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Abstract
We consider the large class of Siklos spacetimes and investigate their relevant
symmetries (homothetic and affine vector fields, Ricci, curvature, Weyl and matter
collineations). We prove some general results and obtain complete classifications for
homogeneous Siklos spacetimes.
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1 Introduction

Let (M, g) denote a Lorentzian manifold. If T is a tensor on (M, g), which codifies
some either mathematical or physical quantity, a symmetry of T is a one-parameter
group of diffeomorphisms of (M, g), which leaves T invariant.

Thus, a symmetry corresponds to a vector field X for which LXT = 0, where L
denotes the Lie derivative. For example, for T = g, symmetries are isometries and
the corresponding vector fields X are Killing. Homotheties and conformal motions on
(M, g) are further examples of symmetries. In recent years, curvature collineations
(T=R being the curvature tensor), Weyl collineations (T=W is the Weyl conformal
curvature tensor) and Ricci collineations (for which T=� is the Ricci tensor) have
been studied. We may refer to [15] for a thorough survey and further information
on symmetries. Examples of investigations of Ricci collineations in some classes of
Lorentzian manifolds may be found in [9, 10, 13, 16–20, 31] and references therein.

Matter collineations are the symmetries of the energy-momentum tensor T =
�− 1

2τg (with τ denoting the scalar curvature) of a Lorentzian manifold (M, g). Both
matter collineations and Ricci collineations are interesting objects to investigate, for
their physical and geometric meaning respectively (see for example [11, 17]).

The purpose of this paper is to investigate symmetries within the large class of
Siklos spacetimes [30]. They are solutions of Einstein field equations with an Einstein–
Maxwell source. Siklosmetrics appear in Petrov classification as spacetimes of type N
with cosmological constant � < 0 and all of them admit a null non-twisting Killing
field. The general form of Siklos metrics in global coordinates (x1, x2, x3, x4) =
(v, u, x, y) is given by

g = − 3

�x23

(
2dx1dx2 + Hdx22 + dx23 + dx24

)
, (1.1)

for an arbitrary defining smooth function H = H(x2, x3, x4) ([24, 30]). These metrics
naturally appear in several context in Mathematical Physics and in Geometry. For
example:

• the study of the behaviour of free particles in these spacetimes led to prove that
they can been interpreted as exact gravitational waves propagating in the anti-de
Sitter universe [24];

• plane-fronted waves in spacetimes were classified in [23], depending on the sign of
the cosmological constant � and that (determined by the sign of some constant k)
of some second-order invariant depending on the congruence of null rays. Siklos
spacetimes occur in this classification as one of the two subcases with � < 0 and
k = 0, and coincide with the subclass (I V )0 of Kundt spacetimes;

• all nontwisting type N solutions of Einstein’s vacuum equations, including Siklos
spacetimes, were investigated in [1] and [2], obtaining a physical interpretation by
analysing the equation of geodesic deviation;

• impulsive gravitational waves propagating either in a de Sitter or an anti-de Sitter
background were studied in [26]. In the latter case, they are Siklos metrics;
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• the equations of vacuum polarization for photons propagating in a general Siklos
spacetime were solved in [21], in order to study the effect of one-loop vacuum
polarization in the geometric optics limit.

Moreover, several particular subclasses and representatives of the class of Siklos
spacetimes, are well known and their physical and geometrical properties have been
investigated in literature. Such examples include, among others: Defrise spacetime
[12], Kaigodorov spacetime [19], generalized Defrise spacetimes [25] (see also
Remark 3.2). Ricci solitons ([4–7]) and conformal geometry [8] were studied within
the class of Siklos metrics.

We may observe that this paper can also be considered as a natural prolongation of
the pioneering work [30], where Killing vector fields of metrics (1.1) were completely
classified.

The paper is organized in the following way. In Sect 2 we shall provide some basic
information on symmetries and on Siklos metrics. In Sect. 3 we shall deduce some
general conclusions concerning the symmetries of Siklos metrics. On the one hand, we
prove that Siklosmetrics do not admit any proper curvature collineations (in particular,
neither proper homothetic nor proper affine Killing vector fields). On the other hand,
we clarify the conditions ensuring the existence of Ricci and matter collineations and
we establish the existence of proper Weyl collineations for all Siklos metrics. Finally,
in Sect. 4 we shall focus on the subclasses of homogeneous Siklos metrics and obtain
complete classifications of their symmetries. Calculations have been checked using
the softwareMaple 16©.

2 Preliminaries

2.1 Symmetries

Let (M, g) denote a Lorentzian manifold. A vector field X on M preserving its metric
tensor g, the Levi–Civita connection ∇ of g, its curvature tensor R or its Ricci tensor
�, is respectively known as a Killing vector field, an affine vector field, a curvature
collineation or a Ricci collineation. A Weyl collineation is a vector field preserving
the Weyl conformal curvature tensor W .

As the Levi–Civita connection and the curvature are completely determined by the
metric tensor g, if a vector field X preserves g, then it also preserves∇, R, �, while the
converse does not hold in general. Similarly, if X preserves ∇ (respectively, R), then
it also preserves R (respectively, �), but not conversely. Even homothetic vector fields
(i.e., vector fields X satisfying LX g = λg for some real constant λ) are necessarily
curvature collineations (hence, in particular, Ricci collineations).

Although conditions defining curvature, Ricci andmatter collineations are formally
similar to the ones defining Killing or affine vector fields, the behaviours of the cor-
responding classes of vector fields may show some relevant differences. In particular
(see for example [15, 17]), we emphasize that:
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(a) while Killing and affine vector fields are smooth, for any positive integer k there
exist spacetimes admitting Ricci (and curvature, matter) collineations, which are
Ck but not Ck+1.

(b) differently from the ones determined by Killing, homothetic and conformal vec-
tor fields, the vector space of Ricci (and curvature, matter) collineations may be
infinite-dimensional. Moreover, because of the above point (a), this vector space
need not be a Lie algebra: when X ,Y are Ricci (curvature, matter) collineations,
[X ,Y ] may be not differentiable.

(c) twoRicci (respectively, curvature,matter) collineations that agree on an non-empty
subset of M may not agree on M . In fact, differently from Killing, homothetic and
conformal vector fields, they are not uniquely determined by the value of X and
its covariant derivatives of any order at a point.

Remark 2.1 Restricting to smooth vector fields, the sets of Ricci, curvature, Weyl and
matter collineations of a given manifold form a Lie algebra. Moreover, if � (respec-
tively, T = � − 1

2τg) is nondegenerate, then the Lie algebra of Ricci (respectively,
matter) collineations is finite-dimensional. In fact, in such a case, g̃ = � (respec-
tively, g̃ = � − 1

2τg) itself is a nondegenerate metric tensor, whose Killing vector
fields are exactly the Ricci (respectively, matter) collineations of g [16]. This general
observation will be particularly useful in the case of Siklos metrics.

With regard to Weyl collineations, it is worthwhile to emphasize that in spite of the
Weyl tensor being completely determined by the curvature, in general the classes of
curvature collineations and Weyl collineations are not reducible to one another [18].
Siklos spacetimes will provide further examples of this behaviour.

2.2 Geometry of Siklos metrics

We may refer to [24] and [4] for the description of the Levi–Civita connection and
curvature of Siklos metrics. We shall report here the information we shall use for the
investigation of the symmetries of Siklos metrics.

Consider an arbitrary Siklos metric g, as described in (1.1) with respect to a system
of global coordinates (x1, x2, x3, x4). Throughout the paper, we shall use notations

∂i = ∂
∂xi

, f,i = ∂ f
∂xi

, f,i j = ∂2 f
∂xi ∂x j

,... for all indices i, j, .... TheLevi–Civita connection
∇ of g is completely determined by the following possibly non-vanishing components:

∇∂1∂2 = 1
x3

∂3, ∇∂1∂3 = − 1
x3

∂1,

∇∂2∂2 = 1
2 (H,2)∂1 + 1

2x3
(2H − x3(H,3))∂3 − 1

2 (H,4)∂4, ∇∂2∂3 = 1
2 (H,3)∂1 − 1

x3
∂2,

∇∂2∂4 = 1
2 (H,4)∂1, ∇∂3∂3 = − 1

x3
∂3,

∇∂3∂4 = − 1
x3

∂4, ∇∂4∂4 = 1
x3

∂3.

(2.1)
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The possibly non-vanishing components (up to symmetries) of the Riemann–
Christoffel curvature tensor R of g are then given by

R1212 = − 3
�x43

, R1323 = 3
�x43

, R1424 = 3
�x43

,

R2323 = 3
(
2H−x3(H,3)+x23 (H,33)

)
2�x43

, R2324 = 3(H,34)
2�x23

, R2424 = 3
(
2H−x3(H,3)+x23 (H,44)

)
2�x43

,

R3434 = 3
�x43

(2.2)

and the Ricci tensor of g, defined by �(X ,Y ) = tr(Z �→ R(Z , X)Y ), is completely
described by the matrix

� = (�i j ) =

⎛
⎜⎜⎜⎜⎜⎝

0 −3x−2
3 0 0

−3x−2
3 − 6H−2x3(H,3)+x23(H,33+H,44)

2x23
0 0

0 0 −3x−2
3 0

0 0 0 −3x−2
3

⎞
⎟⎟⎟⎟⎟⎠

, (2.3)

where �i j = �(∂i , ∂ j ). The scalar curvature of a Siklos metric is given by τ =
tr� = 4�. Next, theWeyl conformal curvature tensor field W of a pseudo-Riemannian
manifold (Mn, g) is defined by

W (X ,Y )Z = R(X ,Y )Z − 1

n − 2
(QX ∧ Y + X ∧ QY )Z

+ τ

(n − 1)(n − 2)
(X ∧ Y )Z , (2.4)

where (X ∧ Y )(Z) = g(Y , Z)X − g(X , Z)Y and Q denotes the Ricci operator. It is
well known that the vanishing of W completely characterizes (locally) conformally
flat metrics in dimension greater than three. The Weyl tensor of type (0, 4) of a Siklos
metric is completely determined, up to symmetries, by the following components
Wi jkh with respect to {∂ i }:

W2323 = −W2424 = 3
4�x23

(
H,33 − H,44

)
, W2324 = 3

2�x23
(H,34). (2.5)

We now report the classification of Einstein and conformally flat Siklos metrics.

Proposition 2.2 ([4, 24, 30]) For an arbitrary Siklos metric g, as described in (1.1),
the following conditions are equivalent:

(i) g is Einstein. More precisely, � = �g;
(ii) g is Ricci-parallel (that is, ∇� = 0);
(iii) the defining function H = H(x2, x3, x4) satisfies the PDE

2

x3
(H,3) − H,33 − H,44 = 0. (2.6)
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Whenever H does not satisfy (2.6), a Siklos spacetime (being not Ricci-parallel) is
not locally symmetric, and its Ricci operator is of Segre type [(11, 2)], having an
eigenvalue of multiplicity four associated to a three-dimensional eigenspace.

Proposition 2.3 ([4, 5, 27]) A Siklos metric g, as described in (1.1), is locally confor-
mally flat if and only if the defining function H = H(x2, x3, x4) satisfies the system
of PDEs

H,33 − H,44 = H,34 = 0, (2.7)

that is, when H is explicitly given by

H(x2, x3, x4) = 1

2
T (x2)

(
x23 + x24

)
+ L(x2) x3 + M(x2) x4 + N (x2), (2.8)

where T , L, M, N are arbitrary smooth functions.

Remark 2.4 Explicit form (2.8) for conformally flat Siklos metric was first obtained
in [27], where it was also shown how to obtain these examples from the general
description of all conformally flat Kundt spacetimes with a cosmological constant,
which are either vacuum or contain pure radiation, as described in [23]. We may
refer to [14, Section 18.3.3] and references therein for a comprehensive description of
conformally flat Kundt solutions.

If H satisfies both conditions (2.6) and (2.7), the general form of the solution is

H = P(x2)(x
2
3 + x24 ) + Q(x2)x4 + R(x2)

and the corresponding Siklos metric is isometric to the anti-de Sitter space [30].

3 General results on the symmetries of Siklos metrics

As we recalled in the previous Section, some kinds of symmetries need not be of class
C∞, and this also implies that they do not necessarily form a Lie algebra. For this
reason, when investigating the symmetries of a given metric, it is customary to restrict
to smooth symmetries, which always form a Lie algebra.

The strongest symmetries of Siklos metrics are well known. In fact, as proved in
[4, Proposition 2.1], Siklos spacetimes never admit any parallel vector field, while
Killing vector fields of Siklos metrics were classified by Siklos in the original paper
[30]. We now prove the following general non-existence result for some more general
symmetries.

Theorem 3.1 A Siklos metric g, as described by (1.1) for some defining function H,
does not admit neither proper homothetic vector fields, proper affine vector fields, nor
proper curvature collineations.
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Proof Consider the global coordinates (x1, x2, x3, x4) used in (1.1) to describe
Siklos metrics. Let X = Xi∂i denote an arbitrary vector field, where Xi =
Xi (x1, x2, x3, x4), i = 1, . . . , 4, are smooth functions. We use (2.1) to calculate
the components (LX g)i j = (LX g)(∂i , ∂ j ), i ≤ j = 1, . . . , 4, of the Lie derivative
LX g. Explicitly, we get

(LX g)11 = − 6

�x23
(X2

,1),

(LX g)12 = − 3

�x33

{
x3(X

1
,1) + x3H(X2

,1) + x3(X
2
,2) − 2X3

}
,

(LX g)13 = − 3

�x23

{
X2

,3 + X3
,1

}
,

(LX g)14 = − 3

�x23

{
X2

,4 + X4
,1

}
,

(LX g)22 = − 3

�x33

{
2x3(X

1
,2) + x3(H,2) X

2 + 2x3H(X2
,2)

−2H X3 + x3(H,3) X
3 + x3(H,4) X

4
}

,

(LX g)23 = − 3

�x23

{
X1

,3 + H(X2
,3) + X3

,2

}
,

(LX g)24 = − 3

�x23

{
X1

,4 + H(X2
,4) + X4

,2

}
,

(LX g)33 = − 6

�x33

{
x3(X

3
,3) − X3

}
,

(LX g)34 = − 3

�x23

{
X3

,4 + X4
,3

}
,

(LX g)44 = − 6

�x33

{
x3(X

4
,4) − X3

}
. (3.1)

Suppose now that X is a homothetic vector field, that is, LX g = λg for some real
constant λ. We shall prove that necessarily λ = 0, so that no proper homothetic vector
fields occur, as a homothetic vector field is indeed Killing.

By (3.1) and (1.1) we get that in terms of components, LX g = λg is equivalent to
the following system of ten PDEs:

X2
,1 = 0,

x3(X
1
,1) + x3H(X2

,1) + x3(X
2
,2) − 2X3 − λx3 = 0,

X2
,3 + X3

,1 = 0,

X2
,4 + X4

,1 = 0,

2x3(X
1
,2) + x3(H,2) X

2 + 2x3H(X2
,2) − 2H X3 + x3(H,3) X

3

+x3(H,4) X
4 − λx3H = 0,
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X1
,3 + H(X2

,3) + X3
,2 = 0,

X1
,4 + H(X2

,4) + X4
,2 = 0,

2x3(X
3
,3) − 2X3 − λx3 = 0,

X3
,4 + X4

,3 = 0,

2x3(X
4
,4) − 2X3−λx3 = 0. (3.2)

By integration, the first equation in (3.2) yields

X2 = F2 (x2, x3, x4) ,

for some smooth function F2. Substituting into the third and fourth equations of (3.2)
and integrating, we obtain

X3 = −x1(F
2
,3) + F3 (x2, x3, x4) ,

X4 = −x1(F
2
,4) + F4 (x2, x3, x4) .

The ninth equation of (3.2) then becomes

2x1(F
2
,34) −

(
F3

,4 + F4
,3

)
= 0,

for all values of x1. In particular, F2
,34 = 0 and so, by integration we have

F2 = G2 (x2, x3) + H2 (x2, x4) .

From the eighth equation of (3.2) we then get

(
2x3(G

2
,33) − 2(G2

,3)
)
x1 + (

2F3 − 2x3(F
3
,3) + λx3

) = 0,

for all values of x1. In particular, 2F3 − 2x3(F3
,3) + λx3 = 0 whence, integrating,

F3 =
(
1

2
λ ln(x3) + G3(x2, x4)

)
x3,

for a smooth function G3. The ninth equation in (3.2) then reduces to

x3(G
3
,4) + F4

,3 = 0,

whose integral is given by

F4 = −1

2
x23 (G

3
,4) + G4(x2, x4).
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We now substitute all the above expressions into the last equation of (3.2), which
becomes

2
(
x3(H

2
,44) − (G2

,3)
)
x1+

(
2G3 + x23 (G

3
,44) − 2(G3

,4) + λ ln(x3) + λ
)
x3 = 0.

Since the above equation must hold for all values of x1, in particular it yields

λ ln(x3) + (G3
,44) x

2
3 + (

2G3 − 2(G3
,4) + λ

) = 0,

for all values of x3, so that necessarily λ = 0. Therefore, X is a Killing vector field.
A similar argument applies to the case of curvature collineations of Siklos metrics.

Starting from (2.2), we find that if X is a curvature collineation, then its components
Xi satisfy the following system of PDEs:

X3
,1 + X2

,3 = 0, X4
,1 + X2

,4 = 0, X4
,3 + X3

,4 = 0,

x3(X
3
,3) − X3 = 0, x3(X

4
,4) − X3 = 0,

X3
,2 + X1

,3 + H(X2
,3) = 0, X4

,2 + X1
,4 + H(X2

,4) = 0,(
X2

,2 + X1
,1 + H(X2

,1)
)
x3 − 2X3 = 0,

(
2H(X2

,2) + 2X1
,2 + X2(H,2) + X3(H,3) + X4(H,4)

)
x3 − 2X3H = 0,

(
(X2

,3)(H,34) − (X2
,4)(H,33)

)
x3 + (X2

,4)(H,3) = 0,
(
(X4

,1)(H,44) + (X3
,1)(H,34)

)
x3 − (X4

,1)(H,3) = 0,
(
(X2

,3)(H,34) + (X4
,1)(H,33)

)
x3 − (X4

,1)(H,3) = 0,
(
(X2

,4)(H,34) − (X2
,3)(H,44)

)
x3 + (X2

,3)(H,3) = 0,
(
(X2

,4)(H,34) + (X3
,1)(H,44)

)
x3 − (X3

,1)(H,3) = 0,
(
(X4

,1)(H,34) + (X3
,1)(H,33)

)
x3 − (X3

,1)(H,3) = 0,

(X2
,1)(H,34)x

2
3 − 2X3

,4 − 2X4
,3 = 0,

(X2
,1)(H,34)x

2
3 + 2X4

,3 + 2X3
,4 = 0,

(X2
,1)(H,33)x

3
3 − (X2

,1)(H,3)x
2
3 + 4(X3

,3)x3 − 4X3 = 0,

(X2
,1)(H,33)x

3
3 − (X2

,1)(H,3)x
2
3 − 4(X3

,3)x3 + 4X3 = 0,

(X2
,1)(H,44)x

3
3 − (X2

,1)(H,3)x
2
3 + 4(X4

,4)x3 − 4X3 = 0,

(X2
,1)(H,44)x

3
3 − (X2

,1)(H,3)x
2
3 − 4(X4

,4)x3 + 4X3 = 0,

(X2
,1)(H,33)x

3
3 − (X2

,1)(H,3)x
2
3 +

(
2X2

,2 + 2(X2
,1)H + 2X1

,1

)
x3 − 4X3 = 0,

(X2
,1)(H,44)x

3
3 − (X2

,1)(H,3)x
2
3 +

(
2X2

,2 + 2(X2
,1)H + 2X1

,1

)
x3 − 4X3 = 0,

(
(X4

,2)(H,44) + (X3
,2)(H,34) + (X1

,4)(H,44) + (X1
,3)(H,34)

)
x3
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−(X4
,2)(H,3) − (X1

,4)(H,3) = 0,(
(X4

,2)(H,34) + (X3
,2)(H,33) + (X1

,4)(H,34) + (X1
,3)(H,33)

)
x3

−(X3
,2)(H,3) − (X1

,3)(H,3) = 0,(
(X4

,1)(H,34) + (X3
,1)(H,33)

)
x23 − (X3

,1)(H,3)x3 − 2(X2
,3)H

+2X1
,3 − 2X3

,2 = 0,(
(X4

,1)(H,34) + (X2
,3)(H,44)

)
x23 − (X2

,3)(H,3)x3 + 2(X2
,3)H

+2X3
,2 + 2X1

,3 = 0,(
(X2

,3)(H,44) − (X2
,4)(H,34)

)
x23 − (X2

,3)(H,3)x3 + 2(X2
,3)H

+2X3
,2 + 2X1

,3 = 0,(
(X2

,3)(H,33) + (X2
,4)(H,34)

)
x23 − (X2

,3)(H,3)x3 + 2(X2
,3)H

+2X3
,2 + 2X1

,3 = 0,(
(X2

,4)(H,33) − (X2
,3)(H,34)

)
x23 − (X2

,4)(H,3)x3 + 2(X2
,4)H

+2X4
,2 + 2X1

,4 = 0,(
(X2

,4)(H,33) + (X3
,1)(H,34)

)
x23 − (X2

,4)(H,3)x3 + 2(X2
,4)H

+2X4
,2 + 2X1

,4 = 0,(
(X4

,1)(H,44) + (X3
,1)(H,34)

)
x23

−(X4
,1)(H,3)x3 − 2(X2

,4)H − 2X4
,2 − 2X1

,4 = 0,(
(X2

,4)(H,44) + (X2
,3)(H,34)

)
x23

−(X2
,4)(H,3)x3 + 2(X2

,4)H + 2X4
,2 + 2X1

,4 = 0,(
(X2

,3)(H,33) + (X3
,1)(H,33)

)
x23

−
(
(X2

,3)(H,3) + (X3
,1)(H,3)

)
x3 + 2(X2

,3)H + 2X1
,3 + 2X3

,2 = 0,
(
(X2

,4)(H,44) + (X4
,1)(H,44)

)
x23

−
(
(X2

,4)(H,3) + (X4
,1)(H,3)

)
x3 + 2(X2

,4)H + 2X4
,2 + 2X1

,4 = 0,
(
(X4

,4)(H,34) + (X4
,3)(∂44H) + (X3

,4)(H,33)

+(X3
,3)(H,34) + (X2

,2)(H,34) − (X1
,1)(H,34)

+X2(H,234) + X3(H,334) + X4(H,344)
)
x3 − (X3

,4)(H,3) − (X4
,3)(H,3) = 0,(

2(X4
,3)(H,34) + 2(X3

,3)(H,33) + (X2
,2)(H,33)

−(X1
,1)(H,33) + X2(H,233) + X3(H,333) + X4(H,334)

)
x23

+(
(X1

,1)(H,3) − 2(X3
,3)(H,3) − (X2

,2)(H,3)
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−X2(H,23) − X3(H,33) − X4(H,34)
)
x3 + X3(H,3) = 0,(

2(X3
,4)(H,34) − (X1

,1)(H,44) + (X2
,2)(H,44) + 2(X4

,4)(H,44)

+X3(H,344) + X2(H,244) + X4(H,444)
)
x23

+(
(X1

,1)(H,3) − 2(X4
,4)(H,3) − X4(H,34) − X3(H,33) − (X2

,2)(H,3)

−X2(H,23)
)
x3 + X3(H,3) = 0,(

(X3
,4)(H,34) − (X4

,3)(H,34) + X2(H,244) + X3(H,344)

+X4(H,444) + 2(X2
,2)(H,44)

)
x33

−(
2(X2

,2)(H,3) + X3(H,33) + X4(H,34) + X2(H,23)
)
x23

+(
4(X2

,2)H + 4X1
,2 + 2X2(H,2) + 3X3(H,3) + 2X4(H,4)

)
x3 − 4X3H = 0,(

(X4
,3)(H,34) + 2(X2

,2)(H,33) − (X3
,4)(H,34) + X2(H,233)

+X3(H,333) + X4(H,334)
)
x33

−(
2(X2

,2)(H,3) + X2(H,23) + X3(H,33) + X4(H,34)
)
x23

+(
4(X2

,2)H + 4X1
,2 + 2X2(H,2) + 3X3(H,3) + 2X4(H,4)

)
x3 − 4X3H = 0,

X2
,1 = 0,

H,34(X
3
,1 + X2

,3) = 0, H,34(X
4
,1 + X2

,4) = 0,

(X4
,3)(H,44) + (X3

,3)(H,34) + 2(X2
,2)(H,34)

−(X4
,4)(H,34) − (X4

,3)(H,33) + X2(H,234) + X3(H,334) + X4(H,344) = 0,

(X4
,4)(H,34) + (X3

,4)(H,33) + 2(X2
,2)(H,34)

−(X3
,4)(H,44) − (X3

,3)(H,34) + X2(H,234) + X3(H,334) + X4(H,344) = 0.

In order to simplify the above system, we used its simpler equations into the other
ones. In this way, we reduced the above system to the following equivalent system,
which contains just ten PDEs:

X2
,1 = 0,

X3
,1 + X2

,3 = 0,

X4
,1 + X2

,4 = 0,

X4
,3 + X3

,4 = 0,

(X3
,3)x3 − X3 = 0,

(X4
,4)x3 − X3 = 0,

X1
,4 + X4

,2 − (X4
,1)H = 0,

X3
,2 + X1

,3 − (X3
,1)H = 0,

(X2
,2 + X1

,1)x3 − 2X3 = 0,(
X2(H,2) + X4(H,4) + X3(H,3) + 2X1

,2 − 2H(X1
,1)

)
x3

+2X3H = 0. (3.3)
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It is now easily seen that system (3.3) is equivalent to (3.2) with λ = 0, that is, a
curvature collineation is necessarily a Killing vector field. So, no proper curvature
collineations occur. In particular, there are not any proper affine vector fields. �	

Because of Theorem 3.1, we need to focus on Ricci, matter and Weyl collineations
of Siklos metrics. We start reporting the classification of Siklos metrics admitting
additional Killing vector fields, as they will play an essential role in the study of Ricci
and matter collineations.

All Siklosmetrics admit at least oneKilling vector field.With respect to coordinates
(x1, x2, x3, x4) we used in (1.1), this Killing vector field is given by

K1 = ∂1.

Some subclasses of Siklos metrics do admit some additional Killing vector fields, as
reported in the followingTable 1, wherewe also specified the Einstein and conformally
flat cases in these subclasses. In Table I, A(xi ) is an arbitrary function of the specified
variables, α is an integer, β is a real parameter, Aα(xi ) represents a homogeneous
function of degree α and K2, .., K8 are the following vector fields:

K2 = −x1∂1 + x2∂2, K3 = ∂2, K4 = ∂4, K5 = x4∂1 − x2∂4,

K6,α = (2 + α)x1∂1 + (2 − α)x2∂2 + 2x3∂3 + 2x4∂4, K7 = x1∂1 − x2∂2 + 2∂4,

K8 = − 1
2 (x

2
3 + x24 )∂1 + x22∂2 + x2x3∂3 + x2x4∂4.

Remark 3.2 Some of the cases listed in Table I are well known solutions of Einstein
fields equations and have been previously studied in literature. In particular:

• Case 11) with k = 3/2 is Kaigorodov spacetime [19], which is the only homoge-
neous type-N solution of the Einstein vacuum field equations with � 
= 0;

• Case 11) with k = 2 is Ozsváth’s homogeneous solution to Einstein-Maxwell
equations [22].

• Case 12) isDefrise spacetime [12], a pure radiation solution of Petrov type N with
a G6 isometry group;

• Generalized Defrise spacetimes [25] are a generalization of case 12), where the
defining function is given by H = d(x2)/x23 , for an arbitrary bounded function d.
As such, they form a special subclass of case 4) ;

Siklos metrics corresponding to cases 7)-12) in Table I admit at least four Killing
vector fields and so, these cases identify the subclasses of homogeneous Siklos space-
times. As already observed in [30], one excludes in the above Table I the case of the
Anti-de Sitter space, whose Killing vector fields (and, more in general, symmetries)
are well known.

We now turn our attention to Ricci collineations.We already observed (Remark 2.1)
thatwhen theRicci tensor of a pseudo-Riemannianmetric g is nondegenerate, theRicci
tensor itself is a metric tensor, whose Killing vector fields are nothing but the Ricci

123



On the symmetries of Siklos… Page 13 of 26 60

Ta
bl
e
1

K
ill
in
g
ve
ct
or

fie
ld
s
of

Si
kl
os

m
et
ri
cs

D
efi
ni
ng

fu
nc
tio

n
E
in
st
ei
n

C
on
f.
fla
t

B
as
is
of

K
ill
in
g
v.
f.

0)
H

(x
2
,
x 3

,
x 4

)
2
H

,3
−

x 3
(
H

,4
4

+
H

,3
3
)
=

0
A

=
1 2
T

(x
2
)
( x2 3

+
x2 4

)

+L
(x

2
)
x 3

+
M

(x
2
)
x 4

+N
(x

2
)

K
1

1)
x−

2
2

A
(x

3
,
x 4

)
2
A

,3
−

x 3
(
A

,4
4

+
A

,3
3
)
=

0
A

=
c 1 2

(x
2 3

+
x2 4

)

+c
2
x 3

+
c 3
x 4

+
c 4

K
1
,
K
2

2)
A
(x

3
,
x 4

)
2
A

,3
−

x 3
(
A

,4
4

+
A

,3
3
)
=

0
A

=
c 1 2

(x
2 3

+
x2 4

)

+c
2
x 3

+
c 3
x 4

+
c 4

K
1
,
K
3

3)
A
2
(x

2
,
x 3

,
x 4

)

A
=

f 1
(x

2
)x

3
x 4

+(
x2 3

+
x2 4

)
f 1

(x
2
)
ta
n−

1
(
x 4 x 3

)

+(
x2 3

+
x2 4

)
f 2

(x
2
)

A
=

f 1
(x

2
)(
x2 3

+
x2 4

)
K
1
,
K
6,
2

4)
A
(x

2
,
x 3

)
A

=
f 1

(x
2
)
+

f 2
(x

2
)x

3 3
A

=
f 1

(x
2
)x

3
+

f 2
(x

2
)

K
1
,
K
4
,
K
5

5)
A

α
(x

3
,
x 4

)

α

=

−2
2
A

,3
−

x 3
(
A

,4
4

+
A

,3
3
)
=

0
A

=
0

K
1
,
K
3
,
K
6,

α

6)
A
(x

3
)e

x 4
−2

A
′ +

(
A

+
A

′′ )
x 3

=
0

A
=

0
K
1
,
K
3
,
K
7

7)
A
(x

3
)

A
=

c 1
+

c 2
x3 3

A
=

c 1
+

c 2
x 3

K
1
,
K
3
,
K
4
,
K
5

8)
A
(x

2
)x

2 3
A

=
0

A
=

0
K
1
,
K
4
,
K
5
,
K
6,
2

9)
x−2

β
−2

2
A
(x

β 2
x 3

)
A

=
c 1

+
c 2
x3

β
2

x3 3
A

=
c 1

+
c 2
xβ 2

x 3
K
1
,
K
4
,
K
5
,
K
6,

α
,

α
=

2(
1

+
1 β
)

10
)
A

−2
(x

3
,
x 4

)
A

=
c 1

(x
4 4
−3

x4 3
+6

x2 3
x2 4

)+
c 2
x3 3

x 4
(x

2 3
+x

2 4
)3

A
=

0
K
1
,
K
3
,
K
6,

−2
,
K
8

11
)
±x

α 3
,
α


=
−2

α
=

0,
3

α
=

0,
1

K
1
,
K
3
,
K
4
,

K
5
.K

6,
α

12
)
±x

−2 3
N
ev
er

N
ev
er

K
1
,
K
3
,
K
4
,

K
5
,
K
6,

−2
,
K
8

123



60 Page 14 of 26 G. Calvaruso et al.

collineations of g. Therefore, in such a case, the (smooth) Ricci collineations of g
necessarily form a finite-dimensional Lie algebra.

In the case of Siklos metrics, comparing (1.1) with (2.3), it is easily seen that the
Ricci tensor � of a Siklos metric g is homothetic to a Siklos metric, that is, it is yet
another Siklos metric up to scaling. In fact, ḡ = 1

�
� is the Siklos metric described as

in (1.1) by the defining function

H̄ = H − 1

3
x3(H,3) + 1

6
x23

(
H,33 + H,44

)
. (3.4)

As two metrics homothetic to one another have the same Killing vector fields, this fact
has some relevant consequences:

• the cases where proper Ricci collineations exist are completely identified, for
arbitrary Siklos metrics and in each of subclasses 1)-12), by some suitable PDE,
which further restricts the subclass for the metric determined by the Ricci tensor.
For example:

(1) for H arbitrary (and so, with the Lie algebra of Killing vector fields
spanned by K1), the Lie algebra of Ricci collineations is spanned by
{K1, K3, K4, K5, K6,−2, K7} if and only if H̄ belongs to subclass 12), that
is, by (3.4), when H is a solution of the PDE

H − 1

3
x3(H,3) + 1

6
x23

(
H,33 + H,44

) = ± 1

x23
.

(2) If g belongs to subclass 7), then the Lie algebra of its Killing vector fields
is spanned by {K1, K3, K4, K5}. In this case, the Lie algebra of Ricci
collineations is spanned by {K1, K3, K4, K5, K6,−2, K7} if and only if H =
A(x3) is a solution of

A − 1

3
x3A

′ + 1

6
x23 A

′′ = ε
1

x23
, ε = ±1,

whose explicit solutions are

H = A(x3) = c1x
3/2
3 cos

(√
15

2
ln x3

)
+ c2x

3/2
3 sin

(√
15

2
ln x3

)
+ 3ε

8x23
.

• when H is “generic”, that is, unless H satisfies some PDE forcing H̄ to belong
to a subclass where more Killing vector fields occur, the Lie algebra of Ricci
collineations of g coincides with the one of its Killing vector fields. Observe that
in such a general case, by the inclusions we recalled in Sect. 1, all Lie algebras
of Killing, homothetic and affine vector fields, curvature and Ricci collineations
coincide.

A very similar argument applies to matter collineations. In fact, denoted by T =
�− 1

2τg the energy-momentum tensor of a Siklos spacetime (M, g) and recalling that
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τ = 4�, one has that ĝ = − 1
�
T = − 1

�
� + 2g is the Siklos metric described by (1.1)

with the defining function

Ĥ = H + 1

3
x3(H,3) − 1

6
x23

(
H,33 + H,44

)
. (3.5)

The above arguments lead to the following.

Theorem 3.3 Let g denote a Siklos metric, as described by (1.1) for some defining
function H. Then, its Ricci tensor � is homothetic to the Siklos metric ḡ described by
(1.1) with defining function H̄ given by (3.4).

Consequently, g does not admit proper Ricci collineations (and so, neither proper
homothetic and affine vector fields and curvature collineations), unless H satisfies
some PDE, ensuring that H̄ belongs to a subclass of Siklos metrics for which more
Killing vector fields occur (see Table I). In any case, the Lie algebra of (smooth) Ricci
collineations of any Siklos metric is finite-dimensional.

In the same way, the energy-momentum tensor T of a Siklos metric g, described by
(1.1) for some defining function H, is homothetic to another Siklos metric ĝ, described
by (1.1) with defining function Ĥ given by (3.5). Therefore, g does not admit proper
matter collineations, unless H satisfies a suitable PDE, so that Ĥ belongs to a subclass
of Siklosmetrics, forwhichmoreKilling vector fields occur. In any case, the Lie algebra
of (smooth) matter collineations of any Siklos metric is finite-dimensional.

Remark 3.4 (Ricci iterations) Starting from a given metric g = g1 on a manifold M ,
a Ricci iteration is a sequence of metrics {gi }i∈N, such that �i+1 = gi for all indices
i . Ricci iteration is a discrete analogue of the Ricci flow and may be interpreted as a
dynamical system on the space of metrics on M .

Ancient Ricci iterations are sequences of metrics g1, g0, g−1, ..., satisfying

gi−1 = �i , i ∈ {1, 0,−1, ...}.

These notions were first introduced with reference to Kähler metrics [29] and then
considered in Riemannian settings, with particular regard to homogeneous spaces
([3, 28]). It is essential that the iteration preserves the signature of the metric, which
makes Ricci iterations a quite rare phenomenon. In [28], existence of Ricci iterations
of Riemannian homogeneous spaces was proved starting from dimension six. Our
results on Siklos metrics show the existence of Ricci iterations in dimension four
in Lorentzian settings, as this is the case for all Siklos metrics. In fact, we have the
following.

Proposition 3.5 Ricci iterations andancient Ricci iterations exist for all Siklosmetrics.
Admitting the possibility of scaling the metrics (which does not affect their Ricci
tensors), the class of Siklos metrics is closed with respect to Ricci iterations.

It will be interesting to investigate convergence properties of Ricci and ancient
Ricci iterations of Siklos metrics.

We conclude this section with a general result concerning Weyl collineations of
Siklos metrics. For the general form of Siklos metrics as described in (1.1), by (2.5)
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we deduce that a smooth vector field X = Xi∂i is a Weyl collineation if and only if
its components Xi satisfy the following system of PDEs:

(X2
,1)(H,34) = 0,

X2
,1(H,44 − H,33) = 0,

X3
,1(H,33 − H,44) + 2(X4

,1)(H,34) = 0,

X4
,1(H,44 − H,33) + 2(X3

,1)(H,34) = 0,

X2
,3(H,33 − H,44) + 2(X2

,4)(H,34) = 0,

X2
,4(H,44 − H,33) + 2(X2

,3)(H,34) = 0,

2X2(H,234)x3 + 2X3(H,334)x3 + 2X4(H,344)x3
−x3(X

3
,4 − X4

,3)(H,44 − H,33)

+(2(X4
,4)x3 + 2(X3

,3)x3 + 4(X2
,2)x3 − 4X3)(H,34) = 0,

(2(X3
,3)x3 + 2(X2

,2)x3 − 2X3)(H,44 − H,33) − 4(X4
,3)(H,34)x3

+X2x3(H,244 − H,233) + X3x3(H,344 − H,333) + X4x3(H,444 − H,334) = 0,

(2(X4
,4)x3 + 2(X2

,2)x3 − 2X3)(H,44 − H,33) + 4(X3
,4)(H,34)x3 + X2x3

×(H,244 − H,233) + X3x3(H,344 − H,333) + X4x3(H,444 − H,334) = 0. (3.6)

In particular, as the equations of the above system do not involve the component X1,
it follows at once that vector fields X = X1∂1 are Weyl collineations for any arbitrary
smooth function X1 = X1(x1, x2, x3, x4). (It is easily seen that X = X1∂1 is a Ricci
collineation if and only if X1 is a constant, that is, exactly when X = c1∂1 is a Killing
vector field). Therefore, we have the following.

Theorem 3.6 For any defining function H = H(x2, x3, x4), the corresponding Siklos
metric g, as described by (1.1), admits as Weyl collineations all vector fields of the
form X = X1∂1, for any smooth function X1 = X1(x1, x2, x3, x4).

Consequently, the Lie algebra of smooth Weyl collineations of any Siklos metric is
infinite-dimensional.

4 Symmetries of homogeneous Siklos metrics

We shall now focus on the different classes of homogeneous Siklos spacetimes, cor-
responding to Cases 7)-12) in Table I. As we already wrote, we shall always exclude
the trivial case corresponding to Siklos metrics isometric to the anti-de Sitter space.
We shall apply Theorem 3.3 to identify, for each Case, Siklos metrics admitting some
proper Ricci and matter collineations.

Case 7): H = A(x3). In this case, Eq. (3.4) yields that the Ricci tensor of Siklos
metric g is (up to scaling) the Siklos metric ḡ = 1

�
�, of the form (1.1) for the defining

function

H̄ = A − 1

3
x3A

′ + 1

6
x23 A

′′.
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Taking into account Table I, we see that g admits some proper Ricci collineations
when H̄ is of type either 11) or 12), that is, when A(x3) satisfies the following PDE:

A − 1

3
x3A

′ + 1

6
x23 A

′′ = ±xα
3 ,

which by integration yields

H = A(x3) = c1x
3
2
3 cos

(√
15

2
ln x3

)
+ c2x

3
2
3 sin

(√
15

2
ln x3

)
± 6xα

3

α2 − 3α + 6
.

(4.1)

For the defining function A(x3) of the form (4.1), the Lie algebra of Ricci collineations
of g corresponds to the Lie algebra of Killing vector fields of type 11) when α 
= −2
and of type 12) for α = −2.

With regard tomatter collineations, if H = A(x3), from (3.5)we get that the energy-
momentum tensor of Siklos metric g is (up to scaling) the Siklos metric ĝ = − 1

�
T ,

of the form (1.1) for the defining function

Ĥ = A + 1

3
x3A

′ − 1

6
x23 A

′′.

Then, g admits some proper matter collineations when Ĥ is of type either 11) or 12),
that is, when A satisfies

A + 1

3
x3A

′ − 1

6
x23 A

′′ = ±xα
3 ,

whence we get

H = A(x3) = c1x
3+√

33
2

3 + c2x
3−√

33
2

3 ± 6xα
3

α2 − 3α − 6
. (4.2)

Thus, we proved the following.

Theorem 4.1 Let g denote a Siklos metric described by (1.1) for a defining function
H = A(x3) as in type 7). Then:

• g admits proper Ricci collineations if and only if A is of the form (4.1). In this
case, the Lie algebra of Ricci collineations of g coincides with the Lie algebra of
Killing vector fields of type 11) when α 
= −2 and of type 12) for α = −2.

• g admits proper matter collineations if and only if A is of the form (4.2). In this
case, matter collineations of g correspond to Killing vector fields of type either
11) or 12), depending on the value of α.

Finally, for H = A(x3), X = Xi∂i is aWeyl collineation if and only if the following
system of PDEs is satisfied:

123



60 Page 18 of 26 G. Calvaruso et al.

2x3A
′′(X3

,3 + X2
,2) + X3(x3A

′′′ − 2A′′) = 0,

2x3A
′′(X4

,4 + X2
,2) + X3(x3A

′′′ − 2A′′) = 0,

A′′(X4
,3 − X3

,4) = 0,

(X2
,1)A

′′ = 0,

(X2
,3)A

′′ = 0,

(X2
,4)A

′′ = 0,

(X3
,1)A

′′ = 0,

(X4
,1)A

′′ = 0.

When A′′ = 0, by Proposition 2.3 we have that g is conformally flat, so indeed any
vector field is, trivially, a Weyl collineation. For A generic, the general solution of the
system above is given by X = X1∂1 + k∂2 + f (x2)∂4, where k is a real constant and
f (x2) is an arbitrary smooth function. So, we proved the following.

Proposition 4.2 Let g denote a Siklos metric described by (1.1) for a defining function
H = A(x3) as in type 7). For A generic, X = Xi∂i is a Weyl collineation if and only
if X = X1∂1 + c1∂2 + f (x2)∂4, where X1 is arbitrary, c1 is a real constant and f (x2)
is an arbitrary smooth function.

Case 8): H = A(x2)x23 . Equation (3.4) now implies that the Ricci tensor of Siklos
metric g is (up to scaling) the Siklos metric ḡ = 1

�
�, of the form (1.1) for the defining

function

H̄ = 2

3
x23 A(x2).

Clearly, being H̄ of the same form of H , in general no proper Ricci collineations
occur. By Table I we see that g admits some proper Ricci collineations only in the
very special case where H̄ is of type either 11) or 12), that is, when

2

3
x23 A(x2) = ±xα

3 ,

whence, necessarily α = 2 and A(x2) = ± 3
2 , that is,

H = ±3

2
x23 . (4.3)

But then, g is homothetic to type 11) with α = 2.
From (3.5) we find that the energy-momentum tensor of Siklos metric g defined by

H = A(x2)x23 is (up to scaling) the Siklos metric ĝ = − 1
�
T , of the form (1.1) for the

defining function

Ĥ = 4

3
x23 A(x2).
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Then, g admits some proper matter collineations if and only if − 4
3 x

2
3 A(x2) = ±xα

3 ,
whence, α = 2 and A(x2) = ± 3

4 , that is,

H = ±3

4
x23 . (4.4)

In this way, we proved the following.

Theorem 4.3 Siklos metrics g described by (1.1) for a defining function H = x23 A(x2)
as in type 8):

• do not admit proper Ricci collineations;
• do not admit proper matter collineations.

Finally, for H = x23 A(x2), X = Xi∂i is a Weyl collineation if and only if

2x3A(X3
,3 + X2

,2) + x3X
2A′ − 2X3A = 0,

2x3A(X4
,4 + X2

,2) + x3X
2A′ − 2X3A = 0,

A(X4
,3 − X3

,4) = 0,

A(X2
,1) = 0,

A(X2
,3) = 0,

A(X2
,4) = 0,

A(X3
,1) = 0,

A(X4
,1) = 0.

Integrating the above system, we prove the following.

Proposition 4.4 Let g denote a Siklos metric described by (1.1) for a defining function
H = A(x3) as in type 8). For A generic, X = Xi∂i is a Weyl collineation if and only
if

X = X1∂1 + c1√
A(x2)

∂2 + (2 f1(x2)x4 + f2(x2)) x3∂3

+
(
(x23 + x24 ) f1(x2) + f2(x2)x4 + f3(x2)

)
∂4,

where X1 is arbitrary, c1 is a real constant and fi (x2), i = 1, 2, 3, are arbitrary
smooth functions.

Case 9) H = x−2β−2
2 A(xβ

2 x3). By (3.4) we now get that the Ricci tensor of Siklos
metric g is (up to scaling) the Siklos metric ḡ = 1

�
�, of the form (1.1) for the defining

function

123



60 Page 20 of 26 G. Calvaruso et al.

H̄ = 1

6x22

(
6x−2β

2 A(xβ
2 x3) − 2x−β

2 x3A
′(xβ

2 x3) + x23 A
′′(xβ

2 x3)
)

.

Observe that H̄ is still of the same type of H . In fact,

H̄ = x−2β−2
2 Ā(xβ

2 x3)

= x−2β−2
2

(
A(xβ

2 x3) − 1

3
(xβ

2 x3)A
′(xβ

2 x3) + 1

6
(xβ

2 x3)
2A′′(xβ

2 x3)

)
.

Thus, in general no proper Ricci collineations occur. Taking into account Table I, g
admits some proper Ricci collineations only in the very special case where H̄ is of
type either 11) or 12), that is, for

x−2β−2
2 Ā(xβ

2 x3) = ±xα
3 ,

whence,

Ā(xβ
2 x3) = ±xα

3 x
2β+2
2 = ±(x

2β+2
α

2 x3)
α,

which necessarily implies that 2β+2
α

= β, that is, α = 2β+2
β

and, setting t = xβ
2 x3,

A(t) = A(xβ
2 x3) satisfies

A(t) − 1

3
t A′(t) + 1

6
t2A′′(t) = ±t

2β+2
β .

Integrating the above equation, we get

A(xβ
2 x3) = c1(x

β
2 x3)

3
2 cos

(√
15

2
ln(xβ

2 x3)

)
+ c2(x

β
2 x3)

3
2 sin

(√
15

2
ln(xβ

2 x3)

)

±3β2(xβ
2 x3)

2β+2
β

2β2 + β + 2
. (4.5)

The Lie algebra of Ricci collineations of g coincides then with the Lie algebra of
Killing vector fields of type either 11) or 12), with α = 2β+2

β
.

Next, the energy-momentum tensor of Siklos metric g defined by H =
x−2β−2
2 A(xβ

2 x3) is (up to scaling) the Siklos metric ĝ = − 1
�
T , of the form (1.1)

for the defining function

Ĥ = 1

6x22

(
6x−2β

2 A(xβ
2 x3) + 2x−β

2 x3A
′(xβ

2 x3) − x23 A
′′(xβ

2 x3)
)

.

Note that
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Ĥ = x−2β−2
2 Â(xβ

2 x3)

= x−2β−2
2

(
A(xβ

2 x3) + 1

3
(xβ

2 x3)A
′(xβ

2 x3) − 1

6
(xβ

2 x3)
2A′′(xβ

2 x3)

)
.

Thus, in general no proper matter collineations occur. Indeed, g admits some proper
matter collineations only in the very special case where Ĥ is of type either 11) or 12),
that is, when

x−2β−2
2 Â(xβ

2 x3) = ±xα
3

and so,

Â(xβ
2 x3) = ±xα

3 x
2β+2
2 = ±(x

2β+2
α

2 x3)
α,

whence, 2β+2
α

= β, that is,α = 2β+2
β

and, setting t = xβ
2 x3, A(t) = A(xβ

2 x3) satisfies

A(t) + 1

3
t A′(t) − 1

6
t2A′′(t) = ±t

2β+2
β .

By integration we conclude that

A(x3x
β
2 ) = c1(x3x

β
2 )

3+√
33

2 + c2(x3x
β
2 )

3−√
33

2 ± 3β2(x3x
β
2 )

2β+2
β

4β2 − β − 2
. (4.6)

Matter collineations of g then coincide with Killing vector fields of type either 11) or
12) with α = 2β+2

β
.

In this way, we proved the following.

Theorem 4.5 Let g denote a Siklos metric described by (1.1) for a defining function
H = x−2β−2

2 A(xβ
2 x3) as in type 9). Then:

• g admits proper Ricci collineations if and only if A is of the form (4.5). In this
case, the Lie algebra of Ricci collineations of g coincides with the Lie algebra of
Killing vector fields of type either 11) or 12) with α = 2β+2

β
.

• g admits proper matter collineations if and only if A is of the form (4.6). In this
case, matter collineations of g correspond to Killing vector fields of type either
11) or 12) with α = 2β+2

β
.

Finally, for H = x−2β−2
2 A(xβ

2 x3), X = Xi∂i is a Weyl collineation if and only if

2A′′(xβ
2 x3)(x2x3(X

3
,3 + X2

,2) − x3X
2 − x2X

3)

+A′′′(xβ
2 x3)(βx

2
3 x

β
2 X

2 + x3x
β+1
2 X3) = 0,

2A′′(xβ
2 x3)(x2x3(X

4
,4 + X2

,2) − x3X
2 − x2X

3)

+A′′′(xβ
2 x3)(βx

2
3 x

β
2 X

2 + x3x
β+1
2 X3) = 0,
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A′′(xβ
2 x3)(X

4
,3 − X3

,4) = 0,

A′′(xβ
2 x3)(X

2
,1) = 0,

A′′(xβ
2 x3)(X

3
,1) = 0,

A′′(xβ
2 x3)(X

4
,1) = 0,

A′′(xβ
2 x3)(X

2
,3) = 0,

A′′(xβ
2 x3)(X

2
,4) = 0.

In the general case, that is, assuming A′′ 
= 0, by integration we obtain the following.

Proposition 4.6 Let g denote a Siklos metric described by (1.1) for a defining function
H = x−2β−2

2 A(xβ
2 x3) as in type 9). For A generic, X = Xi∂i is a Weyl collineation

if and only if

X = X1∂1 + c1x2∂2 − c1βx3∂3 + ( f (x2) − c1βx4)∂4,

where X1 is arbitrary, c1 is a real constant and f (x2) is an arbitrary smooth function.

Case 10:) H = A−2(x3, x4). This case is more difficult to handle, as being
H = A−2(x3, x4) homogeneous of degree −2 does not provide an explicit general
description of H . To treat this case, we start with the more general case of a smooth
function H = A(x3, x4), before using the fact that by the well known properties of
homogeneous functions, A−2(x3, x4) must satisfy the equation

2A + x3(A,3) + x4(A,4) = 0.

When H = A(x3, x4), Eq. (3.4) yields that the Ricci tensor of Siklos metric g is
(up to scaling) the Siklos metric ḡ = 1

�
�, of the form (1.1) for the defining function

H̄ = A − 1

3
x3(A,3) + 1

6
x23

(
A,33 + A,44

)
.

Observe that if A is homogeneous of order −2, so is H̄ . Thus, this does not yield
further restrictions on the defining function.

Taking into account Table I, we see that g admits some proper Ricci collineations
when H̄ is of type either 11) or 12). Indeed, since A will have to be homogeneous of
order −2, the only possibility is that H̄ is of type 12).

The PDE

A − 1

3
x3(A,3) + 1

6
x23

(
A,33 + A,44

) = ± 1

x23

yields the general solution of the form

A(x3, x4) = f1(x3) f2(x4) + f3(x3),
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where f3 is a function which we omit to write for sake of brevity, and f1, f2 are
determined as solutions of the ODEs

f1(x3)
′′ = c1 f1(x3) + 2

x23

(
x3 f

′
1(x3) − 3 f1(x3)

)
, f ′′

2 (x4) = −c1 f2(x4),

for some real constant c1. This general solution is compatible with A(x3, x4) being
homogeneous of order −2 only when A(x3, x4) = ± 3

8x23
. But then, g is homothetic

to type 12).
A similar argument applies to matter collineations. If H = A(x3, x4), (3.5) yields

that the energy-momentum tensor of Siklosmetric g is (up to scaling) the Siklosmetric
ĝ = − 1

�
T , of the form (1.1) for the defining function

Ĥ = A + 1

3
x3(A,3) − 1

6
x23

(
A,33 + A,44

)
.

Then, g admits some proper Ricci collineations when Ĥ is of type 12), taking into
account that A is homogeneous of order −2. Integrating the PDE

A + 1

3
x3(A,3) − 1

6
x23

(
A,33 + A,44

) = ± 1

x23

yields an explicit solution, which is compatible with A(x3, x4) being homogeneous of
order −2 only when A(x3, x4) = ± 3

2x23
, which is again homothetic to case 12). Thus,

we proved the following.

Theorem 4.7 Siklos metrics g described by (1.1) for a defining homogeneous function
H = A−2(x3, x4) as in type 10):

• do not admit proper Ricci collineations;
• do not admit proper matter collineations.

Due to the complexity of this case, We were not able to classify in full general-
ity Weyl collineations for Siklos metrics of this type. Restricting to the case where
H = A−2(x3, x4) is a polynomial homogeneous function of degree −2, that is,
H = A−2(x3, x4) = k1

x23
+ k2

x3x4
+ k3

x24
, we find by a direct calculation, starting from Eq.

(3.6), that X = Xi∂i is a Weyl collineation if and only if

X = X1∂1 + f (x2)∂2 + 1

2
f ′(x2)(x3∂3 + x4∂4),

where X1 is arbitrary and f (x2) is an arbitrary smooth function.
Cases 11-12) H = ±xα

3 . To exclude trivial cases, we shall assume α 
= 0 (and also
α 
= 1 for the Weyl collineations). In this case, it follows from Eq. (3.4) that the Ricci
tensor of Siklos metric g is (up to scaling) the Siklos metric ḡ = 1

�
�, of the form (1.1)
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for the defining function

H̄ = ±α2 − 3α + 6

6
xα
3 .

Thus, no proper Ricci collineations occur. Indeed, in order to have proper Ricci
collineations, we should have

±α2 − 3α + 6

6
xα
3 = ±x−2

3 .

But then, α = −2, so that we are already in case 12), and Killing vector fields and
Ricci collineations coincide.

A similar argument holds for matter collineations. If H = ±xα
3 , then (3.5) yields

that the energy-momentum tensor of Siklosmetric g is (up to scaling) the Siklosmetric
ĝ = − 1

�
T , of the form (1.1) for the defining function

Ĥ = ±α2 − 3α − 6

6
xα
3

and no proper Ricci collineations occur, because in that case one should have

±α2 − 3α − 6

6
xα
3 = ±x−2

3 ,

so that α = −2 and we are already in case 12).
Thus, we proved the following.

Theorem 4.8 A Siklos metric g, described by (1.1) for a defining function H = ±xα
3

as in types 11),12),

• does not admit proper Ricci collineations.
• does not admit proper matter collineations.

Finally, for H = ±xα
3 , X = Xi∂i is a Weyl collineation if and only if

α(α − 1)
(
2xα−4

3 (X2
,2 + X3

,3) + X3xα−5
3 (α − 4)

)
= 0,

α(α − 1)
(
2xα−4

3 (X2
,2 + X4

,4) + X3xα−5
3 (α − 4)

)
= 0,

α(α − 1)(X4
,3 − X3

,4) = 0,

α(α − 1)X2
,1 = 0,

α(α − 1)X2
,3 = 0,

α(α − 1)X2
,4 = 0,

α(α − 1)X3
,1 = 0,

α(α − 1)X4
,1 = 0.
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Excluding the trivial cases α = 0, 1, by integration of the above system a straightfor-
ward calculation leads to the following.

Proposition 4.9 Let g denote a Siklos metric described by (1.1) for a defining function
H = ±xα

3 , as in types 11),12). X = Xi∂i is a Weyl collineation if and only if

X = X1∂1 + f1(x2)∂2 + 2

2 − α
f ′
1(x2)x3∂3 +

(
2

2 − α
f ′
1(x2)x4 + f2(x2)

)
∂4, α 
= 2,

X = X1∂1 + c1∂2 + (2 f1(x2)x4 + f2(x2))x3∂3

+ (
(x23 + x24 ) f1(x2) + f2(x2)x4 + f3(x2)

)
∂4, α = 2,

where c1 is an arbitrary constant, X1 and fi (x2), i = 1, 2, 3 are arbitrary smooth
functions.
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