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A B S T R A C T

This study aims to generalize the discrete integer-order SEIR model to obtain the novel discrete fractional-order
SEIR model of COVID-19 and study its dynamic characteristics. Here, we determine the equilibrium points of
the model and discuss the stability analysis of these points in detail. Then, the non-linear dynamic behaviors
of the suggested discrete fractional model for commensurate and incommensurate fractional orders are
investigated through several numerical techniques, including maximum Lyapunov exponents, phase attractors,
bifurcation diagrams and 𝐶0 algorithm. Finally, we fitted the model with actual data to verify the accuracy of
our mathematical study of the stability of the fractional discrete COVID-19 model.
Introduction

The Coronavirus Pandemic (COVID-19) is an infectious sickness that
is highly contagious caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2 virus). In December 2019, Wuhan, China,
became the first city to report an outbreak of COVID-19. The World
Health Organization (WHO) declared in early 2020 that the epidemic
had spread throughout the globe, creating a worldwide public health
emergency. Since then, more than 450 million people have been re-
ported to be infected with the COVID-19 virus, with over 6 million
deaths [1,2]. In most cases, the virus is communicated via the air, and
a person may get the illness by inhaling air that has been contaminated
by the virus-containing nose and mouth spray droplets [3]. The elderly
and those suffering from chronic illnesses such as obesity, diabetes,
respiratory issues, cardiovascular disease, and other conditions are the
most vulnerable [4,5]. In response to the rapid spread of the COVID-
19 outbreak, governments have implemented a variety of methods to
contain it, such as social distancing, isolation of infected individuals,
partial and complete lockdowns of some facilities, and other measures.
These policies had a major negative impact on economic development
and growth. Therefore, in an attempt to promote the economy, several
governments have eased these measures. As a result, the outbreak has
not yet been brought fully under control. In order to limit the spread
of COVID-19 and immunize the population, several laboratories have
developed some vaccines, and some of these vaccines are approved
for use. Vaccination is an essential tool in the control and mitigation
of epidemic disease outbreaks. According to official World Health
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Organization statistics, more than 10.5 billion doses of vaccine have
been administered globally to date [6].

Fractional calculus is a significant tool for mathematical modeling
of numerous issues in physics and mathematics. Discrete fractional
calculus has drawn the interest of a great number of researchers during
the last several years [7], and they have been increasingly interested
in its potential applications in neural networks, secure communication,
biology, and other domains. Recently, numerous different dynamics, in-
cluding chaos, hyperchaos and coexisting attractors in fractional-order
systems, have been explored [8–11]. For example, the hyperchaotic
dynamics of the fractional generalized H’enon map have been ana-
lyzed [12]. In [13], a 3D fractional iterated map has been developed,
in which this fractional map was shown to have hidden attractors
whereas, the chaos in the fractional Hénon-Lozi type map has been
examined in [14]. The authors in [15] exhibited the rich chaotic be-
haviors of a new fractional-order map with an infinite line of equilibria,
while In [16], Khennaoui et al. investigated the chaotic dynamics and
combined synchronization of three two-dimensional maps. Because of
these distinguishing characteristics, fractional-order iterated maps have
been extensively researched in a variety of academic domains.

Researchers in the field of epidemiology have widely used fractio-
nal-order operators [17–20]. Recent studies have focused on the emer-
gence of the COVID-19 pandemic, where it has garnered considerable
interest recently. The authors of [21] developed a mathematical model
for COVID-19 that took into consideration both asymptomatic and
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symptomatic groups with diminishing immunity. Fractional derivatives
were used to show the behavior of the model of COVID-19 in [22].
Ogunrinde et al. studied the dynamic model of COVID-19 and citizens’
reaction [23], while the complex dynamics of a fractional SIR system
in the context of COVID-19 has been discussed by Majee et al. in [24].
In [25], the authors presented a SEIRP model of COVID-19 based
on Caputo fractional derivative, whereas Kottakkaran et al. examined
the SIRD model of COVID-19 based on real data [26]. In addition,
the dynamical of a novel discrete fractional SITR COVID-19 model
was analyzed in [27]. Further mathematical models connected to the
COVID-19 pandemic may be found [28–31].

In this research, we reformulate a new fractional discrete SEIR
model by using the Caputo fractional difference operator, then we
examine the model’s dynamics and analyze the stability of the equi-
librium points of the system at different fractional values in detail by
using theoretical and numerical techniques. In addition, we will use
COVID-19 data from the United Kingdom and Italy in this model to
verify the accuracy of our mathematical study. The work is structured
as follows: The SEIR mathematical model for COVID-19 and some
basic preliminaries to discrete fractional calculus are presented in Sec-
tion ‘‘The SEIR fractional-order discrete model’’. In Section ‘‘Stability
analysis’’, the fixed points and their regions of stability are explored
in detail. The non-linear dynamic behaviors of the suggested discrete
fractional model and the 𝐶0 complexity algorithm for commensurate
and incommensurate fractional orders are investigated in Section ‘‘Non-
linear dynamics of the COVID-19 model’’. Finally, Section ‘‘Discussion’’
fitted the model with real data obtained from two nations, the United
Kingdom and Italy, to verify the accuracy of our mathematical study of
the stability of the fractional discrete COVID-19 model.

The SEIR fractional-order discrete model

In this section, we will present the 𝑆𝐸𝐼𝑅 discrete model proposed
in [32], which consists of susceptible group 𝑆, infected group 𝐼 , ex-
posed group 𝐸 and recovered group 𝑅. The model’s structure as well
as the transmissions between its groups have been depicted in Fig. 1.
The 𝑆𝐸𝐼𝑅 model can be described as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑆𝑚+1 = 𝜆 + (1 − 𝜇)𝑆𝑚 − 𝛽1 𝑆𝑚𝐸𝑚 − 𝛽2 𝑆𝑚 𝐼𝑚 + 𝜏𝑅𝑚,

𝐸𝑚+1 = 𝛽1 𝑆𝑚 𝐸𝑚 + 𝛽2 𝑆𝑚 𝐼𝑚 + (1 − 𝜇 − 𝜙)𝐸𝑚,

𝐼𝑚+1 = 𝜙 𝐸𝑚 + (1 − 𝜇 − 𝜂)𝐼𝑚,

𝑅𝑚+1 = 𝜂 𝐼𝑚 − (𝜇 + 𝜏)𝑅𝑚,

(1)

𝛽1 and 𝛽2 are referred to as infection rates, and they are defined by
𝛽1 = 𝜌1𝜅1

𝑁 and 𝛽2 = 𝜌2𝜅2
𝑁 , where 𝜌𝑖 and 𝜅𝑖 (𝑗 = 1, 2) represent the

probabilities of spreading the disease and the average contacts of each
person, respectively, and 𝑁 represents the total population (𝑁 = 𝑆 +
𝐸+𝐼+𝑅). 𝜆 denotes the recruitment rate to the susceptible group and 𝜇
s the natural disease death rate. 𝜂 represents the recovering rate of the

infected group, 𝜙 represents the rate of transmission from the exposed
group to the infected group, and 𝜏 represents the rate of transmission
from the recovered group from infection to the susceptible group.

Now, assume that the infection rate 𝛽 = 𝛽1 = 𝛽2 and according to
= 𝜆

𝜇 , the 𝑆𝐸𝐼𝑅 discrete model (1) may be simplified to the following
hree-dimensional equivalent system:

𝑆𝑚+1 = 𝜆
(

1 + 𝜏
𝜇

)

+ (1 − 𝜏 − 𝜇) 𝑆𝑚 − 𝛽
(

𝑆𝑚 𝐸𝑚 + 𝑆𝑚 𝐼𝑚
)

− 𝜏
(

𝐼𝑚 + 𝐸𝑚
)

,

𝐸𝑚+1 = 𝛽
(

𝑆𝑚 𝐸𝑚 + 𝑆𝑚 𝐼𝑚
)

+ (1 − 𝜇 − 𝜙)𝐸𝑚,

𝐼𝑚+1 = 𝜙 𝐸𝑚 + (1 − 𝜇 − 𝜂) 𝐼𝑚.

(2)
2

The new fractional discrete-time COVID-19 model is obtained by
using the Caputo-like difference operator 𝐶𝛥𝛾𝑖
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⎪

⎪
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⎨
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⎪
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⎪

⎩

𝐶𝛥𝛾1
0 𝑆(𝜈) =𝜆

(

1 + 𝜏
𝜇

)

− (𝜏 + 𝜇)𝑆
(

𝜈 − 1 + 𝛾1
)

− 𝛽
(

𝑆
(

𝜈 − 1 + 𝛾1
)

𝐸
(

𝜈 − 1 + 𝛾1
)

+ 𝑆
(

𝜈 − 1 + 𝛾1
)

𝐼
(

𝜈 − 1 + 𝛾1
)

)

− 𝜏
(

𝐼
(

𝜈 − 1 + 𝛾1
)

+ 𝐸
(

𝜈 − 1 + 𝛾1
)

)

,

𝐶𝛥𝛾2
0 𝐸(𝜈) =𝛽

(

𝑆
(

𝜈 − 1 + 𝛾2
)

𝐸
(

𝜈 − 1 + 𝛾2
)

+ 𝑆
(

𝜈 − 1 + 𝛾2
)

𝐼
(

𝜈 − 1 + 𝛾2
)

)

− (𝜇 + 𝜙)𝐸
(

𝜈 − 1 + 𝛾2
)

,
𝐶𝛥𝛾3

0 𝐼(𝜈) =𝜙𝐸
(

𝜈 − 1 + 𝛾3
)

− (𝜇 + 𝜂) 𝐼
(

𝜈 − 1 + 𝛾3
)

,

(3)

for 𝜈 ∈ N1−𝛾 , where 𝑁1−𝛾 = {1 − 𝛾, 2 − 𝛾, 3 − 𝛾,…}, 0 < 𝛾𝑗 ≤ 1, 𝑗 = 1, 2, 3
are the fractional orders. The Caputo-like difference operator 𝐶𝛥𝛾

0𝑋(𝜈)
of a function 𝑋(𝜈) is defined as [33]
𝐶𝛥𝛾

0𝑋(𝜈) = 𝛥−(1−𝛾)
0 𝛥𝑋(𝑡)

= 1
𝛤 (1 − 𝛾)

𝜈−(1−𝛾)
∑

𝑡=0
(𝜈 − 1 − 𝑡)(−𝛾)𝛥𝑋(𝑡).

(4)

𝛥−𝛾
0 is the 𝛾 − 𝑡ℎ fractional sum which is given by [34]

𝛥−𝛾
𝑜 𝑋(𝑡) = 1

𝛤 (𝛾)

𝜈−𝛾
∑

𝑡=𝑜
(𝜈 − 1 − 𝑡)(𝛾−1)𝑋(𝑡), (5)

ith 𝛾 > 0. The term (𝜈 − 1 − 𝑡)(𝛾−1) denotes the falling function which
s defined as

𝜈 − 1 − 𝑡)(𝛾−1) =
𝛤 (𝜈 − 𝑡)

𝛤 (𝜈 − 𝑡 − 𝛾 + 1)
. (6)

Stability analysis

Fixed points

To calculate the fixed points of the system, we solve the following
system of equations:

𝜆
(

1 + 𝜏
𝜇

)

−
(

𝜇 + 𝜏
)

𝑆 − 𝛽
(

𝑆𝐸 + 𝑆𝐼
)

− 𝜏
(

𝐼 + 𝐸
)

= 0, (7a)
(

𝑆𝐸 + 𝑆𝐼
)

−
(

𝜇 + 𝜙
)

𝐸 = 0, (7b)

𝐸 −
(

𝜇 + 𝜂
)

𝐼 = 0. (7c)

For 𝐼 = 0, the system has free fixed point 𝑋0 = ( 𝜆𝜇 , 0, 0). Assume
≠ 0, then from Eq. (7c), we get:

�̄� − (𝜇 + 𝜂) 𝐼 = 0,

.e

̄ =
𝜇 + 𝜂
𝜙

𝐼. (8)

Substitute (8) in (7b), we obtain:

𝛽
(

�̄��̄� + �̄�𝐼
)

− (𝜇 + 𝜙) �̄� = 0,

i.e

𝛽
(

𝜇 + 𝜂 + 𝜙
𝜙

)

�̄�𝐼 −
(𝜇 + 𝜙)(𝜇 + 𝜂)

𝜙
𝐼 = 0,

i.e

�̄� =
(𝜇 + 𝜙)(𝜇 + 𝜂)
𝛽(𝜇 + 𝜂 + 𝜙)

. (9)

By replacing (8) and (9) in Eq. (7a), we find

𝜆
(

1 + 𝜏
)

− (𝜇 + 𝜏) �̄� − 𝛽
(

�̄��̄� + �̄�𝐼
)

− 𝜏
(

𝐼 + �̄�
)

= 0,

𝜇
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Fig. 1. Structure of the discrete SEIR model.
i.e
(

𝜇 + 𝜏
𝜇

)(

𝜆 −
𝜇(𝜇 + 𝜙)(𝜇 + 𝜂)
𝛽(𝜇 + 𝜂 + 𝜙)

)

−
(𝜇 + 𝜙)(𝜇 + 𝜂)

𝜙
𝐼 − 𝜏

𝜙
(𝜙 + 𝜇 + 𝜂) 𝐼 = 0,

i.e

𝐼 =
(

𝜙 (𝜇 + 𝜏)
𝜇

)

⎛

⎜

⎜

⎝

𝜆 − 𝜇(𝜇+𝜙)(𝜇+𝜂)
𝛽(𝜇+𝜂+𝜙)

(𝜇 + 𝜙)(𝜇 + 𝜂) + 𝜏(𝜙 + 𝜇 + 𝜂)

⎞

⎟

⎟

⎠

,

=

⎛

⎜

⎜

⎜

⎝

𝜙(𝜇 + 𝜏)(𝜇 + 𝜙)(𝜇 + 𝜂)

𝛽
(

𝜇 + 𝜂 + 𝜙
)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝜆𝛽(𝜇+𝜂+𝜙)
𝜇(𝜇+𝜙)(𝜇+𝜂) − 1

(𝜇 + 𝜙)(𝜇 + 𝜂) + 𝜏(𝜙 + 𝜇 + 𝜂)

⎞

⎟

⎟

⎠

.

Thus, the endemic fixed point 𝑋1 = (𝑆2, 𝐸2, 𝐼2), is given by:
𝑆2 =

(𝜇+𝜙)(𝜇+𝜂)
𝛽(𝜇+𝜂+𝜙) .

𝐸2 =
𝜇+𝜂
𝜙 𝐼2.

𝐼2 =
𝜙(𝜇+𝜏)(𝜇+𝜙)(𝜇+𝜂)(𝑅0−1)

𝛽(𝜇+𝜂+𝜙)((𝜇+𝜙)(𝜇+𝜂)+𝜏(𝜙+𝜇+𝜂)) .
𝑅0 denotes the reproduction number of the system which is de-

scribed as the spectral radius of the matrix 𝑊𝐺−1 [35], where 𝑊 and
𝐺 are given as:

𝑊 =

(

𝛽 𝜆
𝜇 𝛽 𝜆

𝜇
0 0

)

and 𝐺 =
(

𝜙 + 𝜇 0
−𝜙 𝜂 + 𝜇

)

,

the inverse of 𝐺 is

𝐺−1 =

( 1
𝜙+𝜇 0
𝜙

(𝜙+𝜇)(𝜂+𝜇)
1

𝜂+𝜇

)

,

so

𝑊𝐺−1 =

(

𝛽𝜆(𝜇+𝜂+𝜙)
𝜇(𝜇+𝜙)(𝜇+𝜂)

𝛽𝜆
𝜇(𝜇+𝜂)

0 0

)

.

Thus, by calculating the eigenvalues of the matrix 𝑊𝐺−1, we get
the reproduction number:

𝑅0 =
𝛽𝜆(𝜇 + 𝜂 + 𝜙)
𝜇(𝜇 + 𝜙)(𝜇 + 𝜂)

.

Note that if 𝑅0 < 1, then the system has only disease free fixed point
𝑋1 and if 𝑅0 > 1, then the system has also unique endemic fixed point
𝑋2.

Stability of the fixed points

In order to determine the conditions of stability for the fixed points
of a discrete fractional system, it is necessary to recall the following
theorem [36]:
3

Theorem 1. Let 𝑔(𝜈) = (𝑔1(𝜈),… , 𝑔𝑚(𝜈))𝑇 , 0 < 𝛾 < 1 be a fractional order
and 𝐵 ∈ R𝑚×𝑚. The zero equilibrium point of the commensurate discrete
fractional order system

𝐶𝛥𝛾
𝜃𝑔(𝜈) = 𝐵 𝑔(𝜈 − 1 + 𝛾), (10)

∀ 𝜈 ∈ N𝜃+1−𝛾 is asymptotically stable if

𝜆𝑗 ∈
{

𝜉 ∈ C ∶ |𝜉| ≤
(

2 cos
|arg 𝜉| − 𝜋

2 − 𝛾

)𝛾
and |arg 𝜉| ≥ 𝛾 𝜋

2

}

, (11)

where 𝜆𝑗 are the eigenvalues of the matrix 𝐵.

Now, we analyze the stability conditions of the fixed point 𝑋0 as
follows

Theorem 2. The fixed point 𝑋0 of the fractional model (3) is asymp-
totically stable if either one of the following two sets of conditions are
satisfied
|𝜇 + 𝜏| < 2𝛾 , 𝐷 ≥ 0, 𝐶 >

√

𝐷, |

−𝐶±
√

𝐷
2𝜇 | < 2𝛾 ,

where 𝐶 = 𝜙𝜇+ 𝜂𝜇+2𝜇2 − 𝛽𝜆, 𝐷 = 𝛽2𝜆2 +2𝛽𝜙𝜆𝜇+2𝛽𝜂𝜆𝜇+𝜇2(𝜙+ 𝜂)2.
or
|𝜇 + 𝜏| < 2𝛾 , 𝐷 < 0, |arg 𝜉2,3| >

𝜋𝛾
2 , |𝜉2,3| <

(

2 cos |arg 𝜉2,3|−𝜋
2−𝛾

)𝛾
.

𝜉2,3 =
−(𝜙𝜇+𝜂𝜇+2𝜇2−𝛽𝜆)±

√

𝛽2𝜆2+2𝛽𝜙𝜆𝜇+2𝛽𝜂𝜆𝜇+𝜇2(𝜙−𝜂)2
2𝜇 .

Proof. The Jacobian matrix of the fractional system (3) may be
obtained at the fixed point 𝑋0 as follow:

𝐽 =

⎛

⎜

⎜

⎜

⎝

−𝜇 − 𝜏 −𝛽 𝜆
𝜇 − 𝜏 −𝛽 𝜆

𝜇 − 𝜏
0 𝛽 𝜆

𝜇 − 𝜙 − 𝜇 𝛽 𝜆
𝜇

0 𝜙 −𝜂 − 𝜇

⎞

⎟

⎟

⎟

⎠

,

then the eigenvalues of J are given by
𝜉1 = −𝜇 − 𝜏,
𝜉2,3 =

−(𝜙𝜇+𝜂𝜇+2𝜇2−𝛽𝜆)±
√

𝛽2𝜆2+2𝛽𝜙𝜆𝜇+2𝛽𝜂𝜆𝜇+𝜇2(𝜙−𝜂)2
2𝜇 .

Therefore, the argument of the eigenvalue 𝜉1 is 𝜋 which satisfy

|arg 𝜉1| = 𝜋 ≥ 𝛾 𝜋
2 . The condition |𝜉1| ≤

(

2 cos |arg 𝜉1|−𝜋
2−𝛾

)𝛾
= 2𝛾 is

satisfied if |𝜇 + 𝜏| < 2𝛾 .
Now, for 𝛽2𝜆2 + 2𝛽𝜙𝜆𝜇 + 2𝛽𝜂𝜆𝜇 + 𝜇2(𝜙 + 𝜂)2 ≥ 0, the arguments of

the eigenvalues 𝜉2,3 are 𝜋 if 𝜉2,3 < 0 i.e,:

−(𝜙𝜇 + 𝜂𝜇 + 2𝜇2 − 𝛽𝜆) >
√

𝛽2𝜆2 + 2𝛽𝜙𝜆𝜇 + 2𝛽𝜂𝜆𝜇 + 𝜇2(𝜙 + 𝜂)2.

Hence, |arg 𝜉2,3| = 𝜋 ≥ 𝛾 𝜋
2 . For the second condition of the theorem,

we have |𝜉2,3| ≤
(

2 cos |arg 𝜉2,3|−𝜋
2−𝛾

)𝛾
= 2𝛾 which implies |

−𝐶±
√

𝐷
2𝜇 | < 2𝛾 ,

where 𝐶 = 𝜙𝜇+𝜂𝜇+2𝜇2−𝛽𝜆 and 𝐷 = 𝛽2𝜆2+2𝛽𝜙𝜆𝜇+2𝛽𝜂𝜆𝜇+𝜇2(𝜙+𝜂)2.
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Fig. 2. Stability region of the fixed point 𝑋0 for 𝜏 = 0.4, 𝛽 = 0.018, 𝜂 = 0.2 in (a) 𝛾 − 𝜇 − 𝜙 space, (b) 𝜇 − 𝜙 plane for 𝛾 = 0.7, (c) 𝛾 − 𝜙 plane for 𝜇 = 0.1, (d) 𝛽 − 𝜇 − 𝜆 space, (e)
𝛽 − 𝜆 plane for 𝜇 = 0.35 and 𝛾 = 0.7.
The eigenvalues take complex values if 𝛽2𝜆2+2𝛽𝜙𝜆𝜇+2𝛽𝜂𝜆𝜇+𝜇2(𝜙+
𝜂)2 < 0. The stability conditions is satisfied if

|arg 𝜉2,3| >
𝜋𝛾
2
, |𝜉2,3| <

(

2 cos
|arg 𝜉2,3| − 𝜋

2 − 𝛾

)𝛾
,

and thus the proof is complete.

Given the complex expression of the endemic equilibrium point 𝑋1,
the stability regions of this point will be explored using large-scale
numerical simulations in parameter spaces of the model.

The stability regions of the fixed points

This section will investigate the influence of the parameters in the
COVID-19 system (3) on the stability of the fixed points. The stability
areas of fixed points are investigated in accordance with the conditions
of stability that were previously established. Fig. 2(a) displays the
stability region of the free fixed point 𝑋0 in (𝛾 − 𝜙 − 𝜇) space, while
Figs. 2(b) and 2(c) show the stability region of 𝑋0 in the (𝜇 − 𝜙) plane
for 𝛾 = 0.7 and in the (𝛾 − 𝜙) plane for 𝜇 = 0.1, respectively. It can be
seen that the stability region of the fixed point decreases as the natural
death rate 𝜇 increases or when the fractional order 𝛾 approaches zero.
Fig. 2(d) illustrates the area of stability of 𝑋0 in space (𝛽 − 𝜆 − 𝜇) and
Fig. 2(e) shows the stability region of 𝑋0 in the plane (𝛽−𝜆). Notice that
changing the value of the infection rate 𝛽 has the effect of expanding or
contracting the region in which 𝑋0 is stable. Now, in order to show the
influence of the parameter 𝜇 and the fractional order 𝛾 on the stability
of 𝑋0, Fig. 3(a) depicts the stability region in (𝛾 − 𝜂 − 𝜙) space for
𝜇 = 0.1. Figs. 3(b) and 3(c) depict the stability regions in (𝜂 − 𝜙) two-
dimensional plan for 𝜇 = 0.1, 𝛾 = 0.1 (Fig. 3(b)), and 𝛾 = 0.4 (Fig. 3(c)).
Similarly, assume that the natural death rate increased to 𝜇 = 0.35 and
then evaluate stability areas in the same preceding parameters spaces
4

(see Figs. 3(d)–3(f)). It is clear that the increase in 𝜇 or the decrease of
the fractional order 𝛾 led to a rise in the size of the stability region of
the fixed point 𝑋0.

Furthermore, we investigate the stability of the fixed point 𝑋1.
Fig. 4(a) depicts the region of stability of 𝑋1 in (𝛽 − 𝛾 −𝜇) space, while
Fig. 4(b) investigates the region of stability of 𝑋1 in the (𝛽 − 𝜇) plane
for 𝛾 = 0.7. It can be shown that the stability region of 𝑋0 shrinks as
the values of 𝛽 and 𝜇 approach 0. Now, we illustrate the stability area
of 𝑋1 in both (𝛽 − 𝜂 − 𝜇) space and the (𝜂 − 𝛽) plane. From Figs. 4(c)
and 4(d), it is shown that as 𝜂 increases, the stability region shrinks
and the fixed point becomes unstable. Fig. 4(e) depicts the region of
stability for 𝛾 = 0.4. Clearly, increasing the value of the fractional-order
made the fixed point 𝑋1 more stable. Time evolutions of the states
of the system (3) are obtained at various parameter values to verify
the aforementioned findings. Examples of where the free-disease fixed
point 𝑋0 is stable are illustrated in Figs. 5(a) and 5(b). In addition,
two cases in which the endemic fixed point 𝑋1 is stable are shown in
Figs. 5(c) and 5(d).

Nonlinear dynamics of the COVID-19 model

In this part, we will investigate the chaotic behavior of the proposed
discrete fractional COVID-19 model (3). This investigation will be
carried out using a variety of numerical methods, including Lyapunov
exponent calculations, bifurcation diagrams, and the display of phase
portraits. Also, we apply the 𝐶0 algorithm to measure the complexity of
the system. First, we will offer the following theorem, which will allow
us to construct the numerical formula for the fractional discrete model.
In order to explore the dynamical characteristics that may be seen in
the discrete fractional system (3), we will need to use this formula.
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Fig. 3. Stability region of the fixed point 𝑋0 for 𝜏 = 0.4, 𝛽 = 0.018, 𝜆 = 0.3 in (a) 𝛾 − 𝜂 − 𝜙 space for 𝜇 = 0.1 (b) 𝜂 − 𝜙 plane for 𝛾 = 0.1 (c) 𝜂 − 𝜙 plane for 𝛾 = 0.4 (d) 𝛾 − 𝜂 − 𝜙
space for 𝜇 = 0.35 (e) 𝜂 − 𝜙 plane for 𝛾 = 0.1 (f) 𝜂 − 𝜙 plane for 𝛾 = 0.4.

Fig. 4. Stability region of the fixed point 𝑋1 for 𝜏 = 0.4, 𝜙 = 0.05, 𝜆 = 0.3 in (a) 𝛽 − 𝛾 − 𝜇 space (b) 𝛽 − 𝜇 plane for 𝛾 = 0.7 (c) 𝛽 − 𝜂 − 𝜇 space for 𝛾 = 0.1 (d) 𝛽 − 𝜂 space for 𝜇 = 0.1
and 𝛾 = 0.1 (e) 𝛽 − 𝜂 plane for 𝛾 = 0.4.
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Fig. 5. Time series of states of the 𝑆𝐸𝐼𝑅 model (3) for (a) 𝜏 = 0.4, 𝜙 = 0.5, 𝜆 = 0.3, 𝛽 = 0.018, 𝜇 = 0.2. 𝜂 = 0.2, 𝛾 = 0.7 (b) 𝜏 = 0.4, 𝜙 = 0.6, 𝜆 = 0.3, 𝛽 = 0.018, 𝜇 = 0.25. 𝜂 = 0.4,
= 0.4 (c) 𝜏 = 0.4, 𝜙 = 0.05, 𝜆 = 0.3, 𝛽 = 0.1, 𝜇 = 0.1. 𝜂 = 0.2, 𝛾 = 0.7 (d) 𝜏 = 0.4, 𝜙 = 0.05, 𝜆 = 0.3, 𝛽 = 0.3, 𝜇 = 0.1. 𝜂 = 0.5, 𝛾 = 0.4.
w
o
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heorem 3 ([37]). For the fractional difference equation
{

𝐶𝛥
𝛾𝑗
0 𝑧(𝜈) = ℎ(𝜈 + 𝛾𝑗 − 1, 𝑧(𝜈 + 𝛾𝑖 − 1)),

𝛥𝜅𝑧(𝜈) = 𝑧𝜅 , 𝑚 = ⌈𝛾𝑗⌉ + 1,
(12)

he unique solution of this initial value problem (12) is given by

(𝜈) = 𝑧0(𝜈)+
1

𝛤 (𝛾𝑗 )

𝜈−𝛾𝑗
∑

𝜏=𝑚−𝛾𝑗

(𝜈−𝜏+1)(𝛾𝑗−1)ℎ(𝜏+𝛾𝑗−1, 𝑧(𝜏+𝛾𝑖−1)), 𝜈 ∈ N𝑚,

(13)

where

𝑧0(𝜈) =
𝑚−1
∑

𝜅=0

(𝜈)𝜅

𝛤 (𝜅 + 1)
𝛥𝜅𝑧(0). (14)

The numerical formula of the discrete fractional COVID-19 system
(3) is constructed according to Theorem 3 as:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑆(𝑛) = 𝑆(0) + 1
𝛤 (𝛾1)

𝑛−1
∑

𝑗=0

𝛤 (𝑛 − 𝑗 − 1 + 𝛾1)
𝛤 (𝑛 + 1 − 𝑗 − 1)

(

𝜆
(

1 + 𝜏
𝜇
)

−
(

𝜇 + 𝜏
)

𝑆(𝑗)

− 𝛽
(

𝑆(𝑗)𝐸(𝑗)

+ 𝑆(𝑗)𝐼(𝑗)
)

−𝜏
(

𝐼(𝑗) + 𝐸(𝑗)
)

)

,

𝐸(𝑛) = 𝐸(0) + 1
𝛤 (𝛾2)

𝑛−1
∑

𝑗=0

𝛤 (𝑛 − 𝑗 − 1 + 𝛾2)
𝛤 (𝑛 + 1 − 𝑗 − 1)

(

𝛽
(

𝑆(𝑗)𝐸(𝑗) + 𝑆(𝑗)𝐼(𝑗)
)

−
(

𝜇 + 𝜙
)

𝐸(𝑗)
)

,

𝐼(𝑛) = 𝐼(0) + 1
𝛤 (𝛾3)

𝑛−1
∑

𝑗=0

𝛤 (𝑛 − 𝑗 − 1 + 𝛾3)
𝛤 (𝑛 + 1 − 𝑗 − 1)

(

𝜙 𝐸(𝑗) −
(

𝜇 + 𝜂
)

𝐼(𝑗)
)

,

(15)
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here 𝑆(0), 𝐸(0) and 𝐼(0) denote initial conditions. This is a new class
f COVID-19 model which hold ‘‘memory effects’’. As one can see
rom Eq. (15), the states 𝑆(𝑛), 𝐸(𝑛) and 𝐼(𝑛) depends on all past vari-

ables 𝑆(0), 𝑆(1),… , 𝑆(𝑛−1), 𝐸(0), 𝐸(1),… , 𝐸(𝑛−1) and 𝐼(0), 𝐼(1),… , 𝐼(𝑛−
1).

The commensurate fractional orders

We will evaluate the influence of the fractional-order 𝛾 on the
behavior of the fractional COVID-19 system (3) where the initial condi-
tions are assigned as (𝑆(0), 𝐸(0), 𝐼(0)) = (44, 0.01, 0.21). Fig. 6 illustrates
phase attractors for different orders of 𝛾. One can see that model (3)
exhibits a wide range of dynamical behaviors for a variety of fractional
values. Furthermore, we have employed 𝛽 as a bifurcation parameter
to draw the bifurcation diagram, and the findings obtained are given
in Fig. 7. It is evident that the model progressively transitions from a
periodic state to a chaotic one by means of period-doubling bifurcation.
As can be observed, the behavior of the model (3) is affected by the
change of the fractional values, as reducing the fractional-order shrinks
the interval during which chaos occurs. To illustrate the dynamic
behavior more accurately, Fig. 8(a) displays the bifurcation diagram of
the commensurate fractional discrete COVID-19 model (3) with 𝛾 as an
adjustable parameter. We can see that there is chaos in the fractional-
discrete COVID-19 model (3) and that the fractional-order influences
the system’s behavior. When the fractional values 𝛾 fall below 0.9073,
the states of the system diverge towards infinity. In spite of the fact
that bifurcation charts may be useful for detecting chaos in fractional
systems, computing or estimating the system’s Lyapunov exponent (LE)
is generally more practical. It is possible to compute the maximum LEs
using a Jacobian matrix technique [38]. The Matlab script was used to
compute the MLEs and the obtained results are presented in Fig. 8(b).
One can note that the system has negative and positive LEs values,
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Fig. 6. Phase portrait of the fractional discrete COVID-19 system (3) with commensurate fractional order.
meaning that the COVID-19 model (3) transitions from a stable state
to a chaotic state, which is consistent with the findings obtained from
the bifurcation diagram seen in Fig. 8(a).

The incommensurate fractional orders

Here, we examine the dynamics of the incommensurate fractional
discrete COVID-19 model (3) in a manner similar to the case of com-
mensurate orders (𝛾 = (𝛾1, 𝛾2, 𝛾3)). In particular, the impact of incom-
mensurate fractional values on the behaviors of the fractional discrete
COVID-19 model was investigated by taking 𝛾1 as the critical parameter
for plotting the bifurcation diagram and calculating the maximum LEs.
The results are displayed in Fig. 9 for fractional values 𝛾2 = 𝛾3 =
0.95 and initial conditions (𝑆(0), 𝐸(0).𝐼(0)) = (44, 0.02, 0.21). One can
see that the COVID-19 model is chaotic for 𝛾1 ∈ [0.937, 0.9455] ∪
[0.9505, 0.966] ∪ [0.967, 1] where the MLEs have positive values. The
MLEs change their values between negative and positive when 𝛾1
decreases, meaning that chaos occurs with the appearance of certain
periodic orbits. When 𝛾1 continues to decrease, the states of the sys-
tem diverge towards infinity. Furthermore, to assess the dynamical
behavior of the fractional COVID-19 system when the fractional order
𝛾2 changes, Figs. 10(a) and 9(b) illustrate the bifurcation diagram
and its corresponding MLEs for (𝛾1, 𝛾3) = (1, 0.95). We can observe
that the behavior of the fractional COVID-19 model (3) has changed
from periodic to chaotic when 𝛾2 increases. This finding confirms that
fractional-order 𝛾2 has a great impact on the dynamics of the states
of the system. Additionally, setting fractional values (𝛾1, 𝛾2) = (1, 0.95)
and initial conditions (𝑆(0), 𝐸(0).𝐼(0)) = (44, 0.02, 0.21), Fig. 11 shows
the bifurcation diagram and the MLEs for 𝛾3 ∈ (0, 1]. The fractional
COVID-19 system displays a rather full bifurcation route when 𝛾3 is
utilized as a bifurcation parameter. For 𝛾3 ∈ (0, 0.625] chaotic behavior
can be obtained with positive maximum Lyapunov exponents, while
the MLEs have negative values when 𝛾3 ∈]0.625, 0.75], so the chaos
disappears and periodic windows appear. In addition, when 𝛾3 gets
larger and approaches 1, chaos occurs again. With these results, it is
clear that the dynamic behavior of the fractional discrete COVID-19
system with commensurate orders is less complex than the system with
incommensurate orders. This also indicates that the system’s behavior
7

can be better described by incommensurate orders. For completeness,
the phase attractors of the states of the fractional COVID-19 model with
incommensurate orders (3) are shown in Fig. 12.

𝐶0 complexity of the COVID-19 model

According to the inverse Fourier transform, we use the 𝐶0 algo-
rithm to compute the complexity of chaotic models. The algorithm is
described as follows [39]: First, the Fourier transform of the series
[𝑆(0), 𝑆(1),… , 𝑆(𝑁 − 1)] is figured out by

𝑌𝑁 (𝑗) = 1
𝑁

𝑁−1
∑

𝑘=0
𝑥(𝑘) exp−2𝜋𝑖(

𝑘𝑗
𝑁 ), 𝑗 = 0, 1, .., 𝑁 − 1. (16)

We calculate the mean square as 𝐺𝑁 = 1
𝑁

∑𝑁−1
𝑗=0 |𝑌𝑁 (𝑗)|2 and we let

𝑌𝑁(𝑗) =

{

𝑌𝑁 (𝑗) if ‖𝑌𝑁 (𝑗)‖2 > 𝑟𝐺𝑁 ,
0 if ‖𝑌𝑁 (𝑗)‖2 ≤ 𝑟𝐺𝑁 .

(17)

Now, we compute the inverse Fourier transform of 𝑌𝑁 as

�̄�(𝜅) = 1
𝑁

𝑁−1
∑

𝑗=0
𝑌𝑁 (𝑗) exp2𝜋𝑖(

𝑘𝑗
𝑁 ), 𝜅 = 0, 1, .., 𝑁 − 1. (18)

Then, we calculate the 𝐶0 complexity as

𝐶0 =
∑𝑁−1

𝜅=0 ‖�̄�(𝜅) − 𝑆(𝜅)‖
∑𝑁−1

𝜅=0 ‖𝑆(𝜅)‖2
. (19)

The 𝐶0 complexity of the fractional discrete COVID-19 system (3)
with fractional order values 𝛾𝑖 varying are computed and the results are
presented in Fig. 13. Interestingly, from Fig. 13(a), as with the MLEs,
when the commensurate order 𝛾 decreases, the 𝐶0 complexity value
of the fractional COVID-19 system increases. However, as contrasted
to the case of the commensurate fractional model, the incommensurate
fractional discrete COVID-19 model (3) exhibits more complexity when
the value of 𝛾2 close to 1. As a result, we can conclude that the
𝐶0 method is an effective tool for measuring complexity accurately.
Fig. 13(a) illustrates that the fractional COVID-19 system (3) has higher
complexity when 𝛾 ∈ (0.95, 0.966]. As shown in Fig. 13(c), when
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Fig. 7. Bifurcation diagram of the discrete COVID-19 system (3) versus 𝛽 for 𝜆 = 0.9, 𝜂 = 0.2, 𝜇 = 0.09, 𝜏 = 0.8, 𝜙 = 0.05 and (a) 𝛾 = 1, (b) 𝛾 = 0.98, (c) 𝛾 = 0.92.
Fig. 8. Bifurcation diagram and Maximum Lyapunov exponents of the fractional discrete COVID-19 system (3) versus 𝛾 for 𝜆 = 0.9, 𝛽 = 0.29, 𝜂 = 0.2, 𝜇 = 0.09, 𝜏 = 0.8, and
𝜙 = 0.05.
(𝛾1, 𝛾3) = (1, 0.95), the 𝐶0 complexity increase with the increase of
fractional value 𝛾2, and when (𝛾1, 𝛾2) = (1, 0.95), the 𝐶0 complexity
increase with the decrease of fractional value 𝛾3 (see Fig. 13(c)). These
results are consistent with previous results of the MLEs.

Discussion

Finally, we will use published data from two nations, the United
Kingdom and Italy, to verify the accuracy of our mathematical study of
the stability of the fractional discrete COVID-19 model (3). We fitted
8

the suggested model to the cases of COVID-19 from these nations using
the parameters listed in Table 1. Figs. 14 and 15 show the dynamical
analysis of the fractional discrete model (3) of the susceptible, exposed,
infected, and recovered population for the United Kingdom and Italy.
Fig. 14(a) shows that the number of individuals susceptible to the epi-
demic increases rapidly and then starts decreasing after reaching a peak
until it reaches a stable state, while the exposed population increases
over time, as depicted in Fig. 14(b). Figs. 14(c) and 14(d) illustrate
the scheme of infected and recovered individuals, where we note that
the number of infected individuals increases rapidly until it reaches the
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Fig. 9. bifurcation diagram and Maximum Lyapunov exponents of the fractional discrete COVID-19 system (3) versus 𝛾1 for 𝛾2 = 0.95, 𝛾3 = 0.95, 𝜆 = 0.9, 𝛽 = 0.29, 𝜂 = 0.2, 𝜇 =
0.09, 𝜏 = 0.8, and 𝜙 = 0.05.
Fig. 10. Bifurcation diagram and Maximum Lyapunov exponents of the fractional discrete COVID-19 system (3) versus 𝛾2 for 𝛾1 = 1, 𝛾3 = 0.95, 𝜆 = 0.9, 𝛽 = 0.29, 𝜂 = 0.2, 𝜇 =
0.09, 𝜏 = 0.8, and 𝜙 = 0.05.
Fig. 11. Bifurcation diagram and Maximum Lyapunov exponents of the fractional discrete COVID-19 system (3) versus 𝛾3 for 𝛾1 = 1, 𝛾2 = 0.95, 𝜆 = 0.9, 𝛽 = 0.29, 𝜂 = 0.2, 𝜇 =
0.09, 𝜏 = 0.8, and 𝜙 = 0.05.
maximum limit, while the number of recovered individuals increases
slowly at first, then the number of recovering persons increases gradu-
ally over time as a result of using the appropriate treatment medications
9

and starting various vaccination programs. Similarly, we can interpret
the results of the real data of the COVID-19 epidemic in Italy depicted
in Fig. 15.
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Fig. 12. Phase portrait of the fractional discrete COVID-19 system (3) with incommensurate fractional order.

Fig. 13. 𝐶0 complexity analysis of the fractional COVID-19 system (3) for (a) versus 𝛾 (b) versus 𝛾1 with (𝛾2 , 𝛾3) = (0.95, 0.95) (c) versus 𝛾2 with (𝛾1 , 𝛾3) = (1, 0.95) (d) versus 𝛾3 with
(𝛾21, 𝛾2) = (1, 0.95).
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Fig. 14. Evolution of the fractional discrete COVID-19 system (3) in the United Kingdom.
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Table 1
Values of parameters in the United Kingdom and Italy.

Parameter The United Kingdom Italy References

𝜆 0.3 0.3 Estimated
𝜇 3.2929 ∗ 10−5 3.2612 ∗ 10−5 [40,41]
𝛽 0.0999 0.0571 [40]
𝜏 0.0294 0.0338 [42]
𝛾 0.0714 0.076 [41,43]
𝜙 0.05 0.05 Estimated

Conclusion

In this paper, we proposed a discrete fractional SEIR COVID-19
model depending on the Caputo-like operator. As can be observed,
the model involves four variables: susceptible S, exposed E, infected I
and recovered R. The non-linear dynamical analysis of the suggested
model is carried out in this study as follows: the free-disease fixed
point and the endemic fixed point are determined and then studied
the conditions of stability of each fixed point. The stability areas for
the fixed points are examined in a two-dimensional plane and three-
dimensional space. The stability analysis shows that the fractional
values, recovering rate and infection rate influenced the stability of
the fixed points. The parameter values are chosen in such a manner
that they highlight all possible impacts of parameters on the stability
of fixed points. The behavior of the discrete fractional SEIR COVID-
19 model has been discussed by calculating the maximum Lyapunov
11
exponents and applying the C0 algorithm for complexity to verify
he occurrence of chaos. Real-world data published from the United
ingdom and Italy were also been used in order to confirm the accuracy
f our mathematical study of the stability of the suggested model.
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Fig. 15. Evolution of the fractional discrete COVID-19 system (3) in Italy.
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