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Abstract
Sequential sampling methods are often used to estimate functions describing
models subjected to time-intensive simulations or expensive experiments. These
methods provide guidelines for point selection in the domain to capture max-
imum information about the function. However, in most sequential sampling
methods, determining a new point is a time-consuming process. In this paper, we
propose a newmethod, named Sieve, to sequentially select points of an initially
unknown function based on the definition of proper intervals. In contrast with
existing methods, Sieve does not involve function estimation at each iteration.
Therefore, it presents a greater computational efficiency for achieving a given
accuracy in estimation. Sieve brings in tools from computational geometry to
subdivide regions of the domain efficiently. Further, we validate our proposed
method through numerical simulations and two case studies on the calibra-
tion of internal combustion engines and the optimal exploration of an unknown
environment by a mobile robot.
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1 INTRODUCTION

Many present-day engineering problems involve the exploration of an unknown space for estimating a function, finding
the optimumof the function in the space, and/or creating surrogatemodels thatmimic the behavior of real-world systems.
The surrogate models are typically used to analyze, monitor, and/or optimize complex physical or simulation systems.1–3
For example, surrogate models using Gaussian Processes (GPs) are utilized to estimate the actual free-form surface
obtained from a machining process during quality inspection.4–6 The estimation of free-form surfaces can be used to test
and optimize the dynamic accuracy of CNCmachines.7,8 In another example, in automotive manufacturing applications,
to estimate the optimal control map during the calibration of an internal combustion engine, a GP surrogatemodel is used
to model air mass flow (mg/stoke) as a function of engine rotational speed (rpm) and engine torque in Newton-meter.
Both the size of the training sample and the location of observations in the sampling space are important factors that

impact the accuracy of a surrogate model. However, in practice, due to the high cost and time-consuming nature of
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experiments, the number of training observations is limited. For example, engine calibration is one of the most costly
steps in the engine development process. The engine test bench is an expensive system to set up, and experimental
measurements on the test bench are often time-intensive.9–11 For example, in diesel engine performance optimization,
in-cylinder pressure plays an important role, and performance optimization is challenging due to the costly and time
taking physical tests.12 Additionally, the high computational complexity of GP-based surrogate models (i.e., 𝑂(𝑛3), with
𝑛 as the training sample size) is another limiting factor to large-scale experiments. These limitations prompt systematic
sequential sampling methods for achieving an optimal result with limited sample size. Examples of such sampling
methods in engineering applications include the air quality sensing,13 the calibration of computer models,14,15 aircraft
aerodynamic design,16 quality inspection7 and fault detection in manufacturing,17 and engine calibration.18
The selection of sampling points holds significant importance in functional estimation, and the utilization of space-

filling design methods will be crucial.19 In general, two types of strategies can be used to select the sampling points in
the design space, namely one-shot sampling methods (also known as domain-based, model-free, and nonadaptive) and
sequential samplingmethods (also known as response-based). In the one-shot sampling, using an optimization criterion,
for example, maximum distance,20,21 a fixed number of sampling points are chosen a priori based on the available budget,
and all the observed points are used to estimate the surrogate model. Two examples of one-shot sampling methods are (i)
the Latin Hypercube designs and (ii) the simplex stochastic collocation method.22–24 On the other hand, in the sequen-
tial sampling design, the new sampled points are selected one-by-one based on the information obtained from previous
observations. At each step, the collected samples are fused to update the surrogate model, and its uncertainty is used as a
measure for selecting the location of the subsequent observations. Examples of the sequential sampling methods include
Refs. 25–27 that rely on the Expected Improvement criterion,28 which again utilizes the expected improvement criterion
for contour estimation,29 which utilizes maximin criterion to perform sequential Latin Hybercube Design,30,31 which is
based on the Minimum Energy Design criterion, and online Kriging model-assisted methods that focus on sequential
updating of an ad hoc objective function.32,33
Asmentioned earlier, one-shotmethods do not take advantage of information obtained by previous observations, which

may result in inconsistent uncertainty of the surrogate model depending on the true underlying function to be estimated.
Although the sequential sampling methods overcome this problem by iteratively updating the surrogate model based on
the most recent observations, these methods could be quite slow, especially when the number of observations is large, as
they require re-estimation of the surrogate model at each step. In some applications, such as the case studies in Section 6,
computational efficiency is vital in the exploration process.
Our first case study is the engine calibration process discussed earlier, where the goal is to find optimal control

parameters for each operating condition.34–36 The control parameters of the actuators are often obtained through several
trial-and-error experiments. Although the existing sequential sampling methods facilitate the calibration for one oper-
ating condition without requiring to collect data for all the operating conditions, their slow computation increases the
engine idle time when running on the test bench. Consequently, costly resources such as labor, fuel, and time are wasted
during the calibration process.
The second case study focuses on the optimal exploration of an unknown environment by a mobile robot. The problem

of placing amobile robot in a space such that it can optimally explore andmonitor an environment and capture its essence
finds applications in the autonomous environmental monitoring,37,38 autonomous search-and-rescue missions,39,40 and
exploration of hazardous environment.41,42 For example, it is vital to quickly and optimally cover a contaminated envi-
ronment to estimate the spatial density of hazardous material. Initially, the environment is unknown, and the robot is
guided in exploring it by a sequential sampling strategy. However, efficiency is vital in such applications because the
computational power and robot battery are limited resources. Additionally, these missions are time-sensitive, and a quick
exploration of the environment and estimation of the density is critical to the success of the mission.
To address the foregoing issues, in this paper, we propose a novel sequential sampling approach, named Sequential

sampling algorithm with Interval-based Exploration and Value Estimation (Sieve) that utilizes the information of all
previous observations in the selection process, it does not require re-estimation of the surrogate model at each step.
This makes the sampling approach efficient and capable of implementation in online settings. Unlike existing methods,
Sieve takes both the positions of the observed points in the domain (similarly to one-shot sampling) and the values
of the function at those points (similarly to sequential sampling) into account using a two-part objective function: The
first part is domain-based, and geometrically partitions the domain by using the positions of the sampled points, and
the second part uses the observed function values to select the region with the highest benefit. Sieve explores the most
untouched areas of the domain and simultaneously uses the information of the observed points to choose the locations of
the following samples. Moreover, it is based on observed function values rather than the estimated model of the function.
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BENEVENTO et al. 3255

In other words, the difference between the Sieve method and one-shot sampling methods is that once each sample is
achieved, the Sieve utilizes the observed function value and determines the next sampling point based on the whole
information. On the other hand, the significant difference between sequential sampling approaches and the Sieve is that
after observing the function value for a sample, sequential sampling methods require fitting a newmodel, which will lead
us to determine the next point to sample. However, in the Sieve, we update the model once at the end of the sampling
procedure, and hence the sampling is independent of any model estimation. This significantly reduces the computational
complexity.
It is worth mentioning that if the experiment time compared to the sampling and computational time is high, the com-

plexity of the approach for functional estimation is less crucial since the total time will be dependent on the experiments.
On the other hand, when the experiment time is reasonably lower, the computational time, including sampling time and
fitting the GP model, will be significant, and thus faster approaches will be favorable. For example, in the second case
study, experiments by a mobile robot are done instantly, and hence sampling and computational time are significant.
Because of the time-sensitive nature of these applications, faster approaches will outperform. We will later show that
the Sieve approach will provide good results in a short time, which implies that this approach is appropriate for those
applications.
The remainder of the paper is organized as follows. In Section 2, we describe the problem setup. In Section 3, we for-

mally present our Sequential sampling algorithm, (Sieve), and we describe the ideas behind it. In Section 4, we provide
technical details of the algorithm and its theoretical properties. Numerical studies and simulations are offered in Section 5,
and in Section 6, we describe two real-world applications of our method. Section 7 concludes the paper and discuss the
future work.

2 PROBLEM SETTING

Suppose we are interested in the estimation of a 𝑑-dimensional smooth, continuous function 𝑓 ∶  ⊂ ℝ𝑑 → ℝ (for a
bounded, convex domain ) by sequentially exploring its domain . Our goal is to propose a procedure to sequentially
identify the best candidate point that improves the estimation at each iteration. At the end of the sampling procedure, the
collected data are fused to estimate the function 𝑓. Therefore, the proposed sequential sampling procedure is independent
of the estimation method. In the simulations and the case studies, we use the Empirical Bayes paradigm, that is, a data-
based approach in which the function is modeled as a GP43,44 (see Appendix A for details).
We denote the sequence of the input coordinates of themeasured/observed response up to time 𝑡 ∈ ℕ as𝑋𝑡 = {𝐱1, … , 𝐱𝑡},

where 𝐱𝑖 ∈  is the coordinate vector that defines the position of the sample observed at iteration 𝑖 = 1, … , 𝑡. We also
denote the observed response corresponding to the position 𝐱𝑖 , by 𝑦𝑖 , given by 𝑦𝑖 = 𝑓(𝐱𝑖) + 𝜖𝑖 , where 𝜖𝑖 ∼  (0, 𝜎2) are
independent, and identically distributed (i.i.d.) noises. Thus, the unknown function 𝑓 is measured through the noisy
observations 𝑦1, … , 𝑦𝑡.
For notational convenience, we define observed values 𝐲𝑡 ∶= (𝑦1, … , 𝑦𝑡)

⊤, 𝑓𝑡 ∶= 𝑓(𝐱𝑡), and true function values as
𝒇𝑡 ∶= (𝑓1, … , 𝑓𝑡)

⊤. Additionally, 𝑓(𝐫) is used to indicate the estimated value of the function at each point 𝐫 ∈ .

3 PROPOSED SEQUENTIAL SAMPLING: SIEVE

As discussed earlier, existing sequential sampling methods require the estimation of the function at each iteration, which
reduces their computational efficiency. In contrast, Sieve exploits the available observations to obtain information about
the unknown function behavior, without having to estimate an intermediate surrogate function.
The intuition behind our approach comes from two observations: First, as can be seen in Figure 1—left panel, the

uncertainty of the surrogatemodel is likely small in the interval of two close observations in the domain, and it increases as
observations get farther apart.43 Second, a large gap between the responses of two neighbor observations, that is, |𝑦𝑖 − 𝑦𝑗|,
may indicate a higher local variation, and hence,more observations are needed in that interval (see Figure 1—right panel).
We define the Sieve sampling criterion by combining these two observations. Specifically, at each sampling iteration 𝑡,

we search for an interval that maximizes the uncertainty proxy function given by

(𝑖∗, 𝑗∗) = argmax(𝑖,𝑗)∈𝑡
𝑆
(𝑡)
𝑖,𝑗

∶= argmax(𝑖,𝑗)∈𝑡
{‖𝐱𝑖 − 𝐱𝑗‖ + 𝜆|𝑦𝑖 − 𝑦𝑗|}, (1)
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3256 BENEVENTO et al.

F IGURE 1 Visualization of the intuition. The left panel shows the estimation uncertainty in terms of variance. The right panel shows
the amplitude of the local variation of the function (in red) being equal to the distance between the corresponding observed points.

where 𝑖, 𝑗 ∈ {1, … , 𝑡}, and 𝑡 = {(𝑖, 𝑗)| ∃ no observation between 𝐱𝑖 and 𝐱𝑗 up to 𝑡 observations } and (𝑖∗, 𝑗∗) represent the
end-points of the optimal interval in 𝑡, and 𝜆 ≥ 0 is a parameter to scale the term |𝑦𝑖 − 𝑦𝑗| such that the two terms ‖𝐱𝑖 −
𝐱𝑗‖ and |𝑦𝑖 − 𝑦𝑗|will have the samemagnitude for the optimization in Equation (1). Thus for the sake of optimization, we
assume that the two terms have the same importance. As a guideline, we can use the following optimization to efficiently
approximate a proper value for 𝜆,

𝜆 = max
(𝑖,𝑗)∈𝑡

|𝑦𝑖 − 𝑦𝑗|
‖𝑥𝑖 − 𝑥𝑗‖ . (2)

To find the optimal solution for the foregoing problem, one crude way is to check all possible triples of points corre-
sponding to iterations (𝑖, 𝑗, 𝑘) to see if 𝐱𝑘 is co-linear with 𝐱𝑖 and 𝐱𝑗 . However, this approach is not scalable, especially for
higher dimensions. For simplicity, we first describe the proposed algorithm for the one-dimensional case, and then we
extend it to higher dimensions.
Suppose the location of observed points 𝐱1, … , 𝐱𝑡 ∈ ℝ are arranged in increasing order such that 𝐱(𝑖) ≤ 𝐱(𝑖+1) for all

𝑖 ∈ {1, … , 𝑡 − 1}, we only need to compute the scalars 𝑆(𝑡)
(𝑖),(𝑖+1)

, (for 𝑖 ∈ {1, … , 𝑡 − 1} in Equation 1), for neighboring intervals
determined by 𝐱(𝑖) ≤ 𝐱(𝑖+1). 𝑆(𝑖),(𝑖+1) denotes the uncertainty proxy function for ordered observations 𝐱(𝑖) and 𝐱(𝑖+1). After
finding the optimal interval (𝑖∗, 𝑗∗), the next sampled point is selected in the midpoint of this interval, that is,

𝐱𝑡+1 =
𝐱𝑖∗ + 𝐱𝑗∗

2
. (3)

Then, a realization of the function in 𝐱𝑡+1 is observed and recorded as 𝑦𝑡+1. In the 𝑑-dimensional (𝑑 ≥ 2) case,
the neighbor points are determined by their closeness to one another, in the domain. The definition of closeness in
two or more dimensions is given by leveraging on the Delaunay triangulation. The Delaunay triangulation or tes-
sellation, commonly used in computational geometry,45 is a partition of the domain into 𝑑-simplices whose vertices
are the observed points. The circum-hypersphere of any resulting 𝑑-simplex contains no observed point. Such a par-
tition can be made iteratively, that is, by adding one point at time resembling the iterative nature of Sieve. It is
known that in a Delaunay triangulation, the nearest neighbor graph is a subgraph of the Delaunay triangulation.46
This implies that the closest neighbor to any observed point is on an edge in the Delaunay triangulation, which
can help speed up the Sieve. In fact, having pair of points whose separation distance is minimum allows to bal-
ance the contribution of ‖𝐱𝑖 − 𝐱𝑗‖ and |𝑦𝑖 − 𝑦𝑗| in Equation (1), that otherwise will shift in favor of ‖𝐱𝑖 − 𝐱𝑗‖ if
it is too large. Figure 2 shows the difference between two possible triangulation of 17 points. The right one is the
Delaunay triangulation. Figure 3 shows an example of the Delaunay triangulation of 10 points in a three-dimensional
domain.
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BENEVENTO et al. 3257

F IGURE 2 Arbitrary triangulation of 17 points (left) versus Delaunay triangulation (right).

F IGURE 3 Triangulation of 10 points in a three-dimensional domain.

ALGORITHM 1 Delaunay tessellation.

Initialization: Let {𝑝1, … , 𝑝𝑘} be a set of points forming a nondegenerate 𝑑-simplex.
Addition of a new point: Given a list of 𝑘 + 1 circumspheres and circumcenters and a new point 𝑝 to be added:
Flag the circumspheres that includes 𝑝;
remove the edges that belong to two or more flagged circumspheres;
connect 𝑝 with the points lying on the flagged circumspheres;
update the list of circumspheres and circumcenters.

A pseudo-code of the Delaunay triangulation algorithm is given in Algorithm 1. To illustrate the algorithm,
a two-dimensional step-by-step example is given in Figure 4. More details on the triangulation are given in
Appendix B.
At each sampling iteration of the Sieve, once the triangulation is completed, the quantity 𝑆𝑖,𝑗 is computed if the points

𝐱𝑖 and 𝐱𝑗 share a side of a 𝑑-simplex. By construction, if the middle point of (𝐱𝑖, 𝐱𝑗), that is, (𝐱𝑖 + 𝐱𝑗)∕2, is in the set of
the observed points, then 𝐱𝑗 and 𝐱𝑖 do not share any side of the simplices, and thus, they are not neighbors. This fact
significantly reduces the number of pairs that should be checked to find the optimal interval. After the optimal interval in
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3258 BENEVENTO et al.

(A) Triangulation of 5
points

(B) Flagging of the spheres including
the new point (in red)

(C) Removal of the edges belonging to
more than one circumspheres

(D) Connection of the new
point with the points ly-
ing on the flagged circum-
spheres

(E) Visualization of the property of the Delaunay triangulation: each circumsphere
does not contain any point in its interior

F IGURE 4 Example of addition of a new point in the triangulation process.

Equation (1) is found, the next point to be sampled is given by Equation (3) corresponding to the midpoint of the interval
(𝑖∗, 𝑗∗).

Remark 1. The proposed sampling procedure, Sieve, selects a new point inside the intervals bounded by the avail-
able observations. Therefore, to analyze the whole domain, initial points need to be placed on the boundary points of
the domain.

This implies that the number of initial points, denoted by 𝑣 should be at least 𝑑 + 1.
The summary of all steps of the Sieve procedure is formalized in Algorithm 2. The algorithm is run for 𝑁

iterations, determined based on the available budget. Note that the function is only estimated at the end of the
procedure with all the data at hand. The details describing the estimation of a function using GP are given in
Appendix A.
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ALGORITHM 2 Sequential Sampling with Interval-based Exploration and Value Estimation (Sieve).

Initialization: Let 𝑁 be number of data points to be sampled. Select 𝐱1, … , 𝐱𝑣 in the vertices of the domain and acquire
𝑦1, … , 𝑦𝑣 ; run Algorithm 1 to triangulate the domain by using 𝐱1, … , 𝐱𝑣

for 𝐭=𝐯 + 𝟏,… ,𝐍: Given 𝐱𝟏, … , 𝐱𝐭 and 𝑦1, … , 𝑦𝑡 and properly chosen value for 𝜆:
Sampling: For each pair of indices (𝐢, 𝐣) corresponding to two neighbors 𝐱𝑖 , and 𝐱𝑗 , compute

(𝐢∗, 𝐣∗) = 𝐚𝐫𝐠𝐦𝐚𝐱
𝑖,𝑗∈𝑡

‖𝐱𝑖 − 𝐱𝑗‖ + 𝜆|𝐲𝑖 − 𝐲𝑗|
and select

𝐱𝑡+1 =
𝐱𝑖∗ + 𝐱𝑗∗

𝟐
.

Measurement: observe the new data point
𝐲𝑡+1 = 𝐟 (𝐱𝑡+1) + 𝝐𝑡+1

Triangulation: Locally recompute the triangulation with 𝐲𝑡+1 via Algorithm 1
end
Estimation: Compute an estimation 𝐟 for the underlying function, using𝐍 observed data points.

4 THEORETICAL AND COMPUTATIONAL ANALYSIS OF SIEVE

In this section, we provide some technical details related to Sieve. Specifically, we analyze the computational complexity
of the proposed procedure and study its convergence.

4.1 Complexity analysis

Solving the optimization problem in Equation (1) is the main contributor to the complexity of the Sieve, which requires
the triangulation of a set of 𝑁 points. The Delaunay triangulation is an iterative process whose total complexity is
𝑂(𝑁(2𝑑−1)∕𝑑).47 Computing the scalars 𝑆𝑖,𝑗 corresponding with the number of pairs of neighbor points, which is the same
as the number of edges of the triangles, is linear in 𝑁.48 Given the array of scalars 𝑆𝑖,𝑗 , finding the maximum value has
linear complexity. Therefore, the overall complexity of the Sieve algorithm is 𝑂(𝑁(2𝑑−1)∕𝑑). Note that most of the exist-
ing sequential sampling methods require fitting a GP at each iteration, in addition to optimizing the sampling criterion.
The complexity of only the GP part at iteration 𝑡 is 𝑂(𝑡3).43 Hence, the overall GP complexity for𝑁 sequentially observed
points is𝑂(𝑁4), which is significantly larger than the worst-case complexity (for the large values of 𝑑) of the Sieve,𝑂(𝑁2).
Additionally, the complexity of optimizing the sampling criterion in most of the existing methods is worse than the linear
time, the complexity of the optimization algorithm in Sieve. As mentioned before, the experiment time plays a vital role
in selecting a proper approach.When the experiment time is low, the complexity of sampling and fitting a GPwill be dom-
inant in the total time of the process. In this case, the Sieve approach is advantageous since it requires only one function
estimation, and thus, overall computation time will be low. The overall advantage of Sieve in terms of time complexity is
also demonstrated in the simulations in Section 5. For completeness, we note that the Delaunay triangulation for a two-
dimensional domain can be computed much faster by using Ref. 49 Theorem 9.12 in Ref. 49 indicates that the Delaunay
triangulation of a set of 𝑁 points on a plane can be computed in the logarithmic expected time, that is, 𝑂(𝑁 log𝑁).

4.2 Convergence results and consistency

In this section, we show that the estimation error of the function 𝑓 obtained by the samples collected according to the
Sieve converges to zero as sample size, 𝑁 increases. In other words, loosely speaking, 𝑓 is a consistent estimator of 𝑓.
Clearly, the consistency of 𝑓 depends on the posterior variance of the GP estimator. The behavior of the posterior variance
has been investigated when the data are sampled randomly in the domain.50,51 However, this is not trivial for the case
when the samples are not i.i.d. or uniformly sampled. The result presented in this section shows the consistency of the
posterior variance when the points are sampled via Sieve. The result is valid under the following assumption.
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3260 BENEVENTO et al.

Assumption 1. The unknown function𝑓 is 𝐿-Lipschitz and continuous, that is,∀𝐱1, 𝐱2 ∈ , ∃𝐿 > 0 𝑠.𝑡.|𝑓(𝐱1) − 𝑓(𝐱2)| ≤
𝐿‖𝐱1 − 𝐱2‖.
It is worth mentioning that the Lipschitz continuity holds for many functions, including convex functions with closed

domains and polyhedral functions. Moreover, when the domain is a compact set, every continuously differentiable
function is also Lipschitz continuous.
Using the Lipschitz continuity, one can write |𝑦𝑖 − 𝑦𝑗| = |𝑓(𝐱𝑖) + 𝜖𝑖 − 𝑓(𝐱𝑗) − 𝜖𝑗| ≤ |𝑓(𝐱𝑖) − 𝑓(𝐱𝑗)| + |𝜖𝑖 − 𝜖𝑗| ≤

𝐿‖𝐱𝑖 − 𝐱𝑗‖ + |𝜖𝑖 − 𝜖𝑗|, ∀𝑖, 𝑗 ∈ {1, … , 𝑡}.
By the definition of the noise and the linearity of expectation, it can be seen that 𝜇(‖𝜖𝑖 − 𝜖𝑗‖) = 0 and the bound can

be approximated by 𝔼(|𝑦𝑖 − 𝑦𝑗|) ≤ 𝐿𝔼(‖𝐱𝑖 − 𝐱𝑗‖). Moreover, Lipschitz continuity can be used to bound 𝑆
(𝑡)
𝑖,𝑗

for all 𝑡 as
follows.

Lemma 1. The scalars 𝑆(𝑡)
𝑖,𝑗
can be upper bounded as

𝑆
(𝑡)
𝑖,𝑗

≤ (𝜆𝐿 + 1)𝑟(),

where 𝑟() is the diameter of the domain.
Proof.

𝑆
(𝑡)
𝑖,𝑗

≤ max
(𝑖,𝑗)∈𝑡

‖𝐱𝑖 − 𝐱𝑗‖ + 𝜆 max
(𝑖,𝑗)∈𝑡

|𝑦𝑖 − 𝑦𝑗|
≤ max

(𝑖,𝑗)∈𝑡

‖𝐱𝑖 − 𝐱𝑗‖ + 𝜆𝐿 max
(𝑖,𝑗)∈𝑡

‖𝐱𝑖 − 𝐱𝑗‖
= (𝜆𝐿 + 1) max

(𝑖,𝑗)∈𝑡

‖𝐱𝑖 − 𝐱𝑗‖
≤ (𝜆𝐿 + 1)𝑟().

□

This result ensures that the maximum computed in Equation (1) not only exists but is limited by a constant. The result
is also used to prove the main theorem of this section, which states that if the points of the domain are sampled via Sieve
and then estimated through a GP, the posterior mean of the estimator 𝑓 goes to 0, that is, it converges to the true density
function 𝑓.

Theorem 1. Suppose Assumption 1 holds for the underlying true function 𝑓. Consider a Gaussian Process with isotropic,
decreasing covariance kernel 𝐾(⋅), an input training data set 𝔻𝑥

𝑇
= {𝑥𝑡}

𝑇
𝑡=1 collected via Sieve and observation noise with

variance 𝜎2. Then, for the posterior mean of the estimator 𝑓, we show that lim𝑡→∞ 𝜎2
𝑡,𝑓
(r) = 0; for all r ∈ .

We include the proof of this theorem in Appendix C.

5 EVALUATION AND COMPARISON USING SIMULATIONS

In this section, we evaluate the performance of the proposed Sievemethod using several simulation studies and compare
it with three existing sequential samplingmethods, namely, the sequential Expected Improvement52 (see also Ref. 53) des-
ignated by “EI,” the sequentialMinimumEnergy30 designated by “ME” design criterion and the IntegratedMean-Squared
(prediction) Error for Sequential Designmethod54,55 designated by “IMSE.” The Expected Improvement method seeks for
an input value 𝑥 that maximizes the expected value of the improvement function, where improvement function is a random
variable which for any input 𝑥, measures how much the updated function will do better than the best value observed so
far. On the other hand, the Minimum Energy design approach considers design points as particles with different charges
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BENEVENTO et al. 3261

F IGURE 5 True function and estimated function after 5, 10, and 20 steps of Sieve.

but all with the same sign. By choosing a proper charge function, this approach tends to find design points that minimize
the total energy of the system of particles. The Integrated Mean-Squared Error for the Sequential Design method is based
on the definition of the Integrated Mean-Squared Error, a metric used to assess the accuracy of a statistical prediction
model. It might be minimized for choosing where to collect additional data, meaning to improve the accuracy of predic-
tions across the entire input space. As in the other sequential method, the idea is to focus data collection in regions where
the model is currently less accurate.
The accuracy of the estimation, measured by Relative Mean Square Error (RMSE), and the total elapsed time, are used

as comparative measures. We perform the comparative study for functional estimation using sequential sampling. Addi-
tionally, to numerically study the scalability of the Sieve to the function dimensions, we perform a sensitivity analysis for
different dimensions and report the computation of time of the Sieve for selecting the samples. For all of the following
experiments, we tried possible values for 𝜆 and based on results, it turns out that 𝜆 = 1 is the best value for all experi-
ments. This means the parameter 𝜆 can be omitted from the formula (1). Moreover, we usedMatérn covariance function
with hyperparameters log(1∕4) and 0.

5.1 Functional estimation

We begin with a simple one-dimensional example to illustrate how the proposed Sieve works. Specifically, we consider
𝑓 ∶ [−8; 8] ⊂ ℝ → ℝ, 𝑓(𝑥) =

√
(𝑥2 + 5) + sin(𝑥).

We generate noisy observations from this function with the standard deviation of 𝜎 = 0.05. We consider three different
sample budgets 5, 10, or 20 points collected by using the Sieve, anduse aGPmodel to estimate the function. To estimate the
hyper-parameters of the GP model, we use a MATLAB package developed by Rasmussen and Williams.56 The sampled
points and the estimated function for each budget are shown in Figure 5. From this figure, we see the accuracy of the
fitted function significantly increases as the budget increases. When 𝑁 = 5, the locations of sampled points indicate that
Sieve first picks points whose corresponding responses have large differences while trying to cover the whole domain. A
similar observations can bemade for𝑁 = 10 and𝑁 = 20 cases. This is compatible with the intuition behind the sequential
sampling optimization problem in Equation (1).
We also compare the Sieve with EI and ME for 𝑁 = 20. Figure 6 shows the estimation of the function along with the

selected points for each method. As can be seen from the figure, the difference among the three methods is not visually
identifiable. In order to quantify the accuracy of themethods, we compute the average RMSE at each iteration of sampling

given by 𝐴𝑅𝑀𝑆𝐸(𝑡) =
1

𝑁

∑𝑁

𝑡=1

(∑𝑅

𝑖=1

(
𝒇𝑡(𝐱𝑖) − 𝒇̂𝑡(𝐱𝑖)

)2
∕
∑𝑅

𝑖=1
𝒇𝑡(𝐱𝑖)

)2
, where 𝑦𝑖 is the true value of the function, 𝒇̂𝑡(𝐱𝑖)

is the predicted value of the function at point 𝐱𝑖 after 𝑡 iterations, and 𝑅 is the total number of points in a grid at which
the function is evaluated. The ARSME values for different sampling budgets with 𝑅 = 300 are plotted in Figure 7. Figure 8
also shows the elapsed time for the selection of the points (in seconds) against the budget. As can be seen from the figures,
although the performance of EI and Sieve in term of accuracy is comparable, the Sieve is about 103 faster than both
the EI and ME for small sample sizes. This difference is more profound when the sample size increases. For example,
for 𝑁 = 100, Sieve is 105 and 102.5 faster than EI and ME, respectively. This is because unlike the benchmarks, Sieve’s
computational complexity for the one-dimensional case is linear in 𝑁, which is clear in Figure 8. Both the EI and Sieve
outperform the ME in terms of prediction accuracy.
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3262 BENEVENTO et al.

F IGURE 6 True versus estimated functions using 20 observations.

F IGURE 7 Performance comparison in terms of the ARMSE.

F IGURE 8 Comparison between the elapsed time of the three methods.
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BENEVENTO et al. 3263

F IGURE 9 Distribution of the observed points in the two-dimensional domain. Upper panel: 50 samples on contour lines. Lower panel:
100 samples the 3D plot.

F IGURE 10 Performance comparison in terms of the ARMSE.

In the second example, we consider a two-dimensional function, which was also used in Ref. 57 to validate
the Expected Improvement algorithm. 𝑓 ∶ [0; 1]2 ⊂ ℝ2 → ℝ, 𝑓(𝑥1, 𝑥2) = −5(1 − (2𝑥1 − 1)2)(1 − (2𝑥2 − 1)2)(4 + 2𝑥1 −

1)
(
0.05(2𝑥1−1)

2
− 0.05(2𝑥2−1)

2
)2
. Similar to the first example, we use the Sieve as well as other benchmarks to sam-

ple and estimate the unknown function using different sample budgets ranging from 5 to 100. The observed responses
are sampled according to Equation (3) where the standard deviation of the noise is 𝜎2 = 0.05. Figure 9 shows the
distribution of points sampled by using the three methods for 𝑁 = 100. As observed from the figure, the Sieve
has a smaller number of points collected on the flat regions of the function indicating that it uses the sample
more effectively.
The ARMSE for 𝑅 = 300 and elapsed time curves are also shown in Figures 10 and 11, respectively. The Sieve and ME

show a similar accuracy, while they both outperform the EI. However, the Sieve has substantially less computational time
than the benchmarks for all sample budgets. Similar to the 1D example, as the sample size increases the elapse time gap
between the Sieve and the benchmarks increases.
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3264 BENEVENTO et al.

F IGURE 11 Comparison between the elapsed time of the three methods.

In the third example, we consider the Levy function that can be defined in 𝑑 dimension as follows:

𝑓(𝑥) = 𝑠𝑖𝑛2(𝜋𝑤1) +

𝑑−1∑
𝑖=1

(𝑤𝑖 − 1)2[1 + 10𝑠𝑖𝑛2(𝜋𝑤𝑖 + 1)] + (𝑤𝑑 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑤𝑑)],

where𝑤𝑖 = 1 +
𝑥𝑖−1

4
, ∀𝑖 ∈ {1, … , 𝑑}. For this example,we consider another benchmark, namelywe consider the Integrated

Mean-Squared (prediction) Error (IMSE) for Sequential Design method.54,55 This approach seeks to find sample points to
minimize the IMSE function defined as

𝐼𝑀𝑆𝐸 = ∫
𝐷

𝑀𝑆𝐸(𝑥) 𝑑𝑥,

where𝑀𝑆𝐸(𝑥) represents the mean squared error function and 𝐷 represents the domain. We compare the Sieve as well
as other benchmarks using different sample budgets ranging from 1 to 100. The observed responses are sampled according
to Equation (3) where the standard deviation of the noise is 𝜎2 = 0.5. In order to compare the accuracy, we compute the

root mean square error, RoMSE =

√
(
∑𝑅

𝑖=1

[
𝑦𝑖 − 𝒇̂𝑅(𝐱𝑖)

]2
)∕𝑅. The RoMSE curves for 𝑅 = 441 are shown in Figure 12. The

Sieve, IMSE, and EI show a similar accuracy, while they all outperform theME. However, the Sieve has substantially less
computational time than the benchmarks for all sample budgets. Similar to the 1D example, as the sample size increases
the elapse time gap between the Sieve and the benchmarks increases. The last example has been implemented in R by
leveraging on the packages deldir, DiceOptim, deepgp, and mined.58–61
Moreover, to compare the Sieve with a one-shot algorithm, we perform two additional simulation studies using the

foregoing function and report their results in Appendix D. Specifically, we consider the one-shot sampling approaches
including the Latin Hypercube, and a simplified version of Sieve where we do not exploit the observed function val-
ues. As can be implied from the results, the Sieve significantly outperforms both of these methods, which indicates the
importance of exploiting the information of the observed samples at each step of sampling.

5.2 Scalability analysis with respect to dimensions

One typical concern with the sequential sampling method is the scalability of the method as the problem dimensions
increase. As we discussed in Section 4, the computational complexity of the Sieve is 𝑂(𝑁2−1∕𝑑), which makes it quite
scalable with respect to dimension. To verify this numerically, we run a sensitivity analysis where we compute the elapsed
time for various dimensions using the Sieve ranging from 1 to 45. We use a symmetric function on a square domain, given
by, 𝑓 ∶ [0, 1]𝑑 → ℝ: 𝑓(𝐱) = 5 ⋅ exp

{∑𝑑

𝑖=1
(−𝑥2

𝑖
)
}
. We used the vertices of the domain [0, 1]𝑑 to initialize the algorithm,
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F IGURE 1 2 Performance comparison in terms of the RoMSE.

TABLE 1 Method performance for different domain sizes.

𝒅 = 𝟑 𝒅 = 𝟓 𝒅 = 𝟕

RoMSE after 150 iters 0.0049 0.0721 0.2779
Triangulation of 150 points 0.035065 s 0.140633 s 7.196230 s

F IGURE 13 Comparison of methods for Levy function for 𝑑 = 3 (left figure), 𝑑 = 5 (middle figure), and 𝑑 = 7 (right figure) in terms of
RoMSE.

and then we collected 150 points according to the Sieve. In Table 1, we show the elapsed time as well as the RoMSE for
𝑑 = 3, 5, 7. For example, in the seven-dimensional case, it takes the algorithm only about 7 s to select the location of all
samples. As the results show, the proposed method is quite scalable to higher dimensions.
Lastly, we perform a comparison between Sieve and the other benchmarks in three different dimensions: 3, 5, and 7

with application on the Levy function. The performances are shown in terms of RoMSE in Figure 13. It is not surprising
that EI performs better under the same sample size. The real concern is that, while in greater dimensions the SIEVE
requires little time to iteratively compute the new data, the other methods are extremely slower. In particular, SIEVE can
compute the newpoints in order of secondswhile the other twomethods could require severalminutes for each newpoint.
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3266 BENEVENTO et al.

6 CASE STUDY

In this section, we further validate our proposed method through two real case studies. The first case study focuses on an
engineering application of Sieve. Specifically, the engine calibration problem is discussed in which the proposed sequen-
tial sampling is used to find an optimal setting for diesel engines. In the second case study, we discuss how Sieve can be
used for exploring an unknown spatial domain using robots in hazardous environments.

6.1 Engine calibration case study

In the last decade, the increase of legal requirements for exhaust emissions62,63 has led to a continuous increase of com-
plexity in internal combustion engine calibration, which is the process of experimentally finding the optimal set of control
parameters in the engine. For optimal engine operations, the Engine Control Unit (ECU), an integrated computing device
used on engines to provide control signals to the actuators, contains sets of look-up tables that store the control parameters
for each actuator over the operating range of the engine. These look-up tables are shown by maps, each represent-
ing a two-dimensional function of the engine speed and torque (the engine operating point). By analyzing the signals
acquired from the sensors, engineers can calibrate the actuator parameters stored in the ECU to optimize the engine per-
formance (e.g., minimizing fuel consumption, emissions, vibrations, and maximizing hardware protection). These tasks
are performed manually on the engine test bench. However, due to several sensors and actuators and hundreds or even
thousands of operating points, a large number of resources (labor, fuel, and time) are required before an optimal param-
eter setting is determined. Therefore, a sequential sampling approach that reduces the number of tests is vital for engine
calibration.9,10,64,65
We utilize the proposed Sieve algorithm to calibrate a Diesel engine with a displacement of 2000cc and four cylinders.

In particular, the calibration of two actuator maps is considered: (i) the air mass of the combustion process and (ii) the
boost pressure. For each engine operating point, the calibration objective consists of obtaining the optimal air mass and
boost pressure that results in the best 𝛾 signal (the air/fuel ratio). Thus, it regulates the lambda value to its stoichiometric
value (𝛾 = 1) to achieve a maximum conversion efficiency of the catalytic converter, as required by legal requirements for
exhaust emissions.
For both actuator signals, actual data were obtained from a test plan covering the whole engine operating range over a

set of 256 engine operating points. The points have been obtained by combining values of engine speed and torque ranging
in [1000, 4000] rpm and [10, 50] Nm, respectively (16 values of engine speed to 16 values of torque). For each operating
point, the optimal air mass and boost pressure are recorded. Using these optimal values, we can create an emulator of
each calibrationmap by fitting a GPwith the 256 available data. We use the response surface generated by these emulators
as the true underlying function. However, in reality, performing calibration over such a large number of engine operating
conditions is not a cost-effective procedure. Furthermore, using such a test plan to cover the whole engine operating range
may lead to unnecessary or redundant information for optimization purposes. Therefore, we use Sieve to sequentially
sample only 50 points. Figures 14 and 15 show the map emulator of air mass and boost pressure, respectively. In both
figures, examples of the sampled points for iterations 10, 20, and 50 iterations are also illustrated.
We also compare the accuracy of the surrogate models estimated based on the points sampled by using the

Sieve, EI and by ME by repeating the experiment 10 times and computing the root mean square error, RoMSE =√
(
∑𝑅

𝑖=1

[
𝑦𝑖 − 𝒇̂100(𝐱𝑖)

]2
)∕𝑅. For this purpose, we compute the error over an equidistant grid of size 57 × 36 operating

points in the first experiment and 30 × 42 operating points in the second experiment. The RoMSE boxplots of the air mass
and boost pressure for all three methods are given in Figures 16 and 17, respectively. The RoMSE boxplots of both the
air mass and boost pressure indicate both the Sieve and EI with a similar accuracy outperforms the ME. For the boost
pressure, however, the interquartile range of Sieve is larger than that of the benchmarks.
As previously mentioned, the main advantage of the Sieve is its computational efficiency. Tables 2 and 3 show the

computational time of each method for both cases. As can be seen from the tables, Sieve can complete the sequential
sampling procedure in milliseconds, while it takes more than 500 s for EI and 4000 s for ME to determine the points’
locations. To implement a point-by-point calibration strategy, it would be necessary to adopt a fast sequential sampling
approach, minimizing the engine idle time when running on the test bench. From our results, we conclude that Sieve
can effectively be implemented as an algorithm to determine the ECU parameters with low test cost, less human effort,
and via a point-by-point engine calibration strategy.
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BENEVENTO et al. 3267

F IGURE 14 Air mass map: iterative selection of 10, 20, and 50 sampled points.

6.2 Optimal exploration of an unknown environment

The problem of exploration and coverage of an unknown spatial field by a mobile robot has extensively been stud-
ied in many applications including autonomous environmental monitoring37,66 and autonomous search-and-rescue
missions.39,67 In this context, the optimal coverage is referred to as placing/guiding a robot to a point in the domain
 where it can best model an event whose importance is described by the density function of the field 𝑓.68,69 For
example, a robot may be asked to reconstruct the air quality map by detecting the pollution level in a certain area and
selecting the best monitoring positions in this area.13 In another scenario, a moving sensor can be used to reconstruct
and also predict a spatio-temporal signal, finding application in climate change detection, weather forecasting, and water
pollution mapping.70 Typically, the solution of the problem is computed under the assumption that the density function
is known.71,72 Recently, however, Refs. 3, 73 studied the scenario where the density function is unknown and is estimated
using a sequential sampling approach. The coverage problem can be formalized as an optimization problem where the
objective function, the so-called locational cost, is given by68:

𝓁(𝑓, 𝐱) = ∫
𝑞∈

‖𝑞 − 𝐱‖2𝑓(𝑞)𝑑𝑞, (4)

where 𝐱 represents the location of the robot. When the function 𝑓 is known a local solution of the locational problem,
denoted by 𝑐𝑚(𝑓), is the weighted center of mass of the domain, that is,

𝑐𝑚(𝑓) =
1

∫ 𝑓(𝑞)𝑑𝑞 ∫ 𝑞𝑓(𝑞)𝑑𝑞.
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3268 BENEVENTO et al.

F IGURE 15 Boost pressure map: iterative selection of 10, 20, and 50 sampled points.

F IGURE 16 Box-plots of the RoMSE measures in the air mass case.

As in the search-and-rescue missions, time is of the essence, an agile sequential sampling procedure like the Sieve
would be vital in the success of the mission. Additionally, the robot has limited battery and computing capabilities. There-
fore, reducing the time needed to compute the next position would be critical. In this case study, we use the Sieve
to guide a mobile robot to explore a domain and collect data for estimating the density function 𝑓 and leading the
robot to the optimal solution of the estimated coverage problem, that is, 𝑐𝑚(𝑓). To this end, we utilize the Robotarium
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BENEVENTO et al. 3269

F IGURE 17 Box-plots of the RoMSE measures in the boost pressure case.

TABLE 2 Method performance when applied to the air mass map.

Expected improvement Minimum energy design SIEVE
Mean of the elapsed time (s) 539.4888 4125.6 0.1355
Mean of the RMSE 0.0258 0.7131 0.0168
Median of the RMSE 0.0137 0.0992 0.0095
Bias of the RMSE 0.0377 0.3605 0.0198

The bold values represent the minimum of each row and highlight which method performed better in the simulations.

TABLE 3 Method performance when applied to the boost pressure map.

Expected improvement Minimum energy design SIEVE
Mean of the elapsed time (s) 562.0488 59089 0.1880
Mean of the RMSE 0.0119 0.0190 0.0301
Median of the RMSE 0.0127 0.0170 0.0124
Bias of the RMSE 0.0098 0.0179 0.0897

The bold values represent the minimum of each row and highlight which method performed better in the simulations.

(https://www.robotarium.gatech.edu)74 platform of Georgia Tech’s Institute for Robotics and Intelligent Machines. We
perform an experiment with a robot able tomove according to a script created by using the Sieve and previously uploaded
on the platform. The density function used in the experiment is 𝑓 ∶ [−1, 1]2 → ℝ:

𝑓(𝑥) = 3(1 − 𝑥1)
2𝑒−𝑥

2
1
−(𝑥2+1)

2
−
1

3
𝑒−(𝑥1+1)

2−𝑥2
2 +

7

2
− 10

(𝑥1
5

− 𝑥3
1
− 𝑥5

2

)
𝑒−(𝑥

2
1
−𝑥2

2
).

The robot starts from a set of initial positions on the vertices of a squared domain. Then, the robot is guided by the Sieve
to a newposition and it senses a new value of the density function in the newposition.When the number of sampled points
reaches the prespecified budget, the density function is estimated and the robotmoves to theweighted center ofmass 𝑐𝑚(𝑓)
thatminimizes the locational cost. A video shows that the complete experiment is available in the online appendix (https://
robotzoo-video.ecs.gatech.edu/owncloud/index.php/s/Oox8PQCe0QdHaUL/download). For examples, three snapshots
of the process at the initial stage, after collecting 10 points, and at the final stage, are shown in Figure 18. The left panels are
the snapshots of the experiment performed in theRobotariumplatform. The right panels represent the same experiment in
simulations along with the contour lines of the estimated function 𝑓 (large square), and actual function 𝑓 (small square).
Notice that the final solution is almost the same as the solution of the optimization problem (4).
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(A)Initial configuration: at the beginning, the robot is placed in an initial point x. The top-right squares show the contour lines of the true density function

(B) The robot explores the domain using the SIEVE. The positions explored by the robot are depicted in red. After exploring 10 points, an estimation of the
density function is computed. The contour line of the estimated function is shown in the left square of the image

(C) After collecting 50 points, the density function is estimated, and the optimal coverage w.r.t. the estimated function is computed.

F IGURE 18 The solution of the optimal coverage problem with initially unknown density function by a moving robot in the
Robotarium (left) and simulation (right).

Finally, the distance between the optimal solution of Equation (4) and its estimate ‖𝑐𝑚(𝑓) − 𝑐𝑚(𝑓)‖ is computed. This
quantity as well as the RSME of the estimation of the function 𝑓 after 50 iterations is also computed for the Sieve as
well as other benchmarks. To have a fair comparison, all methods start from the same set of initial points. The results
are reported in Table 4. From the table, it is clear that the Sieve has the best results both in terms of the accuracy of the
estimated function and the accuracy of the optimal solution. The Expected Improvement has comparable results, while
theMinimumEnergy Design is the least accurate. The results show a similar behavior as seen in the previous simulations
in terms of the time. The Sieve is by far the fastest method with 0.91 s. Notice that the time reported in the table is the
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TABLE 4 Optimal coverage.

Expected improvement Minimum energy design SIEVE
‖𝑐𝑚(𝑓) − 𝑐𝑚(𝑓)‖ 1.2516 ⋅ 10−5 0.0031 4.6403 ⋅𝟏𝟎−𝟔

RSME 0.0088 0.0098 0.0088
Elapsed time 214 s 1981 s 0.91 s

The bold values represent the minimum of each row and highlight which method performed better in the simulations.

elapsed time in simulation. In the real experiment, one should add the time used by the robot to move from a point to the
other, thus the overall time depends on the robot’s speed.

7 CONCLUSIONS

In many applications, estimating a function by exploring its domain should also consider the exploration cost, acquisition
of new data, and the required computational time. In this paper, we proposed a new Sieve, capable of efficiently exploring
space and accurately estimating an unknown function. In contrast with the existing sequential sampling methods, the
Sieve is simple and fast as it does not require the estimation of the function after sampling a new point. To corroborate
the theoretical results, we applied the proposed method to several simulated examples. Furthermore, we showed the
effectiveness of the Sieve in two case studies of the engine calibration scenario and optimal field coverage using mobile
robots. Both the simulations and case studies showed that the accuracy of the estimated function by using the Sieve is
comparable with that of other benchmarks, while the Sieve is considerably faster. In this paper, we focused on the single-
agent sequential sampling problem. Extension of this approach to a multi-agent setting would be a potential direction
for future research. Furthermore, within our approach, we opt for the simplicity of selecting new points at the midpoint
of each edge. However, as part of our future research objectives, we aim to investigate the possibility of choosing sample
points from the internal regions of the simplices.
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APPENDIX A: EMPIRICAL BAYES FRAMEWORK
In this section, we want to show a probabilistic model, based on a centralized version of the Empirical Bayes paradigm
proposed in Ref. 44, that allows us to suitably fuse the performed measurements in order to estimate the spatial field.
From the assumption that noises are i.i.d. Gaussian variables, it follows that

𝑝(𝐲𝑡|𝒇𝑡) =

𝑡∏
𝑖=1

𝑝(𝑦𝑖|𝑓𝑖), 𝑝(𝑦𝑖|𝑓𝑖) ∼  (𝑓𝑖, 𝜎
2).

Without loss of generality, we can assume that the function 𝑓 is a Gaussian process with parametrizedmean and covari-
ance functions, namely 𝜇(⋅, 𝛼) and 𝐾(⋅, ⋅, 𝛽), respectively. The parameters 𝛼𝑡 and 𝛽𝑡 are estimated from the data through
Maximum Likelihood (ML) as follows:

(𝛼𝑡, 𝛽𝑡) = argmax𝛼,𝛽 𝑝(𝐲𝑡; 𝛼, 𝛽).

The solution of this problem can be achieved by maximizing a likelihood function, as, for example, the log-likelihood
function proposed in Ref. 43:

log(𝑝(𝐲𝑡; 𝛼, 𝛽)) ∶= −
1

2
(𝝁𝑡(𝛼) − 𝐲𝑡)

⊤(𝐾xx,𝑡(𝛽) + 𝜎2𝐼)−1(𝝁𝑡(𝛼) − 𝐲𝑡) −
1

2
log |𝐾xx,𝑡(𝛽) + 𝜎2𝐼| − 𝑡

2
log(2𝜋) (A1)

where 𝝁𝑡(𝛼) = (𝜇(𝐱1; 𝛼), … , 𝜇(𝐱𝑡; 𝛼))
⊤, 𝐼 ∈ ℝ𝑡×𝑡 is the identity matrix and 𝐾xx,𝑡(𝛽) ∈ ℝ𝑡×𝑡 is the covariance matrix with

entries [𝐾xx,𝑡]𝑠𝑖 = 𝐾(𝐱𝑠, 𝐱𝑖; 𝛽𝑡).
As a consequence, the ML estimation of 𝛼 and 𝛽 at step 𝑡 is given by

(𝛼𝑡, 𝛽𝑡) ∶= argmin𝛼,𝛽 (𝝁𝑡(𝛼) − 𝐲𝑡)
⊤(𝐾xx,𝑡(𝛽) + 𝜎2𝐼)−1(𝝁𝑡(𝛼) − 𝐲𝑡) + log |𝐾xx,𝑡(𝛽) + 𝜎2𝐼|. (A2)

Once the parameters 𝛼𝑡 and 𝛽𝑡 are available, we can compute 𝜇(⋅; 𝛼𝑡) at any regression point 𝐫𝑖 and the covariance
𝐾(⋅, ⋅; 𝛽𝑡) in any pair of regression points 𝐫𝑖, 𝐫𝑗 . In particular, the mean and the covariance functions depend on the mea-
surement points as 𝛼𝑡 and 𝛽𝑡 depend on them. With the mean and covariance values at regression points at hand the
posterior function, which is a multivariate Gaussian, can be evaluated. Defining

𝑓r𝑐 = 𝑓(𝐫𝑐), 𝒇
r = (𝑓r

1
, … , 𝑓r

𝑅
)⊤,

𝜇r𝑐,𝑡 = 𝜇(𝐫𝑐; 𝛼𝑡), 𝝁
r
𝑡 = (𝜇r

1,𝑡
, … , 𝜇r𝑅,𝑡)

⊤

the MAP estimator in the regression points is given by

𝒇̂𝑡(r) = argmax𝒇r∈𝐾𝑅
r
𝑝(𝒇r|𝐲𝑡; 𝛼𝑡, 𝛽𝑡), (A3)

where each 𝐾r is a compact set. In particular, the MAP estimator can be computed at each point r with respect to the
mean and the covariance functions (see Ref. 44 for more details):

𝒇̂𝑡(r) = 𝝁r𝑡 + 𝐾⊤
xr,𝑡(𝐾xx,𝑡 + 𝐷𝑡)

−1(𝐲𝑡 − 𝝁𝑡)

where 𝐾xx,𝑡 ∈ ℝ𝑡×𝑡 and 𝐾xr,𝑡 ∈ ℝ𝑡×𝑅 are matrices with entries [𝐾xx,𝑡]𝑠𝑟 = 𝐾(𝐱𝑠, 𝐱𝑟) and [𝐾xr,𝑡]𝑠𝑗 = 𝐾(𝐱𝑠, 𝐫𝑗) and 𝐷𝑡 =

𝜎2𝐼𝑇,𝑇 .
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APPENDIX B: DELAUNAY TESSELLATION
Computational geometry is a branch of geometry that aims of solving practical problems by exploiting basic geometrical
objects and finding structures concealed in a set of data.75 Numerous applications are in computer graphics, robotics,
geographic information systems, and finite elements analysis.49 The problem of analyzing a branch of data is often faced
via computational geometry, in particular, by inducing a subdivision of the domain under consideration into regions
defined through the data. An important geometric structure typically used for the analysis of data is domain triangulation.
Triangulation or tessellation is a way to subdivide the domain in multi-dimensional triangles, even known as 𝑑-simplices.
In general, this can be obtained in differentways.One of the approaches to solve the problem is theDelaunay tessellation. It
has the property that the circumsphere of each 𝑑-simplex in the triangulation does not contain any point in its interior. The
circumsphere of a 𝑑-simplex is a hypersphere inℝ𝑑+1 passing through all the vertices of the simplex. The main advantage
of the Delaunay triangulation is that it simultaneously maximizes the number of triangles and produces triangles that
are as equiangular as possible. This implies that triangle edge lengths are minimized. In the specific context of this paper,
minimizing the lengths of the edges reflects on minimizing the distance between the pairs of data considered in the
maximization step (1).
In this section, we summarize the steps of a known iterative algorithm to compute the Delaunay tessellation given 𝑁

points in a 𝑑-dimensional Euclidean space.47 The algorithm assumes an initial configuration of 𝑑 + 1 points forming a
𝑑-simplex. Formally, 𝑑 + 1 points in ℝ𝑑 form a 𝑑-simplex if and only if they are affinely independent, that is, if they do
not belong to a unique 𝑑 − 1-plane. Note that the probability of 𝑑 + 1 points to be affinely dependent is almost surely
0. In particular, the algorithm presented in this paper requires a set of available points that are the vertices of a con-
vex domain. As a 𝑑-simplex is the convex envelope of its vertices, it is enough to take 𝑑 + 1 vertices of the domain to
avoid degeneracies in the algorithm initialization. Given a 𝑑-simplex, there exists a unique circumsphere passing through
all its vertices. During the implementation of the algorithm, a list of empty circumspheres is maintained. The circum-
spheres describing any current triangulation must remain empty, that is, they should not contain any other query point
in the interior. When a point is added in the configuration, the circumspheres containing the new point are flagged. All
the edges belonging to two or more flagged circumspheres are removed from the triangulation, while the new point is
connected with all the points lying on the flagged circumspheres. Note that, from a practical point of view, checking
whether a point belongs or not to a circumsphere is straightforward: maintain the list of the circumcenters of each cir-
cumsphere as well as its radius, and then measure the distance between the new point and the circumcenters. A distance
less than or equal to the radius implies that the new point belongs to the circumsphere. The computational complex-
ity of the triangulation of a set of 𝑁 points is 𝑂(𝑁(2𝑑−1)∕𝑑).47 The number of edges of the triangles, corresponding with
the number of pairs of neighbors points, is linear in 𝑁.48 We defer the reader to Ref. 47 for further technical details on
computing Delaunay triangulations iteratively such as the efficiency of themethod. The pseudo-code describing this algo-
rithm is summarized in Algorithm 1, while a visualization of the algorithm in a two-dimensional domain is shown in
Figure 4.

APPENDIX C: PROOF OF THE THEOREM
In this section, we provide proof of Theorem 1. First, we need some preparatory results. We remind that a kernel function
𝐾(⋅, ⋅) is isotropic if it only depends on the distance between its arguments: 𝐾(𝑥, 𝑦) = 𝐾(‖𝑥 − 𝑦‖).
The following proposition shows a theoretical result that bounds the error for the posterior variance. The key idea in

deriving the following upper bound is that the posterior variance is likely small in the interval of two close observations in
the domain, and it increases as observations get farther apart.43 Thus, a natural choice is considering only sampled data
close to a test point as more data are observed.

Lemma C.1 Corollary 3.1 in Ref. 76. Consider a 𝑓 ∼ 𝐺𝑃 with isotropic, decreasing covariance kernel 𝐾(⋅), an input training
data set𝔻𝑥

𝑇
= {𝑥𝑡}

𝑇
𝑡=1 and observation noise variance 𝜎

2. Let𝔹𝜌(r) =
{
𝑥′ ∈ 𝔻𝑥

𝑇
∶ ‖𝑥′ − r‖ ≤ 𝜌

}
denote the training data set

restricted to a ball around 𝑥 with radius 𝜌. Then, for each r ∈ 𝑋, the posterior variance is bounded by

𝜎2
𝑡,𝑓
(r) ≤ 𝐾(0) −

𝐾2(𝜏)

𝐾(0) +
𝜎2

|𝔹𝜌(r)|
, (C1)

where 𝜏 is the minimal Euclidean distance between r and the set of the sampled points.
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3276 BENEVENTO et al.

F IGURE D1 Distribution of the observed points in the two-dimensional domain, sampled with Sieve and with the Latin Hypercube
algorithm.

The previous result shows an upper bound for the posterior variance depending on the number of sampled points. The
consistency Theorem 1 shows that the upper bound (C1) goes to 0 when the points are collected via Sieve. We are now
ready to give proof of the theorem.

Proof of Theorem 1, Section 4. We want to prove that the number of points in a ball of radius 𝜌|𝔹𝜌(r)| goes to infinity as
𝑡 goes to infinity, that is, as more and more observations are added in the Sieve process. By construction, Sieve always
collects newpoints that have never been sampled before, thus the number of sampled points is strictly increasing. Fix𝜌 > 0

and suppose that there exist two neighbors 𝑥′, 𝑥′′ in the set of sampled data such that 𝑑(𝑥′, 𝑥′′) ≥ 𝜌 > 0. By contradiction,
suppose that the midpoint among them is never sampled. This implies that the points are sampled in the other parts of
the domain. Due to Lipschitz continuity, argmax𝑖,𝑗∈𝑡⧵{𝑥′,𝑥′′}

‖𝐱𝑖 − 𝐱𝑗‖ + 𝜆|𝑦𝑖 − 𝑦𝑗| ≤ (𝜆𝐿 + 1)‖𝐱𝑖 − 𝐱𝑗‖ goes to 0 when 𝑡
goes to infinity. Therefore, there is a point such that 𝜌 becomes greater than argmax𝑖,𝑗∈𝑡⧵{𝑥′,𝑥′′}

‖𝐱𝑖 − 𝐱𝑗‖ + 𝜆|𝑦𝑖 − 𝑦𝑗| and
the midpoint 𝑥′ + 𝑥′′∕2 has to be sampled.
Thus, |𝔹𝜌(r)| is increasing and, when a new point in the ball is considered, the minimal Euclidean distance between r

and the set of the sampled points 𝜏 is halved and will go to 0 by iterating the process. This implies that

lim
𝑡→∞

𝜎2
𝑡,𝑓
(r) ≤ lim

𝑡→∞
𝐾(0) −

𝐾2(𝜏)

𝐾(0) +
𝜎2

|𝔹𝜌(r)|
= 𝐾(0) −

𝐾2(0)

𝐾(0) + 0
= 0,

that concludes the proof. □

APPENDIX D: ADDITIONAL SIMULATION RESULTS
In this section, we offer a couple of additional simulation results. In particular, we compare Sieve with the one-shot Latin
Hypercube algorithm and with a simplified version of Sieve that performs only the exploration of the domain.
We consider the function previously considered in Section 5:

𝑓(𝑥1, 𝑥2) = −5(1 − (2𝑥1 − 1)2)(1 − (2𝑥2 − 1)2) × (4 + 2𝑥1 − 1)
(
0.05(2𝑥1−1)

2
− 0.05(2𝑥2−1)

2
)2
.

Figure D1 shows the distribution of points sampled by using 100 iterations of Sieve and by sampling 100 points by the
Latin Hypercube algorithm. As expected, the Latin Hypercube algorithm samples the points uniformly in the domain,
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BENEVENTO et al. 3277

F IGURE D2 Comparison between the convergence of Sieve and the Latin Hypercube algorithm in terms of the normalized RoMSE.

F IGURE D3 Distribution of the observed points in the two-dimensional domain, sampled with Sieve and with a simplified version of it.

F IGURE D4 Comparison between the convergence of the two methods in terms of the normalized RoMSE.
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3278 BENEVENTO et al.

while Sieve tends to avoid the area of the domain less informative, that is, in this example, where the function is 0. The
advantage in terms of accuracy of choosing an observation-based algorithm is evident in Figure D2.
In the second example, we consider a simplified version of Sieve, where we remove the exploitation of the observed

values of the unknown function. In particular, we consider only the distribution of the observed data in the domain by
maximizingmax𝑖,𝑗 ‖𝐱𝑖 − 𝐱𝑗‖, instead of Equation (1). The distribution of the sampled points is shown in Figure D3. The
figure shows the tendency of Sieve to exploit the data, while its simplified counterpart tends to explore the domain and
to sample points uniformly distributed. The benefits of the exploitation part of the algorithm are shown in Figure D4 in
terms of accuracy.
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