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1. Introduction

In this paper we deal with composition operators defined in locally convex Hausdorff spaces of real valued 
continuous functions. We study when the operator has big orbits, i.e., when it is supercyclic or hypercyclic, 
and also when it has small orbits, i.e., when the operator is power bounded or mean ergodic. We collect in 
this section our results and relate them with recent literature.

We focus our attention on composition operators on locally convex Hausdorff spaces X ↪→ Cm(R), for 
m ∈ N0 ∪ {∞}. For a function ϕ ∈ Cm(R), being increasing and with no fixed points is equivalent to 
being strongly runaway, i.e., for all compact subsets K ⊂ R there is n0 ∈ N such that ϕn(K) ∩ K = ∅
for all n ≥ n0 (see [20, Lemma 4.1] for a proof). Kalmes got in [18, Corollary 4.1, Corollary 4.2] the 
equivalence between hypercyclicity and strongly runaway with no vanishing derivative in a more general 
context, which includes weighted composition operators defined in function spaces of several variables. The 
results of Kalmes generalize those of Przestacki obtained in [20, Lemma 4.1, Theorem 4.5, Theorem 4.6]
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for composition operators on C∞(Ω), with Ω ⊆ Rd open. Our main result here is that, under natural 
assumptions on X, Cϕ being weakly supercyclic implies that ϕ is increasing, with no vanishing derivative 
when m > 0, and without fixed points. This, using previous works of Bonet and Domański and Kalmes, 
permits us to conclude that weak supercyclicity is equivalent to being mixing for composition operators 
defined on Cm(R) with m ∈ N ∪ {∞} and that weak supercyclicity implies to be mixing for composition 
operators defined on A(R).

We also obtain results for power boundedness and mean ergodicity of composition operators. We prove 
that for a Montel space X ↪→ C1(R) satisfying that, for every symbol ϕ ∈ X

(*) The composition operator Cϕ : X → X is power bounded if, and only if, the sequence {ϕn}n∈N of 
iterates of ϕ is bounded in X,

under natural assumptions on X, choosing a monotonic ϕ ∈ X with ϕ2(x) �= x, then the composition 
operator Cϕ is power bounded if, and only if, ϕ has a unique fixed point a to which the sequence of the 
iterates ϕn of ϕ converges if, and only if, the sequence {Cϕn

}n∈N is convergent in Ls(X) to Ca (Ca : X →
X, f �→ f(a)).

Furthermore, if we restrict to particular locally convex spaces X and a polynomial ϕ(x), then the com-
position operator is equivalently power bounded and mean ergodic if, and only if, ϕ(x) = ax + b, |a| < 1. 
The excluded cases ϕ(x) = x and ϕ(x) = −x + b produce trivially power bounded uniformly mean ergodic 
composition operators. The equivalence between power boundedness, mean ergodicity and the convergence 
of the iterates of ϕ to the unique fixed point of ϕ has been proved in [9] to be true for A(R), with no 
restriction on the symbol. Besides A(R), our result applies to C∞(R), which satisfies (*) by [17] and to the 
space OM (R) := proj m← ind n→ Om

n (R) of the multipliers of the classical space S(R).
The structure of the paper is the following: Section 2 is devoted to preliminaries and to the study of the 

symbols in OM (R) and Om(R), m ∈ N. In Section 3 we study weakly supercyclic composition operators. 
In Section 4 we obtain respectively the results on dynamics explained above. Finally, Section 5 is devoted 
to show that OM (R) and Om(R), m ∈ N, satisfy condition (*).

2. Preliminaries and the action of the composition operator on OM(R)

2.1. Preliminaries

Through the paper, we denote by N the set of all positive integer numbers and set N0 := N ∪ {0}.
Let X be a locally convex Hausdorff space (briefly, lcHs). We denote by L(X) the space of all continuous 

linear operators from X into itself.
An operator T ∈ L(X), with X a lcHs, is called power bounded if {Tn}n∈N is an equicontinuous subset 

of L(X).
The Cesàro means of an operator T ∈ L(X), with X a lcHs, are defined by

T[n] := 1
n

n∑
m=1

Tm, n ∈ N.

The operator T is called mean ergodic (resp. uniformly mean ergodic) if {T[n]}n∈N is a convergent sequence 
in Ls(X) (resp. in Lb(X)), where Ls(X) denotes L(X) endowed with the strong operator topology τs (resp. 
Lb(X) denotes L(X) endowed with the topology τb of the uniform convergence on bounded subsets of X).

For reflexive Fréchet spaces (in Montel Fréchet spaces, resp.) every power bounded operator is necessarily 
mean ergodic (uniformly mean ergodic, resp.) by [1, Corollary 2.7, Proposition 2.9]. There exist mean ergodic 
operators which are not power bounded, see, f.i., [16, §6]. For further results on mean ergodic operators we 
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refer to [19,22]. For recent results on mean ergodic operators in lcHs’ we refer to [1–4,7,12,17], for example, 
and the references therein.

Given an operator T ∈ L(X), we denote by σ(T ) the spectrum of T , i.e., the subset of C formed by the 
λ such that λI − T is not invertible, and by σp(T ) its point spectrum, i.e., the subset of σ(T ) formed by 
those λ such that λI − T is not injective.

Moreover, we recall that T ′ denotes as usual the dual operator of T . We have that T ∈ L(X ′
β) and 

also T ′ ∈ L(X ′
σ), where X ′

β and X ′
σ stand for the topological dual of X endowed with the strong topology 

β(X ′, X) and the weak topology σ(X ′, X) resp.
Let X be a lcHs of functions defined on R and let ϕ : R → R be a function. If f ◦ ϕ ∈ X for all f ∈ X, 

then we can consider the composition operator Cϕ : X → X, f �→ f ◦ ϕ. The operator Cϕ is clearly linear. 
In case that Cϕ ∈ L(X), the function ϕ is said to be a symbol for X.

Given a function ϕ : R → R, we denote by ϕn the n-th iterate of ϕ for all n ∈ N, i.e., ϕn := ϕ ◦ . . . ◦ ϕ
n-times, and define ϕ[n] := 1

n

∑n
k=1 ϕk for all n ∈ N. In case the function ϕ is bijective and hence there 

exists ϕ−1 : R → R, we denote by ϕ−n the n-th iterate of ϕ−1 for all n ∈ N. We also recall that a function 
ϕ : R → R is said to be increasing (decreasing, resp.) if ϕ(x) < ϕ(y) (ϕ(x) > ϕ(y), resp.) for every x, y ∈ R

such that x < y. The function ϕ is said to be non decreasing (non increasing, resp.) if ϕ(x) ≤ ϕ(y)
(ϕ(x) ≥ ϕ(y), resp.) for every x, y ∈ R such that x < y.

In what follows, we recall the necessary definitions and some basic properties of the spaces S(R) and 
OM (R). For general information about function spaces in the theory of distributions we refer to [11,21].

The space S(R) of rapidly decreasing functions is a nuclear Fréchet space and hence, it is Montel and 
reflexive. Accordingly, its strong dual S ′(R) is a nuclear lcHs. In particular, S ′(R) is a barreled and bornolog-
ical lcHs.

The space OM (R) of slowly increasing functions on R is given by

OM (R) = ∩∞
m=1 ∪∞

n=1 Om
n (R),

where Om
n (R) := {f ∈ Cm(R) : |f |m,n := supx∈R sup0≤i≤m(1 +x2)−n|f (i)(x)| < ∞}, endowed with the norm 

| · |m,n, is a Banach space for any m, n ∈ N. The space OM (R), endowed with its natural lc-topology, i.e., 
OM (R) := proj m← ind n→ Om

n (R), is a projective limit of the complete (LB)-spaces Om(R) := ind n→ Om
n (R), 

for m ∈ N. In particular, OM (R) is a bornological nuclear lcHs (hence, Montel and reflexive), and it is 
continuously embedded in C∞(R) (see [15]). Furthermore, a fundamental system of continuous norms on 
OM (R) is given by

pm,v(f) = sup
x∈R

sup
0≤i≤m

|v(x)||f (i)(x)|, f ∈ OM (R),

where v ∈ S(R) and m ∈ N (see, f.i., [11]).
The space OM (R) is the space of multipliers of S(R) and its strong dual S ′(R). So, for any fixed h ∈

OM (R), the multiplication operator Mh : S(R) → S(R), f �→ hf , is continuous.
The spaces Cm(R), m ∈ N0 ∪ {∞}, are always endowed with their natural lc-topology τc given from 

the canonical fundamental sequence of seminorms. We point out that (Cm(R), τc) is a Fréchet space. In 
particular, (C∞(R), τc) is a nuclear Fréchet space. Moreover, we denote by Dm(R) := {f ∈ Cm(R) :
suppf is compact}, for m ∈ N0 ∪ {∞} (we write D(R) for m = ∞). Then Dm(R) = ∪∞

k=1C
m
0 ([−k, k]) for 

all m ∈ N and so, endowed with its natural lc-topology, i.e., Dm(R) := ind k→ Cm
0 ([−k, k]), is a complete 

(LB)-space ((LF)-space, for m = ∞).
We remark the following fact.

Proposition 2.1. Let m ∈ N and let B be a bounded subset of Om(R). Then the spaces Om(R) and Cm(R)
induce on B the same topology.
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Proof. For any p ∈ N we will show that the spaces Om
p+1(R) and Cm(R) induce the same topology on the 

unit ball Bm
p of Om

p (R). To do this, we only need to show that for each ε > 0, U := {f ∈ Bm
p : |f |m,p+1 < ε}

is a neighborhood of 0 in Bm
p endowed with the topology inherited from Cm(R). So, let M > 0 be such that 

(1 + x2)−1 < ε, whenever |x| > M and let V := {f ∈ Cm(R) : |f (i)(x)| < ε for all i = 0, . . . , m, |x| ≤ M}. 
Then Bm

p ∩ V ⊆ U . Indeed, if f ∈ Bm
p ∩ V , then

(1 + x2)−p−1|f (i)(x)| ≤ |f (i)(x)| < ε, i = 0, . . . ,m, |x| ≤ M,

and

(1 + x2)−p−1|f (i)(x)| = (1 + x2)−p|f (i)(x)|(1 + x2)−1 ≤ (1 + x2)−1 < ε, i = 0, . . . ,m, |x| > M.

Therefore, f ∈ U . The conclusion follows from the fact that the bounded subsets of Om(R) are localized, 
i.e., Om(R) is a regular (LB)-space. �
Remark 2.2. As a consequence of Proposition 2.1, we get that a sequence {ϕn}n∈N ⊂ Om(R) is convergent 
in Om(R) to some ϕ ∈ Om(R) if, and only if, {ϕn}n∈N is a bounded sequence in Om(R) and limn→∞ ϕn = ϕ

in Cm(R). Therefore, as OM (R) is the projective limit of the complete (LB)-spaces Om(R), for m ∈ N, we 
can then conclude that a sequence {ϕn}n∈N ⊂ OM (R) is convergent in OM (R) to some ϕ ∈ OM (R) if, and 
only if, {ϕn}n∈N is a bounded sequence in OM (R) and limn→∞ ϕn = ϕ in C∞(R). Therefore, for every 
sequence {fn}n∈N ⊂ D(R) satisfying the condition for every compact subset K of R there exists n0 ∈ N

such that suppfn ∩ K = ∅ for all n ≥ n0, we get that {fn}n∈N is convergent to 0 in Om(R) (in OM (R), 
resp.) if, and only if, it is a bounded sequence of Om(R) (of OM (R), resp.).

We point out that there are examples of sequences {fn}n∈N ⊂ D(R) satisfying the previous condition 
but not bounded in Om(R) (in OM (R), resp.). Indeed, for all n ∈ N let fn ∈ D(R) be such that fn(x) :=
n(1 + x2)n for x ∈ Kn :=

[
n + 1

n , n + 1 − 1
n

]
and suppfn ⊆ [n, n + 1]. Then for any m, p ∈ N we have

|fn|m,p = sup
x∈R

sup
0≤i≤m

(1 + x2)−p|f (i)
n (x)|

≥ sup
x∈Kn

(1 + x2)−p|fn(x)| = n sup
x∈Kn

(1 + x2)n

(1 + x2)p ≥ n, for all n ≥ p.

This means that the sequence {fn}n∈N cannot be bounded in the Banach space Om
p (R) for all p ∈ N and 

hence in Om(R), being Om(R) = ind p→ Om
p (R) a regular (LB)-space.

2.2. The composition operator on OM (R)

In [13] the symbols ϕ ∈ C∞(R) for S(R) have been characterized. Precisely, [13, Theorem 2.3] states 
that a function ϕ ∈ C∞(R) is a symbol for S(R) if, and only if, the following conditions are satisfied:

(1) For all j ∈ N0 there exist C, p > 0 such that, for every x ∈ R

|ϕ(j)(x)| ≤ C(1 + ϕ(x)2)p;

(2) There exists k > 0 such that

|ϕ(x)| ≥ |x| 1k , ∀ |x| ≥ k.

We now characterize the function ϕ ∈ C∞(R) such that Cϕ acts continuously from OM (R) into itself. In 
order to do this, we first establish the following result.
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Theorem 2.3. Let m ∈ N and let ϕ ∈ Cm(R). Then the following properties are equivalent:

(1) Cϕ acts continuously from Om(R) into itself;
(2) ϕ ∈ Om(R).

Proof. (1) ⇒ (2). Consider the function p1(x) := x, for x ∈ R, which belongs to Om(R). Then ϕ = Cϕp1 ∈
Om(R). So, (2) is satisfied.

(2) ⇒ (1). We claim that for all n ∈ N there exists n′ ∈ N such that Cϕ : Om
n (R) → Om

n′(R) is continuous. 
Indeed, for fixed n ∈ N and f ∈ Om

n (R), we observe for every x ∈ R and i = 0, . . . , m that

(Cϕf)(i)(x) =
∑ i!

k1!k2! . . . kn!f
(k)(ϕ(x))

(
ϕ′(x)

1!

)k1 (ϕ′′(x)
2!

)k2

. . .

(
ϕ(i)(x)

i!

)ki

, (2.1)

where the sum is extended over all (k1, k2, . . . , ki) ∈ Ni
0 such that k1+2k2+. . .+iki = i and k1+k2+. . .+ki =

k (observe that k ≤ i). Since by assumption on ϕ, i.e., ϕ ∈ Om(R), there exist D > 0 and p ∈ N such that 
|ϕ(j)(x)| ≤ D(1 + x2)p for x ∈ R and j = 0, . . . , m and hence (1 + ϕ(x)2) ≤ D′(1 + x2)2p for x ∈ R and a 
suitable constant D′ > 0, from (2.1) it follows for every x ∈ R and i = 0, . . . , m that

|(Cϕf)(i)(x)| ≤
∑ i!

k1!k2! . . . ki!
|f (k)(ϕ(x))|

∣∣∣∣ϕ′(x)
1!

∣∣∣∣
k1

∣∣∣∣ϕ′′(x)
2!

∣∣∣∣
k2

. . .

∣∣∣∣ϕ(i)(x)
i!

∣∣∣∣
ki

≤
∑ i!

k1!k2! . . . ki!
|f |m,n(1 + ϕ(x)2)n Dk(1 + x2)pk

1!k12!k2 . . . i!ki

≤ Ci|f |m,n(1 + x2)p(2n+i) ≤ C|f |m,n(1 + x2)p(2n+m),

where Ci := (D′)n
∑

i!
k1!k2!...ki!

Dk

1!k12!k2 ...i!ki
and C := maxi=0,...,m Ci. Accordingly, if n′ := p(2n + m) ∈ N, 

we get that

|Cϕf |m,n′ ≤ C|f |m,n.

Since n ∈ N and f ∈ Om
n (R) are arbitrary, the claim is proved. �

As a consequence of the result above, we obtain the class of symbols for which Cϕ ∈ L(OM (R)).

Theorem 2.4. Let ϕ ∈ C∞(R). Then the following properties are equivalent:

(1) Cϕ acts continuously from OM (R) into itself;
(2) Cϕ acts continuously from Om(R) into itself for all m ∈ N;
(3) ϕ ∈ OM (R).

Proof. (1) ⇒ (3). Consider the function p1(x) := x, for x ∈ R, which belongs to OM (R). Then ϕ = Cϕp1 ∈
OM (R). So, (3) is satisfied.

(2) ⇔ (3). Follows by Theorem 2.3.
(2) ⇒ (1). If the composition operator Cϕ acts continuously from Om(R) into itself for all m ∈ N, taking 

into account of the fact that OM(R) is the projective limit of the (LB)-spaces Om(R), it follows that the 
operator Cϕ acts continuously from OM (R) into itself. �
Remark 2.5. Let ϕ ∈ OM (R). If ϕ is not a constant function, then the continuous linear operator Cϕ :
OM (R) → OM (R) is never compact. The result follows from [13, Theorem 3.3], after having observed that 
D(R) ↪→ OM (R) ↪→ C∞(R) continuously.
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Remark 2.6. Let OC(R) := ∪∞
n=1 ∩∞

m=1 Om
n (R) be the space of very slowly increasing functions on R, 

endowed with its natural lc-topology, i.e., OC(R) = ind n→ proj m← Om
n (R), which is a complete (LF)-space. 

In particular, OC(R) is continuously included in OM (R) and it is the predual of the space of convolutors of 
the spaces S(R) and S ′(R).

Let ϕ ∈ C∞(R). If Cϕ acts continuously on OC(R), then ϕ ∈ OC(R) since ϕ = Cϕp1, where p1 ∈ OC(R)
is the identity function. But the converse is not true. For example, let ϕ(x) = x2 and f(x) = sin x, for 
x ∈ R. Then ϕ, f ∈ OC(R). But f ◦ ϕ /∈ OC(R). Indeed, we have for every x ∈ R and i ∈ N, with i even, 
that

(f ◦ ϕ)(i)(x) = P (x) sinx2 + Q(x) cosx2,

where P is a polynomial of degree equal to i and Q is a polynomial of degree less than i. So, f ◦ ϕ /∈
∩∞
m=1Om

n (R) for all n ∈ N. Otherwise, if f ◦ ϕ ∈ ∩∞
m=1Om

n0
(R) for some n0 ∈ N, then

|(f ◦ ϕ)|m,n0 = sup
x∈R

sup
j=0,...,m

(1 + x2)−n0 |(f ◦ ϕ)j(x)| < +∞

for all m ∈ N. But if we choose x2
k := π

2 + 2kπ, for all k ∈ N and i := 2(n0 + 1), we get for all k ∈ N that

(1 + x2
k)−n0 |(f ◦ ϕ)2(n0+1)(x)| = (1 + x2

k)−n0 |P (xk)| ≥ cx2
k

for some suitable positive constant c. Therefore, |(f ◦ ϕ)|2(n0+1),n0 = +∞. A contradiction.

3. Dynamics of composition operators acting on lcHs’ continuously included in Cm(R) for some 
m ∈ N0 ∪ {∞}

Through this section X always denotes a separable lcHs. Let T ∈ L(X). The operator T is said to be 
supercyclic if there exists x ∈ X whose projective orbit under T is dense in X, that is the set {λTnx : n ∈
N0, λ ∈ C} is dense in X. Such an x is said to be a supercyclic vector of T . The operator T is said to be 
hypercyclic if there exists x ∈ X whose orbit under T is dense in X, that is the set orb(x, T ) := {Tnx : n ∈
N0} is dense in X. Such an x is said to be a hypercyclic vector of T . No power bounded operator is 
hypercyclic, but can be supercyclic. Every hypercyclic operator is always supercyclic. The converse is not 
true in general. The operator T is said to be cyclic if there exists x ∈ X whose span of the orbit under T
is dense in X, that is the space span(orb(x, T )) is dense in X. Such an x is said to be a cyclic vector of T . 
Every supercyclic operator is always cyclic. The converse is not true in general. The operator T is said to 
be topological transitive if for every pair of non-empty open subsets U and V of X, there is n ∈ N such that 
Tn(U) ∩V �= ∅. An hypercyclic operator is always topological transitive. Thanks to the Birkhoff-transitivity 
theorem, the converse holds for Fréchet spaces (see [5, Theorem 1.2]).

We recall an important result that we use in the following. For the proof see [5, Proposition 1.26].

Proposition 3.1. Let X be a separable lcHs and let T ∈ L(X) be supercyclic. Then either σp(T ′) = ∅ or 
σp(T ′) = {λ}, for some λ �= 0. In the latter case, Ker(T ′−λ) has dimension 1 and Ker(T ′−λ)n = Ker(T ′−λ)
for all n ∈ N0. Moreover, there exists a (closed) T -invariant hyperplane X0 ⊂ X such that T0 := λ−1T|X0

is hypercyclic on X0.

An operator T ∈ L(X) is said to be mixing if for every pair of non-empty open subsets U and V of X, 
there is N ∈ N such that Tn(U) ∩ V �= ∅ for all n ≥ N . Every mixing operator on a separable Fréchet 
space X is hypercyclic. In particular, in such a case it is easy to see that if the operator T is mixing, then 
it is also hereditarily hypercyclic, i.e., for any infinite set I ⊆ N the family {Tn : n ∈ I} is universal which 
means that for some x ∈ X the set {Tnx : n ∈ I} is dense in X.
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An operator T is said to be weakly hypercyclic if there exists x ∈ X whose orbit under T is weakly dense 
in X (for the weak topology σ(X, X ′)). Such a vector x is called a weakly hypercyclic vector for T . One 
defines in the same way weakly supercyclic operators and weakly supercyclic vectors. We refer the reader to 
[5,14] for more details.

In the following, if X is a lcHs of functions defined on R, we denote by δa the linear functional on X which 
maps every function of X to its value at a ∈ R. We observe that if X is continuously included in Cm(R), 
for some m ∈ N0 ∪ {∞}, then δ(j)

a ∈ X ′ for all j ≤ m and a ∈ R, where δ(j)
a is defined by δ(j)

a (f) := f (j)(a). 
A function ϕ : R → R is said to be strongly runaway when for any compact subset K of R there exists 
n0 ∈ N such that ϕn(K) ∩ K = ∅ for all n ≥ n0. It is standard to show that for an increasing function 
ϕ : R → R the property to be strongly runaway is equivalent to the fact that ϕ has no fixed points (cf. [20, 
Lemma 4.1] for a proof in the smooth case).

We now can prove the following result.

Proposition 3.2. Let X be a separable lcHs such that X ↪→ C1(R) and δa, δ
(1)
a are linearly independent in 

X ′ for every a ∈ R. Let ϕ ∈ C1(R) be a symbol for X. If ϕ(a) = a for some a ∈ R or ϕ′(a) = 0 for some 
a ∈ R, then Cϕ : X → X is not weakly supercyclic.

Proof. Since ϕ is a symbol for X, Cϕ ∈ L(X) and hence Cϕ ∈ L((X, σ(X, X ′)).
Suppose firstly that ϕ′(a) = 0 for some a ∈ R. This assumption implies that Cϕ(X) ⊆ Ker δ(1)

a . Then Cϕ

cannot be even (weakly) cyclic.
Now, suppose that ϕ(a) = a for some a ∈ R. This assumption implies that C ′

ϕ(δa) = δa and C ′
ϕ(δ(1)

a ) =
ϕ′(a)δ(1)

ϕ(a) = ϕ′(a)δ(1)
a . Now we have to distinguish two cases. If ϕ′(a) �= 1, then C ′

ϕ has two different 
eigenvalues. Applying Proposition 3.1 to (X, σ(X, X ′)), we get that Cϕ is not weakly supercyclic. If ϕ′(a) =
1, then δa and δ(1)

a are two different eigenvectors for C ′
ϕ, thereby implying that Ker(C ′

ϕ − I) has dimension 
greater or equal than two. Again, applying Proposition 3.1 to (X, σ(X, X ′)), we get that Cϕ is not weakly 
supercyclic. �
Corollary 3.3. Let X be a separable lcHs such that X ↪→ C1(R) and δa, δ

(1)
a are linearly independent in X ′

for every a ∈ R. Let ϕ ∈ C1(R) be a symbol for X. If Cϕ is weakly supercyclic on X, then ϕ is strongly 
runaway and ϕ′(x) > 0 for all x ∈ R.

Proof. By Proposition 3.2 we can assume that ϕ′(x) �= 0 for every x ∈ R. Since Proposition 3.2 also implies 
that the function ϕ cannot have fixed points, it follows that ϕ is increasing (ϕ decreasing would have fixed 
points). Accordingly, the function ϕ(x) − x has constant sign. From this it follows that all the orbits of ϕ
are divergent. Hence ϕ is strongly runaway. �

Observe that in Proposition 3.2, we ask that X ↪→ C1(R). We now prove the following result which 
concerns the weaker assumption X ↪→ C(R).

Proposition 3.4. Let X be a separable lcHs such that X ↪→ C(R) with dense inclusion and {δa : ∈ R} is a 
linearly independent subset in X ′. Let ϕ ∈ C(R) be a symbol for X. If Cϕ is supercyclic on X, then ϕ is 
increasing and without fixed points.

Proof. The density of the inclusion X ↪→ C(R) permits us to consider only the case X = C(R) in order to 
prove that Cϕ supercyclic implies ϕ increasing and without fixed points.

If ϕ is not injective, then there exist a, b ∈ R with a �= b such that ϕ(a) = ϕ(b). Then Cϕ(C(R)) ⊆
Ker(δa − δb), thereby implying that Cϕ cannot be (even weakly) supercyclic.
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We now suppose that ϕ has fixed points. If there are more than one, for instance a, b ∈ R with a �= b, 
we have that C ′

ϕ(δa) = δa and C ′
ϕ(δb) = δb. By Proposition 3.1 it follows that Cϕ cannot be (even weakly) 

supercyclic.
Finally, we assume that ϕ has a unique fixed point, that without loss of generality we can suppose to 

be 0. Since ϕ is injective, the function ϕ(x) − x has constant sign in (−∞, 0) and in (0, ∞). Suppose ϕ
to be increasing. If ϕ(x) < x for all x > 0, then ϕn(x) → 0 as n → ∞ for all x > 0 and so Cϕ is not 
(even weakly) supercyclic by [8, Theorem 8(ii)]. Hence, ϕ(x) > x for every x > 0. In a similar way, we can 
show that ϕ(x) < x for every x < 0. Therefore, the function ϕ is also surjective and ϕ−1(x) < x for every 
x > 0 and ϕ−1(x) > x for every x < 0. Accordingly, ϕ−1 ∈ C(R). Since Cϕ : C(R) → C(R) is supercyclic, 
also Cϕ−1 : C(R) → C(R) is supercyclic. Again we get a contradiction by [8, Theorem 8(ii)]. If ϕ is not 
increasing, it must be decreasing since it is injective. The contradiction now follows taking into account of 
the fact that Cϕ : C(R) → C(R) is supercyclic if, and only if, Cϕ2 : C(R) → C(R) is supercyclic. �

Combining our results with previous works of Bonet and Domański and Kalmes, we get the following 
result for dynamics of some composition operators. The proof of (i) below uses an unpublished argument 
due to Bonet and Domański which ensures that Cϕ is sequentially supercyclic in A(R) for every analytic 
diffeomorphism ϕ in R without fixed points.

Theorem 3.5.

(i) If a composition operator Cϕ defined on A(R) is weakly supercyclic, then Cϕ is mixing. If we assume in 
addition ϕ to be surjective, then Cϕ is weakly supercyclic if, and only if, Cϕ is sequentially hypercyclic.

(ii) A composition operator Cϕ defined on Cm(R) with m ∈ N ∪ {∞} is weakly supercyclic if, and only if, 
Cϕ is mixing.

(iii) A composition operator Cϕ defined on C(R) is supercyclic if, and only if, Cϕ is mixing.

Proof. (i). By Corollary 3.3, if Cϕ is weakly supercyclic then ϕ must be runaway, ϕ′(x) �= 0 for all x ∈ R, 
and ϕ does not have any fixed point. By [10, Theorem 2.3] Cϕ is then mixing. If ϕ is also surjective, then 
ϕ is an analytic diffeomorphism, and therefore ϕ is analytically conjugate to ψ(x) = x + 1 by [6, Theorem 
3.1]. We conclude since Cψ is sequentially hypercyclic by [10, Theorem 3.6].

(ii) It follows by combining Corollary 3.3 with [18, Corollary 4.2].
Finally, (iii) is a consequence of Proposition 3.4 and [18, Corollary 4.1]. �

Proposition 3.6. Let ϕ(x) = x + d, d �= 0. The operator Cϕ is mixing on Om(R) for any m ∈ N, and also 
on OM (R).

Proof. Using Remark 2.2 it is easy to show that, for every f ∈ D(R), both sequences {f ◦ ϕn}n∈N and 
{f ◦ ϕ−n}n∈N are convergent to 0 in Om(R) for any m ∈ N and hence, in OM (R). Now, by applying [5, 
Theorem 1.6] with nk = k, D1 = D2 = D(R) and S = Cϕ, we get that Cϕ is mixing in Om(R) for any 
m ∈ N and also in OM (R). �

The basic example of the translations gives us mixing operators on both spaces Om(R), m ∈ N, and 
OM (R). This should be compared with [12, Theorem 2.1] and [12, Corollary 2.2(1)], which shows how the 
situation differs when {f ◦ϕn}n∈N is not convergent to 0 when f ∈ D(R) and ϕ(x) = x +d. We do not know 
if Cϕ : OM (R) → OM (R) or Cϕ : Om(R) → Om(R) is mixing when ϕ is strongly runaway and ϕ′(x) > 0
for all x ∈ R.
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4. Ergodic properties of composition operators acting on lcHs’ continuously included in Cm(R) for some 
m ∈ N0 ∪ {∞}

4.1. Strong operator topology on operators on spaces of differentiable functions

We start by proving that the superposition operator is continuous.

Proposition 4.1. Let m ∈ N0 ∪ {∞} and let f ∈ Cm(R). Then the superposition operator Sf : Cm(R) →
Cm(R), ϕ �→ f ◦ ϕ, is continuous.

Proof. We prove the statement by induction on m. Let f ∈ C(R) and let {ϕn}n∈N ⊂ C(R) be a convergent 
sequence in C(R) to some ϕ ∈ C(R). We will show that the sequence {f ◦ ϕn}n∈N is convergent to f ◦ ϕ
in the topology τc of C(R). To do this, we first observe that for all k ∈ N there exists M ∈ N such that 
ϕn([−k, k]) ⊆ [−M, M ] for all n ∈ N. Indeed, there exists n0 ∈ N such that n ≥ n0 implies |ϕn(x) −ϕ(x)| ≤ 1
for each x ∈ [−k, k]. On the other hand, ϕ([−k, k]) and ϕi([−k, k]), i = 1, . . . , n0 − 1, are compact subsets 
of R as ϕ, ϕi ∈ C(R), i = 1, . . . , n0 − 1, and hence, ϕ([−k, k]) ⊂ [−M ′, M ′] and ϕi([−k, k]) ⊂ [−M ′, M ′], 
i = 1, . . . , n0 − 1, for some M ′ > 0. Therefore, ϕn([−k, k]) ⊂ [−M ′ − 1, M ′ + 1] for all n ∈ N.

Since f ∈ C(R), f is uniformly continuous in [−M, M ] and hence, for a fixed ε > 0, there exists δ > 0
such that |f(x) −f(y)| < ε for each x, y ∈ [−M, M ] with |x −y| < δ. On the other hand, supx∈[−k,k] |ϕn(x) −
ϕ(x)| → 0 for n → ∞ and hence, there exists n0 ∈ N such that supx∈[−k,k] |ϕn(x) −ϕ(x)| < δ for all n ≥ n0. 
Since ϕn([−k, k]) ⊂ [−M, M ] for all n ∈ N, we get that |(f ◦ ϕn)(x) − (f ◦ ϕ)(x)| < ε for all n ≥ n0 and 
x ∈ [−k, k].

Assume now the hypothesis is true for m −1. Let f ∈ Cm(R) and let {ϕn}n∈N ⊂ Cm(R) be a convergent 
sequence in Cm(R) to some ϕ ∈ Cm(R). For all n ∈ N, for every x ∈ R and i = 0, . . . , m, Faà di Bruno 
formula gives:

(Sf (ϕn))(i)(x) =
∑ i!

k1!k2! . . . kn!f
(k)(ϕn(x))

(
ϕ′
n(x)
1!

)k1 (ϕ′′
n(x)
2!

)k2

. . .

(
ϕ

(i)
n (x)
i!

)ki

, (4.1)

where the sum is extended over all (k1, k2, . . . , ki) ∈ Ni
0 such that k1 + 2k2 + . . . + iki = i and k1 + k2 +

. . . + ki = k. We get from (4.1), the inductive hypothesis and the continuity of the product in C(R) that 
{(Sf (ϕn))(i)}n∈N is convergent to (Sf (ϕ))(i) in C(R) for any 0 ≤ i ≤ m, thereby completing the proof. �
Corollary 4.2. Let m ∈ N0 ∪ {∞} and X be a barreled lcHs continuously included in Cm(R) and satisfying 
the following properties:

(i) The identity p1(x) = x ∈ X;
(ii) X is closed under composition;
(iii) A sequence {ϕn}n∈N ⊂ X is convergent in X to some ϕ ∈ X if, and only if, {ϕn}n∈N is bounded in 

X and limn→∞ ϕn = ϕ in Cm(R).

Let {ϕn}n∈N ⊂ X be a sequence of symbols for X. Then the sequence {Cϕn
}n∈N of composition operators 

is convergent in Ls(X) if, and only if, {ϕn}n∈N is convergent in X and {Cϕn
}n∈N is an equicontinuous 

sequence in L(X).

Proof. If there exists C ∈ L(X) such that {Cϕn
(f)}n∈N is convergent to C(f) for any f ∈ X, then for 

f = p1 we get that {ϕn}n∈N converges in X to C(p1). Since X is barreled, we also obtain that {Cϕn
}n∈N

is an equicontinuous sequence in L(X).
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The converse follows from Proposition 4.1. Indeed, if the sequence {ϕn}n∈N is convergent in X to some 
ϕ ∈ X, then by (iii) the sequence {ϕn}n∈N is convergent in Cm(R) to ϕ and so, by Proposition 4.1 we have 
that Cϕn

(f) = f ◦ ϕn → f ◦ ϕ in Cm(R) as n → ∞ for any fixed f ∈ X. On the other hand, the sequence 
{Cϕn

(f)}n∈N is bounded in X for any fixed f ∈ X, being {Cϕn
}n∈N an equicontinuous sequence in L(X). 

Therefore, by (iii) we conclude that Cϕn
(f) = f ◦ ϕn → f ◦ ϕ in X as n → ∞ for any fixed f ∈ X. The 

equicontinuity of {Cϕn
}n∈N implies that Cϕ ∈ L(X). So, Cϕn

→ Cϕ in Ls(X) as n → ∞. �
Remark 4.3. If X is a Montel lcHs space which is continuously included in Cm(R), with m ∈ N0 ∪ {∞}, 
then X clearly satisfies condition (iii) of Corollary 4.2.

Remark 4.4. If the sequence {ϕn}n∈N is bounded in Cm(R) for some m ∈ N0∪{∞}, then for all k ∈ N there 
exists M > 0 such that sup|x|≤k |ϕ

(j)
n (x)| < M for all 0 ≤ j ≤ m and n ∈ N, i.e., ϕ(j)

n ([−k, k]) ⊆ [−M, M ]
for all 0 ≤ j ≤ m and n ∈ N. Hence, [17, Theorem 3.13] for the particular case of composition operators 
reads as follows: Cϕ is power bounded in Cm(R) if, and only if, {ϕn}n∈N is bounded in Cm(R).

4.2. Polynomial symbols

We collect some results on mean ergodicity of Cϕ.

Proposition 4.5. Let X be a lcHs which is closed under composition, continuously included in Cm(R) for 
some m ∈ N0 ∪ {∞} and contains the function p1(x) := x, for x ∈ R. If ϕ ∈ X is a symbol for X and Cϕ

is mean ergodic on X, then the following properties are satisfied:

(1) The sequence {ϕ[n]}n∈N converges in Cm(R);
(2) The sequence {ϕn

n }n∈N converges to 0 in Cm(R).

If Cϕ is power bounded on X, condition (2) above is satisfied.

Proof. Assume that Cϕ is mean ergodic on X.
(1) By assumption there exists P ∈ X such that (Cϕ)[n] → P in Ls(X). Since the function p1 belongs to 

X, it follows that (Cϕ)[n](p1) = ϕ[n] → Pp1 := ψ in X. Hence, {ϕ[n]}n∈N is also convergent in Cm(R) to 
ψ. Therefore, condition (1) follows.

(2) Since

ϕn

n
= ϕ[n] −

n− 1
n

ϕ[n−1], n ≥ 2,

the result immediately follows from part (1).
Finally, if Cϕ is power bounded, then the sequence {Cϕn

(p1)}n∈N = {ϕn}n∈N is bounded in X and 
hence, bounded in Cm(R), thereby implying that (2) is satisfied. �
Theorem 4.6. Let ϕ be a polynomial and let X ∈ {OM (R), C∞(R), A(R)} ∪{Om(R) : m ∈ N0} ∪{Cm(R) :
m ∈ N0}. Then the composition operator Cϕ is mean ergodic on X if, and only if, Cϕ is power bounded if, 
and only if, ϕ(x) = ax + b, with either |a| < 1, a = −1 or a = 1 and b = 0. In case |a| < 1, we even have 
that the sequence of iterates {Cϕn

}n∈N converges in Ls(X).

Proof. Assume that either the degree of ϕ is greater or equal than two or ϕ(x) = ax + b with |a| > 1. Then 
there exists n0 ∈ N such that |x| ≥ n0 implies |ϕ(x)| > |x| + 1. So, it follows that |ϕn(n0)| ≥ n0 + n for all 
n ∈ N. Therefore, Cϕ is neither power bounded nor mean ergodic on X by Proposition 4.5. If ϕ(x) = x + b, 
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with b �= 0, then ϕn(0) = nb, and again Proposition 4.5 yields that Cϕ cannot be power bounded or mean 
ergodic on X.

Let ϕ(x) := ax + b for x ∈ R and some a, b ∈ R. The case a = 1, b = 0 gives the identity. The case 
a = −1 gives ϕ2 = ϕ, and hence, Cϕ is idempotent. In both cases the statement is trivial. Also it is trivial 
when a = 0. Indeed, in this case Cϕ is the evaluation at b and satisfies Cϕn

= Cϕ for all n ∈ N.
Let |a| < 1, with a �= 0. In this case, for φ(x) := x + b/(a −1), and ψ(x) := ax, we have Cϕ = Cφ−1◦ψ◦φ =

CφCψCφ−1 . Hence, power boundedness or mean ergodicity of Cϕ is equivalent to that of Cψ. Thus, we can 
assume b = 0. In this case it is easy to show that the sequence {ϕn}n∈N is convergent to the constant 
function 0 in all the spaces we are considering and hence, bounded there. Accordingly, the operator Cϕ is 
power bounded in every space X (see Theorem 5.2 for X equals to OM (R) or equals to Om(R) with m ∈ N; 
see Remark 4.4 for X equals to Cm(R) with m ∈ N0 ∪ {∞}; for X = A(R) see [9]). Since every space X
satisfies the assumptions (i)÷(iii) of Corollary 4.2, the conclusion follows from Corollary 4.2. �

We point out that if ϕ is a polynomial of even degree and with no fixed points, like ϕ(x) = x2 + 1 for 
x ∈ R, then the composition operator Cϕ is power bounded on S(R) (see [12, Theorem 3.7]). The key point 
to make the difference is that in S(R) the polynomials are symbols, but they do not belong to S(R). We 
see below that in case of analytic functions we can go further than polynomial symbols.

Remark 4.7. Bonet and Domanski showed in [9] that a nontrivial composition operator Cϕ (i.e., ϕ2 �= p1) 
defined on A(R) is power bounded if, and only if, {ϕn}n∈N is convergent in A(R) to a (unique) fixed point 
a of ϕ. Hence, from Corollary 4.2 we get that such an operator satisfies that {Cϕn

}n∈N is convergent in 
Lb(A(R)).

4.3. Monotonic symbols

Proposition 4.8. Let X be a lcHs which is closed under composition, continuously included in C(R) and 
contains the function p1. Let ϕ ∈ X be a symbol for X such that there exists limn→∞ ϕn(x) for all x ∈ R. 
If Cϕ is mean ergodic on X, then the set Fix(ϕ) of fixed points of ϕ is a non empty closed interval of R.

Proof. Since Cϕ is mean ergodic on X, we can apply Proposition 4.5(1) to get that the sequence {ϕ[n]}n∈N
converges in C(R) to some function ψ ∈ C(R). Since there exists limn→∞ ϕn(x) for every x ∈ R, by Cesàro’s 
theorem we necessary have

ψ(x) = lim
n→∞

ϕn(x)

for every x ∈ R. So, by the fact that ϕ is a continuous function, we also have for every x ∈ R that

ψ(x) = lim
n→∞

ϕn(x) = lim
n→∞

ϕ(ϕn−1(x)) = ϕ(ψ(x)).

This means that ψ(x) ∈ Fix(ϕ) for all x ∈ R and hence, Fix(ϕ) = Imψ. Since Fix(ϕ) is always a closed set 
and ψ ∈ C(R), it follows that Fix(ϕ) is a non empty closed interval of R. �
Proposition 4.9. Let X be a lcHs which is closed under composition, continuously included in C(R) and 
contains the function p1. Let ϕ ∈ X be a symbol for X. If there exist β > 0 such that ϕ is a non decreasing 
function on [β, +∞) (on (−∞, β], respectively), and ϕ(x) > x (ϕ(x) < x) for every x ≥ β (x ≤ β, 
respectively), then Cϕ is not mean ergodic on X.

Proof. We consider only the case in which ϕ is a non decreasing function on [β, +∞). In the other case the 
proof follows by arguing in a similar way.
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We first observe that {ϕn(β)}n∈N is a non decreasing sequence, but not a bounded sequence. Indeed, 
from ϕ(β) > β follows that there exists δ > 0 such that ϕ(β) > β + δ and hence, ϕn(β) > β + nδ for all 
n ∈ N. Accordingly, ϕn(β)

n > β
n + δ > δ for all n ∈ N. Hence, {ϕn(β)

n }n∈N does not converge to 0. So, by 
Proposition 4.5 we can conclude that Cϕ is not mean ergodic on X. �
Corollary 4.10. Let X be a lcHs which is closed under composition, continuously included in C1(R) and 
contains the function p1. Let ϕ ∈ X be a symbol for X, ϕ �= p1. If ϕ is a non decreasing function and Cϕ

is mean ergodic on X, then there is a ∈ R such that Fix(ϕ) = {a} and {ϕn}n∈N converges in C(R) to the 
constant function ψ(x) := a for x ∈ R.

Proof. Since ϕ is a non decreasing function, there exists limn→∞ ϕn(x) for all x ∈ R. Indeed, for a fixed 
x ∈ R, we have either ϕ(x) ≤ x or ϕ(x) ≥ x from which it follows that {ϕn(x)}n∈N is either a non increasing 
sequence or a non decreasing sequence, being ϕ a non decreasing function. Since Cϕ is mean ergodic, we 
can then apply Proposition 4.8 to conclude that the sequence {ϕ[n]}n∈N converges in X (and hence, in 
C1(R)) to some ψ ∈ X and the set Fix(ϕ) = ψ(R) is a closed interval of R. The pointwise convergence 
of (ϕ[n])n∈N to ψ together with the monotonicity of (ϕn(x))n∈N for all x ∈ R implies that (ϕn)n∈N is 
pointwise convergent and ψ(x) = limn→∞ ϕn(x) for every x ∈ R.

Let assume Fix(ϕ) to be bounded below and let a be the infimum of Fix(ϕ). Clearly, a ∈ Fix(ϕ). On 
the other hand, since Cϕ is mean ergodic, Proposition 4.9 implies that ϕ(x) > x for all x < a. Accordingly, 
taking into account that ϕ is a non decreasing function, it follows for every x < a that {ϕn(x)}n∈N is a non 
decreasing sequence such that ϕn(x) ≤ ϕn(a) = a for all n ∈ N. Hence, ψ(x) = limn ϕn(x) ≤ a for all x < a. 
But, we also have for every x < a that ψ(x) = limn→∞ ϕ(ϕn−1(x)) = ϕ(ψ(x)) and hence, ψ(x) ∈ Fix(ϕ), 
thereby implying that ψ(x) ≥ a. So, ψ(x) = a for all x < a. If Fix(ϕ) is not a single point, then there is 
δ > 0 such that [a, a + δ) ⊆ Fix(ϕ). For all x ∈ [a, a + δ) we have ψ(x) = limn ϕ[n](x) = x. This contradicts 
the differentiability of ψ at a.

The proof of the case Fix(ϕ) bounded above is completely analogous.
Now, we can assume that a = 0 without loss of generality. So, Proposition 4.9 yields |ϕ(x)| ≤ |x| for all 

x ∈ R. From this we get immediately that limn→∞ ϕn(x) = 0 uniformly on compact subsets of R. �
Theorem 4.11. Let X be a Montel lcHs which is closed under composition, continuously included in C1(R)
and contains the function p1. Assume that the following condition is also satisfied:

(*) The composition operator Cϕ : X → X is power bounded if, and only if, {ϕn}n∈N is bounded in X for 
any ϕ ∈ X symbol for X.

Let ϕ ∈ X be monotonic, ϕ2 �= p1. Then Cϕ is power bounded if, and only if, ϕ has an attracting fixed point 
a and {Cϕn

}n∈N is convergent to Ca in Ls(X).

Proof. We first observe that if Cϕ is power bounded, then the sequence {ϕn}n∈N is bounded in X, being 
ϕn = Cϕn

p1 for all n ∈ N.
Assume first that ϕ is non decreasing. Since X is Montel and Cϕ is power bounded, Cϕ is also (uniformly) 

mean ergodic. Thus, by Corollary 4.10 the sequence {ϕn}n∈N necessarily converges in C(R) to a unique 
fixed point a. Now, the fact that X is Montel together with (*) imply that {ϕn}n∈N is also convergent in 
X to a. Therefore, we can apply Corollary 4.2 to conclude the convergence of {Cϕn

}n∈N to Ca in Ls(X), 
taking into account that Cϕ is power bounded. Vice versa, if {Cϕn

}n∈N is convergent in Ls(X) to Ca, then 
Cϕ is power bounded, and we conclude.

Assume now that ϕ is decreasing. Since X is barreled, by Banach-Steinhaus theorem we have that any 
operator T ∈ L(X) is power bounded if, and only if, T 2 is. Accordingly, Cϕ is power bounded if, and only 
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if, Cϕ2 is. Since ϕ2 is increasing, by the first part of the proof we get that Cϕ is power bounded if, and 
only if, ϕ2 has only one fixed point a and {Cϕ2n}n∈N is convergent to Ca in Ls(X). It follows that also 
ϕ has only one fixed point a. On the other hand, the convergence of {Cϕ2n}n∈N to Ca in Ls(X) implies 
the convergence of {ϕ2n}n∈N to the constant function a in C(R). By applying this to any ϕ([α, β]), with 
α, β ∈ R, we obtain the convergence of {ϕn}n∈N to the constant function a in C(R). Taking account of 
the fact that {ϕn}n∈N is a bounded sequence of X as Cϕ is power bounded, we can apply Corollary 4.2 to 
conclude that {Cϕn

}n∈N is convergent to Ca in Ls(X). �
5. Power boundedness of composition operators on OM(R) and on Om(R)

A characterization of the power boundedness of Cϕ when it acts continuously on S(R) has been proved 
in [12]. Precisely, in [12, Proposition 4] it has been shown that if ϕ ∈ C∞(R) is a symbol for S(R), then the 
composition operator Cϕ is power bounded if, and only if, the following conditions are satisfied:

(1) For all j ∈ N0 there exist C, p > 0 such that, for every x ∈ R and n ∈ N

|ϕ(j)
n (x)| ≤ C(1 + ϕn(x)2)p;

(2) There exists k > 0 such that

|ϕn(x)| ≥ |x| 1k , ∀ |x| ≥ k, ∀n ∈ N.

In order to treat the case of the space OM (R) we first establish the following result.

Theorem 5.1. Let m ∈ N and ϕ ∈ Om(R). Then the following properties are equivalent:

(1) Cϕ is power bounded on Om(R);
(2) The sequence {ϕn}n∈N is bounded in Om(R);
(3) For all 0 ≤ i ≤ m there exist C, p > 0 such that |ϕ(i)

n (x)| ≤ C(1 + x2)p for all x ∈ R and n ∈ N.

Proof. (1)⇒(2). The operator Cϕ is power bounded on Om(R). Accordingly, if we consider the function 
p1(x) := x, for x ∈ R, which belongs to Om(R), then by assumption the sequence {Cn

ϕp1}n∈N = {ϕn}n∈N
is bounded in Om(R).

(2)⇒(1). We claim that for all r ∈ N there exists r′ ∈ N such that Cϕ : Om
r (R) → Om

r′ (R) is power 
bounded, thereby obtaining that the sequence {f ◦ ϕn}n∈N is bounded in Om

r′ (R) for all f ∈ Om
r (R). 

Indeed, for fixed r ∈ N and f ∈ Om
r (R), we observe for every x ∈ R and n ∈ N that

(Cn
ϕf)(i)(x) =

∑ i!
k1!k2! . . . ki!

f (k)(ϕn(x))
(
ϕ′
n(x)
1!

)k1 (ϕ′′
n(x)
2!

)k1

. . .

(
ϕ

(i)
n (x)
i!

)ki

,

where the sum is extended over all (k1, k2, . . . , ki) ∈ Ni
0 such that k1+2k2+ . . .+iki = i, with k = k1+ . . . ki. 

Since by assumption on {ϕn}n∈N (i.e., {ϕn}n∈N is a bounded sequence of Om(R)), there exist D > 0
and p ∈ N such that |ϕ(j)

n (x)| ≤ D(1 + x2)p for every x ∈ R, j = 0, . . . , m and n ∈ N, and hence, 
(1 +ϕn(x)2) ≤ D′(1 +x2)2p for every x ∈ R and n ∈ N, and a suitable constant D′ > 0, it follows for every 
x ∈ R, i = 0, . . . , m and n ∈ N that

|(Cn
ϕf)(i)(x)| ≤

∑ i!
k1!k2! . . . ki!

|f (k)(ϕn(x))|
∣∣∣∣ϕ′

n(x)
1!

∣∣∣∣
k1

∣∣∣∣ϕ′′
n(x)
2!

∣∣∣∣
k2

. . .

∣∣∣∣∣ϕ
(i)
n (x)
i!

∣∣∣∣∣
ki
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≤
∑ i!

k1!k2! . . . ki!
|f |m,r(1 + ϕn(x)2)r Dk(1 + x2)pk

1!k12!k2 . . . i!ki

≤ Ci|f |m,r(1 + x2)p(2r+i) ≤ C|f |m,r(1 + x2)p(2r+m),

where Ci := (D′)r
∑

i!
k1!k2!...ki!

Dk

1!k12!k2 ...i!ki
and C := maxi=0,...,m Ci. Accordingly, if r′ := p(2r + m) ∈ N, 

we get for all n ∈ N that

|Cn
ϕf |m,r′ ≤ C|f |m,r.

Since r ∈ N and f ∈ Om
r (R) are arbitrary, the claim is proved.

We are now able to show that Cϕ is power bounded. Indeed, for a fixed f ∈ Om(R), there exists r ∈ N

such that f ∈ Om
r (R). By the proof above, it follows that the sequence {Cn

ϕf}n∈N is bounded in Om
r′ (R)

for some r′ ≥ r and hence in Om(R) = ind h→ Om
h (R), being it an (LB)-space. So, we can conclude that Cϕ

is power bounded on Om(R) thanks to the Banach-Steinhaus theorem.
(2) ⇔ (3). Follows as Om(R) is a regular (LB)-space. �
Thanks to Theorem 5.1, we easily obtain the following characterization of the power boundedness of Cϕ

when it acts in OM (R).

Theorem 5.2. Let ϕ ∈ OM (R). Then the following properties are equivalent:

(1) Cϕ is power bounded on OM (R);
(2) Cϕ is power bounded on Om(R) for all m ∈ N;
(3) The sequence {ϕn}n∈N is bounded in OM (R);
(4) For all i ∈ N0 there exist C, p > 0 such that |ϕ(i)

n (x)| ≤ C(1 + x2)p for all x ∈ R and n ∈ N.

Proof. Since OM (R) is the projective limit of the sequence (Om(R))m∈N of (LB)-spaces and it is barreled, 
the Banach-Steinhaus theorem yields that Cϕ is power bounded if, and only if, {f ◦ ϕn}n∈N is bounded 
in Om(R) for any m ∈ N and any f ∈ OM (R). So, the conclusion follows now immediately from Theo-
rem 5.1. �

From Remark 4.4, Theorems 5.1 and 5.2 we get immediately the following fact.

Proposition 5.3. Let ϕ ∈ OM (R) (ϕ ∈ Om(R), for m ∈ N, resp.). Then Cϕ is power bounded in C∞(R) (in 
Cm(R), resp.) whenever Cϕ is power bounded in OM (R) (in Om(R), resp.).

Combining Theorem 4.11 with Theorem 5.2, we immediately obtain the following characterization, that 
should be compared with [17, Theorem 3.13].

Corollary 5.4. Let ϕ ∈ OM (R) be an increasing function. Then {Cϕn
}n∈N is convergent in Ls(OM (R)) if, 

and only if, Cϕ is power bounded on OM (R) if, and only if, {ϕn}n∈N is bounded in OM (R).
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