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Abstract
The univariate distorted distributions were introduced in risk theory to represent

changes (distortions) in the expected distributions of some risks. Later, they were

also applied to represent distributions of order statistics, coherent systems, pro-

portional hazard rate and proportional reversed hazard rate models, etc. In this paper

we extend this concept to the multivariate setup. We show that, in some cases, they

are a valid alternative to the copula representation, especially when the marginal

distributions may not be easily handled. Several examples illustrate the applications

of such representations in statistical modeling. They include the study of paired

(dependent) ordered data, joint residual lifetimes, order statistics and coherent

systems
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1 Introduction

Distorted distributions were introduced in the theory of choice under risk (see Liu

et al. 2021; López-Dı́az et al. 2012; Sordo et al. 2016; Wang 1996; Yaari 1987) to

model the changes in the distribution of the risk variable under study. The distorted

distribution is defined as FdðtÞ ¼ dðFðtÞÞ, where F is the original distribution

function and d : ½0; 1� ! ½0; 1� is a distortion function, that is increasing, continuous

and satisfies dð0Þ ¼ 0 and dð1Þ ¼ 1. However they can be applied in several

contexts. For example, in reliability theory and survival analysis, they can be used to

represent the distributions of coherent systems with identically distributed (ID)

components (see, e.g., Navarro et al. 2013). These include both the cases of

independent identically distributed (IID) and dependent identically distributed

(DID) component lifetimes. In particular, they are also useful to represent the

distributions of order statistics (i.e., the ordered data obtained from a sample) since

they have the same distributions as k-out-of-n systems. Finally, they were also

exploited to define classes of prior distributions in Bayesian statistics (see Arias-

Nicolás et al. 2016) and to represent conditional distributions (see Navarro and

Durante 2017; Navarro et al. 2017; Navarro and Sordo 2018).

The distorted distributions were extended in Navarro et al. (2016) to represent

univariate distributions as distortions of n� 2 distribution functions. These

representations were applied to study the distribution of a single coherent system

formed of n components with different distributions. They can also be used to

represent ordered data from different populations (or in presence of outliers) and to

perform stochastic comparisons (see Navarro 2018; Navarro et al. 2016; Sordo and

Suárez-Llorens 2011).

Several multivariate distortions have been proposed as well with the purpose of

changing (shift) the distribution function of a given random vector ðX1; . . .;XnÞ. For
example, the distortion of the first kind proposed in Valdez and Xiao (Valdez and

Xiao 2011) maintains the copula and distorts the marginals (see Sect. 2.1).

Alternatively, the distortion of the third kind proposed there maintains the marginals

and replaces the copula by a distorted copula (see also Durante et al. 2010; Durante

and Sempi 2016; Morillas 2005). Other authors propose alternative representations

for a given multivariate distribution F to the classical ones based on copulas (see

Durante and Sempi 2016; Nelsen 2006). For example, Klüppelberg and Resnick

(Klüppelberg and Resnick 2008) proposed to use the Pareto-copula CP to represent

F (see Remark 2).

In this paper we introduce the new concept of multivariate distorted distribution
(MDD) extending the univariate concept given above. The MDDs provide

alternative representations for a given multivariate distribution that can be

represented as distortions of univariate distributions. These representations are

similar to the classical copula representations. Actually, the copula representations

are included in this general model. The main difference is that the MDD

representation may not be built from the univariate marginals of the considered

model, but from any set of univariate distributions. This fact provides a wide

flexibility and allows us to obtain different useful representations. For example,
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these representations can be used (instead of the copula representation) when the

expressions for the marginals are not available or are too complex. Furthermore, two

random vectors with different marginals could be compared by considering the

MDD associated with the same set of univariate distributions. The MDD

representations could also be used to built new multivariate models and to inspire

novel two-stage inference procedures. Several examples of such representations are

provided in Sect. 3. We must note that the purpose of these representations is not to

change (distort) the original distribution F, but to provide alternative representations
for it.

We provide several examples were these representations are useful. In the first

example, we provide a representation for the residual lifetimes of the working

components in a system at a given time t[ 0 extending the results obtained in

Longobardi and Pellerey (2019) and Navarro et al. (2017). In the second one, we

study ordered paired data obtaining a representation for the joint distribution of the

smallest and the largest data. This representation can be used to predict the largest

order statistic from the smallest order statistic. This procedure can be applied, for

instance, to study diseases of paired organs (eyes, kidneys, lungs, etc.). The

representation can be extended to the general case of ordered data (order statistics)

from a sample of dependent or independent identically distributed random variables.

Finally, we show how they can also be applied in Reliability Theory to represent the

joint distribution of two different coherent systems based on the same components.

In particular, this representation can be used to compute the system reliability and

the expected system residual lifetime at the time of the first component failure.

The rest of the paper is organized as follows. In the following Sect. 2 we define

the multivariate distorted distributions obtaining their main properties. The relevant

examples are placed in Sect. 3. Some illustrations of simulated ordered paired data

sets are given in Sect. 4. The conclusions and open tasks for future research projects

are in Sect. 5. The proofs and auxiliary technical results are collected in the

Appendix.

2 Multivariate distorted distributions

Throughout the paper we use the terms ‘increasing’ and ‘decreasing’ in a wide

sense, that is, they mean ‘non-decreasing’ and ‘non-increasing’, respectively. For

example, a function D : ½0; 1�n ! ½0; 1� is increasing if Dðu1; . . .; unÞ�Dðv1; . . .; vnÞ
whenever 0� ui � vi � 1 for all i ¼ 1; . . .; n.

2.1 Definition

Let X ¼ ðX1; . . .;XnÞ be a random vector over a probability space ðX;S; PrÞ. Then
the joint distribution function F of X is defined, for every ðx1; . . .; xnÞ in Rn, by

Fðx1; . . .; xnÞ ¼ PrðX1 � x1; . . .;Xn � xnÞ:

The (marginal) distribution of Xi is given by
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FiðxiÞ ¼ PrðXi � xiÞ ¼ Fðþ1; . . .;þ1; xi;þ1; . . .;þ1Þ

for i ¼ 1; . . .; n. It is well known that the probability in the n-dimensional rectangle

(box) determined by the points ðx1; . . .; xnÞ and ðy1; . . .; ynÞ can be computed from F
as

Prðx1\X1 � y1; . . .; xn\Xn � ynÞ ¼ M
ðy1;...;ynÞ
ðx1;...;xnÞF;

where xi\yi for every i 2 f1; . . .; ng,

M
ðy1;...;ynÞ
ðx1;...;xnÞF :¼

X

zi2fxi;yig
ð�1Þ1ðz1;...;znÞFðz1; . . .; znÞ;

while 1ðz1; . . .; znÞ ¼
Pn

i¼1 1ðzi ¼ xiÞ and 1ðAÞ ¼ 1 (respectively, 0) if A is true

(respectively, false).

From Sklar’s theorem (see, e.g., Sklar 1959 or p. 42 in Durante and Sempi 2016),

we know that

Fðx1; . . .; xnÞ ¼ CðF1ðx1Þ; . . .;FnðxnÞÞ ð1Þ

for every ðx1; . . .; xnÞ 2 Rn, where F1; . . .;Fn are the marginal distributions and C is

a copula function. Moreover, if all these marginal distributions are continuous, then

C is unique. For the basic properties of copulas we refer the reader to Durante and

Sempi (2016); Joe (2014); Mai and Scherer (2017); Nelsen (2006) and references

therein. The set of all copulas of dimension n will be denoted by Cn. Any copula

function can be extended to Rn to be a continuous multivariate distribution function

with uniform marginals over the interval (0, 1).

Now, we introduce a slightly more general concept that can be used to represent a

multivariate distribution function F in terms of arbitrary marginals.

Definition 1 A continuous function D : ½0; 1�n ! ½0; 1� is called n–dimensional
distortion function if it satisfies the following properties:

(i) Dðu1; . . .; ui�1; 0; uiþ1; . . .; unÞ ¼ 0 for all u1; . . .; ui�1; uiþ1; . . .; un 2 ½0; 1�.
(ii) Dð1; . . .; 1Þ ¼ 1.

(iii) D is n–increasing, i.e. for all x ¼ ðx1; . . .; xnÞ and y ¼ ðy1; . . .; ynÞ in ½0; 1�n
with xi � yi for every i 2 f1; . . .; ng, it holds My

x D� 0.

In particular, Dð0; . . .; 0Þ ¼ 0. Moreover, in view of (Nelsen 2006, Lemma

2.1.5), it follows that D is increasing in each variable. As for copulas, D can be

extended to Rn to be a continuous multivariate distribution function with support

contained in ½0; 1�n. The set of all distortion functions of dimension n will be

represented by Dn. Obviously, Cn � Dn.

Notice that the distortion D is also called pseudo-copula in Fermanian and

Wegkamp (2012), where the concept has been mainly motivated in the context of

conditional time-varying models.
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Definition 2 A multivariate distribution function F is said to be a multivariate
distorted distribution (MDD) of the univariate distribution functions G1; . . .;Gn if

there exists a distortion D 2 Dn such that, for every ðx1; . . .; xnÞ 2 Rn, it holds

Fðx1; . . .; xnÞ ¼ DðG1ðx1Þ; . . .;GnðxnÞÞ ð2Þ

We write F � MDDðG1; . . .;GnÞ, when F is a MDD of G1; . . .;Gn.

For instance, any multivariate distribution function F is a MDD of its own

univariate marginals via the copula representation (1). However, for some other

choices of G1; . . .;Gn, F may be expressed as a MDD of G1; . . .;Gn.

Remark 1 An example of MDD representation has been described in Valdez and

Xiao (2011) under the name of copula distortion of the first kind. Given a

multivariate distribution function F expressed in terms of its copula representation

(1), we can change the original multivariate distribution F to the distorted one

Fd1;...;dnðx1; . . .; xnÞ :¼ Cðd1ðF1ðx1ÞÞ; . . .; dnðFnðxnÞÞÞ;

for given univariate distortion functions d1; . . .; dn. In order to compare F and

Fd1;...;dn we could represent this latter function as a MDD of ðF1; . . .;FnÞ with

Fd1;...;dnðx1; . . .; xnÞ ¼ DðF1ðx1Þ; . . .;FnðxnÞÞ;

where

Dðu1; . . .; unÞ :¼ Cðd1ðu1Þ; . . .; dnðunÞÞ

for every ðu1; . . .; unÞ 2 ½0; 1�n. Obviously, if d1 ¼ . . . ¼ dn is the identity function,

then D is a copula.

Remark 2 While the copula representation has provided to be very useful, in the

literature, different specifications have been used to represent a multivariate

distribution function F (see, e.g., Embrechts 2009). For instance, if G is a

continuous univariate distribution function and C is a copula, we can define the

function CG via

CGðv1; . . .; vnÞ ¼ CðGðv1Þ; . . .;GðvnÞÞ

for every ðv1; . . .; vnÞ 2 Rn. Such a CG need not be a copula since its common

marginal distribution is G (it is only a copula when G is the standard uniform

distribution). Moreover, it can be used to obtain the following representation for a

distribution function F expressed as in (1),

Fðx1; . . .; xnÞ ¼ CGðG�1ðF1ðx1ÞÞ; . . .;G�1ðFnðxnÞÞÞ: ð3Þ

For instance, if G is the standard Pareto distribution, then CG is the Pareto copula

proposed in Klüppelberg and Resnick (2008). Similar definitions can be proposed

for other relevant distributions, such as Gaussian (see, e.g., Joe 2014). However,

note that CG is not a distortion function, since it is not supported on ½0; 1�n and,

hence, (3) does not provide a MDD representation for F.
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The main properties of MDD representations are given in the next subsections.

Several useful examples are included in Sect. 3.

2.2 Main properties

According to Sklar’s theorem (Sklar 1959), any multivariate distribution function

can be expressed in terms of its univariate marginal distributions via the

representation (1). Invoking the same type of arguments, in Fermanian and

Wegkamp (2012, Theorem 1) it is shown that, under some mild conditions, any

multivariate distribution function can be expressed in terms of arbitrary univariate

marginal distributions G1; . . .;Gn via the representation (2).

In the following result, we state a similar Sklar-type theorem for continuous

distribution functions.

Proposition 1 Let ðX1; . . .;XnÞ be a random vector with joint continuous
distribution function F. Let G1; . . .;Gn be arbitrary continuous distribution
functions and let us assume that Gi is strictly increasing in the support of Xi for
i ¼ 1; . . .; n. Then there exists a unique distortion D 2 Dn such that (2) holds.

Proof See the Appendix. h

Remark 3 From the proof of Proposition 1, it follows that D is the multivariate

distribution function of ðG1ðX1Þ; . . .;GnðXnÞÞ, so that each Vi ¼ GiðXiÞ is a

componentwise increasing transformation of Xi for i ¼ 1; . . .; n. Thus, for any

measure of concordance j (as Kendall’s tau or Spearman’s rho, see, e.g. Taylor

2016), jðV1; . . .;VnÞ ¼ jðX1; . . .;XnÞ. In essence, D contains all the information

about the (rank-invariant) dependence structure of F.

Remark 4 From Proposition 1, for instance, if X1; . . .;Xn are nonnegative random

variables, then we can choose to represent the joint distribution function F as a

MDD of a common standard exponential distribution with GðtÞ ¼ 1� e�t for every

t� 0.

For a continuous distribution function F, it is possible to link the copula

representation and any MDD representation via the following result.

Proposition 2 Let ðX1; . . .;XnÞ be a random vector with joint continuous
distribution function F. Let G1; . . .;Gn be arbitrary continuous distribution
functions. Suppose that F � MDDðG1; . . .;GnÞ with distortion D. Then, for every
ðu1; . . .; unÞ 2 ½0; 1�n,

Dðu1; . . .; unÞ ¼ CðF1ðG�1
1 ðu1ÞÞ; . . .;FnðG�1

n ðunÞÞÞ;

where G�1
i is the quasi-inverse of Gi for i ¼ 1; . . .; n.

Proof See the Appendix. h

The converse of Proposition 1 can be stated as follows.
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Proposition 3 If D 2 Dn, then the function F defined by (2) is a multivariate
distribution function for all univariate distribution functions G1; . . .;Gn.

Proof See the Appendix. h

The previous result gives a useful recipe to built new multivariate probability

models. In fact, we can obtain multivariate distributions by changing the univariate

distribution functions G1; . . .;Gn for a fixed D, or by changing D 2 Dn for fixed

G1; . . .;Gn (as in copula representations).

Remark 5 Notice that the distortion (or aggregation) functions considered in

Navarro et al. (2016) to get univariate distribution functions from n univariate

distribution functions do not necessarily belong to Dn (i.e., in many cases, they are

not multivariate distortion functions). For example, the aggregation function

Qðu1; . . .; unÞ ¼ ðu1 þ . . .þ unÞ=n is not a multivariate distortion function since

Qð0; u2; . . .; unÞ ¼ ðu2 þ . . .þ unÞ=n[ 0 for all u2; . . .; un 2 ð0; 1�. On the other

hand, D2 is included in the class of 2–increasing aggregation functions considered

in Durante et al. (2007).

In the next proposition we show that, if (2) holds, then a similar representation

holds for the joint survival (or reliability) function

�Fðx1; . . .; xnÞ ¼ PrðX1 [ x1; . . .;Xn [ xnÞ:

Proposition 4 Let ðX1; . . .;XnÞ be a random vector with distribution function F. If
(2) holds for G1; . . .;Gn and D 2 Dn, then the joint survival function of ðX1; . . .;XnÞ
can be written as

�Fðx1; . . .; xnÞ ¼ D̂ð �G1ðx1Þ; . . .; �GnðxnÞÞ ð4Þ

for all x1; . . .; xn, where �Gi ¼ 1� Gi is the survival function associated to Gi for

i ¼ 1; . . .; n and D̂ 2 Dn.

The proof is immediate since the probability PrðX1 [ x1; . . .;Xn [ xnÞ can be

obtained as the probability in the n-dimensional rectangle determined by ðx1; . . .; xnÞ
and ðþ1; . . .;þ1Þ. The distortion function D̂ determined by this formula can be

called dual (or survival) distortion function as in the univariate case. Note that D̂ is

determined by D (and vice versa). In the univariate case we have

D̂ðuÞ ¼ 1� Dð1� uÞ. However, when n[ 1,

D̂ðu1; . . .; unÞ 6¼ 1� Dð1� u1; . . .; 1� unÞ:

The formula to get D̂ from D is similar to the expression for the survival copula Ĉ in

term of the distributional copula C. Thus, if n ¼ 2, we have
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�Fðx1; x2Þ ¼ PrðX1 [ x1;X2 [ x2Þ
¼ 1� Fðx1;þ1Þ � Fðþ1; x2Þ þ Fðx1; x2Þ
¼ 1� DðG1ðx1Þ; 1Þ � Dð1;G2ðx2ÞÞ þ DðG1ðx1Þ;Gðx2ÞÞ
¼ 1� Dð1� �G1ðx1Þ; 1Þ � Dð1; 1� �G2ðx2ÞÞ þ Dð1� �G1ðx1Þ; 1� �Gðx2ÞÞ
¼ D̂ð �G1ðx1Þ; �G2ðx2ÞÞ;

where D̂ðu1; u2Þ ¼ 1� Dð1� u1; 1Þ � Dð1; 1� u2Þ þ Dð1� u1; 1� u2Þ for all

u1; u2 2 ½0; 1�. Note that if D 2 D2 is the distribution function of the random vector

ðU1;U2Þ, then D̂ is the distribution function of ð1� U1; 1� U2Þ whose support is

included in ½0; 1�2 as well. So D̂ 2 D2. Representations (2) and (4) are equivalent

but, depending on the application, it could be better to use (4) instead of (2) (or vice

versa). Some examples are given in the next section.

2.3 Marginal distributions

A relevant property of the MDD representation F � MDDðG1; . . .;GnÞ is that all the
multivariate marginal distributions of F are also MDD of suitable univariate

distributions selected from G1; . . .;Gn.

In fact, let ðX1; . . .;XnÞ be a random vector with distribution function F. Let
F1;...;m be the distribution function of ðX1; . . .;XmÞ for 1�m� n. The expressions for
the other marginals can be obtained in a similar way. The following result holds.

Proposition 5 If F � MDDðG1; . . .;GnÞ and 1�m� n, then the joint distribution
function F1;...;m can be written as

F1;...;mðx1; . . .; xmÞ ¼ D1;...;mðG1ðx1Þ; . . .;GmðxmÞÞ ð5Þ

for all ðx1; . . .; xmÞ 2 Rm, where D1;...;mðu1; . . .; umÞ :¼ Dðu1; . . .; um; 1; . . .; 1Þ for all
ðu1; . . .; umÞ 2 ½0; 1�m and D1;...;m 2 Dm.

Proof See the Appendix. h

In particular, the ith marginal distribution function of Xi can be written as

FiðxiÞ ¼ Dð1; . . .; 1;GiðxiÞ; 1; . . .; 1Þ ¼ DiðGiðxiÞÞ ð6Þ

for all xi 2 R, where DiðuÞ :¼ Dð1; . . .; 1; u; 1; . . .; 1Þ and the value u is placed at the

ith position. Clearly, we have Gi ¼ Fi for a fixed i 2 f1; . . .; ng when DiðuÞ ¼ u for

all u 2 ½0; 1�, that is, when the ith marginal of D is a uniform distribution over the

interval (0, 1).

2.4 Probability density function and conditional distributions

Let us assume in this subsection that F is absolutely continuous with joint

probability density function (PDF) f, where f ¼ o1;...;nF a.e., that is, almost

everywhere. Here, oiF represents the partial derivative of F with respect to its ith
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variable, oi;jF :¼ oiojF, and so on. Then the joint PDF of a multivariate distorted

distribution can be obtained as follows.

Proposition 6 If F � MDDðG1; . . .;GnÞ for absolutely continuous distribution
functions G1; . . .;Gn with PDFs g1; . . .; gn, respectively, and a distortion function
D that admits continuous mixed derivatives of order n, then the joint PDF f of
ðX1; . . .;XnÞ is

f ðx1; . . .; xnÞ ¼ g1ðx1Þ. . .gnðxnÞ o1;...;nDðG1ðx1Þ; . . .;GnðxnÞÞ: ð7Þ

The proof is immediate from (2) and f ¼ o1;...;nF (a.e.). Note that, if D 2 Dn and

it is absolutely continuous, then d :¼ o1;...;nD is a PDF of D.

Remark 6 The PDF representation (7) expresses the PDF f as a product of the PDF
d and the marginal PDFs gi. Thus, as in copula representations (Joe 2005), we can

argue that the log-likelihood of such models (when all the PDFs are expressed in a

parametric form) can be maximized in a two-stage procedure: the first stage

involves maximum likelihood from the univariate distributions, and the second

stage involves maximum likelihood of the dependence parameters with the

univariate parameters held fixed from the first stage. This is extremely important in

practice, as it happens for copula models when the maximum likelihood is

computationally difficult to handle. Moreover, now we can choose arbitrary models

for g1; . . .; gn, from which we may have some partial knowledge to be taken into

account.

We can also prove that all the conditional distributions (when they exist) of

F � MDDðG1; . . .;GnÞ can be expressed as a suitable MDD representation. To

simplify the notation we just consider the conditional distribution ðX2jX1 ¼ x1Þ. The
result in such a case can be stated as follows.

Proposition 7 Let ðX1;X2Þ be a random vector with joint distribution function F. If
F � MDDðG1;G2Þ for two absolutely continuous distribution functions G1 and G2

and a distortion function D 2 D2 that admits continuous mixed derivatives of order
2, then the distribution function F2j1 of ðX2jX1 ¼ x1Þ can be written as

F2j1ðx2jx1Þ ¼ D2j1ðG2ðx2ÞjG1ðx1ÞÞ ð8Þ

whenever limv!0þ o1DðG1ðx1Þ; vÞ ¼ 0, where D2j1 is a distortion function given by

D2j1ðvjG1ðx1ÞÞ :¼
o1DðG1ðx1Þ; vÞ
o1DðG1ðx1Þ; 1Þ

for 0\v\1 and x1 such that o1DðG1ðx1Þ; 1Þ[ 0.

Proof See the Appendix. h

A similar expression can be obtained from D̂ for the conditional survival function

by using (4). Note that the PDF of ðX2jX1 ¼ x1Þ can be written as
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f2j1ðx2jx1Þ ¼ g2ðx2Þd2j1ðG2ðx2ÞjG1ðx1ÞÞ; ð9Þ

where

d2j1ðvjG1ðx1ÞÞ :¼ D0
2j1ðvjG1ðx1ÞÞ ¼

o1;2DðG1ðx1Þ; vÞ
o1DðG1ðx1Þ; 1Þ

for 0\v\1 (zero elsewhere). Hence, from (9), the regression curve to predict X2

from X1, m2j1ðx1Þ :¼ EðX2jX1 ¼ x1Þ, can be obtained as

m2j1ðx1Þ ¼
Z þ1

�1
x2g2ðx2Þd2j1ðG2ðx2ÞjG1ðx1ÞÞdx2:

If X2 is nonnegative (almost surely), then an alternative expression can be obtained

from the conditional survival function. Another option to predict X2 from X1 is to

use the conditional median regression curve ~m2j1ðx1Þ :¼ F�1
2j1ð0:5jx1Þ (see Koen-

ker 2005 or Nelsen 2006, p. 217). Note that this function can be computed from

(8) as

F�1
2j1ðvjx1Þ ¼ G�1

2 ðD�1
2j1ðvjG1ðx1ÞÞÞ

for 0\v\1, provided that the inverse functions of G2 and D2j1ðvjG1ðx1ÞÞ can be

computed. Moreover, we can obtain a-confidence bands in a similar way (see

Koenker (2005) taking 0� b1\b2 � 1 such that b2 � b1 ¼ a. For example, the

centered 50% and 90% quantile-confidence bands for ðX2jX1 ¼ x1Þ are determined,

respectively, by ðF�1
2j1ð0:25jx1Þ;F�1

2j1ð0:75jx1ÞÞ and ðF�1
2j1ð0:05jx1Þ;F�1

2j1ð0:95jx1ÞÞ.
Some examples are given in Sect. 4.

2.5 Stochastic comparisons

Let us assume now that two random vectors X ¼ ðX1; . . .;XnÞ and Y ¼ ðY1; . . .; YnÞ
have multivariate distorted distributions with respective distortion functions DX and

DY and with the same baseline distribution functions G1; . . .;Gn. Hence we have the

following immediate results for the lower orthant � lo and upper orthant � uo

orders. For the definitions and main properties of these stochastic orders see, e.g.,

Shaked and Shanthikumar (2007), pages 308–314.

Proposition 8 Let X and Y have MDD of G1; . . .;Gn with respective distortion
functions DX and DY.

(i) If DX �DY , then X� loY.

(ii) If D̂X � D̂Y , then X� uoY.

Analogously, if they have the same distortion, we get the following results.

Proposition 9 If X and Y have MDD with the same distortion function D from
G1; . . .;Gn and H1; . . .;Hn, respectively, and Gi �Hi holds for i ¼ 1; . . .; n, then
X� loY and X� uoY.
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The proof is immediate from (2) and (4) by noting that, if they have the same

distortion function D, then they have the same dual distortion function D̂ as well.

Note that we can combine both propositions to compare MDD with different

distortions and different univariate baseline distributions.

3 Illustrative examples

The purpose of this section is to show some examples where the MDD

representations can be useful.

3.1 Joint residual lifetimes

In this section, we assume that X1; . . .;Xn represent the lifetimes of n components in

an engineering or biological system. So we assume that they are nonnegative almost

surely.

For i ¼ 1; . . .; n, we denote by ðXi � tjXi [ tÞ the univariate residual lifetimes at

time t[ 0 whose survival functions are given by

�Fi;tðxÞ :¼ PrðXi � t[ xjXi [ tÞ ¼
�Fiðt þ xÞ
�FiðtÞ

for every x� 0, whenever �FiðtÞ[ 0. The univariate residual lifetimes play a central

role in the study of the reliability of a system. For example, the mean residual

lifetime (MRL) function miðtÞ ¼ EðXi � tjXi [ tÞ is used to define a stochastic

order (the MRL order) and two aging classes (the increasing/decreasing MRL

classes, denoted as IMRL and DMRL, respectively).

Analogously, for the random vector X ¼ ðX1; . . .;XnÞ and for t� 0, we can

consider the random vector of the residual lifetimes

Xt ¼ ðX1 � t; . . .;Xn � tjX1 [ t; . . .;Xn [ tÞ

whose survival function is given, for all x1 � t; . . .; xn � t, by

�Ftðx1; . . .; xnÞ :¼ PrðX1 [ x1; . . .;Xn [ xnjX1 [ t; . . .;Xn [ tÞ;

where it is assumed that PrðX1 [ t; . . .;Xn [ tÞ[ 0. Note that it is natural to con-

sider a common time t for all the components in a system. Here we just consider

that, at a time t, all the components are working (e.g. we can be in a plane and to

know that all the engines are working after t hours). Let us remark that, when we

write Z ¼ XjY we mean the random variable whose distribution coincides with the

conditional distribution function of X given Y ¼ y. Some results for the residual

lifetime of the system under this assumption were obtained in Navarro (2018)

and Navarro and Durante (2017). We will consider other options later.

In the following proposition we prove that, for all t� 0, Ft admits a MDD

representation in terms of �F1;t; . . .; �Fn;t. The analogous expression for the joint

distribution function can be obtained in a similar way.
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Proposition 10 If �Fðt; . . .; tÞ[ 0 for some t� 0, then

�Ftðx1; . . .; xnÞ ¼ D̂tð �F1;tðx1Þ; . . .; �Fn;tðxnÞÞ ð10Þ

for all x1; . . .; xn � t and the following dual distortion function

D̂tðu1; . . .; unÞ :¼
Ĉð �F1ðtÞu1; . . .; �FnðtÞunÞ
Ĉð �F1ðtÞ; . . .; �FnðtÞÞ

; u1; . . .; un 2 ½0; 1�; ð11Þ

which depends on �F1ðtÞ; . . .; �FnðtÞ.

Proof See the Appendix. h

Remark 7 Note that the survival functions �F1;t; . . .; �Fn;t of the marginal residual

lifetimes at time t are not the marginal survival functions of the random vector Xt.

The ith marginal survival function �Hi;t of Xt is

�Hi;tðxÞ ¼ PrðXi � t[ xjX1 [ t; . . .;Xn [ tÞ

¼ PrðX1 [ t; . . .;Xi�1 [ t;Xi [ t þ x;Xiþ1 [ t; . . .;Xn [ tÞ
PrðX1 [ t; . . .;Xn [ tÞ

¼
�Fðt; . . .; t; t þ x; t; . . .; tÞ

�Fðt; . . .; tÞ

¼ Ĉð �F1ðtÞ; . . .; �Fi�1ðtÞ; �Fiðt þ xÞ; �Fiþ1ðt þ xÞ. . .; �FnðtÞÞ
Ĉð �F1ðtÞ; . . .; �FnðtÞÞ

:

Hence representation (10) is not a copula representation. To obtain the survival

copula Ĉt of Xt from (10) we need the inverse functions of �H1;t; . . .; �Hn;t (see, for

instance, Durante et al. (2008)). Note that, in many models, it is not possible to get

these inverse functions in closed forms. However, representation (10) always holds

and it is based on the univariate residual survival functions �F1;t; . . .; �Fn;t. Roughly

speaking, in representation (10), the marginal distributions �F1;t are conditioned to

their own past history, while Hi;t are conditioned to an event that takes into account

the past history of all components of the system. In a dynamic copula model setting,

the former approach could be preferred; see, e.g., (Fermanian and Wegkamp 2012).

We can obtain (in a similar way) MDD representations for other residual

lifetimes. For example, if we know that at time t, the first n� 1 components are

alive, but the nth component has failed, then the joint survival function �F
ðnÞ
t of the

random vector

X
ðn;�Þ
t :¼ ðX1 � t; . . .;Xn � tjX1 [ t; . . .;Xn�1 [ t;Xn � tÞ ð12Þ

defined for t[ 0 such that PrðX1 [ t; . . .;Xn�1 [ t;Xn � tÞ[ 0, can be written as a

MDD (see Appendix).

Similar representations can be obtained from (10) for
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ðX1 � t; . . .;Xn�1 � tjX1 [ t; . . .;Xn [ tÞ

(a marginal of Xt) and

ðX1 � t; . . .;Xn�1 � tjX1 [ t; . . .;Xn�1 [ tÞ

(the n� 1 dimensional case). More interestingly, we can compare these two random

vectors with X
ðnÞ
t just by comparing their distortion functions since their represen-

tations are based on the same survival functions �F1;t; . . .; �Fn�1;t. This is not the case

if we use copula representations since these random vectors have different marginal

distributions when X1; . . .;Xn are dependent. Let us see an example.

Example 1 Let ðX1;X2;X3Þ be a random vector of identically distributed marginals

with survival function �F and a Farlie-Gumbel-Morgenstern (FGM) (survival) copula

Ĉðu1; u2; u3Þ ¼ u1u2u3½1þ hð1� u1Þð1� u2Þð1� u3Þ�

for �1� h� 1. Consider the residual lifetimes

Xt :¼ ðX1 � t;X2 � tjX1 [ t;X2 [ tÞ;
X

ð3;�Þ
t :¼ ðX1 � t;X2 � tjX1 [ t;X2 [ t;X3 � tÞ;

X
ð3;[ Þ
t :¼ ðX1 � t;X2 � tjX1 [ t;X2 [ t;X3 [ tÞ:

If t[ 0 and k :¼ �FðtÞ[ 0, then the dual distortion functions are given, respectively,

by

D̂tðu1; u2Þ ¼
Ĉðku1; ku2; 1Þ
Ĉðk; k; 1Þ

¼ u1u2

D̂
ð3;�Þ
t ðu1; u2Þ ¼

Ĉðku1; ku2; 1Þ � Ĉðku1; ku2; kÞ
Ĉðk; k; 1Þ � Ĉðk; k; kÞ

¼ u1u2
1� hkð1� ku1Þð1� ku2Þ

1� hkð1� kÞ2
;

D̂
ð3;[ Þ
t ðu1; u2Þ ¼

Ĉðku1; ku2; kÞ
Ĉðk; k; kÞ

¼ u1u2
1þ hð1� ku1Þð1� ku2Þð1� kÞ

1þ hð1� kÞ3
:

A straightforward calculation shows that D̂
ð3;[ Þ
t � D̂t � D̂

ð3;�Þ
t when h� 0, and that

D̂
ð3;[ Þ
t � D̂t � D̂

ð3;�Þ
t when h� 0. Hence X

ð3;[ Þ
t � uoXt � uoX

ð3;�Þ
t for every t[ 0,

every �F and every h� 0. The reverse orderings hold when h� 0.

Similar representations for other conditional residual lifetimes can be given as

well. For example, an analogous representation can be obtained for the residual

lifetime vector ðX1 � t; . . .;Xn�1 � tjX1 [ t; . . .;Xn�1 [ t;Xn ¼ t1Þ when 0\t1\t
by using the techniques used in Navarro and Durante (2017) and Navarro and Sordo

(2018). The comparisons of these random vectors can be used to study the effect of

the information available at time t in the residual lifetimes of the working

components at this time. We can study inactivity times as well by using the

procedures introduced in Navarro and Calı̀ (2019) and Navarro et al. (2017).
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3.2 Ordered paired data

In this section, we assume that X and Y have a common absolutely continuous

distribution function F and an absolutely continuous copula C. Hence the joint

distribution function is FX;Yðx; yÞ ¼ CðFðxÞ;FðyÞÞ. In some cases, we may also

assume that C is permutation symmetric. In this case, (X, Y) is exchangeable (EXC),
that is, (X, Y) and (Y, X) have the same joint distribution. Moreover, we assume that

we have some information about L ¼ minðX;YÞ, and we would like to estimate

U ¼ maxðX; YÞ. In particular, we would like to predict the regression curve mðtÞ ¼
EðUjL ¼ tÞ or its conditional survival function SðxjtÞ ¼ PrðU[ xjL ¼ tÞ that can be
used to compute the median regression curve and its confidence bands. Note that the

target random variable is U (not Y).
For example, in Biostatistics, X and Y may represent disease lifetimes for paired

organs (breast, lung, eyes, etc.). We assume that they are observed in a training

sample ðX1; Y1Þ; . . .; ðXm; YmÞ from the random vector (X, Y). However, for other
individuals, we may just know L ¼ minðX; YÞ and we want to estimate

U ¼ maxðX; YÞ. Note that both F and C can be estimated from the training sample

by using parametric models or empirical or kernel type estimators (see. e.g., Omelka

et al. 2009; Sumarjaya 2017 and references therein).

We want to obtain a MDD representation for the random vector (L, U) in terms

of F and C. First, its joint distribution function Gðx; yÞ ¼ PrðL� x;U� yÞ can be

computed as

Gðx; yÞ ¼ PrðU� yÞ ¼ PrðX� y; Y � yÞ ¼ CðFðyÞ;FðyÞÞ;

when y� x, and as

Gðx; yÞ ¼ PrðL� x;U� yÞ ¼ PrððfX� xg [ fY � xgÞ \ fX� yg \ fY � ygÞ;

when x\y. Hence, by using the inclusion-exclusion formula, we get

Gðx; yÞ ¼ PrðX� x; Y � yÞ þ PrðX� y; Y � xÞ � PrðX� x; Y � xÞ
¼ CðFðxÞ;FðyÞÞ þ CðFðyÞ;FðxÞÞ � CðFðxÞ;FðxÞÞ

for x\y. Therefore, G � MDDðF;FÞ, i.e.

Gðx; yÞ ¼ DðFðxÞ;FðyÞÞ ð13Þ

for the following distortion function

Dðu; vÞ ¼
Cðv; vÞ for v� u;

Cðu; vÞ þ Cðv; uÞ � Cðu; uÞ for u\v:

�
ð14Þ

Then the marginal distributions of (L, U) can be written as

G1ðxÞ :¼ PrðL� xÞ ¼ DðFðxÞ; 1Þ ¼ D1ðFðxÞÞ

and
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G2ðyÞ :¼ PrðU� yÞ ¼ Dð1;FðyÞÞ ¼ D2ðFðyÞÞ;

where D1ðuÞ ¼ Dðu; 1Þ ¼ 2u� Cðu; uÞ and D2ðuÞ ¼ Dð1; uÞ ¼ Cðu; uÞ for all u 2
½0; 1� (see (6)). Here, D1 and D2 are univariate distortion functions for every copula

C. For example, if X and Y are independent, then D1ðuÞ ¼ Dðu; 1Þ ¼ 2u� u2 6¼ u

and D2ðuÞ ¼ Dð1; uÞ ¼ u2 6¼ u for all u 2 ð0; 1Þ. We notice that, in representation

(13), D is not a copula and the marginals G1 and G2 of G do not appear.

From (8) and (13), the distribution function of ðUjL ¼ xÞ can be obtained as

G2j1ðyjxÞ ¼ D2j1ðFðyÞjFðxÞÞ ð15Þ

for y� x, where

D2j1ðvjFðxÞÞ :¼
o1DðFðxÞ; vÞ
o1DðFðxÞ; 1Þ

;

o1Dðu; vÞ ¼ 0 for v\u and

o1Dðu; vÞ ¼ o1Cðu; vÞ þ o2Cðv; uÞ � o1Cðu; uÞ � o2Cðu; uÞ;

for v[ u. Hence limv!0þ o1Dðu; vÞ ¼ 0 for all 0\u\1. In particular, in the EXC

case, we have o1Dðu; vÞ ¼ 2o1Cðu; vÞ � 2o1Cðu; uÞ and in the IID case o1Dðu; vÞ ¼
2ðv� uÞ for u� v� 1. In this last case, we get D2j1ðvjFðxÞÞ ¼ ðv� FðxÞÞ= �FðxÞ for
FðxÞ� v� 1.

In the general case, the PDF of G2j1 is g2j1ðyjxÞ ¼ f ðyÞ d2j1ðFðyÞjFðxÞÞ for y� x

(while it is equal to 0, elsewhere), where f ¼ F0,

d2j1ðvjFðxÞÞ :¼ D0
2j1ðvjFðxÞÞ ¼

o1;2DðFðxÞ; vÞ
o1DðFðxÞ; 1Þ

:

Here, dðu; vÞ :¼ o1;2Dðu; vÞ ¼ cðu; vÞ þ cðv; uÞ, for v� u, and dðu; vÞ :¼ 0, else-

where, is the PDF of D and cðu; vÞ ¼ o1;2Cðu; vÞ for 0� u; v� 1 (zero elsewhere) is

the PDF of C. Hence, the regression curve m2j1ðxÞ :¼ EðUjL ¼ xÞ, can be obtained

as

m2j1ðxÞ ¼
Z þ1

x

yf ðyÞd2j1ðFðyÞjFðxÞÞdy ¼
Z þ1

x

yf ðyÞ o1;2DðFðxÞ;FðyÞÞ
o1DðFðxÞ; 1Þ

dy:

Remark 8 In the IID case, we get dðu; vÞ ¼ o1;2Dðu; vÞ ¼ 2 for 0� u� v� 1 (i.e. a

uniform distribution over this triangle). Moreover, we get

m2j1ðxÞ ¼
Z þ1

x

zf ðzÞ 2

2ð1� FðxÞÞ dz ¼ EðXjX[ xÞ;

that is, EðU � xjL ¼ xÞ ¼ EðX � xjX[ xÞ which is the MRL of X (or Y). Therefore,
the residual lifetime of U from x ¼ L is equal to the residual lifetime of a component

when we know that it is alive at time x and m2j1 uniquely determines F. In particular,

if F is an exponential distribution, then m2j1ðxÞ ¼ xþ EðXÞ.
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Remark 9 An alternative expression for the regression curve m2j1 can be obtained

from the survival function of ðUjL ¼ xÞ, given by �G2j1ðyjxÞ ¼ D̂2j1ð �FðyÞj �FðxÞÞ for
y� x, where D̂2j1ðvj �FðxÞÞ :¼ 1� D2j1ð1� vjFðxÞÞ. As ðU � xjL ¼ xÞ� 0, then

m2j1ðxÞ ¼ xþ EðU � xjL ¼ xÞ ¼ xþ
Z þ1

x

�G2j1ðyjxÞdy:

For example, in the IID case, we have

D̂2j1ðvj �FðxÞÞ ¼ 1� D2j1ð1� vjFðxÞÞ ¼ 1� ð1� vÞ � FðxÞ
1� FðxÞ ¼ v

�FðxÞ

for 0� v� �FðxÞ. Hence, �G2j1ðyjxÞ ¼ D̂2j1ð �FðyÞj �FðxÞÞ ¼ �FðyÞ= �FðxÞ for y� x, that is,

ðUjL ¼ xÞ ¼st ðXjX[ xÞ and so m2j1ðxÞ ¼ EðXjX[ xÞ (as above).

In the following, we show an example in the DID case.

Example 2 Consider the random pair (X, Y) where X and Y have a common

exponential distribution with mean l ¼ 1 and a FGM survival copula

Ĉðu; vÞ ¼ uv½1þ hð1� uÞð1� vÞ� with � 1� h� 1:

Then

D̂2j1ðvj �FðxÞÞ ¼ 1� D2j1ð1� vjFðxÞÞ ¼ vþ hvð1� vÞð1� 2 �FðxÞÞ
�FðxÞ þ h �FðxÞð1� �FðxÞÞð1� 2 �FðxÞÞ

for 0� v� �FðxÞ, and

m2j1ðxÞ ¼ xþ
Z þ1

x

�G2j1ðyjxÞdy

¼ xþ
Z þ1

x

�FðyÞ þ h �FðyÞð1� �FðyÞÞð1� 2 �FðxÞÞ
�FðxÞ þ h �FðxÞð1� �FðxÞÞð1� 2 �FðxÞÞ dy

¼ xþ
ð1þ h� 2h �FðxÞÞ

Rþ1
x

�FðyÞdy� hð1� 2 �FðxÞÞ
Rþ1
x

�F
2ðyÞdy

�FðxÞ þ h �FðxÞð1� �FðxÞÞð1� 2 �FðxÞÞ ;

where
Rþ1
x

�FðyÞdy ¼ �FðxÞEðX � xjX[ xÞ. Since F is a standard exponential, then

m2j1ðxÞ ¼ xþ 1þ h� 2:5he�x þ he�2x

1þ h� 3he�x þ 2he�2x

for x� 0. In Fig. 1 we plot the conditional survival functions �G2j1ðyj1Þ of U given

L ¼ 1 and the regression curves to predict U from L ¼ x for different values of the
copula parameter h. In general, the influence of the dependence parameter is small.

Moreover, the provided region from the regression curve may serve to have bounds

for the predictions of U from L ¼ x when h is unknown. A similar procedure can be

applied to other one-parameter families of copulas. If F is an exponential distri-

bution with mean l[ 0, then EðUjL ¼ xÞ ¼ lEðU	jL	 ¼ x=lÞ for x� 0, where

L	 ¼ L=l and U	 ¼ U=l are obtained from standard exponential distributions.
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Another option to predict U from L is to use the conditional median curve

~m2j1ðxÞ :¼ G�1
2j1ð0:5jxÞ, which can be obtained from (15) and the inverse function of

D2j1ðujFðxÞÞ. Furthermore, we can obtain quantile-confidence bands (see Sect. 2.4).

In the IID case, we get

~m2j1ðxÞ ¼ F�1ðFðxÞ þ 0:5 �FðxÞÞ: ð16Þ

In particular, if F is a standard exponential distribution, then

~m2j1ðxÞ ¼ x� EðXÞ lnð0:5Þ 
 xþ 0:6931472EðXÞ\m2j1ðxÞ ¼ xþ EðXÞ ð17Þ

and, hence, ~m2j1ðxÞ\m2j1ðxÞ ¼ xþ EðXÞ. An example with an EXC copula is given

in Sect. 4.

Finally, the joint PDF of (L, U) can be obtained from (7) as

gðx; yÞ ¼ f ðxÞf ðyÞdðFðxÞ;FðyÞÞ
¼ f ðxÞf ðyÞ cðFðxÞ;FðyÞÞ þ cðFðyÞ;FðxÞÞ½ �

ð18Þ

for x� y while it is equal to 0 elsewhere. For a graphical representation in terms of

contour plots see, for instance, Fig. 4.

3.3 Order statistics

Let us consider now the ordered data X1:n; . . .;Xn:n obtained from a sample

ðX1; . . .;XnÞ of n possibly dependent identically distributed (DID) random variables

with absolutely continuous copula C and marginal distribution F. The usual order

statistics obtained from IID random variables are obtained when C is the

independence copula. Recent results for conditional distributions in this case can

be seen in Ahmadi and Nagaraja (2020). Clearly, the support of ðX1:n; . . .;Xn:nÞ is
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Fig. 1 Conditional survival functions �G2j1ðyj1Þ (left) and regression curves (right) for (L, U) in Example

2 when Ĉ is a FGM copula with h 2 f�1; 0; 1g (dotted blue, red, dashed blue). The blue regions illustrate
the possible values when h 2 ½�1; 1�
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included in the set S ¼ fðx1; . . .; xnÞ : x1 � . . .� xng. Then we can state the

following result.

Proposition 11 The random vector ðX1:n; . . .;Xn:nÞ has a MDD from a distortion
function D and F, that is, its joint distribution function G can be written as

Gðx1; . . .; xnÞ ¼ DðFðx1Þ; . . .;FðxnÞÞ for every ðx1; . . .; xnÞ 2 S:

The explicit expression of D is quite complicated. If n ¼ 2 we obtain the

distortion function of (L, U) given in the preceding subsection (see (14)). The proof

of the preceding proposition for n ¼ 3 is given in the Appendix.

If F and C are absolutely continuous with respective PDFs f and c, then the PDF g
of G is

gðx1; . . .; xnÞ ¼ f ðx1Þ. . .f ðxnÞdðFðx1Þ; . . .;FðxnÞÞ

for all ðx1; . . .; xnÞ 2 S (zero elsewhere), where

dðu1; . . .; unÞ ¼
X

r2Pn

cðurð1Þ; . . .; urðnÞÞ

for 0� u1 � . . .� un � 1 (zero elsewhere) and Pn is the set of permutations of

dimension n. The expression for d can be obtained by changing variables from

X1; . . .;Xn to X1:n; . . .;Xn:n. If C is EXC, then the expression of d can be simplified to

dðu1; . . .; unÞ ¼ n! cðu1; . . .; unÞ; for 0� u1 � . . .� un � 1:

Obviously, the well-known expression for the IID case is obtained with the inde-

pendence copula, i.e. when c ¼ 1.

3.4 Coherent systems

A system is a Boolean function w : f0; 1gn ! f0; 1g where wðx1; . . .; xnÞ represents
the state of the system that is completely determined by the components’ states

x1; . . .; xn. Here wðx1; . . .; xnÞ ¼ 1 means that the system works and wðx1; . . .; xnÞ ¼
0 that it has failed. A system is semi-coherent if w is increasing, wð0; . . .; 0Þ ¼ 0 and

wð1; . . .; 1Þ ¼ 1. It is coherent if w is increasing and none of its components is

irrelevant, i.e., for every i ¼ 1; . . .; n,

wðx1; . . .; xi�1; 0; xiþ1; . . .; xnÞ\wðx1; . . .; xi�1; 1; xiþ1; . . .; xnÞ

for at least one ðx1; . . .; xnÞ 2 f0; 1gn�1
. In particular, wð0; . . .; 0Þ ¼ 0 and

wð1; . . .; 1Þ ¼ 1. For the basic properties of systems we refer the reader to the classic

monograph Barlow and Proschan (1975). In particular, we can see that

wðx1; . . .; xnÞ ¼ mini¼1;...;s maxj2Ci xj; where C1; . . .; Cs are the minimal cut sets of the

system. A set A � f1; . . .; ng is a cut set of w if wðx1; . . .; xnÞ ¼ 0 when xj ¼ 0 for all

i 2 A. A cut set is minimal if it does not contain other cut sets. The preceding
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expression can be used to extend w to Rn, so that the random system lifetime T can

be obtained as

T ¼ wðX1; . . .;XnÞ ¼ min
i¼1;...;s

max
j2Ci

Xj;

where X1; . . .;Xn represent the random component lifetimes. Note that the random

variable XCi :¼ maxj2Ci Xj represents the lifetime of the parallel system formed with

the components belonging to the set Ci.
It is well known (see, e.g., Navarro 2018 and Navarro et al. 2016) that the

distribution function of a coherent (or semi-coherent) system T can be obtained as a

distortion of the components’ distribution functions. The joint distribution of two

semi-coherent systems with some shared components was studied in Navarro and

Balakrishnan (2010) and Navarro et al. (2010). Connections between dependence

(copula) properties and ordering properties of systems were studied in Navarro et al.

(2020).

In this section, we consider two semi-coherent systems based on the same

components with a common marginal distribution function F. Then we prove that

the joint distribution of these two systems admits a MDD representation in terms of

F. The result can be stated as follows. The proof is similar to that of Lemma 3.1 in

Navarro and Balakrishnan (2010), that is stated only for systems with IID

components.

Proposition 12 Let ðX1; . . .;XnÞ be a vector of continuous lifetimes with a common
marginal distribution function F and copula C. Let T ¼ wðX1; . . .;XnÞ and T	 ¼
w	ðX1; . . .;XnÞ be the lifetimes of two semi-coherent systems. Then the joint
distribution function F of ðT ; T	Þ can be written as

Fðx; yÞ ¼ DðFðxÞ;FðyÞÞ ð19Þ

for all x� 0, y� 0, where D 2 D2.

Proof See the Appendix. h

In the proof we can see that the distortion function D(u, v) has different

expressions for u� v and for u[ v. Moreover, note that F can have a singular part

since the systems can fail at the same time (even if the joint distribution of the

component lifetimes ðX1; . . .;XnÞ is absolutely continuous). Similar results can be

stated for the joint distribution and the joint survival functions of m coherent (or

semi-coherent) systems based on the same components.

In practice, the above result will be typically applied to study the joint

distribution of a system T	 and a related system T\T	 a.s.. The most usual situation

is to consider T ¼ X1:n ¼ minðX1; . . .;XnÞ. In this case we want to study (predict)

the system lifetime T	 when we know the failure time T (i.e. the first components’

failure time). To this aim, we can use here (19) and all the results given in Sect. 2.

For example, let us consider the system T	 ¼ maxðX1;minðX2;X3ÞÞ and

T ¼ X1:3. If the joint distribution of ðX1;X2;X3Þ is absolutely continuous, then

T	\T . Hence the joint survival function �F of ðT ; T	Þ can be written as �Fðx; yÞ ¼
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�Dð �FðxÞ; �FðyÞÞ for all x� y, where �Dðu; vÞ ¼ Ĉðu; v; vÞ þ Ĉðv; u; uÞ � Ĉðv; v; vÞ for

0� v� u� 1.

Another interesting example is to consider the parallel system with three

components T	 ¼ X3:3 ¼ maxðX1;X2;X3Þ and its first components’ failure (series

system) T ¼ X1:3. Note that the distribution F of ðT ; T	Þ is a marginal of the random

vector ðX1:3;X2:3;X3:3Þ (studied in the preceding subsection). Note that F can be

written as (19) for

Dðu; vÞ ¼ Cðu; v; vÞ þ Cðv; u; vÞ þ Cðv; v; uÞ � Cðu; u; vÞ � Cðu; v; uÞ
� Cðv; u; uÞ þ Cðu; u; uÞ

for 0� u� v� 1 and Dðu; vÞ ¼ Cðv; v; vÞ for 0� v� u� 1. If C is EXC, then

Dðu; vÞ ¼ 3Cðu; v; vÞ � 3Cðu; u; vÞ þ Cðu; u; uÞ

for 0� u� v� 1. In particular, if the components are IID, we get

Dðu; vÞ ¼ 3uv2 � 3u2vþ u3

for 0� u� v� 1. Note that T and T	 are dependent even if X1;X2;X3 are IID.

These expressions can be used to compute the joint PDF, the marginal and

conditional distributions and the conditional median (jointly with the associated

confidence regions).

For example, in the last IID case, the joint PDF is

gðx; yÞ ¼ f ðxÞf ðyÞdðFðxÞ;FðyÞÞ

where dðx; yÞ ¼ o1;2Dðu; vÞ ¼ 6ðv� uÞ for 0� u� v� 1 (zero elsewhere). The

marginal distributions are G1ðxÞ ¼ PrðX1:3 � xÞ ¼ D1ðFðxÞÞ and G2ðyÞ ¼
PrðX3:3 � yÞ ¼ D2ðFðyÞÞ; where D1ðuÞ ¼ Dðu; 1Þ ¼ 3u� 3u2 þ u3 and D2ðuÞ ¼
Dð1; uÞ ¼ u3 for u 2 ½0; 1�. Analogously, from (8), the conditional distribution

function of T	 given T can be written as

G2j1ðyjxÞ ¼ PrðX3:3 � yjX1:3 ¼ xÞ ¼ D2j1ðFðyÞjFðxÞÞ;

where D2j1 is given by

D2j1ðvjuÞ :¼
o1Dðu; vÞ
o1Dðu; 1Þ

¼ v2 � 2uvþ u2

1� 2uþ u2

for 0\u� v� 1 since limv!0þ o1Dðu; vÞ ¼ 0 for all u 2 ð0; 1Þ.

4 An illustration about paired ordered data

We consider the problem stated in Sect. 3.2. We assume here that we have a sample

ðX1; Y1Þ; . . .; ðXm; YmÞ from a random vector (X, Y) with joint absolutely continuous

distribution function. We also assume that X and Y have a common marginal F.
Given some information about L ¼ minðX; YÞ, we would like to predict U ¼
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maxðX; YÞ from L by using the regression curve EðUjL ¼ tÞ or the median

regression curve obtained from the conditional survival function PrðU[ yjL ¼ xÞ.
To illustrate the problem, we simulate m ¼ 100 random points ðxi; yiÞ from the

joint distribution function Hðx; yÞ ¼ CðFðxÞ;FðyÞÞ, where C is a suitable copula,

while F is either Gaussian with l ¼ 60 and r ¼ 5 or exponential with l ¼ 60.

First, we consider two independent normal distributions N(60, 5) in Fig. 2, left,

and the associated ordered data in Fig. 2, right. Notice that, as can be graphically

issued, L and U are dependent even if X and Y are independent. In the right plot, we

also include the conditional median curve (green) and the centered 90% and 50%
quantile-confidence bands computed from (16).

The analogous plots obtained from two independent exponential distributions

Exp(60) are in Fig. 3. Note that the conditional median curve and the quantile-

confidence bands in the right plot are determined by means of (17). Note that many

of these data could be censored data in practice (for instance, when they are greater

than 100) due to the large dispersion of the exponential model and the independence

assumption.

Let us consider now that (X, Y) are DID with a copula C and a common marginal

distribution F. We consider again the above Gaussian and exponential models for F.
Moreover, we assume that

Cðu; vÞ ¼ uv

uþ v� uv
ð20Þ

for ðu; vÞ 2 ½0; 1�2, which represents a positive symmetric dependence between

X and Y. Such a copula appears as limiting case in various Archimedean families

(see, e.g., Nelsen 2006, p. 116) and it is indicated by the symbol P=ðR�PÞ. This
copula is associated with a Kendall’s tau equal to 1/3.

We simulate a random sample from (X, Y) by using the inverse transform method

(see Example 2.20 in Nelsen 2006). These data are used to get the data from

(L, U) with L ¼ minðX; YÞ and U ¼ maxðX; YÞ for the normal and exponential

models plotted in Fig. 4.
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Fig. 2 Scatter plot of a random sample of size m ¼ 100 from (X, Y) (left) and (L, U) (right), when X and
Y have independent normal distributions with l ¼ 60 and r ¼ 5. In the right plot, the conditional median
curve (red) and the 90% (dotted blue) and 50% (dashed blue) quantile-confidence bands are showed
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In order to obtain a joint model for (L, U) we can use the joint PDF g given in

(18) to plot the level curves for (L, U). For the above copula of (20) we have

gðx; yÞ ¼ 2f ðxÞf ðyÞcðFðxÞ;FðyÞÞ

for x� y, where

cðu; vÞ ¼ o1;2Cðu; vÞ ¼
2uv

ðuþ v� uvÞ3

for ðu; vÞ 2 ½0; 1�2. When the common marginal is normal and exponential dis-

tributed, respectively, we get the contour plots given in Fig. 4. Analogously, we can

plot the marginal PDFs of L and U (see Fig. 5). Note that, for the above P=ðR�PÞ
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Fig. 3 Scatter plot of a random sample of size m ¼ 100 from (X, Y) (left) and (L, U) (right), when X and
Y have independent exponential distributions with l ¼ 60. In the right plot, the conditional median curve
(red) and the 90% (dotted blue) and 50% (dashed blue) quantile-confidence bands are showed

50 55 60 65

45
50

55
60

65
70

L

U

 0.002  0.002 

 0.004 
 0.006 

 0.008 
 0.01 

 0.012 

 0.014 

0 20 40 60 80 100 120

0
50

10
0

15
0

20
0

25
0

L

U

 1e−04 

 5e−05 

 5e−04 

 1e−05 

 5e−06 

 1e−06 

Fig. 4 Contour plots for the joint PDF g of (L, U) when X and Y have the Clayton copula C in (20) and
normal marginal distributions with l ¼ 60 and r ¼ 5 (left) and exponential distributions with l ¼ 60
(right)
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copula we obtain D1ðuÞ ¼ ð3u� 2u2Þ=ð2� uÞ and D2ðuÞ ¼ u=ð2� uÞ for

u 2 ½0; 1�. So L and U do not have neither normal nor exponential distributions.

To get the conditional median curves and the confidence bands for (L, U) we
need the conditional distribution G2j1ðyjxÞ of ðUjL ¼ xÞ that can be obtained from

(15) with

o1Dðu; vÞ ¼ 2o1Cðu; vÞ � 2o1Cðu; uÞ ¼
2v2

ðuþ v� uvÞ2
� 2

ð2� uÞ2

for v� u. Then, to compute the inverse of G2j1, we need to solve in y the equation

G2j1ðyjxÞ ¼ q for q 2 ð0; 1Þ. This leads to

F2ðyÞ
ðFðxÞ þ FðyÞ � FðxÞFðyÞÞ2

¼ 1� qþ qð2� FðxÞÞ2

ð2� FðxÞÞ2
:

Therefore

y ¼ F�1 FðxÞ
FðxÞ � 1þ 2�FðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�qþqð2�FðxÞÞ2
p

0

B@

1

CA:

We use this expression to plot in Fig. 6 the conditional median curves and the

associated 90% and 50% confidence bands for the above normal (left) and expo-

nential (right) models. In these figures we also include the empirical regression lines

to predict U from L (purple lines). The curves obtained in these models are quite

different (as expected, the data from the exponential model are more dispersed).

Moreover, the regression line provide a poor fit in the exponential case. Note that in

practice, we expect to have a few of censored realizations from the data in Fig. 6,

right. For instance, if the data represent the ages (in years) for a disease in paired

organs (e.g. breast cancer), the censure means that the patients died before they
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Fig. 5 Plots for the PDF of L (black) and U (red) when X and Y have the Clayton copula C in (20) and
normal distributions with l ¼ 60 and r ¼ 5 (left) and exponential distributions with l ¼ 60 (right)
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suffer this disease in this organ or that they do not have the disease when the

experiment ended.

5 Conclusions

The main purpose of this paper is to provide an alternative representation based on

distortions to the classical copula representation for the joint distribution F of a

random vector. The new representations are more flexible since they are not based

on the marginals of the original model. However, a disadvantage is that they do not

separate the dependence structure and the marginals. The examples in Sect. 3 show

that, in some cases, it could be better to use the new representation instead of the

copula representation. The MDD representations for fixed continuous distribution

functions G1; . . .;Gn are unique (see Proposition 1). Moreover, the distortion

function D is uniquely determined by the copula C (see Proposition 2).

As in the copula setting, MDDs can be used to study the lower-dimensional

marginals of F and the associated the conditional distributions. They can also be

used to obtain the regression and median regression curves and the associated

confidence bands.

We provide several examples where these representations are useful. Additional

examples can be obtained in a similar way. We also include a simulation study for

paired ordered data from independent and dependent variables. This procedure can

be used to predict, for instance, the second failure in paired organs from the first

one.

This paper represents a first step into the analysis of MDD representations. The

main task for future research projects is to develop the appropriate inference

procedures (and their properties) to apply these representations to real data sets. In

this respect, the related investigations about dynamic copula models could be

helpful (see Fermanian and Wegkamp 2012).
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Fig. 6 Scatter plots of size m ¼ 100 from (L, U) obtained when X and Y have a copula C of (20) and
normal marginal distributions with l ¼ 60 and r ¼ 5 (left) and exponential distributions with l ¼ 60
(right). There are included the regression line (purple), the conditional median curve (red) and the 90%
(dotted blue) and 50% (dashed blue) quantile-confidence bands
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Appendix

Proof of proposition1 For every i ¼ 1; . . .; n, Gi is continuous and, hence, its range

RanðGiÞ contains the interval (0, 1). Let D be the distribution function of

ðG1ðX1Þ; . . .;GnðXnÞÞ. Then it can be checked that D satisfies properties (i), (ii) and

(iii) of Definition 1. Thus, D 2 Dn.

Moreover, for every ðx1; . . .; xnÞ in Rn, it follows that

Fðx1; . . .; xnÞ ¼ PrðX1 � x1; . . .;Xn � xnÞ
¼ PrðG1ðX1Þ�G1ðx1Þ; . . .;GnðXnÞ�GnðxnÞÞ
¼ DðG1ðx1Þ; . . .;GnðxnÞÞ;

where in the second equality we use that Gi is strictly increasing in the support of Xi.

Hence is F � MDDðG1; . . .;GnÞ. h

Proof of proposition 2 Since F is continuous, (1) holds for a unique copula C. Thus,
for every ðx1; . . .; xnÞ in Rn, it follows that

DðG1ðx1Þ; . . .;GnðxnÞÞ ¼ CðF1ðx1Þ; . . .;FnðxnÞÞ:

For every i ¼ 1; . . .; n, since Gi is continuous, there exists ui 2 ð0; 1Þ such that

xi ¼ G�1
i ðuiÞ, where G�1

i is quasi–inverse of G (see, e.g., Durante and Sempi 2016).

Thus, it follows that

Dðu1; . . .; unÞ ¼ CðF1ðG�1
i ðu1ÞÞ; . . .;FnðG�1

i ðunÞÞÞ;

which is the desired assertion. h

Proof of proposition 3 Clearly, if (2) holds for some distribution functions

G1; . . .;Gn and D 2 Dn, then

lim
xi!�1

Fðx1; . . .; xnÞ ¼ lim
xi!�1

DðG1ðx1Þ; . . .;GnðxnÞÞ ¼ 0

for i ¼ 1; . . .; n and

lim
minðx1;...;xnÞ!þ1

Fðx1; . . .; xnÞ ¼ lim
minðx1;...;xnÞ!þ1

DðG1ðx1Þ; . . .;GnðxnÞÞ

¼ Dð1; . . .; 1Þ ¼ 1

since D 2 Dn. Moreover, F is right-continuous in each variable since D is contin-

uous and G1; . . .;Gn are right-continuous.

Let us consider now ðx1; . . .; xnÞ 2 Rn and ðy1; . . .; ynÞ 2 Rn such that xi � yi for
i ¼ 1; . . .; n. Then we define ui ¼ GiðxiÞ and vi ¼ GiðyiÞ for i ¼ 1; . . .; n. As Gi is a

distribution function, we have 0� ui � vi � 1 for i ¼ 1; . . .; n. Therefore

M
ðy1;...;ynÞ
ðx1;...;xnÞF ¼ M

ðv1;...;vnÞ
ðu1;...;unÞD� 0

since D satisfies property (iii) in Definition 1. Therefore, F is a proper multivariate

distribution function. h

123

Distortion representations of multivariate distributions 949



Proof of Proposition 5 The joint distribution function of ðX1; . . .;XmÞ can be written

as

F1;...;mðx1; . . .; xmÞ ¼ Fðx1; . . .; xm;þ1; . . .;þ1Þ

for all ðx1; . . .; xmÞ 2 Rm. Then (5) is obtained from (2) taking into account that

Giðþ1Þ ¼ 1 for any distribution function Gi and i ¼ mþ 1; . . .; n. Finally, (5)
implies D1;...;m 2 Dm. h

Proof of Proposition 7 The conditional PDF of ðX2jX1 ¼ x1Þ can be written as

f2j1ðx2jx1Þ ¼
f ðx1; x2Þ
f1ðx1Þ

for all x1; x2 such that f1ðx1Þ[ 0. Then by using (7) and the fact that

f1ðx1Þ ¼ g1ðx1ÞD0
1ðG1ðx1ÞÞ[ 0;

where D1ðuÞ :¼ Dðu; 1Þ and D0
1ðuÞ ¼ o1Dðu; 1Þ, we obtain

f2j1ðx2jx1Þ ¼ g2ðx2Þ
o1;2DðG1ðx1Þ;G2ðx2ÞÞ

o1DðG1ðx1Þ; 1Þ
:

Thus, the conditional distribution function can be obtained as

F2j1ðx2jx1Þ ¼
Z x2

�1
f2j1ðzjx1Þdz ¼

Z x2

�1
g2ðzÞ

o1;2DðG1ðx1Þ;G2ðzÞÞ
o1DðG1ðx1Þ; 1Þ

dz:

Now, if we assume limv!0þ o1DðG1ðx1Þ; vÞ ¼ 0, then

F2j1ðx2jx1Þ ¼
o1DðG1ðx1Þ;G2ðzÞÞ
o1DðG1ðx1Þ; 1Þ

� �x2

z¼�1
¼ o1DðG1ðx1Þ;G2ðx2ÞÞ

o1DðG1ðx1Þ; 1Þ
:

Hence, (8) holds. h

Proof of Proposition10 First we note that PrðXi [ tÞ� PrðX1 [ t; . . .;Xn [ tÞ[ 0

for i ¼ 1; . . .; n. So we can consider the survival functions �F1;t; . . .; �Fn;t of the

marginal residual lifetimes at time t. Then we note that �Ft can be written as

�Ftðx1; . . .; xnÞ ¼ PrðX1 � t[ x1; . . .;Xn � t[ xnjX1 [ t; . . .;Xn [ tÞ

¼ PrðX1 [ t þ x1; . . .;Xn [ t þ xnÞ
PrðX1 [ t; . . .;Xn [ tÞ

¼
�Fðt þ x1; . . .; t þ xnÞ

�Fðt; . . .; tÞ

for x1; . . .; xn � 0. Now we use the following copula representation for �F (obtained

from Sklar’s theorem) �Fðx1; . . .; xnÞ ¼ Ĉð �F1ðx1Þ; . . .; �FnðxnÞÞ; where Ĉ is a contin-

uous survival copula of �F. Hence
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�Ftðx1; . . .; xnÞ ¼
�Fðt þ x1; . . .; t þ xnÞ

�Fðt; . . .; tÞ

¼ Ĉð �F1ðt þ x1Þ; . . .; �Fnðt þ xnÞÞ
Ĉð �F1ðtÞ; . . .; �FnðtÞÞ

¼ Ĉð �F1ðtÞ �F1;tðx1Þ; . . .; �FnðtÞ �Fn;tðxnÞÞ
Ĉð �F1ðtÞ; . . .; �FnðtÞÞ

¼ D̂tð �F1;tðx1Þ; . . .; �Fn;tðxnÞÞ

and (10) holds for the function Dt in (11). Hence D̂t 2 Dn. h

Survival function of X
ðnÞ
t given by (12) We aim at calculating the survival

function of

X
ðn;�Þ
t :¼ ðX1 � t; . . .;Xn � tjX1 [ t; . . .;Xn�1 [ t;Xn � tÞ

To this end, consider that

�F
ðn;�Þ
t ðx1; . . .; xn�1Þ

¼ PrðX1 � t[ x1; . . .;Xn�1 � t[ xn�1jX1 [ t; . . .;Xn�1 [ t;Xn � tÞ

¼ PrðX1 [ t þ x1; . . .;Xn�1 [ t þ xn�1;Xn � xnÞ
PrðX1 [ t; . . .;Xn�1 [ t;Xn � tÞ

¼ PrðX1 [ t þ x1; . . .;Xn�1 [ t þ xn�1Þ
PrðX1 [ t; . . .;Xn�1 [ t;Xn � tÞ

� PrðX1 [ t þ x1; . . .;Xn�1 [ t þ xn�1;Xn [ tÞ
PrðX1 [ t; . . .;Xn�1 [ t;Xn � tÞ

¼
�Fðt þ x1; . . .; t þ xn�1; 0Þ � �Fðt þ x1; . . .; t þ xn�1; tÞ

PrðX1 [ t; . . .;Xn�1 [ t;Xn � tÞ

¼
�Fðt þ x1; . . .; t þ xn�1; 0Þ � �Fðt þ x1; . . .; t þ xn�1; tÞ

�Fðt; . . .; t; 0Þ � �Fðt; . . .; tÞ

¼ Ĉð �F1ðt þ x1Þ; . . .; �Fn�1ðt þ xn�1Þ; 1Þ
Ĉð �F1ðtÞ; . . .; �Fn�1ðtÞ; 1Þ � Ĉð �F1ðtÞ; . . .; �FnðtÞÞ

� Ĉð �F1ðt þ x1Þ; . . .; �Fn�1ðt þ xn�1Þ; �FnðtÞÞ
Ĉð �F1ðtÞ; . . .; �Fn�1ðtÞ; 1Þ � Ĉð �F1ðtÞ; . . .; �FnðtÞÞ

for x1; . . .; xn�1 � 0. Hence it can be written as

�F
ðn;�Þ
t ðx1; . . .; xn�1Þ ¼ D

ðn;�Þ
t ð �F1;tðx1Þ; . . .; �Fn�1;tðxn�1ÞÞ;

where �F1;t; . . .; �Fn�1;t are the survival functions of the univariate residual lifetimes,
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D
ðn;�Þ
t ðuÞ ¼ Ĉð �F1ðtÞu1; . . .; �Fn�1ðtÞun�1; 1Þ � Ĉð �F1ðtÞu1; . . .; �Fn�1ðtÞun�1; �FnðtÞÞ

Ĉð �F1ðtÞ; . . .; �Fn�1ðtÞ; 1Þ � Ĉð �F1ðtÞ; . . .; �FnðtÞÞ

for u ¼ ðu1; . . .; unÞ 2 ½0; 1�n and D
ðn;�Þ
t 2 Dn�1. h

Proof of Proposition 11 The distortion function for n ¼ 3 can be obtained as follows

for 0� u1 � u2 � u3 � 1. If we assume FðxÞ ¼ x for x 2 ½0; 1�, then

Dðu1; u2; u3Þ ¼ PrðX1:3 � u1;X2:3 � u2;X3:3 � u3Þ
¼ PrððA1 [ A2 [ A3Þ \ ðA1;2 [ A1;3 [ A2;3Þ \ A1;2;3Þ;

where Ai ¼ fXi � u1g, Ai;j ¼ fXi � u2g \ fXj � u2g, and A1;2;3 ¼ fX1 � u3g \
fX2 � u3g \ fX3 � u3g for i; j 2 f1; 2; 3g. Hence

Dðu1; u2; u3Þ ¼ PrðB1 [ . . . [ B9Þ; ð21Þ

where B1 ¼ A1 \ A1;2 \ A1;2;3, B2 ¼ A2 \ A1;2 \ A1;2;3, B3 ¼ A3 \ A1;2 \ A1;2;3,

B4 ¼ A1 \ A1;3 \ A1;2;3, B5 ¼ A2 \ A1;3 \ A1;2;3, B6 ¼ A3 \ A1;3 \ A1;2;3,

B7 ¼ A1 \ A2;3 \ A1;2;3, B8 ¼ A2 \ A2;3 \ A1;2;3, and B9 ¼ A3 \ A2;3 \ A1;2;3. Hence,

the formula for D is obtained by applying the inclusion-exclusion formula to (21)

taking into account that all these probabilities can be computed from C. For example

PrðB1Þ ¼ PrðA1 \ A1;2 \ A1;2;3Þ ¼ PrðX1 � u1;X2 � u2;X3 � u3Þ ¼ Cðu1; u2; u3Þ

and

PrðB1 \ B2Þ ¼ PrðA1 \ A2 \ A1;2 \ A1;2;3Þ
¼ PrðX1 � u1;X2 � u1;X3 � u3Þ
¼ Cðu1; u1; u3Þ

0� u1 � u2 � u3 � 1. The other probabilities can be obtained in a similar way.

Clearly, this procedure can also be applied to the n dimensional case (but the

expression for D gets really involved).

Proof of Proposition 12 Let C1; . . .; Cs and C	1; . . .; C	s	 be the minimal cut sets of T
and T	, respectively. Hence the joint distribution Fðx; yÞ ¼ PrðT � x; T	 � yÞ can be

written as

Fðx; yÞ ¼ Prð min
i¼1;...;s

max
k2Ci

Xk � x; min
j¼1;...;s	

max
k2C	j

Xk � yÞ

¼ PrððA1 [ . . . [ AsÞ \ ðA	
1 [ . . . [ A	

s	 ÞÞ

¼ Pr [s
i¼1 [s	

j¼1 Bi;j

� �
;

where Ai :¼ fmaxk2Ci Xk � xg, A	
j :¼ fmaxk2C	j Xk � yg and Bi;j :¼ Ai \ A	

j . Now,

we can apply the inclusion-exclusion formula to the union of the sets Bi;j. Moreover

we note that, if x� y, then
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PrðBi;jÞ ¼ Pr max
k2Ci

Xk � x;max
k2C	j

Xk � y

 !

¼ Pr max
k2Ci

Xk � x; max
k2C	j �Ci

Xk � y

 !
¼ CCi;C	j ðFðxÞ;FðyÞÞ;

where C	j � Ci ¼ C	j \ �Ci ( �A is the complementary set of the set A),

CCi;C	j ðu; vÞ :¼ Cðu1; . . .; unÞ, uk ¼ FðxÞ if k 2 Ci, uk ¼ FðyÞ if k 2 C	j � Ci, and uk ¼
1 if k 62 Ci [ C	j . Similar expressions can be obtained for the other probabilities in

the inclusion-exclusion formula as PrðBi;j \ B‘;rÞ, . . . and for x[ y. Hence, we
obtain (19). h

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10260-021-00613-2.
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Sordo MA, Castaño-Martı́nez A, Pigueiras G (2016). A family of premium principles based on mixtures

of TVaRs. Insurance: Mathematics and Economics 70, 397–405
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