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ON FLAG-TRANSITIVE 2-(k2, k, λ) DESIGNS WITH λ | k.

ALESSANDRO MONTINARO AND ELIANA FRANCOT

Abstract. It is shown that, apart from the smallest Ree group, a flag-transitive
automorphism group G of a 2-(k2, k, λ) design D, with λ | k, is either an affine
group or an almost simple classical group. Moreover, when G is the smallest Ree
group, D is isomorphic either to the 2-(62, 6, 2) design or to one of the three 2-
(62, 6, 6) designs constructed in this paper. All the four 2-designs have the 36
secants of a nondegenerate conic C of PG2(8) as a point set and 6-sets of secants
in a remarkable configuration as a block set.

1. Introduction and Main Result

A 2-(v, k, λ) design D is a pair (P,B) with a set P of v points and a set B of blocks
such that each block is a k-subset of P and each two distinct points are contained
in λ blocks. We say D is nontrivial if 2 < k < v. All 2-(v, k, λ) designs in this
paper are assumed to be nontrivial. An automorphism of D is a permutation of the
point set which preserves the block set. The set of all automorphisms of D with the
composition of permutations forms a group, denoted by Aut(D). For a subgroup G
of Aut(D), G is said to be point-primitive if G acts primitively on P, and said to
be point-imprimitive otherwise. A flag of D is a pair (x,B) where x is a point and
B is a block containing x. If G 6 Aut(D) acts transitively on the set of flags of D,
then we say that G is flag-transitive and that D is a flag-transitive design.
The 2-(v, k, λ) designs D admitting a flag-transitive automorphism group G have

been widely studied by several authors. In 1990, a classification of those with λ = 1
and G � AΓL1(q) was announced by Buekenhout, Delandtsheer, Doyen, Kleidman,
Liebeck and Saxl in [13] and proven in [12], [15], [16], [17], [24], [29] and [35].
Since then a special attention was given to the case λ > 1. A classification of the
flag-transitive 2-designs with gcd(r, λ) = 1, λ > 1 and G � AΓL1(q), where r is
the replication number of D, has been announced by Alavi, Biliotti, Daneshkakh,
Montinaro, Zhou and their collaborators in [2] and proven in [3], [4], [5], [8], [10], [11],
[30], [37], [39], [40], [41], [42], [44], [45] and [46]. Moreover, recently the flag-transitive
2-designs with λ = 2 have been investigated by Devillers, Liang, Praeger and Xia in
[19], where it is shown that apart from the two known symmetric 2-(16, 6, 2) designs,
G is primitive of affine or almost simple type. Moreover, a classification is provided
when the socle of G is isomorphic to PSLn(q) E G and n > 3.
The present paper represents a further contribution to the study of the flag-

transitive 2-designs. More precisely, the flag-transitive 2-(k2, k, λ) designs with λ | k
are investigated. The reason of studying such 2-designs is that they represent a
natural generalization of the affine planes in terms of parameters, and also because,
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2 ON FLAG-TRANSITIVE 2-DESIGNS

it is shown in [33] that, the blocks of imprimitivity of a family of flag-transitive,
point-imprimitive symmetric 2-designs investigated in [34] have the structure of the
2-designs analyzed here. The following result is obtained:

Theorem 1.1. Let D be a 2-(k2, k, λ), with λ | k, admitting a flag-transitive auto-
morphism group G. Then G is point primitive and one of the following holds:

(1) G is an affine group.
(2) G is an almost simple classical group.
(3) D is isomorphic to the 2-(36, 6, 2) design constructed in Example 3.9 and

2G2(3)
′ E G 6 2G2(3).

(4) D is isomorphic to one of the three 2-(36, 6, 6) designs constructed in Example
3.9 and G ∼= 2G3(3).

Actually, (3) and (4) are special cases of (2), since 2G3(3) ∼= PΓL2(8). It worth
noting that the example in (3) is not contained in [19] and hence it is presumably
new. A complete classification of (1) for G � AΓL1(q), and of (2) are contained in
[31] and [32] respectively.

2. Preliminary Reductions

We first collect some useful results on flag-transitive designs.

Lemma 2.1. Let D be a 2-(k2, k, λ) design and let b be the number of blocks of D.
Then the number of blocks containing each point of D is a constant r satisfying the
following:

(1) r = λ(k + 1);
(2) b = λk(k + 1);
(3) (r/λ)2 > k2.

Lemma 2.2. If D is a 2-(k2, k, λ) design, with λ | k, admitting a flag-transitive
automorphism group G, then the following hold:

(1) G acts point-primitively on D.
(2) If x is any point of D, then Gx is a large subgroup of G.
(3)

∣

∣yGx
∣

∣ = (k + 1)
∣

∣B ∩ yGx
∣

∣ for any point y of D, with y 6= x, and for any
block B of D incident with x. In particular, k + 1 divides the length of each
point-Gx-orbit on D distinct from {x}.

Proof. The assertion (1) follows from [18], 2.3.7.c, since r = (k + 1)λ > (k − 3)λ.
The flag-transitivity of G on D implies |G| = k2 |Gx|, |Gx| = λ (k + 1) |Gx,B| and

hence |G| < |Gx|3, which is the assertion (2).
Let y be any point of D, y 6= x, and B be any block of D incident with x.

Since (yGx, BGx) is a tactical configuration by [18], 1.2.6, it follows that
∣

∣yGx
∣

∣λ =

r
∣

∣B ∩ yGx
∣

∣. Hence
∣

∣yGx
∣

∣ = (k + 1)
∣

∣B ∩ yGx
∣

∣ as r = (k + 1)λ. This proves (3). �

The groupG is point-primitive onD by Lemma 2.2(1). The O’Nan-Scott Theorem
classifies primitive groups into five types: (i) Affine type; (ii) Almost simple type;
(iii) Simple diagonal type; (iv) Product type; (v) Twisted wreath product type
(see [27] for details). Hence, the first part of the paper is devoted to prove that
only families (i) and (ii) occur. The result is achieved by adapting the techniques
developed in [43] to the 2-designs investigated here.
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Lemma 2.3. G is not of simple diagonal type.

Proof. The proof is essentially that of [43], Propositions 3.1, but we use r = (k+1)λ
instead of λ > (r, λ)2.
Assume that G is of diagonal type. Then

G 6 W = {(a1, ..., am)π | ai ∈ Aut(T ), π ∈ Sm, ai ≡ aj mod Inn(T ) for all i, j}
and there is x ∈ P such that

Gx 6 {(a, ..., a)π | a ∈ Aut(T ), π ∈ Sm} ∼= Aut(T )× Sm

and Mx = D = {(a, ..., a) | a ∈ Inn(T )} is a diagonal subgroup of M ∼= Tm. Put
Σ = {T1, ..., Tm}, where Ti is identified with {(1, ..., t, ..., 1)π | t ∈ T} in the i-th
position. Then G acts on Σ by [27]. Moreover, the set P can be identified with the

set M/D of the cosets of D in M so that x = D(1, ..., 1), k2 = |T |m−1, since v = k2,
and for y = D(t1, ..., tm), ψ = (s1, ..., sm) ∈ M , σ ∈ Aut(T ), π ∈ Sm, we have the
actions

yψ = D(t1s1, ..., tmsm), y
σ = D(tσ1 , ..., t

σ
m) and y

π = D(t1π−1 , ..., tmπ−1).

Since M E G and G is primitive on P, M is transitive on P. Since T1 E M , all
T1-orbits on P have the same length c > 1. Let Γ1 be the T1-orbit containing x. For
any t1 = (t, 1..., 1) ∈ T1, we have xt1 = D(t, 1..., 1). So that

Γ1 = xT1 = {D(t, 1..., 1) : t ∈ T}
and |Γ1| =

∣

∣xT1
∣

∣ = c. Similarly, we define |Γi| =
∣

∣xTi
∣

∣ for 1 6 i 6 m. Clearly,
Γi ∩ Γj = {x} for i 6= j provided that m > 2.
Chose a point-Gx-orbit ∆ in P − {x} such that |∆ ∩ Γ1| = d 6= 0. Let m1 =

[Gx : NGx
(T1)]. Since Gx is isomorphic to a subgroup of Aut(T )× Sm, and G

Σ acts
transitively on Σ, it follows that m1 6 m and hence

|∆| 6 m1d 6 m |T | .
Then k + 1 6 |∆| 6 m |T | by Lemma 2.2(3). Since v = k2 = |T |m−1, we have

|T |(m−1)/2 < m |T | and hence 60m−3 6 |T |m−3 < m2. Therefore, m 6 3.
Since r | |Gx| and Gx is isomorphic to a subgroup of Aut(T )× Sm, it follows that

(k + 1)λ | |T | |Out(T )|m!. On the other hand, k + 1 | |T |m−1 − 1, as r/λ divides

k2 − 1. Thus k + 1 | |Out(T )|m! and hence |T |m−1 = k2 < |Out(T )|2 (m!)2 with
m 6 3. At this point the final part of the proof of [43], Propositions 3.1, can be
applied to show that no cases occur. �

Lemma 2.4. G is not of twisted wreath product type

Proof. We may apply the same argument of [43], Propositions 3.2, to show that there
is a point-Gx-orbit ∆ in P − {x} such |∆| 6 m1d 6 m |T | (this is shown in [43],
Propositions 3.2, without using the assumption λ > (r, λ)2). Then k + 1 6 m |T |
by Lemma 2.2(3). On the other hand, k + 1 > |T |m/2, since k2 = v = |T |m. Then

|T |m/2 < m |T | and hence 60m−2 6 m and m 6 2, whereas m > 6 by [27]. �

Theorem 2.5. G is either of affine type or of almost simple type.

Proof. The group G is neither of simple diagonal type nor of twisted wreath product
type by Lemmas 2.3 and 2.4 respectively. Thus, in order to complete the proof,
we need to rule out the case where G has a product action on P. Suppose the
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contrary. Then there is a group K with a primitive action (of almost simple or
diagonal type) on a set Γ of size v0 > 5, such that P = Γm and G 6 Km ⋊ Sm,
where m > 2. Let x = (γ, ..., γ) and y = (δ, ..., γ) with δ 6= γ and set W = Km

and H = W ⋊ Sm. Then Wx
∼= Km

γ , Wx,y
∼= Kγ,δ × Km−1

γ , Hx = Wx ⋊ Sm and

Kγ,δ ×
(

Km−1
γ ⋊ Sm−1

)

6 Hx,y. Suppose that K has rank s on Γ, s > 2. Then we

may choose δ such that [Kγ : Kγ,δ] 6
v0−1
s−1

. Hence,

∣

∣xH
∣

∣ =
|Kγ |m ·m!

|Kγ,δ| |Kγ |m−1 · (m− 1)!
= [Kγ : Kγ,δ]m 6

v0 − 1

s− 1
m.

and, as xG ⊆ xH , we get

v
m/2
0 = v1/2 < k + 1 6

∣

∣xG
∣

∣ 6
∣

∣xH
∣

∣ 6 m
v0 − 1

s− 1
< mv0.

Then m = 2, 3 and v0 < 9, as m > 2. If m = 3, then k2 = v30 and hence v0 = 4 and
s = 3, whereas v0 > 5. Thus m = s = 2. It follows that, K acts 2-transitively on Γ,
and H = K2 ⋊ S2 has rank 3 with Hx-orbits 1, 2(k − 1) and (k − 1)2. Since each
Hx-orbit is union Gx-orbit, and since each Gx-orbit on P − {x} has length divisible
by k+ 1 by Lemma 2.2(3), we obtain k + 1 | 2(k− 1) and hence k = v0 = 3. So, we
again reach a contradiction as v0 > 5. �

3. Proof of Theorem 1.1

In this section G is an almost simple group. Hence, X E G 6 Aut(X), where X
is a non abelian simple group. Moreover X , the socle of G, is either sporadic, or
alternating, or an exceptional group of Lie type, or classical. We analyze the first
three cases separately. The sporadic one is ruled out simply by filtering the groups
listed in [14] with respect to the constraints for X to have a transitive permutation
representation of degree k2, and when this occurs the corresponding stabilizer of
a point in X to have the order divisible by k+1

gcd(k+1,|Out(X)|)
(see Lemma 3.1). The

alternating case is settled as follows. We show that Xx, the stabilizer in X of a point
x of D, is a large maximal subgroup of X . Hence Xx is listed in Theorem 2 of [9].
Then we combine some group theoretical arguments, in particular those developed in
[17], together with some numerical properties of the binomial coefficients to exclude
the case. Finally, when G is an exceptional group of Lie type, the reduction to
2G2(3) in its permutation representation of degree 36 is settled by transferring the
arguments developed in [3] and in [8] to our context. The key point of the analysis
of the 2-designs admitting 2G2(3) as a flag transitive automorphism group is to see
that 2G2(3) acts on PG2(8) preserving a nondegenerate conic C, since 2G2(3) ∼=
PΓL2(8). Hence, its permutation representation of degree 36 is equivalent to that
on the set of secants to C. Some geometry of PG2(8) is then used to complete the
proof of the case.

Lemma 3.1. Let D be a 2-(k2, k, λ) design, with λ | k, admitting a flag-transitive
automorphism group G. If x is any point of D, then k+1

gcd(k+1,|Out(X)|)
divides |Xx|.

Proof. Let x be any point of D. If y is a point of D, with y 6= x, then
∣

∣yXx
∣

∣ =
|B∩yGx |(k+1)

µ
, where µ

∣

∣yXx
∣

∣ =
∣

∣yGx
∣

∣, by Lemma 2.2(3), as Xx E Gx. On the other
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hand, µ divides |Out(X)|, as µ = [Gx:Xx]
[Gx,y:Xx,y]

. Therefore k+1
gcd(k+1,|Out(X)|)

divides
∣

∣yXx
∣

∣

and hence |Xx|. �

Lemma 3.2. X is not sporadic.

Proof. Assume that X is sporadic. Then X is listed in [14].
Assume that X ∼= Mi, where i = 11, 12, 22, 23 or 24. Since [X : Xx] = k2, it

follows from [26], Table 5.1.C, that λ2 = 2a13a2 for some a1, a2 > 2. Then k = 12
and either X ∼= M11 and Xx

∼= F55, or X ∼= M12 and Xx
∼= PSL2(11) by [14].

However, these cases are ruled out by Lemma 3.1, since k+1
gcd(k+1,|Out(X)|)

= 13 does

not divide |Xx|.
Assume that X ∼= Ji, where i = 1, 2, 3 or 4. Then k2 divides 22, 263252, 2634,

or 22032112, respectively, by [26], Table 5.1.C. Then i = 2 and either k = 10 and
Xx

∼= PSU3(3), or k = 60 and Xx
∼= PSL2(7) by [14]. However, these cases are

ruled out as they contradict Lemma 3.1.
Assume that X is isomorphic to one of the groups HS or McL. By [26], Table

5.1.C, k2 divides 283252 or 263652 respectively. Then either X ∼= HS, Xx
∼= M22

and k = 10, or X ∼= McL, Xx
∼=M22 and k = 45. The latter is ruled out by Lemma

3.1, since k+1
gcd(k+1,|Out(X)|)

= 23 does not divide |Xx|. The former yields r = 11λ,

where λ = 1, 2, 5 or 10 as λ | k. If B is any block incident with x, then [Xx : Xx,B]
divides r. Then PSL3(4) E Gx,B 6 PΣL3(4), and hence λ = 2, by [14]. Thus,
|GB| = 10 |Gx,B|, since GB is transitive on B, and hence b = 44 or 88. However,
HS E G 6 HS.Z2 has no such transitive representation degrees by [14].
It is straightforward to check that the remaining cases are ruled out similarly, as

they do not have transitive permutation representations of degree k2 by [14] and
[36]. �

Lemma 3.3. If X ∼= An, then n 6= 6 and G = X. Moreover, one of the following
holds:

(1) Xx = (St × Sn−t) ∩ An where 1 6 t < n/2.
(2) Xx = (St ≀ Sh) ∩An where n = th and 2 6 t 6 n/2.

Proof. Assume that X ∼= An. If n = 6, then k2 = 32 or 62, and the former is ruled
out by [14], whereas the latter yields Xx

∼= D10. However this case cannot occur by
Lemma 3.1, since k+1

gcd(k+1,|Out(X)|)
= 7 does not divide |Xx|. Thus n 6= 6, and hence

|Out(X)| = 2 by [26], Theorem 5.1.3.
Let µ = [Gx : Xx]. Since G = GxX , it follows that Gx/Xx

∼= G/X 6 Out(X) and
hence µ 6 2. Assume that µ = 2. Let M be a maximal subgroup of X containing
Xx. Then x

M is a block of imprimitivity for X and hence
∣

∣xM
∣

∣ | k2. Since xM −{x}
is union of Xx-orbit, and each Xx-orbit distinct from {x} is of length divisible by

k+1
gcd(k+1,2)

Lemma 3.1, it follows that k+1
gcd(k+1,2)

|
∣

∣xM
∣

∣−1. Then
∣

∣xM
∣

∣ = c k+1
gcd(k+1,2)

+1,

for some c > 1, and hence k2 = d
(

c k+1
gcd(k+1,2)

+ 1
)

for some d > 1. Thus

dc
k + 1

gcd(k + 1, 2)
+ d− 1 = k2 − 1 (3.1)

and hence

d = θ
k + 1

gcd(k + 1, 2)
+ 1 (3.2)
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for some θ > 1. Now, substituting (3.2) in (3.1) we obtain

θc (k + 1) + θ gcd(k + 1, 2) < (k − 1) (gcd(k + 1, 2))2

and hence θc < (gcd(k + 1, 2))2. Therefore, k is odd and (θ, c) = (1, 1), (1, 2), (1, 3)
or (3, 1), which, substituted in (3.1) and (3.2), yield (k, d, c) = (15, 9, 3) or (3, 3, 1).
Then n 6 [An :M ] = 9, 3, respectively. Actually, n = 9 by [14], as n > 5 and
n 6= 6. However, A9 has no transitive permutation representations of degree 152.
Thus µ = 1, G = X , and hence Xx is a large, maximal subgroup of X by Lemma
2.2(2). The last part of Lemma’s statement follows from [9], Theorem 2, since
[X : Xx] = k2. �

Lemma 3.4. Case (2) of Lemma 3.3 cannot occur.

Proof. Assume that Xx = (St ≀ Sh) ∩ An, where n = th and 2 6 t 6 n/2. Then

k2 = [X : Xx] =
th!

(t!)h h!
. (3.3)

By [17], there is a Gx-orbit (namely a 2-cycle) of length either h(h− 1) or t2 h(h−1)
2

according to whether t = 2 or t > 2 respectively. Then k + 1 divides the length of
such a orbit by Lemma 2.2(3), as G = X by Lemma 3.3. Thus, in both cases we

have th!

(t!)hh!
< (th)2. The inequality

hht

(ht)h · h
=

e
(

th
e

)th

ehth
(

t
e

)th · eh
(

h
e

)h
6

th!

(t!)h h!
< (th)2 (3.4)

is determined by using the known bound e
(

f
e

)f
6 f ! 6 ef

(

f
e

)n
for f ∈ N, where e

is the Napier’s constant. Thus hht < (ht)h+2 · h < (ht)h+3.

Assume that ht > (ht)2, then (ht)2h 6 hht < (ht)h+3 and hence h = 2, as
2 6 t 6 n/2. Then (3.4) becomes 2t 6

(

2t
t

)

= 2t!
(t!)2

< 8t2 and so t 6 9. However,

(3.3) is not fulfilled for h = 2 and any of these values of t.
Assume that ht < (ht)2. Then 2t−2 6 ht−2 < t2 and hence either t = 2, or

3 6 t 6 8 and h 6 9. Actually, the pairs (h, t) in latter case do not fulfill (3.3).
Hence t = 2. Since h! > 2h, being h > 2, and (3.4) yields 2h 6

(

2h
h

)

6 2h!
2hh!

< (2h)2

and hence h 6 8. However, (3.3) is not fulfilled for t = 2 and any of these values of
h. �

Lemma 3.5. X is not isomorphic to An.

Proof. In order to prove the assertion we need to rule out case (1) of Lemma 3.3, since
case (2) has been ruled out in Lemma 3.4. Hence, assume thatXx = (St × Sn−t)∩An
where 1 6 t < n/2. Then the action on the point set of D and on the t-subsets of
{1, ..., n} are equivalent. Thus k2 =

(

n
t

)

. Then either t 6 2, or n = 50 and t = 3 by
[1], Chapter 3, since 1 6 t < n/2.
Assume that t = 1. Then k2 = n > 9, Xx

∼= An−1 and hence X acts point-2-
transitively on D. Then Xx,B is a subgroup of Xx of index r = λ(

√
n + 1), where

λ | √n. Since Xx has no subgroups of index less than n − 1, as n > 9, it follows
that λ =

√
n. Then r <

(

n−1
2

)

and hence Xx,B is one of the subgroups of An−1

listed in [20], Theorem 5.2.A, as n > 9. Assume that Xx,B preserves an s-subset of
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{1, ..., n− 1}, where s = 1, 2. Then
(

n−1
s

)

=
√
n(
√
n + 1), a contradiction. Then n

is odd and r = [Xx : Xx,B] =
1
2

(

n−1
n/2

)

, since G = X by Lemma 3.3. Therefore

2n/2−1 6
1

2

(

n− 1

n/2

)

=
√
n(
√
n+ 1) < 2n

and hence n = 9, Xx
∼= A8 and Xx,B

∼= AGL3(2), since n is a square and n is odd.
However, this case is ruled out since r 6= 15.
Assume that t = 2. Then G has rank 3 and, if x is any point of D, the Gx-orbits,

say Oi, i = 1, 2, 3, have length 1, 2n−4 and
(

n−2
2

)

, respectively (see [17]). Then k+1
divides the length of each of such orbits by Lemma 2.2(3), as G = X by Lemma 3.3.
Then 2 (n− 2) = c(k + 1) for some c > 1 and hence

(

2 (n− 2)

c
− 1

)2

=
n(n− 1)

2
. (3.5)

Then (3.5) yields c = 2, n = 9, k = 6 and Xx
∼= S7. Note that, λ > 1 since

there are no affine planes of order 6. Also λ 6= 6, since S7 has no transitive per-
mutation representations of degree 63 by [14]. Thus, either λ = 2, Xx,B

∼= A6 and
XB

∼= (A6 × Z3) : Z2, or λ = 3, Xx,B
∼= Z2 × S5 and XB

∼= S4 × S5 again by [14],
since λ | k. Then the actions on the point-set and on the block-set of D are equiv-
alent to the actions on the sets of 2-subsets and (λ + 1)-subsets of N9 = {1, ..., 9}
respectively. Then we may identify the point-set and the block-set of D with these
sets, respectively, in a way that the incidence relation is the set-theoretic inclusion,
as Xx,B is isomorphic either to A6 or to Z2 × S5 according to whether λ = 2 or 3
correspondingly. So, k 6 λ+ 1 6 4 and we reach a contradiction as k = 6.
Assume that t = 3 and n = 50. Then Xx

∼= (S3 × S47) ∩ A50, k = 140 and
r = 141λ, where λ | 140 and b = 141 · 140 · λ. Then b 6 141 · 1402 <

(

50
6

)

and

b 6= 1
2

(

50
25

)

and hence A50−ℓ 6 XB 6 (Sℓ × S50−ℓ) ∩ A50, where ℓ < 6, by [20],
Theorem 5.2.A. Moreover |XB| is coprime to 47, as b = 141 · 140 · λ, and hence
ℓ = 4, 5. Thus f

(

50
ℓ

)

= 141 ·140 ·λ, where f is the index of XB in (Sℓ × S50−ℓ)∩A50.

If ℓ = 5, then 23 divides
(

50
5

)

and hence λ, whereas λ | 140. Therefore, ℓ = 4,
A46 6 XB 6 (D8 × S46) ∩ A50 and hence f = 3µ and λ = 35µ with µ 6 4. Then
XB preserves a 4-set Y of N50 = {1, ..., 50}, whereas Xx preserves a 3-set Z of N50.
Then Xx,B preserves Z ∪Y . Set w = |Z ∪ Y |, then 4 6 w 6 7, and

(

50
w

)

must divide

[X : Xx,B], which is equal to
(

50
3

)

· 141 · 35 · µ. Thus w = 4 and hence Z ⊆ Y . Then
A46 6 Xx,B, and so k | 8, as A46 6 XB 6 (D8 × S46) ∩A50. This is a contradiction,
as k = 6. �

Lemma 3.6. If X is isomorphic to socle a finite exceptional group of Lie type, then
D is a 2-(36, 6, λ) design, where λ | 6 and λ > 1, and X is isomorphic either to
G2(2)

′ or to 2G2(3)
′.

Proof. Recall that an exceptional group of Lie type is simple apart from 2B2(2),
G2(2),

2G2(3), or
2F4(2) by [26], Theorem 5.1.1. Thus, either X is isomorphic to an

exceptional simple group of Lie type, or X is isomorphic to one of the groups 2B2(2),
G2(2),

2G2(3), or
2F4(2). If the latter occurs, since G has a primitive permutation

representation of degree k2, then the unique admissible cases to be analyzed are
either G2(2) and k = 6, or 2G2(3) and k = 3, 6 by [14]. Suppose that k = 3. Then
λ = 1, 3 as λ | k. If λ = 1, then D ∼= AG2(3) and hence G 6 AGL2(3), which is
impossible. Then λ = 3, r = 12 and hence G ∼= PΓL2(8) and Gx

∼= F56 : Z3. So
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|Gx,B| = 14 and Gx,B 6 F56, a contradiction. Thus k = 6 and hence λ = 1, 2, 3 or 6
as λ | k. Also, λ > 1 since there are no affine planes of order 6. Therefore, k = 6,
λ | 6 and λ > 1, and X is isomorphic either to G2(2)

′ or to 2G2(3)
′.

Assume that X is isomorphic to an exceptional simple group of Lie type. Suppose
that Gx is not parabolic. Then Gx is one of the groups listed in [8], Theorem 1.6,
or equivalently in Tables 2 and 3 of [3], since Gx is a large maximal subgroup of G
by Lemma 2.2(2). In [3], Alavi points out that the first and the second column of
Table 2 contains X and Xx, respectively, the third one contains a lower bound ℓv
for v = [X : Xx], and the fourth one contains an upper bound ur for r, determined
by using the fact that r is a common divisor of v − 1, of |Gx| and of the subdegrees
of Gx by his Lemma 4. Then, the author shows that u2r < ℓv for each case contained
in Table 2, hence r2 < v, and so all the cases in Table 2 are ruled out in his paper.
Our aim is to transfer Alavi’s argument in order to rule out the possibility for Gx

to not be a parabolic subgroup of G. Clearly, the first three columns of Table 2 have
the same meaning as in our paper, where v = k2 for us. The role of r and of Lemma
4 of [3] are played by r/λ = k + 1 and by our Lemma 2.2(3) respectively. Thus
the upper bound ur for r in [3] becomes an upper bound for r/λ in our context.

Therefore the inequality u2r < ℓv implies (r/λ)2 < k2 but this is impossible in our
context, since r/λ = k+1. Thus all the groups listed in Tables 2 of [3] cannot occur.
It is even easier to rule out the groups listed in Tables 3 of [3] as they are filtered

with respect to the property that v = k2. Indeed, we obtain the following admissible
cases:

(1) X ∼= G2(3), Xx
∼= 23 : PSL3(2) and k

2 = 3528 = 233272;
(2) X ∼= G2(4), Xx

∼= PSL2(13) and k
2 = 230400 = 2103252.

Then k + 1 is 43 or 481 respectively, but none of these divides the order of the
corresponding Gx. So, these cases violate Lemma 2.2(3) and hence they are ruled
out.
Assume that Gx is a maximal parabolic subgroup of G. Assume that E6(q) is

not contained in G. Then G has a subdegree of order pt (e.g. see [3], Lemma 3, or
[35], Lemma 2.6). Then r

λ
| pt and so k + 1 = ps for some s 6 t. Then k = ps − 1

and hence k2 = (ps − 1)2. Then s 6 ζp(G), where ζp(G) is defined in [26] (5.2.4),
and is determined in Proposition 5.2.17.(i) and Table 5.2.C. If s = ζp(G), then
(

pζp(G) − 1
)2 | |X|. On the other hand, |X| is listed in [26], Table 5.1.B, and hence

none of these groups admits
(

pζp(G) − 1
)2

as a divisor. Then s < ζp(G). Then Gx

contains a Sylow u-subgroup G, where u is a primitive prime divisor of pζp(G) − 1,
since (p, ζp(G)) 6= (2, 6) being X ≇ G2(2)

′. On the other hand, Gx can be obtained
by deleting the i-th node in the Dynkin diagram of X , and we see that none of
these groups is of order divisible by u. Indeed, for instance, if F4(q) E G, q = pf ,
then ζp(G) = 12f and hence Gx contains a Sylow u-subgroup of G, where u is a
primitive prime divisor of p12f − 1, whereas the maximal parabolic subgroups are
of type B3(p

f), C3(p
f) or A1(p

f ) × A2(p
f ) and none of these is divisible by u. As

stressed out in [3], Remark 1, even in the case E6(q), when G contains a graph
automorphism or Gx is parabolic of type 1, 2 or 4, then G has a subdegree of order
pt, and hence these cases are excluded by the above argument. For the remaining
maximal parabolic subgroups we may use the same argument as [3] at pp.1012–1013,
with r/λ and Lemma 2.2(3) in the role of r and Lemma 4 of [3], respectively, to see
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that (r/λ)2 > v = k2 is violated. Hence E6(q) E G cannot occur and the proof is
thus completed. �

Lemma 3.7. X is not isomorphic to G2(2)
′.

Proof. Suppose that D is a 2-(36, 6, λ) design, where λ | 6 and λ > 1, admitting a
flag-transitive automorphism group X E G 6 Aut(X), where X ∼= G2(2)

′. There-
fore PSL2(7) E Gx 6 PGL2(7) by [14], and λ = 2, 3 or 6.
Assume that λ = 2. Then |Gx,B| = 12 and hence either G = X and Gx,B

∼= A4,
or G 6= X and Gx,B

∼= A4, D12 by [14]. Then 72 divides |GB| and hence GB 6

(U : Z8) .Z2, where U is a Sylow 3-subgroup of G. Then U : Z8 6 GB since 36
divides |GB ∩ (U : Z8)| and since U/Z(U) : Z8 is a Frobenius group (for instance,
see [23], Satz II.10.12, since G2(2)

′ ∼= PSU3(3)). So 9 divides |Gx,B|, a contradiction.
Assume that λ = 3 or 6. Then 4 | |Xx,B| as r = 21 or 63. If G 6= X , then the

set of points of D distinct from x is partitioned into two Gx-orbits, say O1, O2, of
length 14 and 21 respectively by [38]. If G = X , then O1 is split into two Xx-orbits
O1j , j = 1, 2, each of length 7, whereas O2 is also a Xx-orbit. Hence, Xx,y

∼= D8 for
y ∈ O2.
Let B be any block incident with x. Then |Oi| = 7 |Oi ∩B|, where i = 1, 2, by

Lemma 2.2(3) and hence |O1 ∩B| = 2 and |O2 ∩B| = 3. Then Xx,B fixes O1 ∩ B
pointwise, since |O1j ∩ B| = 1 for each j = 1, 2. Then there is a non trivial subgroup
W of Xx,B of index at most 2, such that B ⊆ Fix(W ), since 4 | |Xx,B|.
If λ = 3, then r = 21, b = 126 and Xx,B

∼= D8. Hence, W is isomorphic to Z4, E4

or to D8, and NXx
(W ) is isomorphic to D8, S4 or to D8 respectively. The number of

points inO2 fixed byW is given by the well known formula |NXx
(W )|

∣

∣Xx,y ∩WX
∣

∣ / |Xx,y|.
Thus, it is easy to see that, W fixes 6 or 1 points in O2 according to whether W
is or is not isomorphic to E4 respectively, since Xx,y

∼= D8. Therefore, W ∼= E4,
since B ⊆ Fix(W ) and |O2 ∩B| = 3. Then W lies in the kernel N of the action
of GB on B. Also Fix(W ) 6= Fix(Xx,B) as Xx,B

∼= D8 fixes exactly one point on
O2, and hence N ∩XB = W . Therefore W E GB and hence GB 6 NG(W ), where

NG(W ) is isomorphic either to (Z4)
2 .S3 or to (Z4)

2 .D12 according as G = X or
G 6= X , respectively, by [14]. Note that, [NG(W ) : GB] = 2, since [G : NG(W )] = 63
and b = 126. Thus, GB ⊳ NG(W ) and 3 divides |NXx

(W ) ∩GB| as NXx
(W ) ∼= S4.

Hence, Gx,B contains a Sylow 3-subgroup of NG(W ), since these are cyclic of order
3, but this contradicts [GB : Gx,B] = 6.
If λ = 6, then r = 42, b = 252 and hence either Xx,B

∼= Z4 or Xx,B
∼= E4.

Therefore, W is isomorphic to Z2, E4 or to Z4. Actually, W ≇ Z4 since Z4 fixes one
point on O2 ∩B, whereas B ⊆ Fix(W ) and |O2 ∩B| = 3.
Assume that W ∼= E4. Then W = Xx,B and hence W = XB ∩ N , where

N is defined above. Therefore W E GB and hence GB 6 NG(W ). Moreover,
[NG(W ) : GB] = 4, since [G : NG(W )] = 63 and b = 252. So, G ∼= G2(2), NG(W ) ∼=
(Z4)

2 .D12 andGB
∼= (Z4)

2 .Z3 by [14]. ThenGB ⊳ NG(W ), 3 divides |NXx
(W ) ∩GB|

and we reach a contradiction as above.
Assume W ∼= Z2, |Fix(W ) ∩ O2| = 5 and B ⊂ Fix(W ). As above, W lies in

the kernel N of the action of GB on B. Then Fix(W ) 6= Fix(Xx,B). Indeed, it is
true for Xx,B

∼= Z4, as any Z4 fixes exactly one point on O2, and it is still true
for Xx,B

∼= E4 as it follows from the above arguments where it is shown that a
subgroup isomorphic to E4 cannot fix B pointwise. Consequently, we have that
N ∩ XB = W . Thus GB 6 CG(W ), where CG(W ) is isomorphic either to GU2(3)
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or to ΓU2(3) according as G = X or G 6= X , respectively, by [14]. Moreover,
[CG(W ) : GB] = 4, as b = 252, and hence |XB| = 24. Therefore, XB

∼= Z.S3 or
XB

∼= SL2(3) since CX(W ) ∼= (Z ◦ SL2(3)) .Z2, where Z is the center of GU2(3).
Assume the former occurs. Since [XB : Xx,B] divides 6, it follows that Z 6 Xx,B.
Then Z fixes B pointwise, as Z is normal in GB, and hence Z 6 N ∩ XB = W .
This is impossible, since W ∼= Z2 whereas Z ∼= Z4. Thus XB

∼= SL2(3). Therefore,
either G ∼= G2(2)

′ and hence GB
∼= SL2(3), or G ∼= G2(2) and GB

∼= GL2(3),
Z4 ◦ SL2(3), as [CG(W ) : GB] = 4. However, it is easily seen with the aid of [47]
that, no 2-designs occur. �

Before analyzing the remaining case involving G3(3). Recall some useful facts
about the action of this group in the desarguesian plane of order 8.

Let G ∼= G3(3). It is well known that G ∼= PΓL2(8) acts on PG2(8) preserving
a regular hyperoval, namely a 10-arc, consisting of a nondegenerate conic C and it
nucleus N (see [21], Section 8). Moreover, G acts primitively on the set S of the 36
secants to C by [14]. If ℓ is any secant to C and {P1, P2} = ℓ ∩ C, then Gℓ

∼= F42

and the set S(ℓ) consisting of the 14 secant lines to C incident with P1 or P2 is a
Gℓ-orbit, as G acts 3-transitively on C. The complementary set S − S(ℓ) consisting
of 21 secants intersecting ℓ in a point different from P1, P2 is also a Gℓ-orbit.
By [14], G contains two conjugacy classes of subgroups of order 3, one contained

in G′ the other in G−G′. If 〈η〉 and 〈γ〉 are the representatives of such classes, then
CG(η) ∼= S3 and CG(γ) ∼= Z3 × S3. Moreover, CG(η) = CG′(η) and CG′(γ) ∼= S3.
We may choose η and γ to belong to the same Sylow 3-subgroup of G in a way that
CG(γ) = 〈γ〉 × CG(η). Note that, CG(η) = 〈η, σ〉, where σ is an involutory elation
of PG2(8) with center C not in C and axis a tangent to C (a detailed description of
the collineations of the desarguesian plane can be found in [21] and in [22]).
Set K = 〈γ, σ〉. Then K ∼= Z6 is a self-normalizing subgroup of G by [14].

Moreover, K fixes exactly one point F on C, and 〈γ〉 fixes two further points
switched by σ, say W and W σ. Then C = W σW ∩ F0N , a = F0N . The set
{F,W,W σ} is a CG(γ)-orbit on C. The set C−{F,W,W σ} is split into two 〈γ〉-
orbits,

{

P, P γ, P γ2
}

and
{

P σ, P σγ, P σγ2
}

, and these are also 〈γ, η〉-orbits. More-

over,
{

P, P γ, P γ2, P σ, P σγ, P σγ2
}

is both a K-orbit and a CG(γ)-orbit on C.

Lemma 3.8. The following hold:

(1) (PP γ)CG(γ) is the unique CG(γ)-orbit on S of length 6.

(2) (PP γ)CG(η) and
(

FP γi
)CG(η)

, where i = 0, 1, 2, are the unique CG(η)-orbits

on S of length 6.
(3) (P γP )K , (P γP σ)K , (PW )K , (P σW )K, and (PF )K are the unique K-orbits

on S of length 6.

In particular, (PP γ)CG(γ) = (PP γ)CG(η) = (P γP )K.

Proof. Since
{

P, P γ, P γ2
}

and
{

P σ, P σγ, P σγ2
}

are 〈γ, η〉-orbits, it follows that
∣

∣

∣
(PP γ)CG(γ)

∣

∣

∣
| 6. On the other hand

∣

∣

∣
(PP γ)K

∣

∣

∣
= 6 and (PP γ)K ⊆ (PP γ)CG(γ).

Thus (PP γ)CG(γ) is a CG(γ)-orbit on S of length 6.
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Since {F,W,W σ} is a CG(γ)-orbit on C. It follows that
∣

∣

∣
(FW )CG(γ)

∣

∣

∣
= 3. More-

over,
∣

∣

∣
(FP )K

∣

∣

∣
= 6 and hence

∣

∣

∣
(FP )CG(γ)

∣

∣

∣
= 18, as

{

P, P γ, P γ2, P σ, P σγ, P σγ2
}

is

both a K-orbit and a CG(γ)-orbit on C.
Since σ fixes PP σ, it follows that (PP σ)CG(γ) is of odd length. Assume that

∣

∣

∣
(PP σ)CG(γ)

∣

∣

∣
= 3. Then there is an element ϑ in 〈γ, η〉 preserving PP σ and hence

fixing both P and P σ. Then ϑ fixes C− {F,W,W σ} pointwise, since 〈γ, η〉 is an

elementary abelian group of order 9 acting transitively both on
{

P, P γ, P γ2
}

and

on
{

P σ, P σγ, P σγ2
}

. However, this is impossible. Hence
∣

∣

∣
(PP σ)CG(γ)

∣

∣

∣
= 9. As

(FW )CG(γ)∪(FP )CG(γ)∪(PP σ)CG(γ) covers C−(PP γ)CG(γ), the assertion (1) follows.

Since CG(η) E CG(γ), each CG(η)-orbit on S of length 6 lies either in (PP γ)CG(γ)

or in (FP )CG(γ). Since CG(η) = CG′(η), and 〈η〉 acts semiregularly on C, it results
that 〈η〉 does not fix secants to C. On the other hand, since CG(γ)PP γ

∼= Z3,

CG(γ)PP γ ∩G′ = 1 and CG(γ)FP = 1, it follows that (PP γ)CG(η) = (PP γ)CG(γ) and

that (FP )CG(γ) is split into three CG(η)-orbits each of length 6, namely,
(

FP γi
)CG(η)

where i = 0, 1, 2.
Finally, it is easy to check that W σW , WF , P σP , PF , PW , P σW , P γP and

P γP σ are representatives of all K-orbits on S and these have lengths 1, 2, 3, 6, 6,
6, 6, 6 respectively. Thus (3) holds. �

Example 3.9. Let ℓ1 = PP γ, ℓ2 = P γP σ, ℓ3 = PW and ℓ4 = P σW , and let

B1 = ℓ
CG(γ)
1 and Bi = ℓKi for i = 2, 3, 4. Then the following hold:

(1) D1 = (S, BG
1 ) is a 2-(36, 6, 2) design admitting G as the full flag-transitive

automorphism group. Moreover, G′ acts flag-transitively on D1.
(2) Di = (S, GG

i ), where i = 2, 3, 4, is a 2-(36, 6, 6) design admitting G as the
unique flag-transitive automorphism group.

(3) D2, D3 and D4, are pairwise non isomorphic.

Proof. Let Z denote CG(γ) for i = 1 and K for i > 1. Clearly, Z 6 GBi
. Assume

that Z 6= GBi
. Then 1 6= Gℓi,Bi

6 F42 and GBi
does not contain elements of order

7, as |Bi| = 6 and as the unique element of G fixing more than three points on
C is the identity. Thus Gℓi,Bi

6 Z6. Suppose that |Gℓi,Bi
| is even. Then either

36 | |GB1
|, or 12 | |GBi

| for i > 1. In the former case we obtain G = GB1
by

[14], but this is impossible. Hence i > 1 and either GBi
∼= A4 or GBi

contains
a Sylow 2-subgroup of G. Both are ruled out. Indeed, the former cannot occur
since Z6

∼= K 6 GBi
but A4 does not contain such groups. In the latter case GBi

contains an involution α fixing ℓi∩Bi pointwise. However, this is impossible since the
involutions are elations of PG2(8) and their unique fixed point is the tangency point
of their axis, whereas ℓi is a secant to C. Thus Gℓi,Bi

∼= Z3 and hence |GBi
| = 18.

Therefore, GBi
= CG(γ). This is clear for i = 1, whereas, for i > 1 it follows

from Z6
∼= K 6 GBi

and K ∩ Gℓi,Bi
= 1. However, GB1

= CG(γ) contradicts the
assumption. Thus i > 1 and hence Bi = B1 by Lemma 3.8(1), but we still obtain
a contradiction since B1 is also a K-orbit by Lemma 3.8(3). Thus GBi

= Z for
each i = 1, 2, 3, 4. Therefore, by [18], 1.2.6, Di = (S, BG

i ) is a flag-transitive tactical
configuration with parameters (v, b, k, r) = (36, 84, 6, 14) or (36, 252, 6, 42) according
as i = 1 or i = 2, 3, 4 respectively.
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In order to prove that Di is a 2-design with λ = 2 for i = 1 and λ = 6 for i > 1,
bearing in mind that G acts transitively on S, and for any ℓ ∈ S the group Gℓ

acts transitively both on S(ℓ) and on S − S(ℓ), it is enough to prove that there are
precisely λ elements of BG containing ℓi and any mi ∈ Bi − {ℓi}, i fixed.

(i). D1 = (S, BG
1 ) is a 2-(36, 6, 2) design admitting G as the full flag-

transitive automorphism group of D1. Moreover, G′ acts flag-

transitively on D1.

Let m1 ∈ B1. Assume that ℓ1∩m1 ∈ C. Then m1 ∈ S(ℓ1) and hence
∣

∣

∣
m
Gℓ1

1

∣

∣

∣
= 14.

Clearly
∣

∣

∣
B
Gℓ1

1

∣

∣

∣
= 14 as Gℓ1,B1

∼= Z3. Moreover,
∣

∣

∣
B1 ∩m

Gℓ1

1

∣

∣

∣
= 2 and hence

(

m
Gℓ1

1 , B
Gℓ1

1

)

is a tactical configuration with parameters (v1, b1, k1, r1) = (14, 14, 2, 2)

by [18], 1.2.6. Hence, the number of secants in B
Gℓ1

1 containing both ℓ1 and m1 is
2. Then the number of secants in BG

1 containing both ℓ1 and m1 is 2, as D1 is a
flag-transitive tactical configuration.

If ℓ1∩m1 /∈ C. Thenm1 ∈ S−S(ℓ1) and hence
∣

∣

∣
m
Gℓ1

1

∣

∣

∣
= 21. Moreover,

∣

∣

∣
B
Gℓ1

1

∣

∣

∣
= 14

and
∣

∣

∣
B1 ∩m

Gℓ1

1

∣

∣

∣
= 3. Indeed, B1∩m

Gℓ1

1 = m
〈γ〉
1 and hence

(

m
Gℓ1

1 , B
Gℓ1

1

)

is a tactical

configuration with parameters (v1, b1, k1, r1) = (21, 14, 3, 2). Hence, the number of
elements in BG containing both ℓ1 and m1 is 2, as D1 is a flag-transitive tactical
configuration. Thus, there are precisely 2 elements of BG containing both ℓ1 and m1

regardless ℓ1 ∩m1 lies or does not lie in C. Therefore, D1 = (S, BG
1 ) is a 2-(36, 6, 2)

design admitting G as a flag-transitive automorphism group.
Note that, Aut(D1) = G as a consequence of the O’Nan-Scott Theorem (e.g. see

[20], Theorem 4.1A), since v = 22 · 32, G = Aut(G) and G 6 Aut(D1). Thus G is
the full flag-transitive automorphism group of D1.
Since r = 14, (G′)ℓ

∼= D14, and (G′)ℓ,B1
6 Gℓ,B1

∼= Z3, it follows that (G
′)ℓ,B1

= 1.

Therefore,
[

(G′)ℓ : (G
′)ℓ,B1

]

= 14 and hence G′ ∼= PSL2(8) acts flag-transitively on

D1.

(ii). D2 = (S, BG
2 ) is a 2-(36, 6, 6) design admitting G as the unique flag-

transitive automorphism group.

Let m2 ∈ B2. Then
(

m
Gℓ2

2 , B
Gℓ2

2

)

is a tactical configuration with parameters

(v2, b2, k2, r2) equal either to (14, 42, 2, 6) or to (21, 42, 3, 6) according as ℓ2 ∩m2 lies
or does not lie in C respectively. Therefore, D2 is a 2-(36, 6, 6) design admitting G
as a flag-transitive automorphism group.
Arguing as in (i), we see that G is the full flag-transitive automorphism group of

D2. Let H be the minimal flag-transitive automorphism group of D2. Then H 6 G
and hence H = G by [14], since 23 · 33 · 7 | [G : Gℓ2,B2

]. Thus G is the unique
flag-transitive automorphism group of D2.

(iii). Di = (S, BG
i ), i = 3, 4, is a 2-(36, 6, 6) design admitting G as the unique

flag-transitive automorphism group.

Let m3 ∈ B3 and suppose that ℓ3 ∩ m3 ∈ C. Since G is 3-transitive on C, we
may assume that ℓ3 ∩ m3 = {P}. Then Gℓ3,m3

fixes the vertices of the triangle
inscribed in C having ℓ3, m3 as two of its three sides. Hence Gℓ3,m3

∼= Z3 since

G is 3-transitive on C. Thus,
∣

∣

∣
m
Gℓ3

3

∣

∣

∣
= 14. Since GB1

acts regularly on B1 it
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follows that
∣

∣BGℓ3

∣

∣ = 42. Finally, B contains exactly 3 lines of m
Gℓ3

3 including ℓ3.
Indeed, Gℓ3 contains a cyclic group of order 7 acting regularly on C − ℓ3. Thus
∣

∣

∣
B ∩mGℓ3

3

∣

∣

∣
= 2 and hence

(

m
Gℓ3

3 , BGℓ3

)

is a tactical configuration with parameters

(v3, b3, k3, r3) = (14, 42, 2, 6). Thus the number of blocks containing both ℓ3 and m3

is 6 as D3 is a flag-transitive tactical configuration.
Suppose that ℓ3 ∩ m3 /∈ C. We may assume that W ∈ ℓ3 and W σ ∈ m3. Then

Gℓ3,m3
is generated by the unique elation of PG2(8) lying inG and with center ℓ3∩m3.

Thus Gℓ3,m3

∼= Z2 and hence
∣

∣

∣
m
Gℓ3

3

∣

∣

∣
= 21. As above

∣

∣BGℓ3

∣

∣ = 42. Also
∣

∣

∣
B ∩mGℓ3

3

∣

∣

∣
=

3. Indeed Gℓ3,Wσ
∼= Z6 acts regularly on C − (ℓ3 ∪ {W σ}). Therefore

(

m
Gℓ3

3 , BGℓ3

)

is a tactical configuration with parameters (v′3, b
′
3, k

′
3, r

′
3) = (21, 42, 3, 6). Thus the

number of blocks containing both ℓ3 and m3 is 6 as D3 is a flag-transitive tactical
configuration. Therefore, D3 = (S, BG

2 ) is a 2-(36, 6, 6) design admitting G as a
flag-transitive automorphism group. Arguing as in (i) and (ii), we see that G is
the unique flag-transitive automorphism group of D3. The statement (iii) for D4 is
proven similarly.

(iv). D2, D3 and D4, are pairwise non isomorphic.

Since GBi
= K is self-normalizing in G, where i = 1, 2, 3, it follows that Bi is the

unique block of Di preserved by GBi
. Clearly, D2 ≇ D3 and D2 ≇ D4, since none of

the 6 secants lying in B2 contains a point fixed by 〈γ〉, whereas B3 and B4 do.
Suppose that Φ is an isomorphism fromD3 ontoD4. SinceG acts point-transitively

on Di, i = 3, 4, we may assume that Φ fixes F . Also GΦ = G, since G is the full
flag-transitive automorphism group of Di. Then [Φ, G] = 1, since Aut(G) = G, and
hence Φ = 1 as Φ fixes F . Then D3 = D4. Then there is δ ∈ G such that Bδ

1 = B2.
Hence δ ∈ NG(GB3

), as GB3
= GB4

= K. Then δ ∈ GB3
, since K is self-normalizing

in G, and hence B3 = B4, a contradiction. Thus D2 ≇ D3. �

Theorem 3.10. The following hold:

(1) If D is a 2-(362, 6, λ) design, with λ | 6, admitting G as a flag-transitive
automorphism group, then either λ = 2 and D is isomorphic to D1, or λ = 6
and D is isomorphic to one of the Di, where i = 2, 3 or 4.

(2) If D is a 2-(362, 6, 2) design admitting G′ as a flag-transitive automorphism
group, then D is isomorphic to D1.

Proof. Let D = (P,B) be a 2-(362, 6, λ), with λ | 6, admitting G a flag-transitive
automorphism group. Then G acts point-primitively on D by Lemma 2.2(1). On
the other hand, G has a unique permutation representation of degree 36 by [14] and
this one is equivalent to that on S, the set of secants to the nondegenerate conic C
of PG2(8) preserved by G. Hence, we may identify the point set of D with S. Thus,
any block B of D consists of 6 secants to C.
Assume that λ = 2 and that G′ acts flag-transitively on D. Set J = G′. Then

|JB| = 6 and hence JB is a J-conjugate of CG(η) (recall that CG(η) = CJ(η)).
Without loss, we may assume that JB = CG(η). Then B is one of the following

CG(η)-orbits (PP
γ)CG(η) and

(

FP γi
)CG(η)

, where i = 0, 1, 2, by Lemma 3.8(3).
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Assume that B = (FP )CG(η). Set ℓ = FP . Since CG(η) acts transitively on

{F,W,W σ}, it follows that B =
{

ℓ, ℓσ, ℓη, ℓση, ℓη
2

, ℓση
2

}

, where ℓ ∩ ℓσ = {F}, ℓη ∩
ℓση = {W} and ℓη

2 ∩ ℓση
2

= {W σ}. Moreover, as CG(η) acts regularly on C −
{F,W,W σ}, any two secants lying in B do not intersect in C − {F,W,W σ}. Thus,
through any point of C −{F,W,W σ} there is exactly one secant to C lying in B and
incident with the point.
Let m ∈ B, m 6= ℓ. Assume that ℓ ∩ m ∈ C. Then m = ℓσ ∈ S(ℓ) and hence

∣

∣mJℓ
∣

∣ = 12 as S(ℓ) is also a Jℓ-orbit, being Jℓ ∼= D14. Clearly
∣

∣BJℓ
∣

∣ = 14 as Jℓ,B = 1.

If there is e ∈ B ∩ mJℓ , with e 6= m, then e ∈ S(ℓ) and hence e ∩ ℓ ∈ C. Then
e∩ℓ ∈ C−{F,W,W σ}, as e 6= m = ℓσ, and we obtain a contradiction, since through
any point of C −{F,W,W σ} there is exactly one secant to C lying in B and incident
with the point. Thus

∣

∣B ∩mJℓ
∣

∣ = 1 and hence
(

mJℓ , BJℓ
)

is a tactical configuration
with parameters (v′, b′, k′, r′) = (14, 14, 1, 1) by [18], 1.2.6. Hence the number of
elements in BJℓ containing both ℓ1 and m1 is 1. Then the number of BJ containing
both ℓ1 and m1 is 1, as D is flag-transitive by our assumption. However, that is

impossible as it contradicts the assumption λ = 2. The cases B =
(

FP γi
)CG(η)

, with

i = 1, 2, are similarly ruled out. Then B = (PP γ)CG(η) and hence B = (P γP )CG(γ)

by Lemma 3.8. Thus, D ∼= D1 by Example 3.9(1).
Assume that λ = 2 and that G acts flag-transitively on D. Let ℓ ∈ B, then

Gℓ,B
∼= Z3 and hence |GB| = 18. Moreover, Gℓ,B ∩G′ = 1 and GB ∩G′ ∼= S3, since

G′ ∼= PSL2(8), and hence GB
∼= Z3×S3. Since the centralizer in G of any subgroup

of order 3 of G′ is of order 27 by [14], it follows that GB = CG(ρ) for some element
ρ of order 3 lying in G−G′. We may assume that GB = CG(γ), since the subgroups
of order 3 of G intersecting G′ in 1 lies in one conjugacy class under G again by [14].
Thus, B = B1 by Lemma 3.8(1) and so D ∼= D1 by Example 3.9(1).
Assume that λ = 3. Then Gℓ,B

∼= Z2 and |GB| = 12, as k = 6, and hence GB
∼= A4

by [14]. Let α, β, δ ∈ GB such that 〈α, β〉 ∼= E4 and o(δ) = 3. Since GB preserves
C, the group 〈α, β〉 consists of elations of PG2(8) having the same axis a tangent
to C and distinct centers Cα, Cβ and Cαβ. Furthermore, 〈δ〉 fixes a and permutes
transitively {Cα, Cβ, Cαβ}. Then the block B consists of two secants incident with
Cα, two ones incident with Cβ and two ones incident with Cαβ. We may assume
that Cα ∈ ℓ. Let m ∈ B − {ℓ} such that Cα ∈ m. Then

(

mGℓ , BGℓ
)

is a tactical
configuration with parameters (v′′, b′′, k′′, r′′) = (21, 21, 1, 1) by [18], 1.2.6. Hence
the number of elements in BGℓ containing both ℓ and m is 1. Then the number of
BG containing both ℓ and m is 1, as D is flag-transitive. However, that is impossible
as it contradicts the assumption λ = 3.
Assume that λ = 6. Then |GB| = 6. If GB 6 G′, then GB

∼= S3 and hence is
a G-conjugate of CG(η) by [14]. Without loss, we may assume that GB = CG(η).

Then B is one of the CG(η)-orbits (PP γ)CG(η) and
(

FP γt
)CG(η)

, where t = 0, 1, 2,

by Lemma 3.8(2). If B = (PP γ)CG(η), then B = (P γP )CG(γ) again by Lemma 3.8,

and hence D ∼= D1 by Example 3.9(1), whereas λ = 6. So, B 6= (PP γ)CG(η) and

hence Bt =
(

FP γt
)CG(η)

for some t = 0, 1, 2.
Let t = 0 and let m = ℓσ. Then m ∩ ℓ ∈ C. A similar argument to that

used for the case λ = 2 shows that
(

mGℓ , BGℓ
)

is a tactical configuration with
parameters (v′′′, b′′′, k′′′, r′′′) = (14, 14, 1, 1) by [18], 1.2.6, since through any point of
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C − {F,W,W σ} there is exactly one secant to C lying in B and incident with the
point. Hence the number of elements in BGℓ containing both ℓ and m is 1. Then
the number of BG containing both ℓ and m is 1, as D is flag-transitive. So λ = 1,
but this contradicts our assumption. The cases t = 1, 2 are excluded similarly.
Assume that GB � G′. Then GB

∼= Z6 and hence is a G-conjugate of K. Thus,
without loss, we may assume that GB = K. Then B is one of the following K-orbits
on S: (P γP )K , (P γP σ)K , (PW )K , (P σW )K , and (PF )K by Lemma 3.8(3). Then

B = (P γP )K = (P γP )CG(γ) implies D ∼= D1 by Example 3.9(1), and we again reach

a contradiction as λ = 6. Thus, B 6= (P γP )K . Also B 6= (PF )K , otherwise all the
secants lying in any block of D intersects in a point, whereas for any two secants s
and s′ to C such that s ∩ s′ /∈ C, then there are no blocks of D incident with them.
Thus, B is either (P γP σ)K or (PW )K , or (P σW )K , and we obtain D ∼= Di, where
i = 2, 3 or 4, respectively, by Example 3.9(2). �

Proof of Theorem 1.1. By Theorem 2.5, Soc(G), the socle of G, is either an elemen-
tary abelian p-group for some prime p or a non abelian simple group.
Assume that the latter occurs. Then X is neither sporadic nor an alternating

group by Lemmas 3.2 and 3.5 respectively. If X is classical, then assertion (1) is
immediate, but also (2b)–(2c) follow by Theorem 3.10, since PSL2(8) ∼= 2G2(3)

′.
Finally, if X is isomorphic to the socle a finite exceptional group of Lie type, then
2-(36, 6, λ) design, where λ = 2, 3 or 6, and X ∼= 2G2(3)

′ by Lemmas 3.6 and 3.7.
Then the assertions (2b)–(2c) follow again from Theorem 3.10. This completes the
proof. �
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