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A B S T R A C T   

The primary aim of this study is to develop and validate a novel multi-gene genetic programming approach for 
accurately predicting Laminar Flame Speed (LFS) in ammonia (NH3)/hydrogen (H2)/air mixtures, a key aspect in 
the advancement of carbon-free fuel technologies. Ammonia, particularly when blended with hydrogen, presents 
significant potential as a carbon-free fuel due to its enhanced reactivity. This research not only investigates the 
effects of hydrogen concentration, initial temperature, and pressure on LFS and Ignition Delay Time (IDT) but 
also explores the impact of oxidizing agents like ozone (O3) in augmenting NH3 combustion. A modified reaction 
mechanism was implemented and validated through parametric analysis. 

Main findings demonstrate that IDT decreases with higher hydrogen concentrations, increased initial tem
perature, and initial pressure, although the influence of pressure decreases above 10 atm. Conversely, at lower 
temperatures (below 1200 K) and higher hydrogen concentrations (30 % and 50 %), the dominance of H2 
chemistry can negatively impact initial pressure. LFS increases with higher temperature and hydrogen concen
tration, but decreases under elevated pressure, with its effect becoming negligible above 5 atm. An optimized 
equivalence ratio (Φ) range of 1.10 – 1.15 is identified for efficient combustion. Introducing ozone into the 
oxidizer notably improves LFS in NH3/H2/air mixtures, with the addition of 0.01 ozone mirroring the effect of a 
10 % hydrogen addition under normal conditions. 

The study’s fundamental contribution is the development of a multi-gene genetic algorithm, showcasing the 
correlation between predicted LFS values and actual values derived from chemkin simulations. The successful 
validation of this methodology across various case studies underscores its potential as a robust tool in zero- 
carbon combustion applications, marking a significant stride in the field.   

1. Introduction 

The ecological consequences of human actions on the heightened 
levels of greenhouse gases (GHGs) and the growing concern on the 
climate change issue have recently prompted research into low or zero- 
emission alternative solutions as systems employing biofuels or alter
native fuels [1–5]. In the current worldwide scenario, the optimization 
of performance and the reduction of pollutants emissions from aviation 
transportation are important priorities, a consequence of the spreading 
concern about the availability of fossil fuel reserves and the focus on 
finding alternative fuels with high thermal efficiency and clean emission 
characteristics, as H2 or NH3 [6–9]. 

H2 is considered a highly promising clean fuel due to its exceptional 
energy density per unit of mass and absence of carbon-relative pollutant 
emissions [10]. Currently, most of the hydrogen production process 

relies on fossil fuels, which can release carbon dioxide (CO2) as a 
byproduct, and the overall environmental impact may not be as ’clean’ 
as one might expect. However, there is a growing effort to produce green 
hydrogen through methods like electrolysis powered by renewable en
ergy sources (i.e. solar, wind, etc.) which has the potential to be a clean 
and sustainable fuel. Airbus has introduced the “ZEROe” project, with 
the objective to create in 2035 the first commercial aircraft with zero 
emissions [11]. For this kind of aircraft, powered by modified gas tur
bine engines, the purpose is to use liquid H2-like fuel [12]. Despite its 
growing recognition as a fuel, molecular H2 still faces significant limi
tations due to its high volatility and flammability. These drawbacks 
include the requirement for specialized infrastructure, as well as the 
associated costs and safety concerns related to storage and trans
portation. Nevertheless, the production capacity of H2 still requires 
further development in order to entirely replace conventional fossil fuels 
[13]. In this context, a practical approach to gradually enhance the 
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combustion performance and minimize pollutant production in aircraft 
engines is to blend H2 with other alternative fuels, for example, methane 
(CH4), and NH3 [6,14]. Recently, many researchers and companies have 
moved their interest surrounding NH3 as a carbon-free alternative 
fuel⋅NH3 presents a relatively high energy density of 13 MJ/l. It can be 
conveniently stored in a liquid state under a pressure of 1.1 MPa at a 
temperature of 300 K [15]. Furthermore, NH3 exhibits a Lower Heating 
Value (LHV), reaching 18.8 MJ/kg. Despite that, due to the high 
corrosiveness and toxicity of NH3 in real applications, it is essential to 
utilize rigorous protection and prevention procedures, particularly in 
real applications for operators. Considering these factors, various recent 
studies have been conducted to investigate the effects of NH3 on main 
combustion efficiency, considering various current challenges related to 
its main combustion parameters, chemical kinetics modeling, and its 
utilization as fuel in real transport systems [16,17]. However, a signif
icant limitation of NH3 as a fuel is its notably low combustion intensity. 
Thus, the improvement of the LFS in practical combustion systems using 
NH3 represents today an interesting research issue for many scientists 
[18,19]. 

Considering the need to combine NH3 in a mixture, it is important to 
consider that the ignition energies of NH3 must be deeply greater than 
traditional fossil fuels. One of the most common issues due to the low 
LFS values of NH3/air mixtures, combined with the floating effect, is the 
occurring phenomenon of the propagation of a spherical flame that 
propagates outwards (OPSF) [20,21]. This results in the loss of its 
spheric shape and affects the accuracy of experimental measurement 
methodologies. In these optical, operating parameters, such as Φ, IDT, 
LFS, inlet pressure, and temperature strongly affect the combustion 
behavior and need optimization to allow for achieving high performance 
and minimizing the emissions. Numerous experimental studies have 
explored the improvement of combustion by introducing H2 as a seed 
into NH3. Lee et al. [22] performed a comprehensive study on laminar 
premixed H2-added NH3/air flames for H2 production. They focused on 
examining the combustion features at various Φ and for different H2 
fractions within the fuel blend considered. Gotama et al. [23] investi
gated the Laminar Burning Velocity (LBV) behavior and Markstein 
length of NH3/H2/air premixed flames at intermediate H2 ratio in the 
binary fuel for different pressures and Φ. In order to optimize the 
modeling of the flame, they developed an optimized mechanism using 
the measurement of the LFS. Ichikawa et al. [24] examined the LBV and 
Markstein length of stoichiometric NH3/H2/air mixtures using the OPSF 
method at 298 K but with different initial pressures. Han et al. [25] 
investigated the relation between temperature dependence and the LBV 
for NH3/air flames. In their research, they based their kinetic simula
tions on different literature mechanisms developed for NH3 combustion. 
Lesmana et al [26] conducted an experimental and kinetic modeling 
study of LFS in mixtures of partially dissociated NH3 in air. In order to 

provide LFS, they considered different CHEMKIN modeling including 
three different reaction mechanisms, the Okafor [27], Otomo [28], and 
Mathieu and Petersen [29] mechanisms, respectively. The presence of 
H2 resulted in an augmentation of crucial radicals such as OH, H, O, and 
NH2, consequently promoting the transformation of NH2 into NH, HNO, 
and NNH. This led to a notable upsurge in the LFS. Pessina et al. [30] 
analyzed the LFS correlations for NH3/H2/air mixtures at elevated 
pressures, considering the range of 40–130 bar and high temperatures 
for the range from 720 K to 1200 K, for various Φ (0.4–1.5). They uti
lized an extensive dataset of chemical kinetics simulations considering 
various blends of NH3 and H2 (ranging from 0 to 100 mol% H2 in in
crements of 20). 

Many researchers are moving their attention to the effect of oxygen 
(O2) addition in NH3/H2 mixtures. Mei et al. [31] developed a kinetic 
model to analyze the effects of O2 enrichment, Φ, and initial pressure on 
the laminar flame evolution of NH3. They proved that the O2 addition 
can enhance flame propagation and reduce the buoyancy effect. Sreshta 
et al. [32] examined the laminar flame speeds of NH3 with O2-enriched 
air (with oxygen content ranging from 21 to 30 vol%) and NH3/H2-air 
mixtures (with fuel H2 content varying from 0 to 30 vol%) at high 
pressure (1–10 bar) and temperature (298–473 K) values. 

Currently, another important challenge is represented by the effects 
of O3 addition on combustion features improvement [33]. 

Ozone is typically generated using corona discharge, ultraviolet ra
diation, or electrolysis. Corona discharge is the most widely used 
method for industrial-scale ozone generation, where an electric 
discharge is used to split oxygen molecules (O2) into individual oxygen 
atoms [34]. These atoms can then combine with O2 molecules to form 
ozone (O3). Recent advancements in this technology focus on enhancing 
energy efficiency and reducing nitrogen oxide by-products. Integrating 
ozone into combustion systems requires careful consideration of the 
ozone’s point of entry and the control of its concentration. The method 
of integration varies based on the combustion system’s design and the 
specific objectives of ozone addition, such as improving flame speed or 
reducing emissions. Advances in control systems and sensors are crucial 
for accurately monitoring and adjusting ozone levels in real-time to 
optimize combustion processes. 

Wang et al. [35] investigated the combustion improvement using 
ozone additives for CH4/air flames through the measurement of LBV and 
the development of kinetic modeling. Chen et al. [36] analyzed the 
impact of ozone addition on the LBV of premixed flames consisting of 
NH3/(35 %O2/65 %N2) and NH3 + CH4/C2H6/C3H8 + air. Their studies 
considered a wide range of Φ. The introduction of O3 had notable effects, 
such as decreasing the ignition energy and increasing the burning ve
locities of the entire mixture when NH3 was blended with hydrocarbons 
(HC). This finding holds significance in the development of NH3 co- 
firing mechanisms involving diverse complex fuels, thus validating the 

Nomenclature 

Acronyms 
ANN Artificial Neural Networks 
CHBR Close Homogeneous Batch Reactor 
GA Genetic Algorithm 
GHGs greenhouse gases 
GP Genetic Programming 
HC Hydrocarbons 
IDT Ignition Delay Time 
LFS Laminar Flame Speed 
LHV Lower Heating Value 
LBV Laminar burning velocity 
MAE Mean absolute error 
MGGP Multi-gene genetic programming 

ML Machine Learning 
MSE Mean squared error 
PLFSR Premixed Laminar Flame Speed Reactor 
RMSE Root-Mean-Squared Error 
SSE Sum Squared Error 
OPSF Outwardly propagating spherical flame 

Symbol 
Φ Equivalence ratio 
P Pressure (atm) 
P0 Ambient pressure (1 atm) 
R2 Coefficient of determination 
T Temperature (K) 
T0 Ambient Temperature (298 K)  

Z. Ali Shah et al.                                                                                                                                                                                                                                



Fuel 368 (2024) 131652

3

feasibility of NH3 utilization in practical applications. The combined 
effects of zero-carbon fuel mixture composition and ozone seeding on 
combustion remain unclear but assume fundamental importance in 
optimizing and assessing the combustion in a large range of operating 
conditions. On the other hand, the ozone addition can allow for the 
reduction of NOx formation in combustion processes [37,38]. 

In modern research, Machine Learning (ML) methods have gained 
increasing significance, offering the potential to unravel these intricate 
interactions and improve our understanding of combustion processes. 
For instance, ML techniques such as Artificial Neural Networks (ANN) 
have been successfully applied in studying combustion, flame dynamics, 
and ignition processes [39,40]. The utilization of ANN offers promising 
capabilities in non-linear regression, tabulation, and order reduction. 
This, in turn, enables improved prediction accuracy with reduced 
memory and CPU-time requirements [41]. Furthermore, ANN can be 
effectively employed for analyzing experimental measurements [39,42]. 
Echard et al. [43] compared multiple machine-learning techniques for 
the calculation of LBV for H2-CH4 mixtures. Also Wan et al. [44] 
developed an optimal ML model to evaluate the LFS of single hydro
carbon and oxygenated fuel with simple descriptors. 

This study analyses the LFS and IDT of the NH3/H2/air mixtures and 
investigates the effect of the addition of O3 in the oxidizer at different Φ. 
With the objective of assessing combustion evolution, a new modeling of 
LFS and IDT is developed in the CHEMKIN environment [45]. Firstly, the 
effects of H2 enrichment (range from 0 % to 50 %) for NH3/H2/air 
mixtures are examined and discussed. Secondly, the effects of initial 
pressure and initial temperature on IDTs and the influence of initial 
pressure, temperature, and Φ on LFS are underlined. Finally, the 
behavior of LFS for different O3 content in the oxidizer in terms of mole 
fraction (0–0.01) of NH3/H2/air mixtures at various Φ, at con
stant pressure and temperature conditions is analyzed. 

This study presents a novel and comprehensive approach to pre
dicting Laminar Flame Speed (LFS) in NH3/H2/air mixtures, marking a 
significant advancement in the field of carbon-free fuel technologies. At 
the heart of its innovation is the development of a multi-gene genetic 
programming method, a groundbreaking tool in the predictive modeling 
of LFS. This method accurately correlates predicted LFS values with 
actual values derived from Chemkin simulations, showcasing its 
robustness and precision. 

Focusing on NH3/H2 blends, the research delves into a relatively 
underexplored yet promising area in carbon-free fuels. The study’s 
comprehensive analysis extends beyond standard parameters like 
hydrogen concentration, initial temperature, and pressure, to include 
the impact of oxidizing agents such as ozone (O3) on combustion dy
namics. This approach not only provides a detailed understanding of 
NH3/H2/air mixtures but also opens up new avenues for optimizing 
combustion processes. 

By implementing and validating a modified reaction mechanism 
through extensive parametric analysis, the research underscores its 
commitment to detailed and accurate exploration. This approach en
sures that the findings are not only theoretically sound but also practi
cally relevant, particularly in identifying optimized combustion 
conditions such as the equivalence ratio (Φ) range. 

The multi-gene genetic programming approach introduced in this 
study significantly advances the modeling of Laminar Flame Speed (LFS) 
in ammonia/hydrogen mixtures, a complex task involving intricate 
chemical interactions. This method stands in contrast to conventional 
models such as chemical kinetic modeling, empirical correlations, 
computational fluid dynamics (CFD), simplified analytical models, and 
traditional machine learning techniques. Unlike these standard ap
proaches, which may struggle with the non-linear relationships inherent 
in combustion processes, the multi-gene genetic programming tech
nique proficiently handles these complexities. It offers a more dynamic 
analysis by integrating NH3, H2, and O3, shedding light on the nuanced 
effects these components have on LFS. 

The incorporation of ozone into NH3 and H2 combustion mixtures 

marks a unique aspect of this research. Traditional methods have not 
extensively explored ozone’s role as an oxidizing agent in altering 
combustion dynamics, particularly in NH3/H2 blends. This study’s use of 
multi-gene genetic programming effectively reveals how ozone impacts 
combustion characteristics, providing novel insights. This approach not 
only deepens the understanding of combustion processes but also sug
gests new ways to use ozone in enhancing combustion efficiency and 
effectiveness. 

2. Methodology 

A comprehensive evaluation of NH3 combustion mechanisms is 
performed to modify the mechanism and perform the parametric study. 
From the comprehensive review of the Mei mechanism [31] is selected 
for the modification and performs the parametric study because the Mei 
model more precisely captured the LFS and IDT [31,46] within the 
experimental uncertainties. In addition, the Mei mechanism was proven 
to be more precise in predicting NO experimental findings in a jet-stirred 
reactor [47]. Therefore, the Mei mechanism was chosen as the reference 
combustion mechanism in this study for further modification and vali
dation. The modified mechanism is validated against various conditions 
for IDT and LFS, then performed the simulation to study the effect of 
different key parameters on the LFS and IDT of the NH3/H2/O3/Air 
mixture. Finally, the study introduces a multi-gene genetic program
ming technique for predicting LFS in diverse NH3/H2/O3/Air condi
tions, while taking into account factors such as H2 concentration, initial 
temperature, and pressure. 

2.1. Details of the combustion kinetic mechanism 

For NH3/H2/O3/Air mixtures, the combustion mechanism proposed 
by Mei et al. [31] was modified and validated. This mechanism in
tegrates the H2-based mechanism from Hashemi et al. [48]. Addition
ally, a number of chemically termolecular reactions that are essential for 
the LFS predictions of H2 (H + O2 + O/OH/H = products) that were left 
out of the H2 mechanism from Hashemi et al. [48] are included in the 
base H2 model, the NH3 sub-mechanism from Shrestha et al. [49]. 

In the present work the excited species reactions of O (1D), O2 (a1Δg), 
which have a positive effect on the LFS introduced by Konnov [50], were 
added to the base mechanism and also O3 sub-mechanism reactions 
present in Table 1 were included from ZH Wang et al. [35] to the base 
mechanism to investigate the effect of ozone, further details of the 
mechanism can be found in the [31]. 

In this study, two different reactor models were employed to analyze 
the combustion process: the Premixed Laminar Flame Speed Reactor 
(PLFSR) and the 0D Closed Homogeneous Batch Reactor (CHBR). The 

Table 1 
Modified O3 sub-mechanism integrated into the Mei-Mech [31].  

NO. Reaction A E N 

1. O3 + O2 → O2 + O + O2 1.54E + 14 23,064 0 
2. O3 + O → O2 + O + O 2.48E + 15 22,727 0 
3. O3 + N2 → O2 + O + N2 4.00E + 14 22,667 0 
4. O3 + O3 → O2 + O + O3 4.40E + 14 23,064 0 
5. O2 + O + O2 → O3 + O2 3.26E + 19 0 − 2.1 
6. O2 + O + O → O3 + O 2.28E + 15 − 1391 − 0.5 
7. O2 + O + N2 → O3 + N2 1.60E + 14 − 1391 − 0.4 
8. O2 + O + O3 → O3 + O3 1.67E + 15 − 1391 − 0.5 
9. O3 + H ⇌ O + HO2 4.52E + 11 0 0 
10. O3 + H2O ⇌ O2 + H2O2 6.62E + 01 0 0 
11. O3 + NO ⇌ O2 + NO2 8.43E + 11 2603 0 
12. O3 ⇌ O2 + O 4.31E + 14 22,300 0 
13. O3 + N ⇌ O2 + NO 6.00E + 07 0 0 
14. O3 + O ⇌ O2 + O2 4.82E + 12 4094 0 
15. O3 + H ⇌ O2 + OH 8.430E + 13 934 0 
16. O3 + OH ⇌ O2 + HO2 1.85E + 11 831 0 
17. O3 + HO2 ⇌ OH + O2 + O2 6.62E + 09 994 0  
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modeling of Laminar Flame Speed (LFS) and Ignition Delay Time (IDT) 
was conducted using the respective PLFSR and CHBR modules within 
the CHEMKIN software. 

The PLFSR model focuses on a freely propagating premixed flame. 
This model presumes an adiabatic, one-dimensional flame and utilizes 
premixed NH3/H2/N2/air mixtures, integrating multicomponent trans
port properties. It also operates under the assumption that the impact of 
radiative heat loss on the flame is negligible, as supported by findings 
from Nakamura and Shindo (2019) which suggest that the reduction in 
flame speed due to radiative heat loss is minor and falls within the un
certainty range of standard measurements [51]. The initial conditions 
for the PLFSR simulations were set at a temperature of 298 K and a 
pressure of 1 atm. The calculation was performed by solving the gov
erning equations through the Newton iteration algorithm. This method 
was used to ascertain the eigenvalue of the problem, which effectively 
corresponds to the laminar burning flux. 

The IDT, on the other hand, was estimated using CHEMKIN’s Closed 
Homogeneous Batch Reactor model, which maintains a constant vol
ume. In this context, the simulated IDT is defined as the duration from 
the start of the simulation to the point where the maximum rate of 
change in OH concentration is observed. In the CHBR solver, the relative 
and absolute error tolerance in the ODEs solver is set to be 1.0e− 6 and 
1.0e− 12. 

All simulations within these models produced grid-independent so
lutions, ensuring the reliability and accuracy of the computational 
findings in assessing both LFS and IDT under the specified conditions. 

2.2. Validation 

To validate the updated combustion mechanism, we utilized both 
experimental results from studies by Han et al. [52], Ichikawa et al. [24], 
and Charles et al. [53], as well as simulation results from works by 
Okafor et al. [27], San Diego et al. [54], and Tian et al. [55]. Specifically, 
we correlated the Laminar LFS of stoichiometric NH3/H2/air flames 
across a H2 blend range from 0 % to 60 %, as illustrated in Fig. 1. 

Fig. 1 highlights that the calculated LFS values from the present and 
San Diego models agree with the experimentally measured data for 
specific conditions. However, it’s notable that the Okafor and Tian 
model performs well up to a 20 % H2 concentration but consistently 
underestimates LFS in all other scenarios. 

Figs. 2(a)–(d) show a comparison between the predictions of the 
present model and other models against experimental IDT data [14] for 
NH3/H2 mixtures at Φ = 1.0 and pressures of 1.2 atm and 10 atm. In the 

case of the pure NH3 mixture (0⋅.04375NH3/ 0.03281O2/ 0.92344Ar), 
as illustrated in Fig. 2(a) and 2(b), the current model, along with the 
Zhang Model [56], Otomo Model [28], Mathieu Model [29], and 
Glabrog Model [57], all yield reasonable predictions for IDTs at 1.2 atm 
and 10 atm. 

The Okafor Model [24] significantly overestimated the IDTs at both 
1.2 atm and 10 atm. However, it consistently gives accurate predictions 
for NH3 flame speed and NO concentration within the flames. This 
model is constructed upon the GRI 3.0 model [58] and incorporates NH3 
oxidation kinetics from Tian et al. [55]. 

The Nakamura Model [59] significantly underestimated the IDT at 
10 atm. In agreement with the research conducted by Miller and 
Bowman [60], NH3-related chemistry underwent re-evaluation, drawing 
from numerous literature investigations. The chemistry of N2Hx was 
based on the research of Konnov et al. [61,62]. It’s worth noting that this 
model exhibited considerable variation in its ability to predict IDT re
sults due to its evaluation limited to species profiles of O2, NH3, NO, 
N2O, and H2O under atmospheric pressure in a weak flame. 

The Stagni Model [63] provided faster but significantly under
estimated Ignition Delay Times (IDTs) at pressures of 1.2 atm, while it 
overestimated IDTs at 10 atm and above 1450 K. The chemistry related 
to HONO/HNO2 was derived from a theoretical investigation by Chen 
et al. [64], and the nitrogen chemistry in the model was based on the 
research by Song et al. [65]. 

In Figs. 2(c) and (d), with a 30 % H2 blend in the NH3/H2 mixture 
(0⋅.03322NH3/ 0.01424H2/0.03203O2/ 0.92051Ar), both the present 
model and the Otomo model reliably predict IDTs at 1.2 atm and 10 atm. 
The Glarborg Model accurately anticipates IDTs for NH3/H2 blends at 
1.2 atm but somewhat underestimates them at 10 atm. 

The shorter ignition delay time for NH3/H2 mixtures at 10 atm 
compared to 1.2 atm is a result of a combination of factors. These 
include increased reaction rates due to higher molecular collision fre
quency, elevated temperatures enhancing chemical reactions, favour
able formation of reactive intermediates, reduced heat loss, and 
improved mixing of reactants due to enhanced molecular interactions. 
Each of these factors plays a critical role in the complex dynamics of 
combustion at varying pressures. 

3. Results and discussion 

3.1. Effect of H2 enrichment in the NH3/H2/air mixture on LFS and IDT 

LFS is a critical combustion parameter, representing the rate at 
which the normal flame front advances relative to the unburned 
mixture. 

LFS is frequently used to validate combustion kinetic models, a 
crucial consideration in the design of practical combustion systems⋅NH3 
is known for its slower flame speed compared to H2 and hydrocarbon 
fuels, making it necessary to advance our understanding of how various 
parameters, including additives, influence NH3 flame speed to facilitate 
effective NH3 oxidation. 

Another key element in premixed combustion is the IDT, which 
represents the duration it takes for a mixture to auto-ignite. Under
standing IDT is essential for both theoretical research and for addressing 
ignition behavior, whether normal or anomalous, in real-world com
bustion systems. IDT can be determined by observing the time at which a 
particular species’ concentration reaches its peak or when the temper
ature reaches its inflection point. In this study, IDT is defined as the time 
at which a specific rate of temperature rise occurs. 

The analyzed hydrogen concentration range up to 50 % aims to 
explore the impact of hydrogen’s reactivity on combustion, particularly 
on ignition and flame stability, while also considering safety concerns 
like boundary layer flashback. This range reflects practical scenarios, 
from hydrogen as a minor additive to a major component, in line with 
the shift towards hydrogen-based energy systems. Similarly, the pres
sure range of 1 to 30 atm covers conditions from ambient to industrial 

Fig. 1. LFS of stoichiometric NH3/H2/air mixtures, as a function of xH2 , Sym
bols signify the experiment data, whereas lines show the simulated findings of 
the current model and prior models at P = 1 atm and T = 298 K. 
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settings, crucial for understanding NH3/H2 mixtures’ combustion dy
namics. This broad pressure spectrum helps identify safe and efficient 
operational limits and aligns with standard pressures in combustion 
research, enhancing comparative analysis and insights into these mix
tures under various conditions. 

Fig. 3 shows the effect of H2 enrichment and Φ on the LFS of NH3/ 
H2/air mixture at P = 1 atm and T = 298 K. By increasing the concen
tration of H2 in the NH3/H2/air mixture, the flame speed increases 
significantly and non-linearly. This behaviour can be due to hydrogen’s 
substantially higher reactivity and flame speed than NH3. As NH3 is 
steadily replaced by H2, the latter takes over as the dominant oxidant. 

However, large H2 concentrations in NH3/H2/air mixture should be 
avoided since hydrogen’s strong reactivity might cause boundary layer 
flashback [66]. Furthermore, the flame speed grows consistently at fuel- 
lean conditions, peaks when the Φ is around 1.1–1.15, and subsequently 
decreases at fuel-rich conditions. 

In the presence of 40 % and 50 % H2 in the mixture, the maximum 
LFS reaches approximately 29 cm/s and 44 cm/s, respectively, at Φ of 
1.1. To provide context, pure methane burns at a premixed flame speed 
of about 37 cm/s [27] under identical conditions, while pure H2 burns at 
a premixed flame speed of above 200 cm/s [24]. This suggests that using 
an NH3/H2/air mixture with an Φ of 1.1–1.15 is a viable approach to 
achieve stable combustion in the combustor. 

Fig. 4 shows the IDT as a function of H2 concentration in NH3/H2/air 
mixtures at 1 atm, Φ = 1.0, and temperatures ranging from 1000 K to 
2000 K. As evident in Fig. 4, IDT decreases as the H2 concentration in the 
mixture increases from 0 % to 50 %. Specifically, when the H2 concen
tration in the mixture approaches 50 %, the IDT reduces from approxi
mately 2222 ms to about 1.1 ms at 1000 K and from around 3 ms to 
roughly 0.05 ms at 1500 K. This indicates that incorporating a more 
reactive fuel component into NH3 significantly reduces the IDT, which is 
advantageous for achieving robust ignition. 

3.2. Effect of initial pressure on LFS and IDT of NH3/H2/air mixture 

Fig. 5 illustrates the impact of the initial pressure of NH3/H2/air 
mixtures on the LFS at 298 K and various Φ. With increasing initial 
pressure, the laminar flame speed decreases. Higher pressures result in a 
thicker flame and a slower burning speed. The influence of initial 
pressure is more pronounced at pressures up to 5 atm in all scenarios, 
while the effect diminishes at higher pressures. 

In the case of pure NH3/air case (H2 = 0 %) at Φ = 1 and Φ = 1.1 the 
LFS decreases from 6.5 cm/s to 4.4 cm/s and 8.1 cm/s to 5.8 cm/s when 
pressure decreases from 1 atm to 5 atm, whereas it decreases from 4.4 

Fig. 2. Relationships between the experimental and model-predicted IDTs of stoichiometric NH3/H2 mixtures using present and other models at pressures of 1.2 atm 
and 10 atm. 

Fig. 3. Effect of H2 enrichment and Φ of NH3/H2/air mixtures on the LFS at P 
= 1 atm and T = 298 K. 
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cm/s to 3.7 cm/s and 5.8 cm/s to 5 cm/s when pressure decreases from 
5 atm to 10 atm, respectively. 

In the case of 30 % of H2 in the mixture at Φ = 1 and Φ = 1.1 the LFS 
decreases from 16.9 cm/s to 9.7 cm/s and 19 to 12.1 cm/s when pressure 
decreases from 1 atm to 5 atm, whereas it decreases from 9.7 cm/s to 7.9 
cm/s and 12.1 cm/s to 10 cm/s when pressure decreases from 5 atm to 
10 atm, respectively. This means that the LFS is less sensitive to initial 
pressure under high-pressure situations, which are more common in 
engine operating settings. 

Figs. 6 (a)–(d) demonstrate the impact of initial pressure (ranging 
from 1 atm to 30 atm) on the IDT of stoichiometric NH3/H2/air mixtures 
with H2 concentrations of 0, 10, 30, and 50 %, across temperatures from 

1000 K to 2000 K. As depicted in Figs. 6 (a) and (b), for mixtures con
taining 0 % and 10 % H2, an increase in initial pressure shortens the IDT 
within the temperature range of 1000 K to 2000 K. However, the rate of 
reduction diminishes as the initial pressure continues to rise. When the 
initial pressure exceeds 10 atm, the influence of initial pressure on 
ignition delay becomes marginal. 

The initial pressure demonstrates a negative effect on the IDT in the 
temperature range of 1000 K to 1100 K for the cases of 30 % and 50 % H2 
in the stoichiometric NH3/H2/air mixtures, as indicated in Figs. 6(c) and 
(d). In the case of 30 % and 50 % H2 in the mixture, the IDTs can be 
shortened only at high temperatures (T > 1200 K), whereas at lower 
temperatures, the IDTs can become significantly longer. 

The impact of initial pressure on the IDT is observed to have a 
negative effect within the temperature range of 1000 K to 1100 K for the 
scenarios involving 30 % and 50 % H2 in the stoichiometric NH3/H2/air 
mixtures, as depicted in Figs. 6(c) and (d). It’s worth noting that for 
these blends the reduction in IDTs is only significant at high tempera
tures (T > 1200 K), while at lower temperatures, the IDTs can become 
notably longer. 

The negative pressure dependence indicated above was also studied 
in the literature with respect to the ignition delays of H2-enriched hy
drocarbons [36,67–71]. When the H2 concentration is sufficiently high, 
the H2 chemistry dominates the ignition delays of the dual mixture 
[69–71]. 

3.3. Effect of initial temperature on LFS of NH3/H2/air mixture 

Fig. 7 shows that as the initial temperature of the mixture rises, the 
LFS also increases, and this pattern is consistent across all cases, with the 
highest value falling within the Φ range of 1.1–1.15. At a Φ of 1.15, the 
LFS increases from approximately 8.1 cm/s to about 20 cm/s when the 
initial temperature of the mixture is raised from 298 K to 473 K. 

NH3/H2/air mixtures follow the same behaviour as NH3/air mixtures 
in increasing the initial temperature, and the maximum value for LFS 

Fig. 4. Effect of H2 enrichment of NH3/H2/air mixtures on IDT at Φ = 1, P =
1 atm. 

Fig. 5. Effect of initial pressure on LFS of NH3/H2/air mixtures at different Φ a) Φ = 0.8b) Φ = 0.9c) Φ = 1.0 d) Φ = 1.1 and P = 1 atm, T = 298 K.  
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lies in the equivalence range of 1.1–1.15, as shown in Figs. 8 (a)–(d). For 
H2 blends of 5 % (Fig. 8a), 10 % (Fig. 8b), 30 % (Fig. 8c), and 50 % 
(Fig. 8d), the LFS increases at ϕ = 1.15, and it rises from 9.4 cm/s to 22 
cm/s, 10.5 cm/s to 24.5 cm/s, 19 cm/s to 43 cm/s, and 43.5 cm/s to 
95.4 cm/s for each respective H2 blend. 

The distinctive properties of H2 play a key role in accelerating the 
laminar flame speed, especially when it’s part of a mixture with NH3. 
One of the most achieving features of hydrogen is its high reactivity. 
Thanks to its wide flammability range and relatively low ignition 

energy, H2 sets the stage for rapid chemical reactions. This becomes 
particularly evident in its interaction with other gases like ammonia, 
where its presence significantly speeds the combustion process, thereby 
increasing the speed at which the flame front propagates. 

Moreover, hydrogen’s remarkably low molecular weight marks it as 
one of the lightest gases available. This characteristic bestows upon H2 a 
superior diffusivity, enabling its molecules to move and intermingle 
with air or other oxidizers much more rapidly than heavier molecules. 
This efficient mixing is crucial; it enhances the overall combustion 
process, facilitating a quicker advancement of the flame. 

Another key aspect is hydrogen’s high heat of combustion. When H2 
burns, it releases a considerable amount of energy, elevating the tem
perature of the flame. It’s a well-known fact that higher flame temper
atures are synonymous with increased reaction rates, which in turn, 
speed up the flame’s progression. 

Additionally, the activation energy required for H2 combustion is 
notably lower compared to many other fuels. This lower threshold 
means that the necessary reactions for combustion are more easily 
initiated and proceed at a faster pace, further boosting the flame speed. 

Hydrogen’s role becomes even more pronounced when considering 
its effect on turbulent mixing. The addition of hydrogen to the mixture 
can significantly alter the physical dynamics of turbulence. This 
enhanced turbulence, in turn, leads to a more efficient rate of heat and 
mass transfer, all contributing to a faster-moving flame front. 

Lastly, the very presence of H2 in an NH3/H2 mix alters the tradi
tional combustion mechanisms. Hydrogen actively engages in chain- 
branching reactions, a critical component in the propagation of 
flames. These reactions facilitate a more effective and efficient com
bustion process, ultimately leading to an increase in the laminar flame 
speed. 

Fig. 6. Effect of initial pressure on IDT of stoichiometric NH3/H2/air mixtures a) H2 = 0 %, b) H2 = 10 %, c) H2 = 30 %, d) H2 = 50 % at the temperature ranging 
from 1000 K to 2000 K. 

Fig. 7. Effect of initial temperature and Φ on LFS of NH3/air mixtures at P =
1 atm. 
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Fig. 8. Effect of initial temperature and ϕ on LFS at different H2 concentrations a) H2 = 5 %, b) H2 = 10 %, c) H2 = 30 %, d) H2 = 50 % at P = 1 atm.  

Fig. 9. Effect of O3 and ϕ on LFS of NH3/H2/air mixtures at different H2 concentrations a) H2 = 0 %, b) H2 = 10 %, c) H2 = 20 %, d) H2 = 30 % and P = 1 atm, T =
298 K. 
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3.4. Effect of O3 on LFS of NH3/H2/air mixture 

Previous research has shown that adding O3 to hydrocarbon fuels 
improves LFS. Wang et al. [35] used a heat flux burner and found that 
injecting 3730 ppm O3 at stoichiometric conditions increased the LFS of 
CH4/air by 3.5 %. X Gao et al.[72] investigated the effect of O3 on LFS 
experimentally and numerically utilizing three fuels, CH4, C2H4, and 
C3H8, over a wide pressure range and found that for a stoichiometric 
CH4/air mixture with 6334 ppm O3 addition, the improvement in the 
measured flame speed increased from 7.7 % at atmospheric pressure to 
11 % at 2.5 atm. Ombrello et al. [73] showed a 4 % increase in LFS of 
C3H8 /air in stoichiometric lifted flames. Weng et al. [74] reported a 
stronger effect in fuel-rich mixes than in stoichiometric mixtures. The 
improvement in LFS is intimately linked to the chemistry of ozone, 
particularly the fast exothermic ozonolysis reactions that involve un
saturated hydrocarbons and the decomposition of O3 to form atomic 
oxygen. However, no such investigations on NH3/H2/air mixtures with 
O3 addition have been conducted. 

Fig. 9 shows the effect of the O3 concentration in the oxidizer in 
terms of mole fraction (0 – 0.01) on the LFS at various H2 concentrations 
(0–30 %) and ϕ of NH3/H2/air mixtures at a pressure equal to 1 atm, and 
temperature equal to 298 K. 

Ozone generation using plasma discharge [34], typically yields 
ozone concentrations that can vary significantly depending on various 
factors such as the type of plasma generator, discharge power, and gas 
flow rates. These concentrations usually range from a few parts per 
million (ppm) to several thousand ppm. The range of 0–0.01 mol frac
tion considered in the present study likely corresponds to this practical 
and achievable spectrum for plasma discharge systems, making it rele
vant for experimental and real-world applications. 

Furthermore the range is comparable to those used in other research 
involving different fuel/air mixture, i.e. CH4/air [35,72]. 

Enhancing the oxidizer by increasing the concentration of O3 from 
0 to 0.01 markedly improves the laminar flame speed (LFS) across all 
cases, an observation that underscores the critical role of ozone in the 
combustion process. This enhancement can be attributed to the con
version of ozone into oxygen, which effectively raises the concentration 
of atomic oxygen (O). This additional oxygen plays a significant role in 
the chemical processes involving ammonia, leading to an increased rate 
of ammonia oxidation and overall improvement in combustion 
efficiency. 

The impact of this ozone enhancement on the LFS is most notable 
within a specific range of equivalence ratios (Φ), particularly between 
1.1 and 1.15. In this range, the LFS demonstrates its peak values, 
reflecting the optimum conditions for combustion. For instance, in the 
absence of hydrogen (pure NH3/air mixture), the LFS sees an increase 
from 8.1 cm/s to 10.28 cm/s as shown in Fig. 10. Similarly, with in
cremental additions of H2 — 10 %, 20 %, and 30 % — the LFS values 
show a corresponding rise from 10.5 cm/s to 13.04 cm/s, 13.8 cm/s to 
17.07 cm/s, and 18.99 cm/s to 23.69 cm/s, respectively. These increases 
highlight the profound effect of integrating ozone into the oxidizer mix. 

Furthermore, the role of hydrogen in this context cannot be over
stated. Hydrogen’s unique characteristics, including its high reactivity, 
minimal weight, substantial energy output, reduced requirement for 
activation energy, and its significant impact on combustion dynamics, 
collectively contribute to its status as a transformative element in 
combustion processes. When H2 is combined with NH3, it significantly 
enhances the combustion efficiency, which is further augmented with 
each increase in ozone concentration. This synergy between H2 and O3 
in the presence of NH3 leads to a notable acceleration in the flame speed, 
demonstrating the intricate interplay of these components in optimizing 
combustion. 

4. Genetic programming 

In this study, multi-gene genetic programming (GP) was employed to 

accurately predict the laminar flame speed under various fuel mixture 
conditions. 

Genetic Programming (GP) and Genetic Algorithm (GA) are both 
subfields of evolutionary computation (EA), but they have distinct 
characteristics and applications. 

The main difference between genetic algorithms (GAs) and genetic 
programming (GP) lies in the core nature of their components. GAs 
represent individuals as unchangeable symbolic strings with fixed di
mensions, similar to chromosomes. In contrast, in GP, individuals 
manifest as a wide array of non-linear entities, featuring variations in 
both magnitude and complex configuration. These entities dynamically 
evolve, resulting in intricate parse trees. This innovative approach opens 
new dimensions for evolutionary exploration [75]. 

In genetic programming (GP), key components include arithmetic 
functions, decision variables, and evolutionary operators like repro
duction, crossover, and mutation. These elements form initial symbolic 
expressions, establishing the algorithm’s initial population. The process 
uses a tree-based method combining arithmetic functions with decision 
variables. 

During iterations, the algorithm refines this population based on 
fitness, using genetic operators. Reproduction selects the fittest in
dividuals, crossover mixes parts of two ’parent’ individuals to create 
’offspring,’ and mutation introduces random changes. This cycle con
tinues until reaching a predefined endpoint, such as a maximum number 
of generations or an error threshold. 

In the reproduction phase of genetic programming, the best- 
performing segment of the population is retained to form a new gener
ation through genetic manipulations. During crossover, pairs of in
dividuals are selected and combined at random points in their structure, 
creating new ’offspring’. The population is then updated with these new 
individuals. This process repeats iteratively until a termination criterion, 
like a maximum number of generations or an error threshold, is met. 

GP stands as a symbolic modeling technique of the metaheuristic 
kind, which forges problem-solving equations guided by the principles 
of Darwinian natural selection, specifically the concept of ’survival of 
the fittest’ [76]. Presented below is the fundamental structure of the 
anticipated process model: (Equation (1): 

y = f (X, β) (1) 

the symbol “f” signifies a non-linear function, characterized by pa
rameters articulated through a P-dimensional vector, denoted as (β[β1, 
β2, …, βK]P). When presented with input and output variables, the GP 

Fig. 10. Effect of ozone in the oxidizer in terms of mole fraction on maximum 
LFS of NH3/H2/air at normal conditions. 
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algorithm dynamically adjusts its functional configuration and param
eter vector β to align with the provided dataset. 

Multi-gene genetic programming (MGGP) is a novel approach that 
enhances the precision of Genetic Programming by using multiple trees 
to represent a model, as opposed to the single tree used in conventional 
GP. Each tree in MGGP, akin to a mathematical expression, contributes 
to a more intricate and accurate prediction of the output. [77]. 

MGGP differs from conventional GP by allowing users to precisely set 
key parameters, like the maximum number of genes and their depth. 
This control significantly influences the complexity and efficiency of the 
resulting model, with studies showing MGGP’s enhanced accuracy and 
computational efficiency over traditional GP. [78]. 

The development of the GP-based model was facilitated by the use of 
the open-source GPTIPS toolkit and custom-coded subroutines in 
MATLAB 2019a [76]. The framework adopted in this study encom
passed the utilization of the Root-Mean-Squared Error (RMSE) between 
actual and predicted outcomes as the designated fitness function. The 
effort was dedicated to minimizing the RMSE value, thereby optimizing 
the model’s predictive performance. 

It’s important to note that this method is both non-parametric, as it 
doesn’t rely on a predefined functional model, and data-driven, as the 
optimal model is exclusively determined by the data. 

The GP was used to perform a multi-gene genetic programming 
approach, enabling accurate prediction of laminar flame speed. This 
prediction was achieved using the dataset from Chemkin, encompassing 
data for freely propagating laminar flames. 

A crucial aspect of our approach was the data partitioning strategy. 
After extensive testing with various split ratios for dividing the dataset 
into training and testing sets, it was determined that an 80:20 split ratio 
is the most effective for the model in question. This decision was reached 
following a series of experiments where different ratios, ranging from 
60:40 to 90:10, were evaluated. In each instance, the model’s perfor
mance was closely monitored, with particular attention paid to its ability 
to generalize on unseen data while avoiding overfitting. The choice of 
the 80:20 split emerged as the optimal balance, ensuring sufficient 
training data to learn effectively while providing a substantial testing set 
for a reliable evaluation of the model’s performance. 

Table 2 provides an overview of the model parameters. 
Different conditions have been analyzed, as follows:  

• Case A: Pure ammonia at ambient conditions (298 K, 1 atm) and 
different ϕ.  

• Case B: Pure ammonia at different ϕ, ambient pressure and 298 K.  
• Case C: Blend NH3/H2 at different ϕ and H2 fraction at ambient 

conditions (298 K, 1 atm).  

• Case D: Blend NH3/H2 at different ϕ and ambient pressure at 298 K.  
• Case E: Blend NH3/H2 at different ϕ, ambient pressure and 

temperature.  
• Case F: Blend NH3/H2 at different ϕ, with air and O3 addition.  
• Case G: Blend NH3/H2 at different ϕ, H2, pressure, temperature, and 

with air and O3 addition. 

Case A: Pure ammonia at ambient conditions (298 K, 1 atm) and 
different ϕ. 

The following equation was selected as the best model for the LFS in 
the case of pure ammonia at ambient conditions: 

LFS = ϕ*3.26e2 + exp(− ϕ3)*3.23e2 − exp(− ϕ6)*4.64e1 − ϕ3*log(ϕ)*5.41e1

− 4.21e2 

In the study, the effectiveness of the multi-gene genetic program
ming model is quantitatively showcased in Table 3, which details the 
model’s performance metrics during both the training and testing pha
ses. Additionally, Fig. 11a graphically represents the correlation be
tween measured and predicted values of laminar flame speed (LFS) for 
the test dataset. The strength of this correlation is quantified by the 
coefficient of determination, R2, which is remarkably high in both 
examined scenarios, underscoring the model’s accuracy. 

Specifically, for Case A, which examines pure ammonia at ambient 
conditions (298 K, 1 atm) across various equivalence ratios (Φ), the R2 
value reaches an impressive 0.9975. This near-perfect correlation in
dicates an extremely high level of precision in the model’s predictions 
under these standard environmental conditions. 

On the other hand, Case B, which involves pure ammonia with 
varying Φ at a constant temperature of 298 K and ambient pressure, 
shows a slightly lower, yet still significantly high, R2 value of 0.990. This 
indicates that while there is a slight decrease in predictive accuracy 
compared to Case A, the model still maintains a strong predictive 
capability in this scenario. 

These R2 values, particularly the exceptionally high value in Case A, 
demonstrate the robustness and reliability of the multi-gene genetic 
programming approach in predicting LFS under varying conditions. The 
minor difference in the R2 values between the two cases also provides 
valuable insights into the model’s performance under different sets of 
combustion conditions, highlighting its comprehensive applicability in 
combustion research. 

Case B: Pure ammonia at different ϕ, pressure and 298 K. 
The optimal model chosen for the LFS with pure NH3/air mixtures at 

different Φ and pressure and ambient temperature is represented by the 
following equation: 

LFS = ϕ*5.42 − exp(ϕ*6.36 + ϕ2*3.0)*3.35e− 5 + exp(exp((P/P0)*

− 7.58e− 1)* − 1.0)*3.64+(ϕ2*1.23e1)/abs(ϕ

+ (P/P0))+ϕ5*2.71 − 6.13 

Table 3 displays the metrics obtained from both the training and 
testing phases. Additionally, Fig. 11b provides a visual representation of 
the comparison between the LFS values that were found with chemkin 
and those that were predicted specifically for the test dataset by GP. The 
results distinctly indicate a robust association between the forecasted 
information generated by the multi-gene model and the target data. 

Case C: Blend NH3/H2 at different ϕ and H2 fraction at ambient condi
tions (298 K, 1 atm). 

The laminar flame speed for freely propagating laminar flames at 
298 K and 1 atm and different ϕ and H2 content (from 0 to 100) was 
found. The best model is given by the following equation: 

Table 2 
GP run parameters.  

Run parameter Value 

Population size 300 
Max. generations 500 
Generations elapsed 500 
Input variables 2 
Nodes 40 
Training instances 3992 
Tournament size 10 
Rain Elite fraction 0.15 
Lexicographic selection pressure On 
Probability of pareto tournament 0 
Max. genes 4 
Crossover probability 0.84  

LFS = 315.0tanh(ϕ2)+ 419.0(2.0ϕ + XH2)
1/2

− 416.0(ϕ + XH2 − 1.0exp(− 1.0ϕ))1/2
+(1.3e16XH2 + 1.64e16)/(3.52e13ϕ + 1.76e13XH2 + 1.74e13) − 813.0   
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Where XH2 is the mass fraction ranging from 0 for pure NH3 to 100 
for pure H2. 

Similar to the previous comparisons, the predictive performance in 
this case is also favorable. Table 3 presents the metrics acquired during 
both the training and testing stages. Furthermore, Fig. 12a offers a 
graphical depiction of the contrast between the LFS values obtained 
through chemkin and the ones predicted exclusively for the test dataset 

using GP. The outcomes clearly affirm a strong correlation between the 
projected insights produced by the multi-gene model and the intended 
target data. 

Case D: Blend NH3/H2 at different ϕ and pressure at 298 K. 
The laminar flame speed has been investigated for freely propagating 

laminar flames assuming temperatures from 298 K to 500 K and a 
pressure range of 1 atm to 30 atm. These investigations encompass 
various ϕ and H2 concentrations ranging from 0 to 100. Among the 
different models examined, the most effective one is depicted by the 

Table 3 
Metrics for LFS Predictions for different conditions.  

Metric CASE A CASE B CASE C CASE D CASE E CASE F CASE G 

Training 
R2  0.99773  0.99134  0.99976  0.99638  0.98794  0.98061  0.98647 
RMSE  0.071081  0.20848  0.70069  2.7601  11.0105  18.1117  15.0216 
MAE  0.059015  0.1278  0.4469  1.865  8.199  12.6419  10.771 
SSE  3.8399  32.9902  1959.918  24896.63  165359.2  1177969.46  810304.1037 
Max. abs. Error  0.16079  4.0464  6.1563  27.5005  85.0807  116.0078  200.9182 
MSE  0.005053  0.043465  0.49096  7.6183  121.2311  328.0338  225.6486 
Test 
R2  0.9975  0.98993  0.99972  0.99689  0.98713  0.97751  0.98676 
RMSE  0.070845  0.24475  0.75518  2.5729  10.3409  18.7693  14.8683 
MAE  0.058827  0.13984  0.45876  1.7811  7.6527  13.2974  10.6677 
SSE  0.95863  11.3812  569.7228  5414.809  36571.68  316352.28  198517.7684 
Max. abs. error  0.15918  2.6618  6.3697  17.842  54.3409  123.0659  102.8528 
MSE  0.005019  0.059901  0.57029  6.6196  106.9347  352.2854  221.0666  

Fig. 11. Target (Chemkin) versus predicted (multigene GP) data for the LFS for NH3/ air mixtures at: a) different Φ and P = 1 atm T = 298 K; b) at different Φ and 
pressure at T = 298 K. 

Fig. 12. Target (Chemkin) versus predicted (multigene GP) data for the LFS for NH3/ H2/air mixtures at: a) different Φ and H2 mass fraction at 298 K and 1 atm, b) 
different Φ, H2 mass fraction and pressure at 298 K. 
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subsequent equation: 

LFS = (5.3e15XH2tanh(log(ϕ)))/(1.76e13XH2

+ 8.8e12P/P0) −
(

5.23e15(P/P0)
1/2

)
/(8.8e12(P/P0)

+
(
8.8e12XH2

)
/ϕ + 8.8e12(P/P0)

1/2
) − 90.6log((P/P0)

+ 6.9)+ (132.0XH2(x3 − 2.03) )/((XH2 + 8.51)(XH2 + (P/P0)

+ 10.0))+ 407.0 

Where XH2 is the mass fraction ranging from 0 for pure NH3 to 100 
for pure H2 and P/P0 is the ratio between the pressure and the ambient 
pressure at 1 atm. 

The predictive performance remains promising in this instance as 
well. Table 3 showcases the metrics gathered from both the training and 
testing phases. Additionally, Fig. 12b provides a visual representation 
highlighting the distinction between the target LFS values and those 
exclusively forecasted for the test dataset utilizing GP. The results un
deniably underscore a robust correlation between the anticipated in
sights generated by the multi-gene model and the desired target data. 

Case E: Blend NH3/H2 at different ϕ, ambient pressure and temperature. 
The laminar flame speed has been investigated for freely propagating 

laminar flames assuming temperatures from 298 K to 500 K and a 
pressure range of 1 atm to 30 atm. These investigations encompass 
various Φ and H2 concentrations ranging from 0 to 100. Among the 
different models examined, the most effective one is depicted by the 
subsequent equation: 

LFS = 0.246log(ϕ3)(log((P/P0) ) − 1.0ϕ3)(XH2 + XH2/(P/P0) + 15.8)

− 0.556ϕ3(T/T0)
2
(ϕ + XH2) − 31.0log((P/P0)/(T/T0) )

+ 31.0ϕ2(T/T0)
2log(XH2)+ 1.34ϕ2(T/T0)

2log(XH2)((T/T0) + 4.77)1/2

(
log(XH2) − 1.0(P/P0)

1/2
)
+ 105.0 

Where XH2 is the mass fraction ranging from 0 for pure NH3 to 100 
for pure H2, P/P0 is the ratio between the pressure and 1 atm and T/T0 is 
the ratio between the temperature and 298 K. 

The predictive capability continues to show promise in this scenario 
as well. Table 3 presents the metrics acquired during both the training 
and testing stages. Furthermore, Fig. 13 underlines the good agreement 
between the target LFS values and those predicted for the test dataset 
using GP. 

Fig. 14 presents a detailed surface plot that demonstrates how the 
laminar flame speed (LFS) varies for different NH3/H2 blends under a 

Fig. 13. Target (Chemkin) versus predicted (multigene GP) data for the LFS for 
NH3/ H2/air mixtures at different Φ, H2 mass fraction, pressure, and 
temperature. 

Fig. 14. LFS predicted for NH3/H2/air mixtures at different Φ, H2 mass frac
tion, pressure, and temperature. 
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variety of operational conditions, as predicted by our model. This figure 
effectively highlights the complex relationship between the flame 
behavior and various operational factors such as pressure, temperature, 
fuel-to-air ratio, and hydrogen concentration. 

In the figure, the first plot at the top depicts the Laminar Flame Speed 
(LFS) under specific conditions where the pressure is fixed at 1 atm and 
the temperature at 298 K. In this plot, the variables being explored are 
the fuel–air ratio and the hydrogen fraction. 

The second plot, maintaining a constant pressure of 1 atm and a 
fuel–air ratio of 1, varies the temperature and the hydrogen fraction. 
This plot is designed to show the impact of temperature changes and 
varying hydrogen concentrations on the LFS, while keeping the pressure 
and fuel–air ratio constant. It provides insights into how temperature 
and hydrogen content interact and affect the combustion dynamics in 
the given conditions. Finally, the third plot fixes the temperature at 298 
K and the fuel–air ratio at 1, while varying the pressure and the 
hydrogen fraction. This plot examines the influence of different pressure 
levels and hydrogen concentrations on the LFS, with all other variables 
held steady. It helps in understanding the relationship between pressure 
variations, hydrogen content, and their combined effect on the Laminar 
Flame Speed in the context of the specified temperature and fuel–air 
ratio. 

Notably, ammonia (NH3) typically exhibits moderate laminar 
burning velocities, particularly when contrasted with the faster com
bustion rates of hydrogen (H2). The integration of H2 into NH3, however, 
leads to a noticeable enhancement in the LFS of NH3/air mixtures. This 
increase in LFS is more pronounced at higher H2 concentrations. The 
reason behind this trend can be partly attributed to the increased 
importance of the H2-chemistry, especially its chain branching reactions 
[79], and its inherently high reactivity [80]. 

This pattern aligns with findings in similar studies, such as those 
conducted by Di Sarli et al. [81] and Mitu et al. [82], which explored H2/ 
CH4/air mixtures. These studies also observed comparable trends in LFS 
enhancement with varying H2 concentrations, further validating the 
patterns seen in our NH3/H2 blends. The surface plot in Fig. 14 not only 
corroborates these findings but also provides a visual representation of 
how changes in H2 concentration and other operational variables intri
cately influence the combustion characteristics of NH3/H2/air mixtures. 

Case F: Blend NH3/ H2/ O3/air at different ϕ, and O3 addition at ambient 
conditions. 

The laminar flame speed for freely propagating laminar flames was 
calculated at 298 K and 1 bar for various Φ and H2 contents (ranging 
from 0 to 100), including cases where ozone was introduced. The 
optimal model identified through Genetic Programming is represented 
by the following equation: 

LFS = 4149.51*XO3 + 200.0*ϕ+(4150.51*XO3 + 0.77*ϕ*XH2/((− XO3

+ XH2)*(200.0*ϕ + 0.386)*(− ϕ + XH2 + 0.996)*(XO3*ϕ + XH2

− 0.507 + 0.0572*X2
H2/ϕ)) + 201.0*ϕ − XH2 + 189.141

+ (5368.05*XO3*ϕ*(ϕ − XH2) + XO3 + 189.14)/( − XH2 − 0.52))/(

− XH2 − 0.52)

Where XH2 is the mass fraction ranging from 0 for pure NH3 to 100 
for pure H2, XO3 is the mass fraction of O3 with respect to the total oxides 
fraction ranging from 0 to 0.03. 

Metrics obtained in the training and testing stages are presented in 
Table 3. In this case, as well, the predictive capability continues to show 
promise. Furthermore, Fig. 15 provides a graphical representation of the 
difference between the LFS values that were predicted specifically for 
the test dataset using GP and those that were produced via chemkin. The 
outcomes clearly confirm a significant relationship between the multi- 
gene model’s predicted insights and the desired target data. 

Case G: Blend NH3/H2 at different ϕ, H2, pressure, temperature, and with 
air and O3 addition. 

The laminar flame speed has been investigated for freely propagating 

laminar flames assuming temperatures from 300 K to 500 K, pressure 
range of 1 atm to 30 atm, and O3 range of 0–0.03 in the oxidizer. These 
investigations encompass various Φ and H2 concentrations ranging from 
0 to 100. The optimal model identified through Genetic Programming is 
represented by the following equation: 

LFS = 10.6exp(2.0XO3 + T/T0)(2.0XO3 + T/T0

− 1.0P/P1/2
0 )+

(
0.113P/P1/2

0 (P/P0

− 1.0XH2T/T0)
)
/ϕ − 694.0XO3ϕ(XO3 − 1.0T/T0)(2.0XO3 + T/T0

+ exp(− 1.0ϕ) + log(XH2))+ 27.8ϕT/T0log(3.03XH2)(T/T0

− 1.0exp( − 1.0XH2) )+ 70.6 

Where XH2 is the mass fraction ranging from 0 for pure NH3 to 100 
for pure H2, XO3 is the mass fraction of O3 with respect to the total oxides 
fraction ranging from 0 to 0.03. and P/P0 is the ratio between the 
pressure and 1 atm and T/T0 is the ratio between the temperature and 
298 K. 

Fig. 16 clearly demonstrates the strong agreement between the target 
LFS values and those predicted for the test dataset using GP. 

Fig. 15. Target (Chemkin) data versus predicted (multigene GP) data for the 
LFS for NH3/ H2/O3/air mixtures at different ϕ, xH2, and xO3. 

Fig. 16. Target versus predicted (multigene GP) data for the LFS for NH3/ H2/ 
air mixtures at different Φ, H2 mass fraction, pressure, temperature, and with 
O3/air mixture as the oxidizer. 
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Figs. 17 and 18 present a surface plot depicting LFS for various NH3/ 
H2/O3/air blends across diverse conditions. This visualization effec
tively highlights the intricate relationships between flame characteris
tics and operational parameters, such as temperature, fuel-to-air ratio, 
O3, and H2 concentration. Results show that incorporating a more 
reactive fuel component into NH3 such as H2 and O3 has a positive effect 
on the LFS. The addition of 0.01 O3 in the oxidizer in terms of mole 
fractions has approximately the same effect as the addition of 10 % H2 
on the LFS of NH3/air mixture at normal conditions and the improve
ment of LFS is closely linked to O3 chemistry, especially fast exothermic 
ozonolysis reactions and the breakdown of O3 to form atomic oxygen. 

5. Conclusion 

In this study, an enhanced NH3/H2/Air mechanism was implemented 
and validated, and a comprehensive parametric analysis was performed. 
This analysis investigated the effects of various factors such as hydrogen 
(H2) concentrations, equivalence ratio (Φ), initial temperature, and 
initial pressure on laminar flame speed (LFS) and ignition delay time 
(IDT). Additionally, the impact of ozone (O3) concentration in the 
oxidizer, in terms of mole fraction ranging from 0 to 0.01, on the LFS of 

NH3/H2/air mixtures was examined. A significant aspect of the research 
involved the use of multi-gene genetic programming to accurately pre
dict laminar flame speed under different fuel mixture conditions. 

The key findings from this research are as follows:  

• It was observed that LFS increases with the rise in H2 concentration 
and initial temperature. In contrast, an increase in initial pressure led 
to a decrease in LFS. Interestingly, at higher pressures (over 5 at
mospheres), the effect of initial pressure on LFS lessens, and an 
optimized equivalence ratio, lying in the range of 1.10 – 1.20, is 
identified for achieving stable and efficient combustion. 

• The study found that IDT decreases with an increase in H2 concen
tration, initial temperature, and initial pressure. However, at higher 
pressures (above 10 atmospheres), the influence of initial pressure on 
reducing IDT is less pronounced. For mixtures with 30 % and 50 % 
H2, the study noted that IDTs could be shortened only at high tem
peratures (above 1200 K). At lower temperatures, IDTs tend to 
significantly increase, particularly as the higher H2 concentration 
leads to H2 chemistry dominating the ignition delays in the dual 
mixture. 

Fig. 17. LFS for NH3/ H2/O3/air mixtures at a) different initial temperature and xO3, ϕ = 1, xH2 = 30, P = 1 atm b) different xO3 and ϕ, xH2 = 30, P = 1 atm and T/T0 
= 1. 

Fig. 18. LFS for NH3/ H2/O3/air mixtures at different xH2 and xO3, ϕ = 1, P = 1 atm: a) T/T0 = 1, b) T/T0 = 1.5.  
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• The addition of O3 to the oxidizer, in mole fractions from 0 to 0.01, 
was also found to improve the LFS of the NH3/H2/air mixture under 
normal conditions. Adding 0.01 mol fraction of ozone to the oxidizer 
has approximately the same effect as adding 10 % hydrogen on the 
LFS of the NH3/air mixture at normal conditions.  

• The predictive capability of the multi-gene genetic programming 
model developed in this study is promising. This was demonstrated 
through a comparison between the predicted values using the model 
and actual values obtained via chemkin simulations, showing a good 
agreement and confirming the model’s accuracy for the examined 
test dataset.  

• The results of this study provide useful insights for the application of 
numerical machine learning techniques in the field of zero-carbon 
combustion applications, indicating a significant stride forward in 
this area. 

Looking ahead, there is immense potential for further development 
in this area. Future works could explore the incorporation of 3D 
Computational Fluid Dynamics (CFD) analysis simulations, which would 
provide a more detailed understanding of the combustion processes in 
green fuels. Such advancements could lead to even more efficient and 
environmentally friendly combustion technologies, reinforcing the role 
of green fuels in mitigating the effects of climate change and supporting 
the transition to a more sustainable energy future. 
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