, which indicates that IC4 mostly explains these
variables. In addition, IC4 explains some of precipitation and minimum
humidity.

5.2. Spatio-temporal predictions

In the next, we study if preprocessing the data with iVAEr improves
spatio-temporal prediction accuracy. For comparison purposes we use
STBSS (Muehlmann et al., 2023) and STLCM approaches (De Iaco,
Myers, & Posa, 2003; De Iaco, Palma, & Posa, 2005). In particular,
we apply STBSS as preprocessing method and direct predicting using
spatio-temporal kriging (Kyriakidis & Journel, 1999), as well as we
use the STLCM to forecast the target variables using cokriging (Hans,
2003). We consider four different iVAEr approaches to obtain the
latent components 𝒛. The approaches are composed of two different
iVAEr’s auxiliary function settings; one using three hidden layers with
128 units (iVAEaux3) and the other using one hidden layer with 16
units (iVAEaux1). The first two of the approaches use iVAEaux3 and
iVAEaux1 directly to predict the latent components to new spatio-
temporal locations, and the other two approaches combine iVAEaux3
and iVAEaux1 with spatio-temporal kriging to obtain the predictions.
When iVAEaux3 and iVAEaux1 are used directly, the trend function
𝝁(𝒔, 𝑡) provided by the auxiliary function, is treated directly as the
predictions for the latent components. When iVAEaux3 and iVAEaux1
are combined with kriging, the latent components 𝒛(𝒔, 𝑡) are prepro-
cessed further by subtracting the mean function 𝝁(𝒔, 𝑡) as 𝒛𝑟𝑒𝑠(𝒔, 𝑡) =
𝒛(𝒔, 𝑡) − 𝝁(𝒔, 𝑡). The residuals 𝒛𝑟𝑒𝑠 are then predicted to new locations
using spatio-temporal kriging, and finally, the trend is added back
to the predictions as 𝒛(𝒔𝑛𝑒𝑤, 𝑡𝑛𝑒𝑤) = 𝒛𝑟𝑒𝑠(𝒔𝑛𝑒𝑤, 𝑡𝑛𝑒𝑤) + 𝝁(𝒔𝑛𝑒𝑤, 𝑡𝑛𝑒𝑤). To
obtain the predictions in the original observation space, the predicted
latent components are back transformed using iVAEr’s mixing function
estimate.

For prediction purposes, the auxiliary variable should be formed in
a way that the scope of auxiliary variables for the prediction locations
is not far out of the scope of the auxiliary variables for the training
locations. As our training data has no information of the future time
points, the spatio-temporal trend function is not reliable for future
time points in regular iVAEr setup. To make the scope same for both
training and validation data, we utilize the seasonality of the data
instead of using the absolute time points to form the temporal radial
basis functions. To account for the seasonality, the temporal radial basis
functions are formed using the week of the year (1–53) instead of using
the weeks from the first observation (1–892). In addition, to allow the
differences between different years, we add a one-hot encoded year
factor, i.e. a 18-dimensional standard basis vector giving the year of the
observation, to the auxiliary variable. With such setup, the auxiliary
variables used for predictions are not out of scope of the variables
used for training and hence, iVAE’s auxiliary function is able to predict
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the trend to the future better than by using the regular setup with
temporal radial basis functions based on the absolute time points. The
auxiliary function of iVAEaux3 with three hidden layers has capability
of learning finer details of the spatio-temporal field, but is also more
prone to overfitting. The auxiliary function of iVAEaux1 on the other
hand is less likely to overfit as it has much less parameters and might be
for that reason better for trend estimation. In each iVAE setting, we use
the spatial resolution levels 𝐻 = (2, 9), temporal (seasonal) resolution
levels 𝐺 = (2, 9) and elevation based resolution levels 𝐸 = (2, 9).

The reference methods, direct spatio-temporal kriging, STBSS com-
bined with kriging and STLCM with cokriging, expect the data without
seasonal components. Since the weather data has clear seasonality,
we hence preprocess the data by subtracting the estimated seasonal
component from each original variable. The seasonal cyclicality is
estimated by fitting the model

𝑥𝑖(𝒔, 𝑡) = 𝛽0,𝑖 + 𝛽1,𝑖cos(2𝜋𝑡∕53) + 𝛽2,𝑖sin(2𝜋𝑡∕53) + 𝑥𝑟𝑒𝑠,𝑖(𝒔, 𝑡)

for each variable 𝑥𝑖, 𝑖 = 1,… , 7. In direct kriging approach, the
residuals 𝑥𝑟𝑒𝑠,𝑖 are predicted using spatio-temporal kriging. In STBSS
based approach, STBSS is applied to the residuals to obtain the latent
components. The latent components are then predicted using kriging,
and the predictions are backtransformed to original data using STBSS.
The parameters for STBSS are the best performing parameters based
on the simulation studies, but scaled to match the spatial domain of
Veneto dataset. In the STLCM, we first have selected 3 latent com-
ponents identified by joint diagonalization of the sample covariance
matrices (Cappello, De Iaco, & Palma, 2022; De Iaco, Myers, Palma, &
Posa, 2013; De Iaco, Palma & Posa, 2019; De Iaco & Posa, 2012). Then,
supported by the evaluation of the non-separability index (Cappello,
De Iaco, & Posa, 2020; De Iaco & Posa, 2013; De Iaco, Posa, Cappello
& Maggio, 2019) the product-sum covariance model has been chosen to
describe the characteristics of the covariance functions estimated on the
three retained components. Finally, the STLCM model has been used to
compute spatio-temporal predictions of the seven analysed variables.

To estimate the seasonal components 𝜇𝑖(𝒔, 𝑡) = 𝛽0,𝑖+𝛽1,𝑖cos(2𝜋𝑡∕53)+
𝛽2,𝑖sin(2𝜋𝑡∕53) for new spatial locations we use the modified version of
the approach used in De Iaco and Posa (2012) for each variable 𝑥𝑖,
𝑖 = 1,… , 7:

1. Calculate means 𝜇𝑖(𝒔𝑗 ) and standard deviations 𝜎𝑖(𝒔𝑗 ) of the
seasonal components for the training stations 𝒔𝑗 , 𝑗 = 1,… , 𝑛𝑠.
Standardize the seasonal components for each training station
to have zero mean and unit variance as 𝜇̃𝑖(𝒔𝑗 , 𝑡) =

𝜇𝑖(𝒔𝑗 ,𝑡)−𝜇𝑖(𝒔𝑗 )
𝜎𝑖(𝒔𝑗 )

.

2. Fit the periodic function 𝜇̃𝑖(𝒔𝑗 , 𝑡) = 𝛽1,𝑖cos(2𝜋𝑡∕53) + 𝛽2,𝑖
sin(2𝜋𝑡∕53)+𝜇̃𝑟𝑒𝑠,𝑖(𝒔𝑗 , 𝑡) for the standardized seasonal components
to obtain the periodic component 𝜇̃𝑖(𝑡) = ̂̃𝛽1,𝑖cos(2𝜋𝑡∕53) +
̂̃𝛽2,𝑖sin(2𝜋𝑡∕53).

3. Consider the means 𝜇𝑖(𝒔𝑗 ) and standard deviations 𝜎𝑖(𝒔𝑗 ) as
realizations of two spatial random fields. Use spatial kriging to
estimate the mean and the variance to new locations 𝒔𝑛𝑒𝑤.

4. Construct the trend to location 𝒔𝑛𝑒𝑤 as 𝜇𝑖(𝒔𝑛𝑒𝑤, 𝑡) = 𝜇̃𝑖(𝑡)𝜎𝑖(𝒔𝑛𝑒𝑤)+
𝜇𝑖(𝒔𝑛𝑒𝑤).

The final predictions 𝑥𝑖(𝒔𝑛𝑒𝑤, 𝑡𝑛𝑒𝑤) are then obtained as 𝑥𝑖(𝒔𝑛𝑒𝑤, 𝑡𝑛𝑒𝑤) =
𝑥𝑟𝑒𝑠,𝑖(𝒔𝑛𝑒𝑤, 𝑡𝑛𝑒𝑤) + 𝜇𝑖(𝒔𝑛𝑒𝑤, 𝑡𝑛𝑒𝑤), where 𝑥𝑟𝑒𝑠,𝑖(𝒔𝑛𝑒𝑤, 𝑡𝑛𝑒𝑤) is the predicted
residual of the deseasonalized observation. In kriging step for both
original variables and for latent components provided by iVAEr and
STBSS, we fit either integrated product sum covariance model (De Iaco,
Myers, & Posa, 2002) or the product sum covariance model (De Iaco,
Myers, & Posa, 2001) based on the non-separability index. The kriging
predictions are calculated using 40 nearest points.

As measures of performance, we calculate mean squared error
𝑀𝑆𝐸(𝒙𝑖, 𝒙̂𝑖) = 1

𝑛
∑𝑛

𝑗=1(𝑥𝑖,𝑗 − 𝑥̂𝑖,𝑗 )2 and mean absolute error 𝑀𝐴𝐸(𝒙𝑖,
̂ ) = 1 ∑𝑛

|𝑥 − 𝑥̂ |, where 𝒙 and 𝒙̂ has the true observations and
𝑖 𝑛 𝑗=1 𝑖,𝑗 𝑖,𝑗 𝑖 𝑖
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Table 4
Mean squared errors of iVAE with three hidden layers in auxiliary function (iVAEaux3),
iVAEaux3 combined with kriging, iVAE with one hidden layer in auxiliary function
(iVAEaux1), iVAEaux1 combined with kriging, regular univariate spatio-temporal krig-
ing, STBSS combined with kriging and STLCM combined with cokriging. The smallest
errors are bolded for each variable.

(a) MSEs and wMSE for temporal part

ET_0 T_max T_min H_max H_min log_prec wind_vel wMSE

iVAEaux3 0.06 3.72 4.21 87.28 175.69 2.12 18.15 1.11
iVAEaux3 + kriging 0.07 4.47 4.29 85.00 165.08 2.15 16.20 1.10
iVAEaux1 0.07 4.98 5.24 117.92 173.91 2.58 22.83 1.38
iVAEaux1 + kriging 0.11 7.90 5.21 115.73 235.22 2.02 20.59 1.46
Kriging 0.12 6.28 3.49 89.37 358.14 1.97 19.38 1.41
STBSS + kriging 0.11 8.04 3.51 91.69 335.65 1.95 16.70 1.38
STLCM + cokriging 0.08 5.55 3.84 79.66 207.99 1.96 17.83 1.15

(b) MSEs and wMSE for spatial part

ET_0 T_max T_min H_max H_min log_prec wind_vel wMSE

iVAEaux3 0.10 5.33 6.61 74.45 123.91 1.84 104.05 2.16
iVAEaux3 + kriging 0.07 2.27 4.00 52.43 44.78 0.28 125.16 1.98
iVAEaux1 0.12 6.72 9.11 65.07 141.78 2.19 41.73 1.52
iVAEaux1 + kriging 0.05 1.55 3.22 33.82 33.14 0.25 38.34 0.81
Kriging 0.19 8.22 2.47 37.90 57.66 0.26 39.06 1.10
STBSS + kriging 0.19 8.30 2.49 36.52 59.76 0.30 39.00 1.11
STLCM + cokriging 0.17 8.20 2.42 37.76 56.74 0.23 39.02 1.08

(c) MSEs and wMSE for spatio-temporal part

ET_0 T_max T_min H_max H_min log_prec wind_vel wMSE

iVAEaux3 0.07 3.65 6.64 249.94 258.02 2.37 106.01 2.97
iVAEaux3 + kriging 0.07 3.57 6.98 249.96 251.24 2.42 123.50 3.19
iVAEaux1 0.07 5.47 7.24 208.56 206.50 2.53 35.80 1.99
iVAEaux1 + kriging 0.09 6.57 6.62 187.59 177.25 2.25 33.83 1.86
Kriging 0.28 14.40 6.57 207.04 409.58 2.13 58.01 2.79
STBSS + kriging 0.20 12.98 5.88 199.71 334.76 2.02 32.43 2.24
STLCM + cokriging 0.18 10.41 6.06 184.22 251.47 1.94 33.82 2.05

predicted counterparts of 𝑖th observed variable, respectively. In addi-
tion, we calculate weighted average MSE (wMSE) and weighted aver-
age MAE (wMAE), which are calculated as 𝑤𝑀𝑆𝐸(𝑿, 𝑿̂) = 1

7

∑7
𝑖=1

𝑀𝑆𝐸(𝒙𝑖 ,𝒙̂𝑖 )
𝜎2 (𝒙𝑖 )

and 𝑤𝑀𝐴𝐸(𝑿, 𝑿̂) = 1
7
∑7

𝑖=1
𝑀𝐴𝐸(𝒙𝑖 ,𝒙̂𝑖)

𝜎(𝒙𝑖)
, where 𝑿 is a 𝑛 × 7 matrix

containing the true observation vectors as rows, 𝑿̂ has the predicted
observations and 𝜎(𝑥𝑖) is a standard deviation of 𝑖th observed variable
calculated from the deseasonalized train data. wMSE and wMAE ac-
count for the scale differences of the variables and give a single measure
of performance regarding the whole data.

The validation prediction errors are collected in Tables 4 and 5,
where the cases (a), (b) and (c) has the prediction errors for temporal
part, spatial part and spatio-temporal part, respectively. When the
observed variables are predicted to future (cases (a) in Tables 4 and 5)
considering only the spatial locations present in the training data, the
best overall results are obtained using iVAEaux3 or iVAEaux3 + kriging.
They have slightly lower wMSE and wMAE than the second best
method, STLCM + cokriging, and clearly outperform the other methods.
When the prediction errors of the individual variables are inspected, it
is evident that iVAEaux3 and iVAEaux3 + kriging provide the lowest
MSE values for all but minimum temperature, maximum humidity and
log precipitation. The lowest MSE for these variables are obtained
by kriging, STLCM + cokriging and STBSS + kriging, respectively.
The lowest MAE for all variables but minimum temperature and log
precipitation are also obtained by iVAEaux3 and iVAEaux3 + kriging.
The lowest MAE for minimum temperature and log precipitation are
obtained by STBSS + kriging and iVAEaux1 + kriging, respectively.

When the observed variables are predicted to new spatial locations
(cases (b) in Tables 4 and 5), but not to the future (i.e. using all time
points from the training data), the best overall results are obtained by
iVAEaux1 + kriging as it has significantly lower wMSE and wMAE than

any of the competing methods. iVAEaux1 + kriging has the lowest MAE
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Table 5
Mean absolute errors of iVAE with three hidden layers in auxiliary function (iVAEaux3),
iVAEaux3 combined with kriging, iVAE with one hidden layer in auxiliary function
(iVAEaux1), iVAEaux1 combined with kriging, regular univariate spatio-temporal krig-
ing, STBSS combined with kriging and STLCM combined with cokriging. The smallest
errors are bolded for each variable.

(a) MAEs and wMAE for temporal part

ET_0 T_max T_min H_max H_min log_prec wind_vel wMAE

iVAEaux3 0.19 1.63 1.65 6.05 10.73 1.22 2.77 0.76
iVAEaux3 + kriging 0.20 1.75 1.68 5.99 10.41 1.25 2.55 0.76
iVAEaux1 0.21 1.84 1.78 7.04 10.77 1.45 3.52 0.86
iVAEaux1 + kriging 0.25 2.21 1.85 7.04 12.34 1.17 3.06 0.88
Kriging 0.27 2.06 1.54 6.11 15.67 1.26 3.10 0.88
STBSS + kriging 0.25 2.34 1.52 6.22 14.98 1.23 2.71 0.87
STLCM + cokriging 0.24 1.94 1.60 6.09 11.66 1.26 2.86 0.81

(b) MAEs and wMAE for spatial part

ET_0 T_max T_min H_max H_min log_prec wind_vel wMAE

iVAEaux3 0.24 1.80 2.04 5.51 8.35 1.10 7.63 0.96
iVAEaux3 + kriging 0.20 1.14 1.49 4.83 4.49 0.37 8.36 0.77
iVAEaux1 0.25 2.05 2.39 5.06 9.33 1.25 5.19 0.91
iVAEaux1 + kriging 0.16 0.96 1.28 3.69 4.18 0.33 4.93 0.56
Kriging 0.27 1.98 1.17 4.19 5.78 0.36 5.16 0.70
STBSS + kriging 0.28 1.99 1.18 4.15 5.86 0.41 5.16 0.70
STLCM + cokriging 0.26 1.89 1.17 4.17 5.79 0.30 5.11 0.68

(c) MAEs and wMAE for spatio-temporal part

ET_0 T_max T_min H_max H_min log_prec wind_vel wMAE

iVAEaux3 0.20 1.59 2.19 10.92 12.58 1.31 7.59 1.14
iVAEaux3 + kriging 0.20 1.59 2.26 10.91 12.44 1.34 8.27 1.17
iVAEaux1 0.22 1.89 2.05 9.70 11.68 1.43 4.21 0.99
iVAEaux1 + kriging 0.23 2.10 2.05 9.36 10.96 1.28 4.26 0.97
Kriging 0.36 3.04 2.15 9.71 16.70 1.30 6.12 1.24
STBSS + kriging 0.32 2.92 1.99 9.85 15.11 1.29 4.50 1.12
STLCM + cokriging 0.32 2.43 2.07 9.78 12.67 1.26 4.67 1.07

and MSE for evapotranspiration, maximum temperature, maximum
humidity and minimum humidity and wind velocity. The lowest MSE
and MAE for minimum temperature and log precipitation are obtained
by STLCM + cokriging.

When the observed variables are predicted to future and to new
spatial locations (cases (c) in Tables 4 and 5), iVAEaux1 + kriging
is the best performing method, followed by iVAEaux1 and STLCM +
cokriging. The lowest wMSE and wMAE are both obtained by iVAEaux1
+ kriging. However, when inspecting MSE and MAE values for indi-
vidual variables, the results are spread more between the methods.
All iVAE based methods have the lowest MSE and MAE values for
evapotranspiration. For maximum temperature the differences in the
errors are high. The lowest errors are obtained by iVAEaux3 based
methods, followed by iVAEaux1 based methods, while for minimum
temperature, STBSS + kriging has the lowest value, but the differences
between the errors are low. The lowest MSE for maximum humidity
is obtained by STLCM + cokriging and the lowest MAE by iVAEaux1
+ kriging. MSE and MAE for minimum humidity are clearly lowest
for iVAEaux1 + kriging. For log precipitation and wind velocity, the
differences between the best performing methods small. The lowest
errors for log precipitation are obtained by STLCM + cokriging, and
for wind velocity the lowest MSE is obtained by STBSS + kriging and
the lowest MAE by iVAEaux1.

In conclusion, it is evident that iVAEr, estimating the latent com-
ponents and spatio-temporal trend (and variance) function simultane-
ously, clearly improves the prediction accuracy compared to competing
methods, especially in spatial data case. For temporal prediction, the
best accuracy is obtained by iVAEaux3 using the auxiliary function
with three hidden layers. This hints that for temporal prediction, it is
beneficial to capture finer details of the spatio-temporal structure. For
temporal part, kriging did not improve significantly the prediction ac-

curacy meaning that it is sufficient to use solely iVAEr in this situation.
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For spatial prediction, in the other hand, iVAEaux1, using one hidden
layer with only 16 neurons in auxiliary function, provides better results
than iVAEaux3 hinting that it is more beneficial to capture only larger
scale spatio-temporal structure and predict the residuals further using
spatio-temporal kriging. In addition to performance gains of iVAEr
based methods, they benefit from more simple modelling process as
there is no need for fitting and predicting the spatio-temporal trend
function separately as this is done simultaneously by the algorithm.
Moreover, by providing independent components, the prediction can
be done efficiently using univariate prediction methods such as kriging,
which is computationally more manageable as compared to multivari-
ate prediction methods such as cokriging. Although even in this last
approach, the multivariate estimation is often simplified by modelling
uncorrelated components, identified through the joint diagonalization
of the covariance matrices.

6. Conclusion and discussion

In this paper, iVAE was extended to the nonstationary spatio-
temporal setting, and three approaches, coordinate based, segmentation
based and radial basis function based, were introduced for constructing
the spatio-temporal auxiliary data. In addition, two latent dimension
estimation methods were proposed. The introduced spatio-temporal
iVAE and latent dimension estimation methods were studied using
vast simulation studies and illustrated in meteorological application
where also a novel iVAEr preprocessing procedure for accounting
nonstationarity in spatio-temporal modelling was introduced.

Based on the simulations, iVAEr, iVAEs1 and iVAEs2 were the best
performing methods in nonlinear STBSS settings with nonstarionary
spatio-temporal variance. The methods outperformed iVAEc, iVAEs3
and STBSS methods in all settings. FICA was still the best performing
method under the linear mixing in settings without spatio-temporal
trend and highly nonlinear variance. However, under nonlinear mixing
or when the trend was present, iVAE methods outperformed FICA.
Based on the fact that iVAEr provides for the latent components smooth
trend and variance function estimates, which can be useful for further
analysis, we consider iVAEr the best method for nonstationary STBSS.

In meteorological application, we utilized the introduced latent
dimension estimation methods and iVAEr to find the underlying latent
components. We interpreted the components using scaled MASHAP
values and by inspecting the spatial and temporal behaviours of the
components. Original seven variables were compressed into five la-
tent components; one explained the seasonal and spatial variability in
temperature and evapotranspiration, one explained the wind velocity,
two explained together the most of the precipitation and humidity
and the last one explained the remaining residuals of the data. For
spatio-temporal prediction purposes, we utilized iVAEr preprocessing
by estimating the latent components and their nonstationary spatio-
temporal trend functions, which were used to account nonstationarity
in the modelling of the latent components. When using iVAEr pre-
processing, the prediction accuracy was improved as compared to
predicting the original variables directly (through kriging or cokriging)
or to using STBSS as preprocessing method.

Based on the results and theoretical properties of the developed
spatio-temporal iVAE methods, it is evident that the methods have
multiple advantages over the previously proposed STBSS methods. The
methods are capable of estimating nonlinear mixing and unmixing
functions in nonstationary data settings, whereas the previously pro-
posed methods are designed only for linear mixing and stationary data
settings. The developed iVAE methods can estimate injective mixing
function, while previous linear methods assume that the latent and
the observed dimensions are equal. In addition, iVAEr is highly useful
for spatio-temporal modelling and prediction as it can estimate non-
stationary spatio-temporal trend and variance functions. By removing

the nonstationary trend from the components, stationary prediction
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Fig. B.8. Mean correlation coefficients of 500 trials for Settings 1–6 for sample size with the number of spatial locations 𝑛𝑠 = 50 and the number of temporal observations 𝑛𝑡 = 300.
methods, such as kriging, can provide better predictions as seen in the
meteorological application.

Although in this paper we performed a small simulation study
regarding sensitivity of iVAEr against different radial basis function
settings, more in depth study of sensitivity against different hyper-
parameters or source density mismatch is needed and will be done
in future. The spatio-temporal iVAE methods developed in this paper
rely on nonstationary variance for identifiability. As discussed in Sec-
tion 4.1, there are other possibilities for introducing nonstationarity
in spatio-temporal settings. The methods for other scenarios, such as
nonstationary autocorrelation, will be developed in the future. Also,
nonlinear STBSS methods for stationary data are left for future work.
Nonlinear SBSS and STBSS methods have so far been studied and
developed mainly for Gaussian data. In future, different source densities
will be considered and methods that are resistant to outliers will be
developed in a similar manner as was done in linear BSS framework
in Sipilä, Muehlmann, Nordhausen and Taskinen (2024). In future, we

will also focus on developing nonlinear BSS methods for graph data,

14 
where one cannot measure the distance between the observations as in
temporal, spatial or spatio-temporal framework, but only the relations
between the observations are known.

Although this paper focuses exclusively on a meteorological appli-
cation, the spatio-temporal iVAE methods are applicable to any multi-
variate spatio-temporal data. For instance, in neuroimaging, magnetic
resonance spectroscopic imaging (MRSI) measures multiple chemicals
across the brain over a period of time, making it a multivariate spatio-
temporal application. Similarly, many traditional neuroimaging tech-
niques such as electroencephalography (EEG) or magnetoencephalog-
raphy (MEG) can be viewed as univariate spatio-temporal data. If
multiple similar clinical trials are performed on the same patient, the
resulting data can be treated as multivariate spatio-temporal.

In such scenarios, spatio-temporal iVAE methods could uncover
latent spatio-temporal patterns in brain function that are not directly
observable. To further explore the versatility of the proposed iVAE
methods, future work should include diverse real-world data examples,

such as neuroimaging or epidemiological pattern studies.
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Fig. B.9. Mean correlation coefficients of 500 trials for settings 1–6 for sample size with the number of spatial locations 𝑛𝑠 = 150 and the number of temporal observations 𝑛𝑡 = 75.
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Appendix A. Computational complexity analysis

The computational complexities of the proposed algorithms are
composed of two parts, forming the auxiliary data and training iVAE.
We use Big O notation to represent the worst case time and space
complexities, where 𝑂(𝑛) denotes linear growth in computation time
or memory usage with respect to the input size 𝑛. First, let us address
iVAE’s computational complexity which is very similar to any feed for-
ward neural network such as regular VAE. Using the Big O notation, the
computational time complexity for training the model is 𝑂(𝑛× 𝑛𝑤 × 𝑛𝑒),
where 𝑛 is the sample size, 𝑛𝑤 is the number of weights in the model and
𝑛𝑒 is the number of epochs. When the sample size 𝑛 grows, less epochs
are typically needed for training, which makes the model well scaleable
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Fig. B.10. Mean correlation coefficients for different radial basis function parameter settings of iVAEr. The boxplots present 500 trials for Setting 6 with the number of spatial
ocations 𝑛𝑠 = 150 and the number of temporal observations 𝑛𝑡 = 300.
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in terms of sample size. The memory usage, i.e. space complexity, is
𝑂(𝑛𝑤) for storing the weights of the model. The number of weights
𝑛𝑤 can be broken down to number of weights 𝑛𝑤1 in encoder–decoder
part and the number of weights 𝑛𝑤2 in auxiliary function. 𝑛𝑤1 and 𝑛𝑤2
re heavily dependent on the number and size of the hidden layers.
ypically fairly small neural networks (e.g. 3 layers with 128 units)

n encoder, decoder and auxiliary functions are sufficient. In addition,
𝑤1 depends linearly on the dimension of the input data and latent
imension whereas 𝑛𝑤2 depends linearly on the dimension of auxiliary
ata. Also, if the input dimension is very large (e.g. more than 100),
larger encoder–decoder network might be needed. Hence, the time

omplexity grows more when input dimension, latent dimension or
uxiliary data dimension grow.

In iVAEc, the time and space complexities are the lowest as the
oordinates are only scaled to form the auxiliary variables, meaning
hat using Big O notation, both time and space complexities are 𝑂(𝑛) for
orming and storing the auxiliary data. The auxiliary data is only two
imensional, which makes time complexity slightly lower compared to
ther algorithms. In iVAEs1-iVAEs3, the time complexity of forming
he auxiliary data is 𝑂(𝑚1 ×𝑚2 ×𝑚 × 𝑛), where 𝑚1 , 𝑚2 and 𝑚 are
he number of segments along each dimension. However, for iVAEs1,
here all dimensions are considered jointly, and hence the dimension
f auxiliary data can be very large, the space complexity is 𝑂(𝑚1×𝑚2×
 × 𝑛). For iVAEs2, the space complexity is 𝑂((𝑚1 × 𝑚2 + 𝑚 ) × 𝑛)

and for iVAEs3, it is 𝑂((𝑚1 + 𝑚2 + 𝑚 ) × 𝑛). In terms of computation
time, iVAEs3 is the most efficient of segmentation based algorithms as
the auxiliary dimension is the lowest. iVAEs2 is also efficient if the
number of spatial segments is not very high. In iVAEr, the time and
space complexities for forming and storing auxiliary data are 𝑂(𝐾 +
𝐾 ) × 𝑛, where 𝐾 and 𝐾 are numbers of spatial and temporal node
points, respectively. In all above iVAE variants, the space complexity
16 
an be reduced further by constructing auxiliary variables batch-wise
uring training process. In conclusion, the algorithms are well scalable
n terms of sample size 𝑛 and relatively well scalable in terms of
imensions of input data, latent data and auxiliary data (linear time
omplexity). However, if the auxiliary data are not formed batch-wise,
emory consumption may grow large if dimension of auxiliary variable

s very large. Since the algorithm is essentially composed of three feed
orward neural networks, encoder, decoder and auxiliary function, stan-
ard parallelization methods such as data parallelism, which distributes
he data batch-wise across multiple computation units, can be applied
o further reduce the overall computation time.

ppendix B. Additional simulation results

See Figs. B.8–B.10
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