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Abstract: Municipal solid waste (MSW) compost represents a sustainable alternative to plastic film
for mulching in viticulture. This study investigated the effects of MSW compost on vineyard soil
properties, specifically focusing on side effects such as soil temperature and microbial decomposition
activity, independently from its role in weed control. The experiment was conducted in a vineyard
located in the Mediterranean region (Southern Italy), with six different mulching treatments: black
polyethylene (PE) film, black and white biodegradable film, three different amounts of MSW compost
(8, 15, and 22 kg plant−1), and a control without mulching. Weed growth was monitored to determine
the optimal compost application amount. The 15 kg plant−1 treatment was selected for further
analyses, as it did not significantly impact weed growth compared to the control. Results indicated
that MSW compost mulching maintained lower soil temperatures compared to other treatments (up
to 5 ◦C in the warmest hours) and reduced the amplitude of the thermal wave up to 50% compared
to the non-mulched soil and even more compared to black film mulched soil, particularly during
the warmest periods. This suggests that MSW compost can mitigate heat stress on plant roots,
potentially enhancing plant resilience and preserving crop production also in stressful growing
conditions. Microbial decomposition activity, assessed using the tea bag index, was higher in the
MSW compost treatment during spring compared to the control, indicating temperature as a key
driver for organic matter decomposition, but this effect disappeared during summer. These findings
highlight the potential of MSW compost to support sustainable viticulture by reducing reliance on
synthetic mulching materials and promoting environmental sustainability through the recycling of
organic municipal waste.

Keywords: mediterranean region; organic fraction of municipal solid waste; agricultural plastic films;
microbial decomposition activity; tea bag index (TBI); soil temperature; weed control

1. Introduction

Mulching is a key soil management practice based on the application of a layer of
material on top of the soil surface [1]. It effectively controls weeds, enhances soil moisture
retention [2], and regulates soil temperature [3]. Additionally, it prevents soil erosion caused
by abiotic factors [4] and reduces soil compaction from heavy agricultural machinery [5].

Several studies have highlighted the role of mulching in viticulture. Steinmaus et al. [6]
and Mairata et al. [7] reported mulching as an alternative method to conventional weed
control methods that include mechanical cultivation, herbicide application, and manual
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control [8]. Mechanical cultivation involves using machinery to till the soil and remove
weeds, which can be labor-intensive and potentially harmful to soil structure. Herbicide
application involves the use of chemical substances to kill or inhibit weed growth, which
can raise environmental and health concerns. Manual control, while effective, is time
consuming and not always feasible for large-scale operations [9]. Various authors discussed
the contribution of mulching to improving the water use efficiency of grapevine [10] in
semi-arid conditions [11–13]. Prosdocimi et al. [14] focused on the role of mulching in
reducing soil erodibility and surface runoff. Ferrara et al. [15] observed positive impacts on
grapevine physiology and soil fertility using exhausted olive pomace as an organic mulch.
Alternative organic mulches, such as compost, not only improve grapevine health and soil
texture but also contribute to soil fertility, and are particularly beneficial in the context of
circular economy and sustainable practices [16]. Their relevance is even more pronounced
in arid climates, where challenges include both soil salinization and the limited availability
of organic matter [17].

Various materials can serve as mulch, including vegetative residues, plastic films,
biological geotextiles, gravel, and crushed stones [18]. Therefore, mulches are generally
categorized into inorganic, organic, and special-type materials. Inorganic mulches include
plastic film, with or without holes—widely used in agriculture—landscape fabric—used
alone or below other mulches—and biodegradable or photodegradable plastic film [19].
Polyethylene (PE) mulch films, produced using non-renewable petroleum-based polymers,
can have negative effects on the environment if not properly recovered and disposed of
after use [20]. Thus, considerable research efforts have been expended in developing and
investigating biodegradable mulch alternatives to PE mulching film in the last decades [21]
and in investigating the use of organic mulch like MSW compost as a sustainable alter-
native [18]. Biodegradable and photodegradable plastic films were developed to address
the environmental issues caused by low-density PE accumulation and plastic waste in soil
and further problems resulting from improper disposal [22]. Biodegradable mulches, now
widely available, consist of various polymers or additives like starch, cellulose, polyhy-
droxyalkanoates (PHA), and polylactic acid (PLA) [4]. The functionality of bio-based films
employed in agriculture is still a matter of major concern [23]. Organic mulches, which
should be weed-free, easy to apply, and readily available, often consist of on-site or off-site
plant residues left on the soil surface after cropping [19]. Further organic materials like
shredded grass, litter, compost, and small branches can also be utilized. In particular, MSW
compost enhances soil carbon and nitrogen content and enzyme activities, providing a
cost-effective alternative to expensive chemical amendments [24,25]. However, ensuring
the safe use of MSW compost in agriculture requires careful monitoring for potential con-
taminants and heavy metals [26]. Special mulches include living mulch, reflective mulch, or
biodegradable mulch [18,27]. Each type of mulch meets different needs and suits different
environments. Organic mulches improve soil health and fertility over time as they get de-
composed, but this decomposition requires a regular replenishment. In contrast, inorganic
and specialized mulches are more durable and require less maintenance; however, they are
typically more costly and often impractical for large-scale agricultural use due to both their
higher initial investment and potential environmental impact [28]. The choice of mulch
depends on factors such as crop specific needs, local climate conditions, the availability of
materials, and the farmers’ goals [29].

In agriculture, a variety of application techniques are utilized for mulching, each
with distinct benefits. For example, traditional flat mulching involves covering with
organic, inorganic, or a combination of materials to maintain a specific thickness. Plastic
mulching with holes, a variation of flat mulching, partially covers the soil to improve
rainfall infiltration and aeration [4,18]. Another technique, ridge-shaped mulching, involves
covering ridges with plastic to direct rainwater into furrows, thus reducing surface runoff
and improving water use efficiency. This method is especially effective in rainwater
harvesting and reducing evaporation. Additionally, the ridge-furrow system, utilizing both
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plastic film and organic mulches, optimizes water availability for crops and increases soil
productivity, demonstrating significant environmental benefits in semi-arid regions [30].

To assess the effectiveness of mulching practices, weed suppression is generally as-
sessed by analyzing the percentage of weed coverage in a selected area, for instance, using
smartphone applications [31]. Furthermore, several other parameters could be monitored
in order to evaluate the additional beneficial effects of mulching. For example, soil moisture
monitoring is useful to assess water conservation [18,32]; soil and atmospheric temperature
allow evaluating the insulative effects of mulching against temperature fluctuations [18].
A further critical parameter is the soil decomposition activity, which provides insights
into the contribution of mulching to soil fertility and ecosystem health by influencing the
microbial degradative functions [33]. Decomposition of organic matter (OM) is one of the
most important soil functions in agroecosystems; therefore, it has been studied extensively,
and one of the most useful techniques is the litterbag method [34]. Among these methods,
the “tea bag index” uses readily available green tea and red rooibos [33] to estimate OM
weight loss due to microbial decomposition.

The aim of the present study was to evaluate the effects of MSW compost mulching
on vineyard soil properties, specifically focusing on soil temperature and microbial de-
composition activity. Additionally, the research attempted to identify the optimal compost
application amount for effective weed control. By using MSW compost as a mulch mate-
rial, the study aims to support sustainable agricultural practices by reducing reliance on
synthetic mulching materials, aligning with circular economy principles, and promoting
environmental sustainability through the recycling of organic municipal waste.

2. Materials and Methods
2.1. Vineyard Localization and Climatic Conditions

The 5-year-old experimental vineyard (Vitis vinifera cv. ‘Primitivo’, rootstock M4) is
located in Salento (Apulia region, Southern Italy), 40◦27′50.6′′ N–17◦58′18.7′′ E, and belongs
to the company “Cantina Due Palme” (Cellino San Marco-BR-, Italy) (Figure S1A,B).

Soil physico-chemical analyses were performed by the winery “Cantina Due Palme”
in 2020. The soil had about 55 g kg−1 of skeleton, 61% of sand, 26% of silt and 13% of
clay. The pH was 7.6, and the soil conductibility was 0.194 dS m−1. Ca, Mg, K, and Na
concentrations were 2367 g kg−1, 158 g kg−1, 404 g kg−1, and 20 g kg−1, respectively. Total
limestone was 41 g kg−1. The soil was poor in organic matter (1%), as well as in nitrogen
(0.5 g kg−1).

The site is on flat land, 50–60 m a.s.l, with a typically Mediterranean climate, hot and
dry in summer and mild and humid in winter, belonging to the class Csa in the Köppen-
Geiger classification [35]. During summertime, intense heat waves are prevalent over the
Salento peninsula due to the dominance of a subtropical high-pressure system for several
days. In contrast, mild and wet winters exhibit moderate and variable temperatures [36].
In the Salento peninsula, the average annual precipitation amounts are approximately
650 mm [37], primarily occurring from January to March and throughout the autumn
season [38]. Summers are typically characterized by dry conditions, where short and intense
convective rainstorms generate mostly low rainfall. The average annual temperature is
around 16–17 ◦C [39].

Table 1 shows an overview of the main weather parameters observed throughout the
year 2023 in the territory of the experimental study. Data was obtained from a weather
station (iMetos 3.3, Pessl Instruments GmbH, Weiz, Austria) positioned at ~4 km from
the experimental site. The climatic parameters were measured with a frequency of 5 min,
averaged, and recorded by the data logger every 60 min. Air relative humidity was
measured by a Hygromer® IN-1 sensor (Rotronic, Zurich, Switzerland). Air temperature
was measured by a PT1000 sensor and precipitation by a double-tipping bucket rain gauge
(Pessl Instruments GmbH, Weiz, Austria). The maximum and minimum temperature
values (Tmax and Tmin, respectively) were calculated on a daily basis, and averaged over
the month (Tavg). Precipitation is represented as a monthly cumulative value. During
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the winter season, Tavg ranged from 8.1 ◦C to 11.5 ◦C, with the lowest daily minimum
temperature recorded in February (7.6 ◦C). Relative humidity consistently remained high
during this period, fluctuating between 78.9% and 81.9%, indicative of humid conditions.
By May, Tavg rose to 18.4 ◦C, while relative humidity remained relatively stable (83.7%).
During the summer season, Tavg peaked at 27.5 ◦C in July and 26.3 ◦C in August, coinciding
with a noticeable drop in relative humidity, which fell to 63.8%. The precipitation pattern
remained relatively consistent until May, experiencing a significant spike in April with
155.6 mm of rainfall. A transition to a drier period occurred from June onwards, resulting
in no precipitation in August, before returning to higher values for the remaining months.

Table 1. Overview of the main weather parameters during the test year 2023.

Month
Air Temperature (◦C)

Air Relative Humidity (%) Precipitation (mm)
Tavg Tmax Tmin

Jan-23 9.6 10.2 9.1 90.4 77.4
Feb-23 8.1 8.7 7.6 78.9 13.4
Mar-23 11.5 12.1 10.9 81.9 50.2
Apr-23 12.9 13.5 12.3 83.4 155.6
May-23 18.4 18.9 18.0 83.7 60.6
Jun-23 22.8 23.4 22.1 77.9 29.0
Jul-23 27.5 28.1 26.9 63.8 0.0

Aug-23 26.3 26.8 25.8 67.7 1.2
Sep-23 24.0 24.5 23.4 73.8 7.4
Oct-23 19.9 20.5 19.3 83.2 49.4
Nov-23 14.5 15.1 14.2 84.5 154.2
Dec-23 10.2 10.8 9.4 89.5 113.8

2.2. Experimental Plan

The vineyard implantation consists of rows, with a spacing of 1 m intra-row and
2.2 m inter-row between the plants, a density of around 4500 plants per hectare, and a
vertical shoot positioning with Guyot pruning. Five rows were included in the experiment
(Figure 1): the first and last row (rows 1 and 5, respectively) were considered borders and
were neither treated nor monitored. In the three middle rows (rows 2, 3 and 4), grapevine
plants were divided into eight blocks of six plants each; the first and last blocks (blocks
A and H) were also considered borders and were neither treated nor monitored. Each of
the six internal blocks (blocks B to G) of rows 2, 3, and 4 was then subjected to one of the
following treatments:

1. Film-black: mulching with a traditional black PE film;
2. Film-b/w: mulching with a black and white biodegradable film;
3. Compost (8): mulching with municipal solid waste compost (MSW compost)—8 kg

plant−1, 4 cm thick;
4. Compost (15): mulching with MSW compost—15 kg plant−1, 6.5 cm thick;
5. Compost (22): mulching with MSW compost—22 kg plant−1, 10 cm thick;
6. Control (no mulching).

Compost quantities were selected based on the previous experience of the authors.
The mulch films, black plastic film (Film-black) and biodegradable and bi-color film (Film-
b/w), were chosen as conventional mulching techniques, for comparison to the MSW
compost treatments. In particular, the innovative Film-b/w was chosen with the purpose
of assessing the feasibility of its application in vineyards.

Therefore, each treated row contained one block per treatment, and the treatments
were applied according to a completely randomized design to finally obtain three replicates
per treatment randomly positioned within each row (Figures 1 and S1C). During the
experiment, inter-row spaces were left untreated and were neither tilled nor unweeded.
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Figure 1. Experimental design. Three randomized replicates per each treatment were created, one
in each treated row (rows 2, 3, and 4). Each block contained six Vitis vinifera cv. “Primitivo” plants.
Rows 1 and 5, and blocks A and H were considered as borders.

Immediately after an initial tillage, common to all treatments, mulching was applied
on 24 March 2023 and the trial was monitored until September 2023, to include the complete
grapevine vegetative season. The compost used in this work as mulching was produced and
provided by the company Heracle S.r.l. (Erchie-BR, Italy); it consists of a composted mixture
of green residues and the organic fraction of municipal solid waste (MSW) (Table S1),
collected through separate waste collection at source and subjected to strictly controlled
biological processes. The compost was weighed in a bucket, and the same amount (8, 15, or
22 kg, according to the treatment) was distributed around each grapevine plant by keeping
a width of ~50 cm (~25 cm to both sides of the vine line). Thus, keeping the treatment
width constant, the thickness of the compost layer changed accordingly to the amount of
compost used.

As a comparison with MSW compost mulching, soil was covered with black mulching
film in UV-stabilized PE, hereafter “Film-black” (Tenax Black Cover, Tenax SpA, Lecco,
Italy; technical data from manufacturer: thickness 60 micron, weight 37 g m−2) or with
black/white biodegradable mulching film made with the bioplastic ecovio® (BASF), here-
after “Film-b/w” (Ecotelo, Filnova S.r.l., Milano, Italy; technical data from manufacturer:
thickness 18 micron, weight 24.84 g m−2). The same wideness of the coverage made with
MSW compost mulching (~50 cm) was maintained.

2.3. Canopy Cover/Weed Control

To identify the mulching strategy most suitable for the experimental purpose, weed
growth was measured during springtime. In 18 April, 29 May and 23 June 2023, the
percentage of grass cover was measured using the smartphone application “Canopy Cover
Free” [40]. In detail, the application calculates the percentage of green area in a photo of the
soil (as shown in Figure S2). In each block, 3 photos were collected (between the 2nd and
3rd plants; between the 3rd and 4th plants; and between the 4th and the 5th plants). Thus,
on each date, 9 measurements were collected for each treatment. As explained in the next
paragraphs, the treatment “Compost (15)” (mulching with MSW compost—15 kg plant−1,
6.5 cm thick) was selected for further analyses (soil temperature and decomposition of
organic matter) due to the similarity to the control treatment in the weed growth dynamics.

2.4. Soil Temperature

The soil and the atmospheric temperature were logged continuously in the period
July–September 2023 by using portable WatchDog 1000 Series Micro Stations (Spectrum
Technologies Instruments, Aurora, IL, USA) placed at 170 cm height inside the vineyard
at the top of the support poles (Figure S3). The atmospheric temperature measurement
was carried out using the internal sensor of one of the micro-stations. The station was
adequately shielded from solar radiation (Figure S3). The soil temperature was detected
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by the SMEC 300 sensor (Spectrum Technologies Instruments, Aurora, IL, USA) placed
at 20 cm soil depth under the treatments Film-black, compost (15), and control. One soil
temperature sensor was used for each treatment. The stations stored the values with a
10 min measurement interval.

The thermal performance of the different treatments was assessed by the temperature
mean values of the soil under the black film (TFb), under the compost layer (TC15), and of
the untreated soil used as a control (TCtrl). Air temperature (Tair) was also recorded.

2.5. Decomposition of Organic Matter (Tea Bag Index)

The tea bag index (TBI) method is a special litterbag method that was used to assess
the soil microbial activity through the estimation of the organic matter decomposition
rate [33]. The green tea used was the Lipton green tea (EAN: 8711327515765); the red tea
used was the Lipton rooibos tea (EAN: 8711327514348). Both of them were purchased at
Dutchsupermarket (Gelderland, NL; article codes: THEE049 and THEE056, respectively).
Despite the changes in tea bag net manufacturers that occurred in the last ten years, the
method was proven to still be valid [41]. The content of green tea comprises a higher
fraction of easily degradable organic compounds, while rooibos tea contains a higher
fraction of more recalcitrant organic compounds. Tea bags were weighed and then buried
at a depth of ~12 cm, one green and one red tea bag per block of the treatments Film-
black, compost (15), and control, halfway between two vines. According to the original
protocol [33], after a burial time of 3 months, tea bags were recovered, dried at 65 ◦C for
48 h, and then re-weighted to calculate the mass loss (excluding the weight of the bag, the
cord and the label). The measure was repeated twice, in the periods April–June (spring)
and July–September (summer). This method was already applied in vineyards [42–44].
Green tea and red tea mass loss were used as a reliable and intuitive proxy to estimate
the degradation of labile organic matter fraction and recalcitrant organic matter fraction,
respectively [45–47].

2.6. Statistical Analyses

Data were analyzed using SPSS v.20 software (IBM Corporation, Armonk, NY, USA)
or MATLAB v.2023b (The MathWorks Inc., Natick, USA). For weed control and tea bag
analysis (Sections 2.3 and 2.5, respectively), one-way ANOVA was used to compare means
between treatments for each measurement date. For soil temperatures (Section 2.4), one-
way analysis of variance (ANOVA) was carried out to identify significant differences
between TFb, TC15, TCtrl, and Tair. One-way ANOVA analyses were also performed for
comparing the mean temperature difference between the soil (under the black film, the
compost layer, and the control soil) and the air (∆TFb, ∆TC15, ∆TCtrl, respectively); the
analyses were carried out for every value of the air temperature (1 ◦C intervals) in the
studied summer period. Additionally, to evaluate the effects of treatments across the whole
monitored period, a repeated-measures ANOVA was used. All ANOVAs were followed by
a post hoc test (Tukey HSD or Duncan’s) at p ≤ 0.05.

3. Results
3.1. Weed Control and Treatment Selection

The trend of weed growth during the first 3 months of the experiment is reported
in Figure 2. To inhibit weed growth, with an effect similar to the one obtained using
mulching films, a high quantity of compost was necessary (22 kg plant−1). However,
this effect lasted less than that obtained with the mulching films. In fact, the compost
mulching (22 kg plant−1) favored weed growth later on. On the contrary, a thin compost
layer (8 kg plant−1) stimulated the weed growth earlier, inducing a significant increase in
the covered surface already 2 months after the application. It is worth noting that, three
months after the application, any of the compost mulching produced significant differences
from the non-mulched control.
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Figure 2. Trend in weed growth, expressed as percentage of the soil covered by green canopies. The
whisker indicates the standard error. Different lowercase letters indicate significantly different means
between the treatments for each date (Duncan post hoc test, p < 0.05). Different capital letters indicate
significantly different means between the treatments with repeated measures for the entire duration
of the surveys (Duncan post hoc test, p < 0.05). n.s.= not significant.

The intermediate quantity of compost (15 kg plant−1) did not produce any significant
effect on the percentage of surface covered by weeds with respect to the non-mulched
control during the springtime. Thus, this treatment was selected to highlight the effects of
compost mulching on the soil properties, excluding weed interference.

Both mulching films were able to significantly reduce weed growth, but differences
among them were not significant. Thus, the most commonly used PE black film was
selected as a conventional reference mulching film product.

3.2. Soil Temperature

Statistically significant differences were always found when comparing the values of
TFb, TC15, TCtrl, and Tair in each month and over the entire period of July–September 2023
(Figure 3). The average soil temperature followed the trend of the air temperature related
to the advancement of the months. Interestingly, the lowest average soil temperature was
recorded in each month as well as in the whole period in the compost treatment, followed
by the control, and then the Film-black. Regardless of the different weather conditions,
the adoption of the compost layer allowed for maintaining the average soil temperature
at values lower than TCtrl, demonstrating the cooling effect of the MSW compost during
the analyzed summer period. The lowest mean soil temperature (27.5 ◦C) was recorded
in the compost treatment in September, while the black film kept the soil temperature
over 29.1 ◦C. During July, the month with the highest mean air temperature (28.6 ◦C), the
compost layer allowed for maintaining the mean TC15 under 31.1 ◦C, significantly lower
than the mean TCtrl (31.7 ◦C) and TBf (32.4 ◦C).
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Figure 4 shows the mean daily patterns of air and soil temperature from July to
September 2023. As expected, minimum temperatures were typically observed for both air
and ground temperatures during the early morning hours. The air temperature exceeded
all ground temperatures from 09:00 until 14:00; the pattern reversed from 18:00 to 09:00.
In comparison to the temperature of the control soil, the Film-black showed significantly
higher values at all times. This difference notably increased between 11:00 and 17:00. In
contrast, the soil temperature under the compost was higher than the control between 05:00
and 11:00 and was lower between 13:00 and 01:00; it was not different from control between
02:00 and 04:00. Note that the flexure between 13:00 and 14:00 is due to the shading of
the vineyard.

Significant differences were shown for the three treatments over the entire monitored
period; in particular, the Film-black showed the highest values, the control intermediate
values, and the compost the lowest values (Figure 4). Significant differences between the
treatments at almost all times, except between Film-black and compost from 05:00 to 09:00
and between compost and control from 02:00 to 04:00, were also revealed.

The damping of thermal waves at 20 cm was on average higher in compost mulched
soil with a mean amplitude of 3.1 ◦C than in the control and black film mulched soil with
mean amplitude values of 6.0 ◦C and 7.4 ◦C, respectively, during the whole summer period
(Figure 4). Monthly mean amplitudes in the soil covered with the compost were lower
than about 47–49% of those calculated for the control soil, while increments of 9–35%
were associated with the black film treatment. The compost allowed for a reduction in the
daily fluctuation of soil temperature, due to the relevant lowering of the daily maximum
temperature value. It is worth considering that temperature peaks are not detected through
the analysis of average data.

A more in-depth analysis of the mean temperature difference between the soil under
the different treatments and the air (∆TFb, ∆TC15, ∆TCtrl) was carried out (Figure 5). The
results showed that, for air temperature values above 23.0 ◦C, the compost on average
allowed for maintaining the soil temperature slightly cooler than the control and fairly
cooler than the black film, with a more pronounced effect for air temperature values above
28.1 ◦C.
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3.3. Decomposition of Organic Matter (Tea Bag Index)

Tea bag index, a method used as a proxy for microbial decomposition activity in
soil, was measured for the treatments “Compost (15)”, “Film-black” and “Control” in two
consecutive 90-day periods (spring and summer); it showed that percentages of mass losses
due to microbial decomposition ranged between 40% and 60% for the labile organic fraction
(green tea) and between 18% and 40% for the recalcitrant organic fraction (rooibos red tea)
(Figure 6A,B). The decomposition of recalcitrant organic fraction (red tea) was higher in
spring (April–June) than in summer (July–September) (t-test, p = 0.007), while labile organic
fraction (green tea) did not show significant differences between the two periods. MSW
compost acted similarly to the Film-black in spring, stimulating the microbial degradation
activity of the labile organic fraction (green tea) of the soil (Figure 6A), while in summer
this effect disappeared and the MSW compost values were similar to the untreated control
(Figure 6B). The same trend was observed for the recalcitrant organic fraction (rooibos
red tea), although no statistical significance was observed in this case due to a higher
variability between the three replicates (Figure 6A,B). Over the two periods (ANOVA
repeated measures), the mulching treatment significantly affected the weight loss of green
tea (p = 0.016), while no significance was found for red tea (p > 0.05) (Figure 6).
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4. Discussion

It is well known that MSW compost could be used in viticulture as a fertilizer and that
its application as organic mulch on the vine row could inhibit weed growth, modulating the
competition among plants. However, other “side-effects” could be exploited: application
of MSW compost can maintain a lower soil temperature than the soil under the black PE
mulch film and also be compared to uncovered soil, which is beneficial for the plant root
system. Furthermore, besides chemical nutrition, soil biological fertility could play an
important role in plant resilience. In this work, we explored these side effects of compost
mulching using MSW-derived compost.

The most widely used mulch in commercial agricultural systems is PE plastic film [48],
because of its relatively modest cost, availability, and physical and mechanical proper-
ties that enable achieving several benefits [49]. MSW compost, during the summer, kept
on average lower soil temperature values than in the control and Film-black treatments,
particularly with lower peak values experienced as a consequence of high levels of so-
lar radiation intensity. An analogous effect on soil temperature was observed by Chan
et al. [50] regarding the use of composted mulch in vineyards in Australia; the application
of composted mulch significantly changed the soil temperature at 10 cm depth, leading to
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a shorter daily temperature range, lowering daily maximum temperatures, and rising daily
minimums. Similar results on soil temperature were evaluated in vineyards with organic
mulch under Mediterranean conditions during the summer months, where the monthly
maximum soil temperature, at a depth of 7 cm, was found to be lower in mulched soil [51].
By maintaining lower soil temperatures during summertime, compost can mitigate heat
stress on plant roots, enhancing their health and overall function. This is crucial, as extreme
temperatures can reduce root activity, hinder water and nutrient uptake, and ultimately
affect plant growth and resilience. Maintaining root zone temperatures below 30 ◦C is
recommended to ensure normal growth and functionality. A study carried out in China
on grapevines showed that temperatures above 30 ◦C can reduce root and shoot growth,
decrease chlorophyll content in leaves, and increase lignin in roots and shoots; additionally,
high root zone temperatures can shift root respiration to cyanide-resistant respiration,
releasing more heat to alleviate stress damage [52]. Thus, using compost to stabilize soil
temperature can be very useful for maintaining healthy root systems during the hottest
part of the day. In fact, as shown in Figure 5, the cooling effect of the compost mulching
has a higher magnitude at higher, thus more stressful, temperatures (>28 ◦C).

The values of weight loss for both green and red tea observed in our work are coherent
with those reported previously in vineyards [45–47]. The effect of MSW compost on
microbial decomposition activity was different in the two different periods investigated
(spring and summer): in spring, the compost enhanced the soil decomposition activity
with respect to the untreated control, showing values similar to those of the treatment with
Film-black, while in summer this effect disappeared. Soil microbial decomposition activity
is mainly dependent on humidity and temperature [53]; thus, our results can be explained
by observing the temperature trend, which was significantly affected by the mulching
treatments in our experiment. In fact, soil temperature, measured in summer, showed
exactly the same trend as soil decomposition activity (compare Figure 3 with Figure 6B).
Therefore, temperature appears to be the main driver for the decomposition of organic
matter, both labile and recalcitrant, in summer. However, other factors may play a role in
this seasonal variation of the decomposition activity. For example, the moisture content
obviously reduces in summer, and this negatively influences both the growth rate and the
metabolism of microbe cells.

In spring, the compost stimulated soil decomposition activity. Organic matter decom-
position is a task performed by soil microbes that depends not only on microbial abundance
but also on microbial diversity [54,55]; keeping this in mind, besides soil temperature, a
reason for the increase in decomposition activity in spring (Figure 6A) could be a direct
“microbial inoculation effect” by the MSW compost applied. In the following period, the
microbial community likely undergoes physiological changes, and the initial inoculation
effect is expected to reduce. In general, active soil microbes decompose organic matter,
releasing essential nutrients that promote robust plant growth. This activity also enhances
soil aeration and water retention, supporting better root development and resilience to
environmental stresses like salinity, drought, and nutrient deficiency. Additionally, ben-
eficial microbes can increase nutrient mobility and availability in the soil and can also
outcompete harmful pathogens, thus reducing disease incidence and improving general
plant fitness [56,57]. However, confirming this would require thorough microbiological
analyses of both soil and MSW compost used [58], to assess the increment in soil microbial
load as well as a shift of the microbiota towards an enrichment of heterotrophic species
particularly efficient in decomposition activity.

On the contrary, in summertime, the organic matter decomposition was kept lower
with respect to the one observed with plastic films. Soil degradation, resulting in low
organic matter contents, is a key problem in hot environments (such as the Mediterranean
regions), and it could be worsened by climate change [59,60]. Thus, the soil temperature
decreases, and the decomposition activity consequently decelerates. This could be an
important advantage in the choice of MSW compost as mulching material, as it determines
the conservation of organic matter in the soil in hot climates.
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Although in this work we did not collect data about the effects the treatments had on
vine nutrition and grape quality, the results obtained (especially with tea bags) indicate
that MSW compost increases the turnover of organic matter into the soil. This could benefit
the plants in terms of available nutrients, which could in turn impact the quality of the
grapes. However, this requires further dedicated research.

Further studies could implement the knowledge, including applications in different
environmental conditions (e.g., different sites and different climates). Our analyses did
not highlight any negative effects of the MSW compost; however, we cannot exclude that
further investigations could find different results.

5. Conclusions

The application of MSW compost maintained lower soil temperature values than
the soil under the black PE mulch film and was also compared to the control soil. Thus,
using MSW compost to stabilize soil temperature is helpful for maintaining healthy root
systems, particularly during the hottest hours of the day. We also found that MSW compost
stimulates the soil biological activity in the first period after addition, but it reduces the
organic matter lost during the hottest period with respect to the plastic film. However,
more studies are needed to disentangle the effects of compost-derived microbes from those
of environmental factors.

The application of MSW compost as a mulch material supports sustainable practices
in viticulture and, in general, in tree crop management, by recycling municipal waste and
reducing the use of synthetic materials like PE films. This aligns with the principles of the
circular economy and promotes environmental sustainability in agriculture.
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//www.mdpi.com/article/10.3390/horticulturae10070769/s1, Table S1: Physico-chemical param-
eters of MSW compost. Values derived from five subsamples of the municipal solid waste (MSW)
compost used in this work, as provided by the producing company; Figure S1: Map and photo
of the experimental site. (A) Location of the Apulia region in south-east Italy; (B) zoomed-in area
(background map from Google Earth) with the red rectangle indicating the location of the experi-
mental vineyard; (C) detail of the experimental vineyard with the different mulching treatments;
Figure S2: Example of the Canopy Cover Free smartphone application. (A) Original photo of weeds.
(B) Identification and measurement of the green area (leaves); Figure S3: Micro station localized on
the vineyard row connected to sensors for recording both soil and air temperature.
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