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Abstract
We prove the existence of infinitely many solutions for a class of elliptic Dirichlet problems
with non-symmetric nonlinearities. In particular, in suitable domains of Rn with n ≥ 3,
this result gives a positive answer to a well known conjecture formulated by A. Bahri and
P.L. Lions. The proof is based on a minimization method which does not require the use
of techniques of deformation from the symmetry. This method allows us to piece together
solutions of Dirichlet problems in suitable subdomains, so we obtain infinitely many nodal
solutions with a prescribed nodal structure.

Mathematics Subject Classification 35J20 · 58E05

1 Introduction

In this paper we are concerned with Dirichlet problems of the form

− �u = |u|p−1u + ψ in �, u = 0 on ∂� (1.1)

where � is a bounded domain of Rn with n ≥ 1, ψ ∈ L2(�), p > 1 and p < n+2
n−2 when

n ≥ 3.
The solutions of problem (1.1) are the critical points of the energy functional Eψ :

H1
0 (�) → R, defined by

Eψ(u) = 1

2

∫
�

|∇u|2dx − 1

p + 1

∫
�

|u|p+1dx −
∫

�

ψu dx (1.2)

where, under our assumptions, the exponent p + 1 is less than the critical Sobolev exponent
2∗ = 2n

n−2 for n ≥ 3.
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If ψ ≡ 0 in �, the functional Eψ is even, so the equivariant Lusternik–Schnirelmann
theory for Z2-symmetric sets may be applied and guarantees the existence of infinitely many
solutions (see for instance [1, 3, 9, 18–20, 29, 30, 37, 39]).

A natural question, which goes back to the beginning of the eighties, is whether the infinite
number of solutions still persists for ψ �≡ 0.

In particular, this question was raised to the attention by Rabinowitz in his monograph
on minmax methods (see [39, Remark 10.58]). In [4] Bahri proved that, if n ≥ 3 and
1 < p < n+2

n−2 , then there exists anopendense set ofψ in L2(�) such that problem (1.1) admits
infinitely many solutions. In [8] Bahri and Lions proved that, if n ≥ 3 and 1 < p < n

n−2 , then
problem (1.1) admits infinitely many solutions for every ψ ∈ L2(�). These results suggest
the following conjecture, proposed by Bahri and Lions in [8]: the multiplicity result obtained
in [8] holds also under the more general assumption 1 < p < n+2

n−2 .
In the present paper we prove that, if the domain � is a cube of Rn , then problem (1.1)

has infinitely many solutions for every ψ ∈ L2(�). Thus, for n ≥ 3, our result shows that
the Bahri–Lions conjecture is true at least when � is a cube of Rn .

In order to show that the infinite number of solutions we have for ψ ≡ 0 persists under
perturbations, a detailed analysis was originally carried on in [2, 3, 5–8, 26, 31, 32, 38, 41,
45] by Ambrosetti, Bahri, Berestycki, Ekeland, Ghoussoub, Krasnoselskyii, Lions, Marino,
Prodi, Rabinowitz, Struwe and Tanaka by introducing new perturbation methods.

More recently, a new approach to tackle the break of symmetry in elliptic problems has
been developed by Bolle, Chambers, Ghoussoub and Tehrani (see [10, 11, 17]). However,
that approach (which works also for more general nonlinear problems) did not allow to solve
the Bahri–Lions conjecture.

Related results can be found also in other, more recent, papers (see for example [40] and
references therein).

In the present paper we develop a method introduced in [34] in order to construct infinitely
many nodal solutions of problem (1.1), having a prescribed nodal structure.

The idea is to piece together the solutions of Dirichlet problems in suitable subdomains of
�. A similar idea has been first used by Struwe in earlier papers (see [41–43] and references
therein). We consider as nodal regions some subdomains of� that are deformations of cubes
by suitable Lipschitz maps (so we obtain nodal solutions having a “check” nodal structure).
Notice that Lipschitz conditions combined with the covering of Rn by cubes with vertices in
Z
n have been also used in some recent papers by Rabinowitz and Byeon in order to construct

solutions with a prescribed pattern for the Allen-Cahn model equation (see [14, 15] and
references therein).

Themain result of the present paper is stated inTheorem2.1 (which is a direct consequence
of Proposition 2.2) and says that if� is a cube ofRn , n ≥ 1, p > 1 and p < n+2

n−2 when n > 2,
then for all ψ ∈ L2(�) there exist infinitely many nodal solutions of problem (1.1), having
as nodal structure suitable partitions of � in subdomains that are Lipschitz deformations of
arbitrarily small cubes. More precisely, in Proposition 2.2 we prove that there exists k̄ ∈ N

such that for all positive integer k ≥ k̄ there exist at least two solutions uk(x) and vk(x) of
problem (1.1) such that the nodal regions of the functions uk

( x
k

)
and vk

( x
k

)
, after translations,

tend to the cube � as k → ∞. Moreover, the number of nodal regions of uk , vk and their
energy Eψ(uk), Eψ(vk) tend to infinity as k → ∞, while the size of the nodal regions tends
to zero.
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Notice that, in dimension n = 1, the existence of infinitely many solutions for all ψ

in L2(�) follows from a result obtained by Ehrmann in [25] (see also [24, 28] for related
results). However, the method used by Ehrmann relies on a shooting argument, typical of
ordinary differential equations, combined with counting the oscillations of the solutions in
the interval �. On the contrary, in the present paper we use a method which is more similar
to the one introduced by Nehari in [35], that can be in a natural way extended to the case
n > 1. In fact, Nehari’s method was used by Coffman in [19, 20] and, independently, by
Hempel in [29, 30] to study an analogous problem for partial differential equations.

More recently, Nehari’s method has been used also by Conti, Terracini and Verzini to
study optimal partition problems, existence of changing sign solutions etc. (see [21–23, 46]).

Let us remark that Nehari consider an odd differential operator (so the corresponding
energy functional is even) and prove that for every positive integer k there exists a solution
having exactly k nodal regions. On the contrary, as Ehrmann in [25], we find solutions with a
large number of nodal regions. However, let us point out that our multiplicity result is sharp
because, as we proved in [34, Proposition 3.5], ψ can be chosen in L2(�) in such a way that
problem (1.1) does not have solutions with a small number of nodal regions: more precisely,
for every positive integer h there exists ψh in L2(�) such that every solution of problem
(1.1) with ψ = ψh has at least h nodal regions.

Now, let us describe the method we use to prove our result. For every cube � of Rn

and every positive integer k, let us consider the kn cubic open subdomains Ck
1 ,C

k
2 , . . . ,C

k
kn ,

having all the same size, such that � = ∪kn
i=1C

k
i . So, these subdomains are pairwise disjoint

and, for all i ∈ {1, . . . , kn} the cube kCk
i is a translation of the cube �.

Moreover, for all L ∈]0, 1[, let us consider the set DL of all the deformations T : � → �

such that T differs from the identity map in� by a Lipschitz function with Lipschitz constant
L , T (�) = � and T (F) = F for every face F of the cube �. Notice that, since L ∈]0, 1[,
every deformation T ∈ DL is a bilipschitz map in �. Then, for all T in DL and k in N,
by using a Nehari type minmax argument in every subdomain T (Ck

i ) with i ∈ {1, . . . , kn},
we construct two distinct nodal functions uTk and vTk in H1

0 (�) whose nodal regions are the
subdomains T (Ck

i ), for i = 1, . . . , kn , and such that, for k large enough, uTk and vTk satisfy
equation (1.1) in each nodal region and are solutions of the Dirichlet problem (1.1) in �

when, in addition, they satisfy a suitable stationary property. Moreover, the construction of
uTk and vTk shows that vTk behaves as −uTk when k → ∞.

Now, for all k ∈ N, we minimize the energy functional Eψ in the set {uTk T ∈ DL };
moreover, we show that, if the minimum is achieved by a map T L

k in DLk with Lk ∈]0, L[,
then the corresponding function u

T L
k

k satisfies the stationarity condition which allows us to
conclude that it is a solution of problem (1.1) for k large enough.

Indeed, we show that there exists a sequence (Lk)k of positive numbers such that
limk→∞ Lk = 0 and T L

k ∈ DLk ∀k ∈ N, so Lk ∈]0, L[ for k large enough and the solution

uk = u
T L
k

k satisfies all the assertions of Proposition 2.2 (in analogous way one can construct
the solutions vk that behaves as −uk when k → ∞).

In particular, we obtain that T L
k tends as k → ∞ to the identity map in � and that the

rescaled nodal regions kT L
k (Ck

i ), after translations, tend to the cube � as k → ∞, uniformly
with respect to i ∈ {1, . . . , kn}.

The existence of such a sequence (Lk)k , which plays a crucial role in the proof, is strictly
related to a minimality property of the cubes in R

n . In fact, the functions uTk
( x
k

)
, suitably

rescaled, tend as k → ∞ to solutions of the equation (1.1) with ψ = 0. Therefore, since the
effect of the termψ tends to vanish as k → ∞, the rescaled nodal regions kT L

k (Ck
i ), suitably
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translated, tend to polyhedra as k → ∞. Among these polyhedra, the cubes of Rn are the
unique minimizers of the “shape factor” ϕ(χ) defined by

ϕ(χ) = m(χ)|χ |2
(

1
p+1− 1

2∗
)
, (1.3)

where |χ | is the volume of χ and

m(χ) = min

{∫
χ

|∇U |2dx U ∈ H1
0 (χ),

∫
χ

|U |p+1dx = 1

}
(1.4)

(notice that ϕ(χ) depends only on the shape of χ and not on its size because it is invariant
with respect to translations and rescaling of χ). Therefore, taking into account the asymptotic

behaviour of Eψ(u
T L
k

k ) as k → ∞, the minimality of T L
k implies that ϕ(kT L

k (Ck
i )) → ϕ,

where ϕ denotes the shape factor of every cube of Rn , while the volumes |kT L
k (Ck

i )| → 1
as k → ∞, uniformly with respect to i ∈ {1, . . . , kn}.

As a consequence, taking also into account the conditions of T L
k on ∂�, we infer that,

after translations, the rescaled nodal regions kT L
k (Ck

i ) tend to � as k → ∞ and there exists
a sequence (Lk)k having the desired properties.

It is clear that our method does not require techniques of deformations from the symmetry
and may be applied to more general problems. For example, it may be easily adapted to deal
with the case where in problem (1.1) the nonlinear term |u|p−1u is replaced by c+(u+)p −
c−(u−)p with c+ and c− two positive constants. Moreover, this method may be adapted to
work even in case of nonlinear elliptic equations involving critical Sobolev exponents. For
example, it allows us to obtain in this case a multiplicity result similar to Theorem 2.1, which
is announced in Theorem 3.18.

Now, we can compare results and methods of the present paper with those of [34] in order
to state clearly a relation between these papers.

In both papers the starting point of our approach is to observe that, for a given f ∈ L2(�),
there exists a mountain pass solution in every sufficiently small subdomain of �. Then,
we decompose the domain � into disjoint union of small subdomains which are given by
the images of disjoint union of small cubes through a class of admissible Lipschitz maps.
Next, on each subdomains we dispose mountain pass solutions, which are perturbations of
(positive or negative) mountain pass solutions of problem (1.1) for f = 0 (in such a way that
the solutions in adjacent subdomains have different signs). Finally, we minimize the energy
functional among the class of admissible Lipschitz maps and show that, if a minimizing
map is (in a suitable sense) in the interior of the class of the admissible maps, the normal
derivatives of the corresponding functions on the interfaces of the subdomains are equal and
so we obtain infinitely many solutions (because the cubes may be arbitrarily small).

However, even if the schemeof our approach is similar in both papers, the class of Lipschitz
maps considered in [34] is quite different from the class DL we use in the present paper. In
fact, in [34] we denote by Pk the union of all the cubes with sides of length 1

k and vertices
in 1

kZ
n , that are enclosed in � and, for L ′ > 1, we consider the class CL ′(Pk,�) consisting

of the bilipschitz maps between Pk and � with Lipschitz constants in
[ 1
L ′ , L ′]. Moreover,

we show that, if the minimal energy is achieved by a bilipschitz map T L ′
k with Lipschitz

constants in
] 1
L ′ , L ′[, the corresponding function uT L′

k
k is a solution of problem (1.1).

Thus, in [34] we prove the existence of infinitely many solutions under a geometric
condition on the domain �, which guarantees that, for a suitable choice of L ′ > 1, the
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minimum is achieved by a map T L ′
k which, for k large enough, belongs to CL ′′(Pk,�) for

some L ′′ ∈ ] 1
L ′ , L ′[.

This geometric condition may be easily checked in dimension n = 1 because, since for all
L ′ > 1 the minimality of T L ′

k implies that the subdomains tend to have all the same size as

k → ∞, for n = 1 we infer that T L ′
k ∈ CL ′

k
(Pk,�), where L ′

k ∈ [1, L ′] ∀k ∈ N and L ′
k → 1

as k → ∞.
On the contrary, for n > 1 it is difficult to check this geometric condition because, even

if the subdomains tend to have all the same size, for n > 1 they might have a shape very
different from the cubes, so it is difficult to control the Lipschitz constants of the map T L ′

k
as k → ∞.

For this reason in the present paper we use the class DL of admissible Lipschitz maps.
Moreover, let us point out that the approach used in the present paper and the class DL of

Lipschitz maps work not only for cubes but also for other domains that can be decomposed
into disjoint union of translations of scaling domains (for example, equilateral triangles,
triangular prisms, rectangles, rectangular parallelepipeds, etc.).

In fact, in order to apply our method it is sufficient that the domain � admits tessellations
by arbitrarily small congruent subdomains, symmetric by reflection with respect to all the
interfaces and colourable with two colors in such a way that adjacent subdomains have
different colors, so that we can have a criterion to choose the sign in every subdomain and
the functions have the same normal derivatives on their interfaces (for example, tessellations
by hexagons or hexagonal prisms do not work in our arguments).

In the present paper we describe our method only for cubic domains, for the sake of
simplicity, because for the cubes the same arguments hold in every dimension n (on the
contrary, for example, the tetrahedra do not work for n = 3 as the equilateral triangles do for
n = 2).

2 Variational framework and statement of themain results

Our aim is to prove the following theorem.

Theorem 2.1 Let � be a cube of Rn with n ≥ 1, let p > 1 and p < n+2
n−2 when n ≥ 3. Then,

for every ψ ∈ L2(�), problem (1.1) admits infinitely many solutions.

Without any loss of generality, we can assume that

� = {x = (x1, . . . , xn) ∈ R
n 0 < xi < 1 for i = 1, . . . , n}. (2.1)

For all positive integer k and for all z ∈ Z
n , let us set

Ck
z = 1

k
(z + �) and σ(z) = (−1)

∑n
i=1 zi (2.2)

(thus, in particular, we have C1
0 = �).

Notice that for all k ∈ N we have Ck
z ⊆ � if and only if 0 ≤ zi ≤ k − 1 for i = 1, . . . , n;

moreover, if we set

Zk = {z = (z1, . . . , zn) ∈ Z
n 0 ≤ zi ≤ k − 1 for i = 1, . . . , n}, (2.3)

we have

� =
⋃
z∈Zk

C
k
z and Ck

z ∩ Ck
z′ = ∅ for z �= z′ (z, z′ ∈ Zk). (2.4)
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Then, the following proposition holds (it obviously implies Theorem 2.1).

Proposition 2.2 Under the assumptions of Theorem 2.1, if � is the cube (2.1), for all ψ ∈
L2(�) there exists k̄ ∈ N such that for every k ≥ k̄ problem (1.1) admits two solutions uk
and vk having the following properties (here we consider uk and vk extended by the value
zero in R

n \ �). For all k ≥ k̄ there exist two bilipschitz maps Tk,u, Tk,v : � → � (with
Lipschitz constants independent of k) such that for every choice of zk in Zk the functions Uzk

and Vzk defined by

Uzk (x) = σ(zk)

k
2

p−1

uk

[
x

k
+ Tk,u

(
zk

k

)]
∀x ∈ R

n, ∀k ≥ k̄, (2.5)

Vzk (x) = −σ(zk)

k
2

p−1

vk

[
x

k
+ Tk,v

(
zk

k

)]
∀x ∈ R

n, ∀k ≥ k̄, (2.6)

restricted to �, both converge as k → ∞ to a positive solution of problem (1.1) with ψ ≡ 0
in �, satisfying

E0(U ) = min{E0(U ) U ∈ H1
0 (�) \ {0}, E ′

0(U )[U ] = 0}. (2.7)

Moreover, the sequences (Tk,u)k and (Tk,v)k both converge to the identity map uniformly in

�, while the domains k
[
Tk,u

(
Ck
zk

)
− Tk,u

(
zk
k

)]
and k

[
Tk,v

(
Ck
zk

)
− Tk,v

(
zk
k

)]
tend to �

as k → ∞ for every choice of zk in Zk.

The proof is reported in Sect. 3.
In order to prove Theorem 2.1 and Proposition 2.2, we proceed as follows. For every

t ∈ [0, 1] and i ∈ {1, . . . , n}, let us consider the set
Ft
i = {(x1, . . . , xn} ∈ � xi = t} (2.8)

(in particular, if t = 0 or t = 1, Ft
i is a face of the cube �).

Now, let us fix L ∈]0, 1[ and consider the set DL of the admissible deformations of �

defined by

DL = {T : � → � T (�) = �, T (Ft
i ) = Ft

i for t = 0, 1, i = 1, . . . , n,

|T (x) − T (y) − x + y| ≤ L|x − y| ∀x, y ∈ �}. (2.9)

Notice that for every deformation T ∈ DL one can write T (x) = I (x) + S(x) where
I (x) = x ∀x ∈ � and S : � → R

n is a Lipschitz continuous function with Lipschitz
constant L . Moreover, we have

(1 − L)|x − y| ≤ |T (x) − T (y)| ≤ (1 + L)|x − y| ∀x, y ∈ � (2.10)

where 1 − L > 0 because we assumed L ∈]0, 1[. Thus, T is invertible and both T and T−1

are Lipschitz continuous functions in �.
Other important consequences of the definition of DL are presented in next proposition
where we describe some geometrical properties of the deformations T (Ft

i ) of the sets Ft
i

with respect to the straight lines orthogonal to Ft
i (these properties motivate the introduction

of this class of admissible deformations).
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Proposition 2.3 Let T ∈ DL and L ∈]0, 1[. Then
(a) for all t ∈ [0, 1], i ∈ {1, . . . , n} and y ∈ � there exists a unique x ∈ Ft

i such that
Pi ◦ T (x) = Pi (y), where Pi denotes the orthogonal projection of Rn on the subspace
{x = (x1, . . . , xn) ∈ R

n xi = 0} (that is, every straight line orthogonal to Ft
i meets

T (Ft
i ) in a unique point);

(b) for all t ′, t ′′ in [0, 1] such that t ′ < t ′′ and for all x ′ ∈ Ft ′
i and x ′′ ∈ Ft ′′

i such that
Pi ◦ T (x ′) = Pi ◦ T (x ′′), we have Ti (x ′) < Ti (x ′′) (that is, the deformation T (Ft

i ) of the
set Ft

i meets every straight line orthogonal to Ft
i in a unique point whose i

th coordinate
increases as t increases).

Proof In order to prove (a), first notice that, for all t ∈ [0, 1], i ∈ {1, . . . , n} and y ∈ �,
there exists x ∈ Ft

i such that Pi ◦ T (x) = Pi (y).
In fact, let us consider the function Pi ◦ T : Ft

i → F0
i , which is a continuous function

satisfying

Pi ◦ T (Ft
i ∩ F0

j ) ⊆ F0
i ∩ F0

j , Pi ◦ T (Ft
i ∩ F1

j ) ⊆ F0
i ∩ F1

j ∀ j ∈ {1, . . . , n} \ {i}.
(2.11)

Therefore, since Pi (y) ∈ F0
i , there exists x ∈ Ft

i such that Pi ◦ T (x) = Pi (y) (as follows
from [33]).

Now, let us prove that such a x is unique. Arguing by contradiction, assume that there
exists another x̃ in Ft

i , x̃ �= x , such that Pi ◦ T (x̃) = Pi (y), which implies

[T (x) − T (x̃)] · (x − x̃) = 0. (2.12)

Since T ∈ DL with L ∈]0, 1[, we infer that
|T (x) − T (x̃) + x̃ − x | ≤ L|x − x̃ | (2.13)

and, as a consequence,

|T (x) − T (x̃) + x̃ − x |2 < |x − x̃ |2 (2.14)

because x �= x̃ . On the other hand, from (2.12) we obtain

|T (x) − T (x̃) + x̃ − x |2 = |T (x) − T (x̃)|2 + |x̃ − x |2 − 2[T (x) − T (x̃)] · (x − x̃)

= |T (x) − T (x̃)|2 + |x̃ − x |2
> |x̃ − x |2

(2.15)

in contradiction with (2.14).
Thus, (a) is completely proved.
In order to prove (b), we argue again by contradiction and assume that there exist t ′, t ′′

in [0, 1] such that t ′ < t ′′ and x ′ ∈ Ft ′
i , x

′′ ∈ Ft ′′
i such that

Pi ◦ T (x ′) = Pi ◦ T (x ′′) and Ti (x
′) ≥ Ti (x

′′). (2.16)

Notice that (2.16) implies

[T (x ′) − T (x ′′)] · (x ′ − x ′′) ≤ 0. (2.17)

123
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Therefore, we obtain

|T (x ′) − T (x ′′) + x ′′ − x ′|2 = |T (x ′) − T (x ′′)|2 + |x ′ − x ′′|2 − 2[T (x ′) − T (x ′′)] · (x ′ − x ′′)
≥ |T (x ′) − T (x ′′)|2 + |x ′ − x ′′|2
≥ |x ′ − x ′′|2.

(2.18)

On the other hand, since T ∈ DL with L ∈]0, 1[ and x ′ �= x ′′, we infer that

T (x ′) − T (x ′′) + |x ′′ − x ′|2 ≤ L2|x ′ − x ′′|2 < |x ′ − x ′′|2 (2.19)

in contradiction with (2.18).
Thus, we can conclude that, if Pi ◦T (x ′) = Pi ◦T (x ′′) and t ′ < t ′′, then Ti (x ′) < Ti (x ′′),

so the proof is complete. ��
Now,we exploit the class of admissible deformations DL in order to construct the solutions

uk and vk . We first construct the solutions uk (then one can proceed in a similar way to
construct the solutions vk). For all k ∈ N, z ∈ Zk and T ∈ DL with L ∈]0, 1[, let us set

Eψ(k, z, T ) = inf

{
Eψ(u) u ∈ H1

0 (T (Ck
z )),

∫
T (Ck

z )

|u|p+1dx = 1

}
. (2.20)

Since p < n+2
n−2 when n ≥ 3, one can easily verify that the infimum in (2.20) is achieved.

Moreover, for all k ∈ N and L ∈]0, 1[, also the infimum

inf{Eψ(k, z, T ) z ∈ Zk, T ∈ DL } (2.21)

is achieved, as one can prove by standard arguments using Ascoli-Arzelà Theorem.
For the construction of the functions uk we need the following Lemmas.

Lemma 2.4 For all L ∈]0, 1[ we have
lim
k→∞min{Eψ(k, z, T ) z ∈ Zk, T ∈ DL } = ∞ (2.22)

and there exists k(L) ∈ N such that, for all k ≥ k(L), z ∈ Zk and T ∈ DL, the infimum

inf

{
Eψ(u) u ∈ H1

0 (T (Ck
z )),

∫
T (Ck

z )

|u|p+1dx < 1

}
(2.23)

is achieved by a unique minimizing function ũTk,z . Moreover, we have

lim
k→∞ sup

{∫
T (Ck

z )

|∇ũTk,z |2dx z ∈ Zk, T ∈ DL

}
= 0. (2.24)

Proof For all k ∈ N, let us consider zk ∈ Zk and Tk ∈ DL realizing the minimum (2.22) and
ūk ∈ H1

0 (T (Ck
zk

)) realizing the minimum Eψ(k, zk, Tk).

Let us extend the function ūk in all of � by the value zero in � \ Ck
zk
. Since Tk ∈ DL

∀k ∈ N, taking into account the second inequality in (2.10), we obtain

lim
k→∞measTk(C

k
zk ) = 0, (2.25)

so (up to a subsequence) ūk → 0 almost everywhere in �. It follows that

lim
k→∞

∫
�

|∇ūk |2dx = ∞ (2.26)
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otherwise, since p < n+2
n−2 for n ≥ 3, ūk → 0 also in L p+1(�), which is impossible because∫

�
|ūk |p+1dx = 1 ∀k ∈ N. As a consequence, since

Eψ(k, zk, T
k) = 1

2

∫
�

|∇ūk |2dx − 1

p + 1
−
∫

�

ūkψ dx, (2.27)

we obtain (2.22).
Notice that (2.22) implies that for all L ∈]0, 1[ there exists k(L) ∈ N satisfying

0 < min

{
Eψ(u) u ∈ H1

0 (T (Ck
z )),

∫
T (Ck

z )

|u|p+1dx = 1

}

∀k ≥ k(L), ∀z ∈ Zk, ∀T ∈ DL . (2.28)

Since Eψ(0) = 0, it follows by standard arguments that for all k ≥ k(L), z ∈ Zk and T ∈ DL

there exists ũTk,z ∈ H1
0 (T (Ck

z )) such that

Eψ(ũTk,z) = min

{
Eψ(u) u ∈ H1

0 (T (Ck
z )),

∫
T (Ck

z )

|u|p+1dx < 1

}
. (2.29)

Taking into account that

Eψ(ũTk,z) ≤ Eψ(0) = 0 ∀k ≥ k(L), ∀z ∈ Zk, ∀T ∈ DL , (2.30)

it follows that

sup

{∫
T (Ck

z )

|∇ũTk,z |2dx k ≥ k(L), z ∈ Zk, T ∈ DL

}
< ∞. (2.31)

In order to prove (2.24), we argue by contradiction and assume that for all k ≥ k(L) there
exist zk ∈ Zk and Tk ∈ DL such that

lim inf
k→∞

∫
Tk (Ck

zk
)

|∇ũTk
k,zk

|2dx > 0. (2.32)

From (2.31) we infer that the sequence (ũTk
k,zk

)k (with ũ
Tk
k,zk

extended by the value zero outside

Tk(Ck
zk

)) is bounded in H1
0 (�). Moreover, up to a subsequence, ũTk

k,zk
→ 0 as k → ∞ almost

everywhere in� because Tk ∈ DL , so meas(Tk(Ck
zk

)) → 0 as k → ∞. Therefore, ũTk
k,zk

→ 0

as k → ∞ also in L p+1(�). Then, from Eψ(ũTk
k,zk

) ≤ 0 ∀k ∈ N it follows easily that

lim sup
k→∞

∫
Tk (Ck

zk
)

|∇ũTk
k,zk

|2dx = 0 (2.33)

in contradiction with (2.32). Thus, we can conclude that (2.24) holds.
Finally, notice that the functional Eψ is strictly convex in a suitable neighborhood of

zero. Therefore, for k large enough, ũTk
k,zk

is the unique minimizing function for (2.23) for all
z ∈ Zk and T ∈ DL . So the proof is complete. ��
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Lemma 2.5 For all k ≥ k(L), z ∈ Zk and T ∈ DL, there exists a function uTk,z in H1
0 (T (Ck

z ))

such that uTk,z �≡ ũTk,z , σ(z)[uTk,z − ũTk,z] ≥ 0 in T (Ck
z ) and

Eψ(uTk,z) = Mψ(uTk,z)

= min{Mψ(u) u ∈ H1
0 (T (Ck

z )), u �≡ ũTk,z, σ (z)[u − ũTk,z] ≥ 0 in T (Ck
z )}
(2.34)

where, for all u ∈ H1
0 (T (Ck

z )), Mψ(u) is defined by

Mψ(u) = max{Eψ(ũTk,z + t(u − ũTk,z)) t ≥ 0}. (2.35)

Proof First notice that the maximum in (2.35) is achieved for all u ∈ H1
0 (T (Ck

z )) because
p > 1. Now, let us consider a sequence (ui )i in H1

0 (T (Ck
z )) such that ui �≡ ũTk,z , σ(z)[ui −

ũTk,z] ≥ 0 in T (Ck
z ) ∀i ∈ N and

lim
i→∞ Mψ(ui ) = inf{Mψ(u) u ∈ H1

0 (T (Ck
z )), u �≡ ũTk,zk , σ (z)[u − ũTk,z] ≥ 0 in T (Ck

z )}.
(2.36)

Then, let us set wi = ‖ui − ũTk,z‖−1
L p+1(ui − ũTk,z) and notice that, obviously, Mψ(ui ) =

Mψ(ũTk,z + wi ). Moreover notice that, since the sequence (wi )i is bounded in L p+1, (2.36)

implies that it is bounded also in H1
0 . Since p < n+2

n−2 when n ≥ 3, it follows that (up to a
subsequence) (wi )i converges weakly in H1

0 , in L p+1 and almost everywhere to a function
ŵ ∈ H1

0 (T (Ck
z )). As a consequence, ‖ŵ‖L p+1 = 1 and σ(z)ŵ ≥ 0 in T (Ck

z ). Indeed,
wi → ŵ as i → ∞ strongly in H1

0 (T (Ck
z )). In fact, since we have the weak convergence,

arguing by contradiction assume that ‖wi‖2H1
0
does not converge to ‖ŵ‖2

H1
0
as i → ∞, that

is ∫
T (Ck

z )

|∇ŵ|2dx < lim
i→∞

∫
T (Ck

z )

|∇wi |2dx, (2.37)

which, combined with the weak convergence, implies Mψ(ũ + ŵ) < limi→∞ Mψ(ũ + wi ).
Therefore, we obtain a contradiction because ŵ �≡ 0 and, as a consequence, limi→∞ Mψ(ũ+
wi ) ≤ Mψ(ũ + ŵ) because of (2.36). Thus, we can conclude that wi → ŵ in H1

0 (T (Ck
z ))

as i → ∞, which imples limi→∞ Mψ(ũ + wi ) = Mψ(ũ + ŵ).
Moreover, since p > 1, there exists t̂ > 0 such that Eψ(ũTk,z + t̂ŵ) = Mψ(ũTk,z + t̂ŵ), so

all the assertions in Lemma 2.5 hold with uTk,z = ũTk,z + t̂ŵ. ��
Remark 2.6 Notice that the function uTk,z given by Lemma 2.5, for k large enough, satisfies

Eψ(uTk,z) ≥ Eψ(k, z, T ) because uTk,z �≡ ũTk,z in T (Ck
z ).

Thus, by (2.22) we get

lim
k→∞min{Eψ(uTk,z) z ∈ Zk, T ∈ DL } = ∞. (2.38)

Now, we extend every function uTk,z in all of � by the value zero outside T (Ck
z ) and

we consider the function uTk ∈ H1
0 (�) defined by uTk = ∑

z∈Zk
uTk,z . Using Ascoli–Arzelà

Theorem, one can verify that for all k ≥ k(L) there exists an admissible deformation T L
k ∈

DL such that

Eψ

(
u
T L
k

k

)
= min{Eψ(uTk ) T ∈ DL }. (2.39)

123



On the Bahri–Lions conjecture for elliptic equations with... Page 11 of 37   177 

In next section we show that u
T L
k

k is a solution of problem (1.1) for k large enough and that

Proposition 2.2 holds with uk = u
T L
k

k and Tk,u = T L
k . In order to construct the solutions vk ,

we proceed in analogous way. In fact, as in Lemma 2.5, for all k ≥ k(L), z ∈ Zk and T ∈ DL ,
there exists also a function vTk,z in H1

0 (T (Ck
z )) such that vTk,z �= ũTk,z , σ(z)[vTk,z − ũTk,z] ≤ 0

in T (Ck
z ) and

Eψ(vTk,z) = Mψ(vTk,z) = min{Mψ(v) v ∈ H1
0 (T (Ck

z )), v �≡ ũTk,z,

σ (z)[v − ũTk,z] ≤ 0 in T (Ck
z )}. (2.40)

Then, we set vTk = ∑
z∈Zk

vTk,z (where vTk,z is extended in � by the value zero outside

T (Ck
z )) and, using Ascoli–Arzelà Theorem, we minimize Eψ(vTk ) with respect to T in DL .

If Tk,v ∈ DL is a minimizing admissible deformation, the function v
Tk,v
k is a solution of

problem (1.1) for k large enough and Proposition 2.2 holds with vk = v
Tk,v
k , as we show in

next section.

3 Asymptotic estimates and proof of themain results

In this section we describe the asymptotic behaviour as k → ∞ of the functions uk and vk ,
arising in Proposition 2.2, we constructed in Sect. 2. Then, we show that these functions are
solutions of problem (1.1) for k large enough and satisfy all the assertions of Proposition 2.2.

As follows from Proposition 2.3, for all T ∈ DL , i ∈ {1, . . . , n} and t ∈ [0, 1], the set
T (Ft

i ) is the graph of a function f t,Ti : F0
i → R and

T (Ck
z ) = {x ∈ � f

zi
k ,T

i ◦ Pi (x) < xi < f
zi+1
k ,T

i ◦ Pi (x) for i = 1, . . . , n} ∀k ∈ N, ∀z ∈ Zk .

(3.1)

In next lemma we prove that f t,Ti is a Lipschitz continuous function.

Lemma 3.1 If T ∈ DL with L ∈]0, 1[, then for all i ∈ {1, . . . , n} and t ∈ [0, 1] we have

| f t,Ti (x) − f t,Ti (y)| ≤ L

1 − L
|x − y| ∀x, y ∈ F0

i . (3.2)

Proof For all x, y in F0
i , there exist x

t , yt in Ft
i such that Pi ◦ T (xt ) = x , Pi ◦ T (yt ) = y

and, as a consequence, f t,Ti (x) = Ti (xt ), f
t,T
i (y) = Ti (yt ).

Thus, since xti = yti = t and T ∈ DL , we obtain

| f t,Ti (x) − f t,Ti (y)| = |Ti (xt ) − Ti (y
t )| = |Ti (xt ) − Ti (y

t ) − xti + yti |
≤ |T (xt ) − T (yt ) − xt + yt |
≤ L|xt − yt |.

(3.3)

Moreover, since L ∈]0, 1[, we obtain
|x − y| = |Pi ◦ T (xt ) − Pi ◦ T (yt )| = |Pi [T (xt ) − T (yt ) + yt − xt − (yt − xt )]|

≥ |xt − yt | − |Pi [T (xt ) − T (yt ) + yt − xt ]|
≥ (1 − L)|xt − yt |

(3.4)

which, combined with (3.3), implies (3.2). ��
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Let us denote by Lip( f t,Ti ) the best Lipschitz constant of the function f t,Ti , that is

Lip( f t,Ti ) = sup

{
| f t,Ti (x) − f t,Ti (y)|

|x − y| x, y ∈ Pi (�), x �= y

}
. (3.5)

Then, from (3.2) it follows that Lip( f t,Ti ) → 0 as L → 0.
Corollary 3.3 shows, in some sense, that also the converse in true. Notice that, if we set

ST (x) = T (x) − x ∀x ∈ �, then T ∈ DL if and only if

Lip(ST ) := sup

{ |ST (x) − ST (y)|
|x − y| x, y ∈ �, x �= y

}
≤ L. (3.6)

Moreover, it is obvious that the set DL may be also written as

DL = {T : � → � T (�) = �, T (Ft
i ) = Ft

i for t = 0, 1, i = 1, . . . , n, Lip(ST ) ≤ L}.
(3.7)

Lemma 3.2 Let T ∈ DL with L ∈]0, 1[ and assume that there exists 	 ∈ ]0, 1
n

[
such that

Lip(Ft,T
i ) ≤ 	 ∀t ∈ [0, 1], ∀i ∈ {1, . . . , n} (3.8)

and

| f t1,Ti (x) − f t2,Ti (x) + t2 − t1| ≤ 	|t1 − t2| ∀t1, t2 ∈ [0, 1], ∀i ∈ {1, . . . , n}, ∀x ∈ F0
i .

(3.9)

Then,

|T (x) − T (y) − x + y| ≤ (n + 1)
√
n 	

1 − n	
|x − y| ∀x, y ∈ �, (3.10)

that is Lip(ST ) ≤ (n+1)
√
n 	

1−n	
, so T ∈ DL(	) with L(	) = (n+1)

√
n 	

1−n	
.

Proof Notice that Ti (x) = f xi ,Ti (Pi ◦ T (x)) for all x ∈ � and i ∈ {1, . . . , n}.
Thus, for x, y ∈ � and h = y − x , we obtain

Ti (x + h) − Ti (x) − hi = f xi+hi ,T
i (Pi ◦ T (x + h)) − f xi ,Ti (Pi ◦ T (x + h)) − hi

+ f xi ,Ti (Pi ◦ T (x + h)) − f xi ,Ti (Pi ◦ T (x))

= μi hi +
n∑
j=1

ν
j
i [Tj (x + h) − Tj (x)]

(3.11)

where, for all i and j in {1, . . . , n}, μi and ν
j
i are suitable numbers in [−	,	] because of

our assumptions on the functions f t,Ti .
It follows that

|Ti (x + h) − Ti (x) − hi | ≤ 	|hi | + 	

n∑
j=1

|Tj (x + h) − Tj (x) − h j |

+	

n∑
j=1

|h j | ∀i ∈ {1, . . . , n} (3.12)
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and, summing up,

n∑
i=1

|Ti (x + h) − Ti (x) − hi | ≤ (1 + n)	

n∑
i=1

|hi | + n	

n∑
i=1

|Ti (x + h) − Ti (x) − hi |.

(3.13)

Since 	 < 1
n , we obtain

n∑
i=1

|Ti (x + h) − Ti (x) − hi | ≤ (n + 1)	

1 − n	

n∑
i=1

|hi | (3.14)

which implies

|T (x + h) − T (x) − h| ≤
n∑

i=1

|Ti (x + h) − Ti (x) − hi |

≤ (n + 1)	

1 − n	

n∑
i=1

|hi | ≤ (n + 1)
√
n 	

1 − n	
|h|. (3.15)

So the proof is complete. ��
The following corollary is a direct consequence of Lemma 3.2.

Corollary 3.3 Let (Tk)k be a sequence in DL with L ∈]0, 1[ and assume that, for a suitable
sequence (	k)k in

]
0, 1

n

[
, the same conditions as in Lemma 3.2 are satisfied with T replaced

by Tk and 	 by 	k for all k ∈ N.
Then, limk→∞ 	k = 0 implies limk→∞ Lip(STk ) = 0.

Remark 3.4 Notice that, if Lip(STk )−→ 0 as k → ∞, then STk converges to a constant
function S∞ uniformly in �. Moreover, taking into account that Tk ∈ DL ∀k ∈ N so Tk
must satisfy suitable conditions on ∂�, we can say that S∞ ≡ 0, that is Tk converges to the
identity function in �.

Now, let us prove the assertions of Proposition 2.2 for the function uk = u
T L
k

k (in a similar

way one can proceed for the function vk = v
Tk ,v
k ). First, we prove the following proposition

(here we use the notation introduced in Lemmas 2.4 and 2.5).

Proposition 3.5 For all k ≥ k(L) the function uk = u
T L
k

k (extended to R
n by the value zero

in R
n \ �) has the following asymptotic behaviour.

For every choice of zk in Zk, there exists a function T̂ : � → R
n such that

T̂ (0) = 0, (1 − L)|x − y| ≤ |T̂ (x) − T̂ (y)| ≤ (1 + L)|x − y| ∀x, y ∈ � (3.16)

and, if we set χ := T̂ (�), the function Uzk defined by

Uzk (x) = σ(zk)k− 2
p−1 u

T L
k

k

(
x

k
+ T L

k

(
zk

k

))
∀x ∈ R

n, (3.17)

restricted to χ , as k → ∞ converges in H1(χ) to a positive solution Uχ of the Dirichlet
problem

− �U = |U |p−1U in χ, U = 0 on ∂χ, (3.18)
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satisfying

(∫
χ

|Uχ |p+1dx

)− 2
p−1
∫

χ

|∇Uχ |2dx = m(χ), (3.19)

where

m(χ) := min

{∫
χ

|∇U |2dx U ∈ H1
0 (χ),

∫
χ

|U |p+1dx = 1

}
. (3.20)

Moreover, we have

lim
k→∞ k

(
n−2 p+1

p−1

)
Eψ(u

T L
k

k,zk
) = lim

k→∞

[
1

2

∫
χ

|∇Uzk |2dx − 1

p + 1

∫
χ

|Uzk |p+1dx

]

= 1

2

∫
χ

|∇Uχ |2dx − 1

p + 1

∫
χ

|Uχ |p+1dx

=
(
1

2
− 1

p + 1

)
[m(χ)] p+1

p−1 .

(3.21)

Proof For all k ∈ N, let us rescale problem (1.1) by replacing every function u ∈ H1
0 (�) by

the function Rku ∈ H1
0 (k�) defined by

Rku(x) = k− 2
p−1 u

( x
k

)
∀x ∈ k� (3.22)

(here Rku is extended by the value zero outside k�).
Then, our problem becomes

− �U = |U |p−1U + ψk in k�, U = 0 on ∂(k�) (3.23)

where ψk ∈ L2(k�) is defined by

ψk(x) = k− 2p
p−1 ψ

( x
k

)
∀x ∈ k�. (3.24)

Moreover, the corresponding functional becomes

Ek(U ) = 1

2

∫
k�

|∇U |2dx − 1

p + 1

∫
k�

|U |p+1dx −
∫
k�

ψkU dx, (3.25)

defined for all u ∈ H1
0 (k�).

Since T L
k ∈ DL ∀k ∈ N, so in particular it satisfies (2.10), also the function kT L

k

(
x+zk
k

)
,

defined for all x ∈ �, satisfies (2.10) and, as a consequence,

kT L
k

(
x + zk

k

)
∈ B

(
kT L

k

(
zk

k

)
, (1 + L)

√
n

)
∀x ∈ �. (3.26)

Therefore, using Ascoli–Arzelà Theorem, we infer that (up to a subsequence) the function

kT L
k

( · +zk
k

)
− kT L

k

(
zk
k

)
converges as k → ∞ to a function T̂ : �−→ B(0, (1 + L)

√
n)

uniformly in �. As a consequence, T̂ satisfies (3.16) in �.
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From Lemmas 2.4 and 2.5 we infer that Rkũ
T L
k

k,zk
and Rku

T L
k

k,zk
belong to H1

0 (kCk
zk

) and
that

Ek(Rkũ
T L
k

k,zk
) = min

{
Ek(U ) U ∈ H1

0 (kT L
k (Ck

zk )),

∫
kT L

k (Ck
zk

)

|U |p+1 < 1

}
∀k ∈ N,

(3.27)

lim
k→∞ Ek(Rkũ

T L
k

k,zk
) = lim

k→∞

∫
kT L

k (Ck
zk

)

|∇Rkũ
T L
k

k,zk
|2dx = 0. (3.28)

Moreover,

Ek(Rku
T L
k

k,zk
) = Mk(Rku

T L
k

k,zk
) = min{Mk(U ) U ∈ H1

0 (kT L
k (Ck

zk )), U �≡ Rkũ
T L
k

k,zk
,

σ (zk)[U − Rkũ
T L
k

k,zk
] ≥ 0 in kT L

k (Ck
zk )}

(3.29)

where Mk(U ) is defined by

Mk(U ) = max{Ek(Rkũ
T L
k

k,zk
+ t(U − Rkũ

T L
k

k,zk
) t ≥ 0} ∀U ∈ H1

0 (kT L
k (Ck

zk )). (3.30)

Notice that ∫
k�

ψ2
k dx = kn− 4p

p−1

∫
�

ψ2dx (3.31)

where n <
4p
p−1 under our assumptions on p. In fact, for n ≤ 4 it is obviously true because

p > 1 while for n > 4 it is true because 1 < p < n+2
n−2 , as one can easily verify by direct

computation (taking into account that n+2
n−2 < n

n−4 ). As a consequence, we obtain in particular

lim
k→∞

∫
kT L

k (Ck
zk

)

ψ2
k dx = 0. (3.32)

Therefore, we infer that the function Uzk satisfies all the assertions in Proposition 3.5, that
is its restriction to χ converges to a positive solution Uχ of the asymptotic problem (3.18),
satisfying the minimality condition (3.19).

In fact, (3.28) and (3.32) imply

0 < lim inf
k→∞

[
1

2

∫
χ

|∇Uzk |2dx − 1

p + 1

∫
χ

|Uzk |p+1dx

]

≤ lim sup
k→∞

[
1

2

∫
χ

|∇Uzk |2dx − 1

p + 1

∫
χ

|Uzk |p+1dx

]
< ∞

(3.33)

and

lim
k→∞

[∫
χ

|∇Uzk |2dx −
∫

χ

|Uzk |p+1dx

]
= 0. (3.34)

It follows that

lim sup
k→∞

∫
χ

|∇Uzk |2dx(∫
χ

|Uzk |p+1dx
) 2

p+1

< ∞ (3.35)
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so, up to a subsequence,
(∫

χ
|Uzk |p+1dx

)− 1
p+1

Uzk converges as k → ∞ to a positive

function Uχ ∈ H1
0 (χ) almost everywhere in χ , strongly in L p+1(χ) and weakly in H1(χ).

Moreover, the minimality property of u
T L
k

k,zk
implies, by standard arguments, that

∫
χ

|∇Uχ |2dx = m(χ) (3.36)

and that, as k → ∞, Uzk converges strongly in H1(χ) to the function Uχ = m(χ)
1

p−1Uχ ,
which is a positive solution of problem (3.18).

Therefore, taking also into account (3.24), we obtain

lim
k→∞ k

(
n−2 p+1

p−1

)
Eψ

(
u
T L
k

k,zk

)
= lim

k→∞ Ek
(
Rku

T L
k

k,zk

)

= lim
k→∞

[
1

2

∫
χ

|∇Uzk |2dx − 1

p + 1

∫
χ

|Uzk |p+1dx

]

=
(
1

2
− 1

p + 1

)
[m(χ)] p+1

p−1 .

(3.37)

So the proof is complete. ��

In next lemma we describe other properties of the function T̂ and of the domain T̂ (�)

arising in Proposition 3.5.

Lemma 3.6 Let (zk)k , T̂ and χ be as in Proposition 3.5. Then, the function ST̂ : � → R
n

defined by ST̂ (x) = T̂ (x) − x ∀x ∈ �, satisfies the Lipschitz condition

|ST̂ (x) − ST̂ (y)| ≤ L|x − y| ∀x, y ∈ �. (3.38)

Moreover, for every i ∈ {1, . . . , n} there exist two functions f 0i , f 1i : Pi (χ) → R, Lipschitz
continuous with Lipschitz constant L

1−L , such that f
0
i ◦ Pi (0) = 0, f 0i ◦ Pi (x) < f 1i ◦ Pi (x)

∀x ∈ χ and

χ = {x ∈ R
n Pi (x) ∈ Pi (χ), f 0i ◦ Pi (x) < xi < f 1i ◦ Pi (x) for i = 1, . . . , n}. (3.39)

Proof Notice that, as the functions ST L
k

: � → R
n defined by ST L

k
(x) = T L

k (x)− x ∀x ∈ �,

also the functions k
[
T L
k

(
x+zk
k

)
− T L

k

(
zk
k

)
− x

k

]
are Lipschitz continuous with Lipschitz

constant L for all k ∈ N. Therefore, as k → ∞, we infer that the function ST̂ satisfies (3.38).
In order to obtain the functions f 0i and f 1i , we use Lemma 3.1. From (3.1) it follows that

T L
k (Ck

zk ) = {x ∈ � f
zki
k ,T L

k
i ◦ Pi (x) < xi < f

zki +1
k ,T L

k
i ◦ Pi (x) for i = 1, . . . , n}. (3.40)

Now, notice that, as the functions f
zki
k ,T L

k
i and f

zki +1
k ,T L

k
i , also the functions f 0i,k and f 1i,k

defined by

f 0i,k(x) = k

[
f

zki
k ,T L

k
i

(
x

k
+ Pi ◦ T L

k

(
zk

k

))
− f

zki
k ,T L

k
i ◦ Pi ◦ T L

k

(
zk

k

)]
(3.41)
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and

f 1i,k(x) = k

[
f

zki +1
k ,T L

k
i

(
x

k
+ Pi ◦ T L

k

(
zk

k

))
− f

zki
k ,T L

k
i ◦ Pi ◦ T L

k

(
zk

k

)]
(3.42)

are both Lipschitz continuous with Lipschitz constant L
1−L . Moreover, for all k ∈ Nwe have

f 0i,k(0) = 0 ∀i ∈ {1, . . . , n}, k

∣∣∣∣T L
k

(
x + zk

k

)
− T L

k

(
zk

k

)∣∣∣∣ ≤ (1 + L)
√
n ∀x ∈ �

(3.43)

and

f 1i,k(x) − f 0i,k(x) ≥ (1 − L)|x1i,k − x0i,k | ≥ (1 − L) > 0 ∀x ∈ Pi (χ),

∀i ∈ {1, . . . , n}, ∀k ∈ N, (3.44)

where x1i,k and x0i,k are the points in � such that

k

[
T L
k

(
x1i,k + zk

k

)
− T L

k

(
zk

k

)]
= (x, f 1i,k(x)) (3.45)

and

k

[
T L
k

(
x0i,k + zk

k

)
− T L

k

(
zk

k

)]
= (x, f 0i,k(x)), (3.46)

which implies |x1i,k − x0i,k | ≥ 1.
Therefore, by Ascoli–Arzelà Theorem we can say that, up to a subsequence, the functions

f 1i,k and f 0i,k converge as k → ∞ uniformly in Pi (χ) respectively to functions f 1i and f 0i
satisfying all the assertions in Lemma 3.6. ��
Lemma 3.7 Let (zk)k and χ be as in Proposition 3.5. Then, for every choice of zk in Zk, the
domain χ is a cube of Rn having a vertex in the origin and the sides of lenght 1. Moreover,
we have

lim
k→∞max{∣∣kn |T L

k (Ck
z )| − 1

∣∣ z ∈ Zk} = 0 (3.47)

(where |T L
k (Ck

z )| denotes the volume of T L
k (Ck

z )) and

lim
k→∞max

{∣∣∣∣k
(
n−2 p+1

p−1

)
Eψ(u

T L
k

k,z ) −
(
1

2
− 1

p + 1

)
m̄

p+1
p−1

∣∣∣∣ z ∈ Zk

}
= 0 (3.48)

where m̄ = m(�).

Proof Notice that, as we pointed out in the proof of Proposition 3.5, the effect of the term
ψ in problem (1.1) tends to vanish as k → ∞ because in the rescaled problem (3.23) ψ is
replaced by the function ψk defined by (3.31) and, since n <

4p
p−1 ,

lim
k→∞

∫
k�

ψ2
k dx = lim

k→∞ kn− 4p
p−1

∫
�

ψ2dx = 0. (3.49)

As a consequence, taking into account the minimality of T L
k , the interfaces between the

domains kT L
k (Ck

z ), with z ∈ Zk , tend to be flat, so these domains tend as k → ∞ to
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polyhedra with 2n faces, having minimality properties inherited by the analogous properties
of the domains kT L

k (Ck
z ), related to the minimality of T L

k .
In particular, arguing as in the proof of Proposition 3.5, one can show in addition that,

for every ρ > 0, the function k
[
T L
k

(
x+zk
k

)
− T L

k

(
zk
k

)]
(up to a subsequence) converges

as k → ∞ to a function T̂ uniformly in the domain �ρ = ∪z∈Zρ
C
1
z , where

Zρ = {z ∈ Z
n |z| < ρ, zk + z ∈ Zk ∀k ∈ N} (3.50)

(not only in �, which is strictly enclosed in �ρ for ρ >
√
n).

Moreover, if we set χz := T̂ (C1
z ) ∀z ∈ Zρ , the number

∑
z∈Zρ

[m(χz)]
p+1
p−1 has to be as

small as possible for all ρ > 0. By symmetry reasons, among this polyhedra χ , the cubes

of Rn are the unique minimizers of the value ϕ(χ) := m(χ)|χ |2
(

1
p+1− 1

2∗
)
(where |χ | is the

volume of χ and m(χ) is defined in (3.20)) that is, if we set ϕ̄ = ϕ(�), ϕ(χ) = ϕ̄ if χ is a
cube and ϕ(χ) > ϕ̄ otherwise (notice that ϕ(χ) depends only on the shape of χ and not on
its size because it is invariant with respect to translations and rescaling of χ).

By Proposition 3.5, for every choice of zk in Zk , the corresponding limit domainχ satisfies

lim
k→∞ kn |T L

k (Ck
zk )| = |χ | (3.51)

and

lim
k→∞ kn−2 p+1

p−1 Eψ(u
T L
k

k,zk
)[kn |T L

k (Ck
zk )|]

2
(

1
p+1− 1

2∗
)

p+1
p−1

=
(
1

2
− 1

p + 1

)
[m(χ)] p+1

p−1 |χ |2
(

1
p+1− 1

2∗
)

p+1
p−1

=
(
1

2
− 1

p + 1

)
[ϕ(χ)] p+1

p−1 ,

(3.52)

which implies

lim
k→∞ k

(
n−2 p+1

p−1

)
Eψ(u

T L
k

k,zk
) =

(
1

2
− 1

p + 1

)
[ϕ(χ)] p+1

p−1 |χ |2
(

1
2∗ − 1

p+1

)
p+1
p−1 . (3.53)

Therefore, taking into account the minimality of T L
k , it follows that, for every choice of zk

in Zk , the limit domain χ is a cube, that is ϕ(χ) = ϕ̄. As a consequence, since it is true for
every choice of zk in Zk , we can say that

lim
k→∞ max

{∣∣∣∣kn−2 p+1
p−1 Eψ(u

T L
k

k,z )[kn |T L
k (Ck

z )|]2
(

1
p+1 − 1

2∗
)

p+1
p−1 −

(
1

2
− 1

p + 1

)
ϕ̄

p+1
p−1

∣∣∣∣ z ∈ Zk

}
= 0.

(3.54)

Now, let us set

ϕk(z) =
[
kn−2 p+1

p−1

(
1

2
− 1

p + 1

)−1

Eψ(u
T L
k

k,z )

] p−1
p+1

[kn |T L
k (Ck

z )|]2
(

1
p+1− 1

2∗
)
. (3.55)
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Then, we have

kn−2 p+1
p−1 Eψ(u

T L
k

k ) = kn−2 p+1
p−1

∑
z∈Zk

Eψ(u
T L
k

k,z )

=
(
1

2
− 1

p + 1

)∑
z∈Zk

[ϕk(z)]
p+1
p−1 [kn |T L

k (Ck
z )|]−2

(
1

p+1− 1
2∗
)

p+1
p−1 .

(3.56)

Taking into account the minimality of T L
k , since

∑
z∈Zk

|T L
k (Ck

z )| = 1, we obtain

[ϕk(z)]
p+1
p−1 = μk[kn |T L

k (Ck
z )|]2

(
1

p+1− 1
2∗
)

p+1
p−1+1 ∀k ∈ N, ∀z ∈ Zk (3.57)

where μk > 0 is a suitable Lagrange multiplier. It follows that

|T L
k (Ck

z )| = 1

kn

⎛
⎝ [ϕk(z)]

p+1
p−1

μk

⎞
⎠

1

2
(

1
p+1 − 1

2∗
)
p+1
p−1 +1

∀k ∈ N, ∀z ∈ Zk (3.58)

which, summing up, yields

μ

1

2
(

1
p+1 − 1

2∗
)
p+1
p−1 +1

k = 1

kn
∑
z∈Zk

[ϕk(z)]
1

2
(

1
p+1 − 1

2∗
)
+ p−1

p+1 . (3.59)

Since

lim
k→∞max{|ϕk(z) − ϕ̄| z ∈ Zk} = 0 (3.60)

(because of (3.54)), we obtain

lim
k→∞

1

kn
∑
z∈Zk

[ϕk(z)]
1

2
(

1
p+1 − 1

2∗
)
+ p−1

p+1 = ϕ̄

1

2
(

1
p+1 − 1

2∗
)
+ p−1

p+1

(3.61)

which implies

lim
k→∞ μk = ϕ̄

p+1
p−1 . (3.62)

From (3.57) we get

kn |T L
k (Ck

z )| =
⎡
⎣ϕk(z)]

p+1
p−1

μk

⎤
⎦

1

2
(

1
p+1 − 1

2∗
)
p+1
p−1 +1

. (3.63)

Thus, we can easily obtain (3.47) from (3.60) and (3.62) and then (3.48) from (3.47) and
(3.54). Finally, we can say that, for every choice of zk in Zk , the corresponding limit domain
χ is a cube ofRn with sides of lenght 1. Moreover, the construction of χ shows that this cube
has a vertex in the origin, so the proof is complete. ��
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Lemma 3.8 For all k ∈ N and L ∈]0, 1[, let T L
k ∈ DL be a minimizing deformation as in

Sect. 2. Then, for all i ∈ {1, . . . , n}, we have

lim
k→∞ sup

{
∣∣∣∣ f

h
k ,T L

k
i ◦ Pi ◦ T L

k

( z
k

)− f
h
k ,T L

k
i ◦ Pi ◦ T L

k

(
ζ
k

)∣∣∣∣∣∣∣Pi ◦ T L
k

( z
k

)− Pi ◦ T L
k

(
ζ
k

)∣∣∣
h ∈ {0, 1, . . . , k},

z, ζ ∈ Zk, z �= ζ, zi = ζi = h

}
= 0.

(3.64)

Proof Arguing by contradiction, assume that for some i ∈ {1, . . . , n} there exist sequences
(hk)k , (zk)k , (ζ k)k such that hk ∈ {0, 1, . . . , k}, zk ∈ Zk , ζ k ∈ Zk , zk �= ζ k , zki = ζ k

i = hk
∀k ∈ N and (up to a subsequence)

lim
k→∞

∣∣∣∣ f
hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
zk
k

)
− f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
ζ k

k

)∣∣∣∣∣∣∣Pi ◦ T L
k

(
zk
k

)
− Pi ◦ T L

k

(
ζ k

k

)∣∣∣
> 0. (3.65)

We say that there exist two sequences (ẑk)k and (ζ̂ k)k in Zk such that ẑki = ζ̂ k
i = hk ,

|ẑk − ζ̂ k | = 1 ∀k ∈ N and

lim inf
k→∞

∣∣∣∣ f
hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
ẑk
k

)
− f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
ζ̂ k

k

)∣∣∣∣∣∣∣∣Pi ◦ T L
k

(
ẑk
k

)
− Pi ◦ T L

k

(
ζ̂ k

k

)∣∣∣∣
> 0. (3.66)

In fact, if lim supk→∞ |zk−ζ k | < 2, it is obvious because in this case |zk−ζ k | = 1 for k large
enough (so we can set ẑk = zk and ζ̂ k = ζ k). On the contrary, if lim supk→∞ |zk − ζ k | ≥ 2,
let us set νk = ∑n

j=1 |zki − ζ k
i |. Then, one can choose νk + 1 points π0, π1, . . . , πνk in Zk

such that

π0 = zk, πνk = ζ k, |π j − π j−1| = 1 ∀ j ∈ {1, . . . , νk} (3.67)

(notice that all the points π0
k , π1

k , . . . ,
πνk
k must belong to F

hk
k

i because of the choice of νk).
Therefore, we obtain

∣∣∣∣ f
hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
zk

k

)
− f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
ζ k

k

)∣∣∣∣
≤

νk∑
j=1

∣∣∣∣ f
hk
k ,T L

k
i ◦ Pi ◦ T L

k

(π j

k

)
− f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(π j−1

k

)∣∣∣∣

≤ max
1≤ j≤νk

∣∣∣∣ f
hk
k ,T L

k
i ◦ Pi ◦ T L

k

(π j
k

)− f
hk
k ,T L

k
i ◦ Pi ◦ T L

k

(π j−1
k

)∣∣∣∣∣∣Pi ◦ T L
k

(π j
k

)− Pi ◦ T L
k

(π j−1
k

)∣∣ ·

·
νk∑
j=1

∣∣∣Pi ◦ T L
k

(π j

k

)
− Pi ◦ T L

k

(π j−1

k

)∣∣∣

(3.68)
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where∣∣∣Pi ◦ T L
k

(π j

k

)
− Pi ◦ T L

k

(π j−1

k

)∣∣∣ ≤
∣∣∣T L

k

(π j

k

)
− T L

k

(π j−1

k

)∣∣∣ ≤(1 + L)

∣∣∣π j

k
− π j−1

k

∣∣∣
∀ j ∈ {1, . . . , νk},

(3.69)

which implies

νk∑
j=1

∣∣∣Pi ◦ T L
k

(π j

k

)
− Pi ◦ T L

k

(π j−1

k

)∣∣∣ ≤ (1 + L)

νk∑
j=1

∣∣∣π j

k
− π j−1

k

∣∣∣

≤ (1 + L)
√
n − 1

∣∣∣∣ z
k

k
− ζk

k

∣∣∣∣
≤ √

n − 1
1 + L

1 − L

∣∣∣∣T L
k

(
zk

k

)
− T L

k

(
ζ k

k

)∣∣∣∣

(3.70)

where

∣∣∣∣T L
k

(
zk

k

)
− T L

k

(
ζ k

k

)∣∣∣∣ ≤
∣∣∣∣Pi ◦ T L

k

(
zk

k

)
− Pi ◦ T L

k

(
ζ k

k

)∣∣∣∣
+
∣∣∣∣ f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
zk

k

)
− f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
ζ k

k

)∣∣∣∣ (3.71)
and, by Lemma 3.1
∣∣∣∣ f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
zk

k

)
− f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
ζ k

k

)∣∣∣∣ ≤ L

1 − L

∣∣∣∣Pi ◦ T L
k

(
zk

k

)
− Pi ◦ T L

k

(
ζ k

k

)∣∣∣∣ .
(3.72)

Therefore, (3.65) implies

lim inf
k→∞ max

1≤ j≤νk

∣∣∣∣ f
hk
k ,T L

k
i ◦ Pi ◦ T L

k

(π j
k

)− f
hk
k ,T L

k
i ◦ Pi ◦ T L

k

(π j−1
k

)∣∣∣∣∣∣Pi ◦ T L
k

(π j
k

)− Pi ◦ T L
k

(π j−1
k

)∣∣ > 0. (3.73)

So, if the maximum in (3.73) is achieved for j = jk , our assertion (3.66) holds for ẑk = π jk

and ζ̂ k = π jk−1.
Now, for all i ∈ {1, . . . , n} let us consider the vector ei = (ei1, . . . , e

i
n) ∈ R

n such that
eii = 1, eij = 0 for j �= i , i, j ∈ {1, . . . , n} and the function δki : � → R

n defined by

δki (x) = k

[
T L
k

(
z

k
+ ei

k

)
− T L

k

( z
k

)]

∀x ∈ � such that
z j
k

≤ x j <
z j + 1

k
∀ j ∈ {1, . . . , n} with z ∈ Zk .

(3.74)

Notice that the set Z� = ∪k∈N 1
k Zk is a subset of �, Z� = � and, for all i ∈ {1, . . . , n},

the sequence of functions δki |Z�

, up to a subsequence, converges as k → ∞ to a function

δi : Z� → R
n .

Taking into account Lemma 3.7, for all x ∈ Z� we have

δi (x) · δi (x) = 1, δi (x) · δ j (x) = 0 for i �= j, ∀x ∈ Z�, ∀i, j ∈ {1, . . . , n}. (3.75)
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Moreover, we infer that

lim inf
k→∞

∣∣∣∣δki
(
ẑk

k

)
− ei

∣∣∣∣ > 0 (3.76)

because of (3.66), while

lim
k→∞ δki

[
Pi

(
ẑk

k

)]
= ei (3.77)

because of the conditions satisfied by T L
k on the boundary of �.

Therefore, since

lim
k→∞

∣∣∣∣δi
(
ẑk

k

)
− δki

(
ẑk

k

)∣∣∣∣ = 0 (3.78)

and δi

[
Pi
(
ẑk
k

)]
= ei ∀k ∈ N, it follows that

lim inf
k→∞

∣∣∣∣δi
(
ẑk

k

)
− δi

[
Pi

(
ẑk

k

)]∣∣∣∣ > 0. (3.79)

On the other hand, since ẑki ≤ k, we obtain

∣∣∣∣δi
(
ẑk

k

)
− δi

[
Pi

(
ẑk

k

)]∣∣∣∣ ≤
ẑki∑
j=1

∣∣∣∣δi
(
ẑk − jei

k

)
− δi

(
ẑk − ( j − 1)ei

k

)∣∣∣∣

≤ k max
1≤ j≤ẑki

∣∣∣∣δi
(
ẑk − jei

k

)
− δi

(
ẑk − ( j − 1)ei

k

)∣∣∣∣ .
(3.80)

We say that the last term tends to zero as k → ∞ that is, if the maximum in (3.80) is achieved
for j = jk , we have

lim
k→∞ k

∣∣∣∣δi
(
ẑk − jkei

k

)
− δi

(
ẑk − ( jk − 1)ei

k

)∣∣∣∣ = 0. (3.81)

In fact, assume that (up to a subsequence) the sequence k
[
δi

(
ẑk−( jk−1)ei

k

)
− δi

(
ẑk− jk ei

k

)]

converges as k → ∞ to a vector inRn , we denote by Di δ̂i , and the sequences δi

(
ẑk−( jk−1)ei

k

)

converge to some vectors δ̂i in R
n . Then, we have that δ̂i · δ̂ j = 0 for i �= j and δ̂i · δ̂i = 1

for i, j ∈ {1, . . . , n} (because of Lemma 3.7). Therefore, in order to prove that Di δ̂i = 0, it
suffices to prove that Di δ̂i · δ̂ j = 0 ∀ j ∈ {1, . . . , n}.

First, notice that Di δ̂i · δ̂i = 0. In fact, we have

Di δ̂i · δ̂i = 1

2
lim
k→∞ k

[
δi · δi

(
ẑk − ( jk − 1)ei

k

)
− δi · δi

(
ẑk − jkei

k

)]
, (3.82)

where the limit is equal to zero because

δi · δi

(
ẑk − jkei

k

)
= δi · δi

(
ẑk − ( jk − 1)ei

k

)
= 1 ∀k ∈ N. (3.83)
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In order to prove that Di δ̂i · δ̂ j = 0 for j �= i , notice that, since δi · δ j ≡ 0 in Z�, we have

0 = lim
k→∞ k

[
δi · δ j

(
ẑk − ( jk − 1)ei

k

)
− δi · δ j

(
ẑk − jkei

k

)]
= Di δ̂i · δ̂ j + δ̂i ·Di δ̂ j .

(3.84)

Moreover, we have

Di δ̂ j = Dj δ̂i = lim
k→∞ k2

[
T L
k (ẑk − ( jk − 1)ei + e j ) − T L

k

(
ẑk − ( jk − 1)ei

k

)

− T L
k

(
ẑk − jkei + e j

k

)
+ T L

k

(
ẑk − jkei

k

)] (3.85)

and, as a consequence,

δ̂i ·Di δ̂ j = δ̂i ·Dj δ̂i = 1

2
lim
k→∞ k

[
δi · δi

(
ẑk − jkei + e j

k

)
− δi · δi

(
ẑk − jkei

k

)]
= 0

(3.86)

because δi · δi ≡ 1 in Z�. Therefore, from (3.84) we obtain Di δ̂i · δ̂ j = 0 also for i �= j , so
Di δ̂i = 0.

Then, from (3.80) we infer that

lim
k→∞

∣∣∣∣δi
(
ẑk

k

)
− δi

[
Pi

(
ẑk

k

)]∣∣∣∣ = 0 (3.87)

in contradiction with (3.79).
Thus, we can conclude that (3.65) cannot hold and (3.79) is true. So the proof is complete.

��
Indeed, the minimality of T L

k allows us to prove a stronger result, stated in the following
corollary.

Corollary 3.9 Under the same assumptions of Lemma 3.8, for all i ∈ {1, . . . , n} we have

lim
k→∞ sup

⎧⎨
⎩

| f
h
k ,T L

k
i (x) − f

h
k ,T L

k
i (y)|

|x − y| h ∈ {0, 1, . . . , k}, x, y ∈ F0
i , x �= y

⎫⎬
⎭ = 0. (3.88)

Proof Since, under our assumptions on the values of T L
k on ∂�, Pi ◦ T L

k is a one-to-one map

between F
h
k
0 and F0

i , (3.88) is equivalent to

lim
k→∞ sup

{ | f
h
k ,T L

k
i ◦ Pi ◦ T L

k (x) − f
h
k ,T L

k
i ◦ Pi ◦ T L

k (y)|
|Pi ◦ T L

k (x) − Pi ◦ T L
k (y)| h ∈ {0, 1, . . . , k},

x, y ∈ F
h
k
i , x �= y

}
= 0.

(3.89)

Arguing by contradiction, assume that there exist sequences (hk)k , (xk)k , (yk)k such that

hk ∈ {0, 1, . . . , k}, xk and yk belong to F
h
k
i , xk �= yk ∀k ∈ N and (up to a subsequence)

lim
k→∞

| f
hk
k ,T L

k
i ◦ Pi ◦ T L

k (xk) − f
hk
k ,T L

k
i ◦ Pi ◦ T L

k (yk)|
|Pi ◦ T L

k (xk) − Pi ◦ T L
k (yk)| > 0. (3.90)
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Notice that the interfaces between the domains kT L
k (Ck

z ), z ∈ Zk , tend to be flat because of
the minimality of the admissible deformation T L

k and, as follows from Lemmas 3.7 and 3.8,
up to translations these domains tend to � that is, for every choice of zk in Zk , the domain

k
[
T L
k (Ck

z ) − T L
k

(
zk
k

)]
tends to C1

0 = �.

Therefore, (3.90) is possible only if limk→∞ k|xk − yk | = ∞ (otherwise, up to a subse-
quence, the segment {xk + t(yk − xk) t ∈ [0, 1]} meets only a finite number of subdomains

C
k
z with z ∈ Zk). In this case, if xk ∈ Ck

zk
and yk ∈ Ck

ζ k
for suitable zk and ζ k in Zk , we

have

|kxk − zk | ≤ √
n, |kyk − ζ k | ≤ √

n ∀k ∈ N, lim
k→∞ |zk − ζ k | = ∞ (3.91)

and

∣∣∣ f
hk
k ,T L

k
i ◦ Pi ◦ T L

k (xk) − f
hk
k ,T L

k
i ◦ Pi ◦ T L

k (yk)
∣∣∣

≤
∣∣∣∣ f

hk
k ,T L

k
i ◦ Pi ◦ T L

k (xk) − f
hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
zk

k

)∣∣∣∣
+
∣∣∣∣ f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
zk

k

)
− f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
ζ k

k

)∣∣∣∣
+
∣∣∣∣ f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
ζ k

k

)
− f

hk
k ,T L

k
i ◦ Pi ◦ T L

k (yk)

∣∣∣∣

(3.92)

where

lim
k→∞

∣∣∣∣ f
hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
zk
k

)
− f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
ζ k

k

)∣∣∣∣∣∣∣Pi ◦ T L
k

(
zk
k

)
− Pi ◦ T L

k

(
ζ k

k

)∣∣∣
= 0 (3.93)

(as follows from Lemma 3.8) and

lim
k→∞

∣∣∣∣ f
hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
xk
)− f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
zk
k

)∣∣∣∣∣∣∣Pi ◦ T L
k

(
xk
)− Pi ◦ T L

k

(
zk
k

)∣∣∣
= 0, (3.94)

lim
k→∞

∣∣∣∣ f
hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
yk
)− f

hk
k ,T L

k
i ◦ Pi ◦ T L

k

(
ζ k

k

)∣∣∣∣∣∣∣Pi ◦ T L
k

(
yk
)− Pi ◦ T L

k

(
ζ k

k

)∣∣∣
= 0 (3.95)

because the segments
{
xk + t

(
zk
k − xk

)
t ∈ [0, 1]

}
and

{
yk + t

(
ζ k

k − yk
)

t ∈ [0, 1]
}

are respectively enclosed in the subdomains C
k
zk and C

k
ζ k .

Moreover, for k large enough, we have

∣∣∣∣Pi ◦ T L
k (xk) − Pi ◦ T L

k

(
zk

k

)∣∣∣∣ ≤
∣∣∣∣T L

k (xk) − T L
k

(
zk

k

)∣∣∣∣ ≤ (1 + L)

(
xk − zk

k

)

≤ (1 + L)|xk − yk | ≤ 1 + L

1 − L
|T L

k (xk) − T L
k (yk)|

(3.96)
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and, analogously,
∣∣∣∣Pi ◦ T L

k (yk) − Pi ◦ T L
k

(
ζ k

k

)∣∣∣∣ ≤ (1 + L)|xk − yk | ≤ 1 + L

1 − L
|T L

k (xk) − T L
k (yk)|

(3.97)

with

|T L
k (xk) − T L

k (yk)| ≤ |Pi ◦ T L
k (xk) − Pi ◦ T L

k (yk)|
+
∣∣∣∣ f

hk
k ,T L

k
i ◦ Pi ◦ T L

k (xk) − f
hk
k ,T L

k
i ◦ Pi ◦ T L

k (yk)

∣∣∣∣ (3.98)

where∣∣∣∣ f
hk
k ,T L

k
i ◦ Pi ◦ T L

k (xk) − f
hk
k ,T L

k
i ◦ Pi ◦ T L

k (yk)

∣∣∣∣ ≤ L

1 − L
|Pi ◦ T L

k (xk) − Pi ◦ T L
k (yk)|

(3.99)

because of Lemma 3.1.
In a similar way we obtain

∣∣∣Pi ◦ T L
k

(
zk

k

)
− Pi ◦ T L

k

(
ζ k

k

) ∣∣∣ ≤
∣∣∣Pi ◦ T L

k

(
xk
)

− Pi ◦ T L
k

(
yk
)∣∣∣

+
∣∣∣∣Pi ◦ T L

k

(
zk

k

)
− Pi ◦ T L

k

(
xk
)∣∣∣∣+

∣∣∣∣Pi ◦ T L
k

(
ζ k

k

)
− Pi ◦ T L

k

(
yk
)∣∣∣∣ .

(3.100)

Therefore, it follows easily that (3.90) cannot be true.
Thus, we have a contradiction, so (3.88) holds and the proof is complete. ��

Lemma 3.10 Under the same assumptions as in Lemma 3.8, for all i ∈ {1, . . . , n} we have
also

lim
k→∞ sup

{|k [ f
h
k ,T L

k
i (x) − f

h−1
k ,T L

k
i (x)] − 1| h ∈ {1, . . . , k}, x ∈ F0

i

} = 0. (3.101)

Proof Arguing by contradiction, assume that for all k ∈ N there exist hk ∈ {1, . . . , k} and
xk ∈ F0

i such that

lim
k→∞ k

[
f

hk
k ,T L

k
i (xk) − f

hk−1
k ,T L

k
i (xk)

]
�= 1 (3.102)

for some i ∈ {1, . . . , n}.
For all k ∈ N, let us choose yk ∈ � and zk ∈ Zk such that

yk ∈ Ck
zk , Pi (y

k) = xk and f
hk−1
k ,T L

k
i (xk) ≤ yki ≤ f

hk
k ,T L

k
i (xk) ∀k ∈ N. (3.103)

Therefore, we have

T L
k (C

k
zk ) =

{
y ∈ � f

hk−1
k ,T L

k
i ◦ Pi (y) ≤ yi ≤ f

hk
k ,T L

k
i ◦ Pi (y) for i = 1, . . . , n

}
∀k ∈ N.

(3.104)

Taking into account Lemmas 3.7, 3.8 and Corollary 3.9, the domain k
[
T k
L (C

k
zk ) − T L

k

(
zk
k

)]

tends to C
1
0 = � as k → ∞.
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On the other hand, this convergence is not possible if (3.102) holds for some i ∈ {1, . . . , n}.
Thus, we have a contradiction, (3.102) cannot hold for any i ∈ {1, . . . , n} and (3.101) is

true. So the proof is complete. ��
Now, for all i ∈ {1, . . . , n}, t ∈ [0, 1] and k ∈ N, let us consider the function f̃ t,k,Li :

F0
i → [0, 1] defined by

f̃ t,k,Li (x) = f
h−1
k ,T L

k
i (x) + (kt − h + 1)[ f

h
k ,T L

k
i (x) − f

h−1
k ,T L

k
i (x)]

∀x ∈ F0
i , ∀t ∈

[
h − 1

k
,
h

k

]
, h ∈ {1, . . . , k}.

(3.105)

Proposition 3.11 For all i ∈ {1, . . . , n}, t ∈ [0, 1] and k ∈ N, the functions f̃ t,k,Li defined
by (3.105) have the following properties:

lim
k→∞ sup

{
Lip( f̃ t,k,Li ) i ∈ {1, . . . , n}, t ∈ [0, 1]

}
= 0 (3.106)

lim
k→∞ sup

{
1

|t1 − t2| | f̃ t1,k,Li (x) − f̃ t2,k,Li (x) − t1 + t2|

i ∈ {1, . . . , n}, t1, t2 ∈ [0, 1], t1 �= t2, x ∈ F0
i

}
= 0.

(3.107)

Proof Taking into account the definition of f̃ t,k,Li , properties (3.106) and (3.107) follow by
direct computation respectively from Corollary 3.9 and Lemma 3.10. ��
Lemma 3.12 Let f̃ t,k,Li be the functions defined in (3.105). Then, for all x ∈ � there exists

y ∈ � such that f̃ xi ,k,Li ◦ Pi (y) = yi ∀i ∈ {1, . . . , n} (that is, y belongs to the graph of

f̃ xi ,k,Li for i = 1, . . . , n).

Proof From Proposition 2.3 and (3.105) we infer that f̃ t,k,Li ◦ Pi (y) is strictly increasing
with respect to t in the interval [0, 1] for all i ∈ {1, . . . , n}, k ∈ N, y ∈ �. Moreover, we
have

0 = f̃ 0,k,Li ◦ Pi (y) ≤ yi ≤ f̃ 1,k,Li ◦ Pi (y) = 1 (3.108)

so for all y ∈ � there exists a unique ti (y) ∈ [0, 1] such that f̃ ti (y),k,Li ◦ Pi (y) = yi . Let us
set t(y) = (t1(y), . . . , tn(y)). Then, the function t(y), defined for all y ∈ �, is continuous
in � and satisfies

t(F0
i ) ⊆ F0

i and t(F1
i ) ⊆ F1

i ∀i ∈ {1, . . . , n}. (3.109)

Therefore, from [33] we infer that for all x ∈ � there exists at least one y ∈ � such that
t(y) = x , that is ti (y) = xi for all i ∈ {1, . . . , n}.

Thus, since ti (y) = xi is equivalent to f̃ xi ,k,Li ◦ Pi (y) = yi , the proof is complete. ��

Lemma 3.13 Let f̃ t,k,Li be the functions defined in (3.105). Then, there exists k̃1 ∈ N such
that for all k ≥ k̃1 the following property holds: for all x ∈ � there exists a unique y ∈ �

such that

f̃ xi ,k,Li ◦ Pi (y) = yi ∀i ∈ {1, . . . , n}. (3.110)

123



On the Bahri–Lions conjecture for elliptic equations with... Page 27 of 37   177 

Proof In Lemma 3.12 we proved that for all k ∈ N and for all x ∈ � there exists at least one
y ∈ � satisfying (3.110). Now, we have to prove that for k large enough such a y is unique.

For all L ≥ 0 let us set Ci (L) = {x ∈ R
n |xi | ≤ L|Pi (x)|} and notice that the graph of

f̃ xi ,k,Li is enclosed in y + Ci (Lip( f̃
xi ,k,L
i )).

One can verify by direct computation that ∩1≤i≤nCi (Li ) = {0} when Li < (n − 1)− 1
2

∀i ∈ {1, . . . , n}.
Therefore, if Lip( f̃ xi ,k,Li ) < (n − 1)− 1

2 ∀i ∈ {1, . . . , n}, y is the unique point in R
n

satisfying (3.110). On the other hand, taking into account (3.106) of Proposition 3.11, we
infer that there exists k̃1 ∈ N such that

Lip( f̃ t,k,Li ) < (n − 1)−
1
2 ∀k ≥ k̃1, ∀i ∈ {1, . . . , n}, ∀t ∈ [0, 1]. (3.111)

Thus, the assertion of Lemma 3.13 holds for such a k̃1, so the proof is complete. ��
Definition 3.14 Taking into account Lemma 3.13, for all k ≥ k̃1 we can define a function
T̃ L
k : � → � in the following way. For all x ∈ � we set T̃ L

k (x) = y where y is the unique
point in � satisfying (3.110), given by Lemma 3.13

Taking into account the properties of the function f̃ t,k,Li defined by (3.105) one can
verify by standard arguments that T̃ L

k is a one-to-one continuous function and that (T̃ L
k )−1

is continuous too. Moreover, for all i ∈ {1, . . . , n} and t ∈ [0, 1], T̃ L
k (Ft

i ) is the graph of the

function f̃ t,k,Li (that is f
t,T̃ L

k
i = f̃ t,k,Li ), T̃ L

k (Ft
i ) = Ft

i for t ∈ {0, 1} and
T̃ L
k (Ck

z ) = T L
k (Ck

z ) ∀k ≥ k̃1, ∀z ∈ Zk . (3.112)

Proposition 3.15 For all k ≥ k̃1 and L ∈]0, 1[, let T̃ L
k be the function introduced in Defini-

tion 3.14. Then, there exists k̃2 ∈ N such that T̃ L
k ∈ DL ∀k ≥ k̃2. Moreover, there exists a

sequence of positive numbers (Lk)k such that limk→∞ Lk = 0 and T̃ L
k ⊆ DLk ∀k ≥ k̃2.

Proof From Proposition 3.11 we infer that there exists a sequence of positive numbers (	k)k
such that limk→∞ 	k = 0 and

Lip( f̃ t,k,Li ) ≤ 	k ∀k ∈ N, ∀i ∈ {1, . . . , n}, ∀t ∈ [0, 1], (3.113)

| f̃ t1,k,Li (x) − f̃ t2,k,Li (x) − t1 + t2| ≤ 	k |t1 − t2| ∀k ∈ N, ∀i ∈ {1, . . . , n}, ∀x ∈ F0
i .

(3.114)

Since 	k → 0, we can choose kn ∈ N such that 	k < 1
n ∀k ≥ kn . Hence, taking into

account that f̃ t,k,Li = f
t,T̃ L

k
i , from Lemma 3.2 we infer that, for all k ≥ kn , T̃ L

k ∈ DLk where

Lk = (n+1)
√
n 	k

1−n	k
. Since Lk → 0 as k → ∞, we can choose k̃2 such that Lk ≤ L ∀k ≥ k̃2.

So the proof is complete. ��

Now, we can show that the function uk = u
T L
k

k is a solution of problem (1.1) for k large
enough and satisfies all the assertions of Proposition 2.2 (in a similar way one can argue for
the function vk).

Notice that u
T L
k

k = u
T̃ L
k

k , where T̃ L
k ∈ DL is the function introduced in Definition 3.14,

because T L
k (Ck

z ) = T̃ L
k (CL

z ) ∀z ∈ Zk .

First, we prove that u
T̃ L
k

k is a solution of the Dirichlet problem in every subdomain T̃ L
k (Ck

z )

for all z ∈ Zk and then we show that it satisfies a suitable stationarity condition which allows
us to prove that, indeed, it is a solution of the Dirichlet problem (1.1) in the domain �.
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Lemma 3.16 There exists k1(L) ∈ N such that, for all k ≥ k1(L) and z ∈ Zk, the function

u
T̃ L
k

k,z is a solution of the Dirichlet problem

− �u = |u|p−1u + ψ in T̃ L
k (Ck

z ), u = 0 on ∂ T̃ L
k (Ck

z ). (3.115)

Proof For all k ∈ N and z ∈ Zk , let us consider the function G
T̃ L
k

k,z : T̃ L
k (Ck

z ) × R → R such

that G
T̃ L
k

k,z (x, ·) ∈ C2(R) ∀x ∈ T̃ L
k (Ck

z ) and

G
T̃ L
k

k,z (x, t) = |t |p+1

p + 1
+ ψ(x)t if σ(z)[t − ũ

T̃ L
k

k,z (x)] ≥ 0, (3.116)

∂2G
T̃ L
k

k,z (x, t)

∂t2
= ∂2G

T̃ L
k

k,z

∂t2
(x, ũ

T̃ L
k

k,z (x)) if σ(z)[t − ũ
T̃ L
k

k,z (x)] ≤ 0, (3.117)

where ũ
T̃ L
k

k,z is the function given by Lemma 2.4 which, for k large enough, is a solution of

problem (3.115) because it is a local minimum of the functional Eψ in H1
0 (T̃ L

k (Ck
z )).

Moreover, let us set g
T̃ L
k

k,z (x, t) = ∂G
T̃ L
k

k,z
∂t (x, t).Then, let us consider the functional Ek,z,T̃ L

k
:

H1
0 (T̃ L

k (Ck
z )) → R defined by

Ek,z,T̃ L
k
(u) = 1

2

∫
T̃ L
k (Ck

z )

|∇u|2dx −
∫
T̃ L
k (Ck

z )

G
T̃ L
k

k,z (x, u) dx . (3.118)

Since p > 1, for k large enough one can verify that for all u �≡ ũ
T̃ L
k

k,z there exists tu > 0 such
that

E ′
k,z,T̃ L

k

(
ũ
T̃ L
k

k,z + tu(u − ũ
T̃ L
k

k,z )
)[u − ũ

T̃ L
k

k,z ] = 0 (3.119)

if and only if σ(z)[u − ũ
T̃ L
k

k,z (x)] ∨ 0 �≡ 0; in this case such a tu is unique; in the other case
we have

E ′
k,z,T̃ L

k

(
ũ
T̃ L
k

k,z + t(u − ũ
T̃ L
k

k,z )
)[u − ũ

T̃ L
k

k,z ] > 0 ∀t > 0 (3.120)

and

lim
t→∞ Ek,z,T̃ L

k

(
ũ
T̃ L
k

k,z + t(u − ũ
T̃ L
k

k,z )
) = ∞. (3.121)

When σ(z)[u − ũ
T̃ L
k

k,z (x)] ∨ 0 �≡ 0, one can verify by direct computation that E ′
k,z,T̃ L

k

(
ũ
T̃ L
k

k,z +
t(u − ũ

T̃ L
k

k,z )
)[u − ũ

T̃ L
k

k,z ] is positive for t ∈]0, tu[ and negative for t > tu , so

Ek,z,T̃ L
k

(
ũ
T̃ L
k

k,z + tu(u − ũ
T̃ L
k

k,z )
) = max{Ek,z,T̃ L

k

(
ũ
T̃ L
k

k,z + t(u − ũ
T̃ L
k

k,z )
)
t > 0}. (3.122)

Moreover, one can verify that

E ′′
k,z,T̃ L

k

(
ũ
T̃ L
k

k,z + tu(u − ũ
T̃ L
k

k,z )
)[u − ũ

T̃ L
k

k,z , u − ũ
T̃ L
k

k,z ] < 0. (3.123)
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Assume, for example, that σ(z) = 1 (in a similar way one can argue when σ(z) = −1). In
this case, we have

Ek,z,T̃ L
k

(
ũ
T̃ L
k

k,z + t(u − ũ
T̃ L
k

k,z )
)

= Ek,z,T̃ L
k

(
ũ
T̃ L
k

k,z + t[(u − ũ
T̃ L
k

k,z ) ∨ 0])+ t E ′
k,z,T̃ L

k

(
ũ
T̃ L
k

k,z

)[(u − ũ
T̃ L
k

k,z ) ∧ 0]

+ t2

2

∫
T̃ L
k (Ck

z )

|∇[(u − ũ
T̃ L
k

k,z ) ∧ 0]|2dx

− t2

2
p
∫
T̃ L
k (Ck

z )

|ũ T̃ L
k

k,z |p−1[(u − ũ
T̃ L
k

k,z ) ∧ 0]2dx ∀t > 0,

(3.124)

where

E ′
k,z,T̃ L

k

(
ũ
T̃ L
k

k,z

)[(u − ũ
T̃ L
k

k,z ) ∧ 0] = 0 (3.125)

because ũ
T̃ L
k

k,z is a solution of problem (3.115).
Notice that∫

T̃ L
k (Ck

z )

|ũ T̃ L
k

k,z |p−1[(u − ũ
T̃ L
k

k,z ) ∧ 0]2dx

≤
(∫

T̃ L
k (Ck

z )

|ũ T̃ L
k

k,z |p+1dx

) p−1
p+1
(∫

T̃ L
k (Ck

z )

|(u − ũ
T̃ L
k

k,z ) ∧ 0|p+1dx

) 2
p+1

(3.126)

where, as follows from Lemma 2.4,

lim
k→∞max

{∫
T̃ L
k (Ck

z )

|ũ T̃ L
k

k,z |p+1dx z ∈ Zk

}
= 0. (3.127)

Moreover, we have

∫
T̃ L
k (Ck

z )

|∇[(u − ũ
T̃ L
k

k,z ) ∧ 0]|2dx ≥ λk

(∫
T̃ L
k (Ck

z )

|(u − ũ
T̃ L
k

k,z ) ∧ 0|p+1dx

) 2
p+1

∀k ∈ N, ∀z ∈ Zk

(3.128)

where, for all k ∈ N,

λk = min

{∫
T̃ L
k (Ck

z )

|∇v|2dx z ∈ Zk, v ∈ H1
0

(
T̃ L
k (Ck

z )
)
,

∫
T̃ L
k (Ck

z )

|v|p+1dx = 1

}
.

(3.129)

We say that limk→∞ λk = ∞. In fact, otherwise, there exist suitable sequences (zk)k in Rn ,
and (vk)k in H1

0 (�) such that zk ∈ Zk , vk ≡ 0 in �\Ck
zk
,
∫
�

|vk |p+1dx = 1 ∀k ∈ N and (up

to a subsequence) limk→∞
∫
�

|∇vk |2dx < ∞.
As a consequence, since p < n+2

n−2 when n ≥ 3, there exists v̄ ∈ H1
0 (�) such that (up to a

subsequence) vk → v̄ as k → ∞ weakly in H1
0 (�), in L p+1(�) and almost everywhere in

�.
Taking into account that limk→∞ measT̃ L

k (Ck
z ) = 0, the almost everywhere conveg-

ence implies that v̄ ≡ 0 in �, in contradiction with the convergence in L p+1(�) because∫
T̃ L
k (Ck

z )
|vk |p+1 dx = 1 ∀k ∈ N. Thus, we can conclude that limk→∞ λk = ∞.
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It follows that, for k large enough,

Ek,z,T̃ L
k

(
ũ
T̃ L
k

k,z + t[(u − ũ
T̃ L
k

k,z ) ∨ 0]) ≤ Ek,z,T̃ L
k

(
ũ
T̃ L
k

k,z + t(u − ũ
T̃ L
k

k,z )
) ∀t > 0, ∀u ∈ H1

0 (Ck
z ).

(3.130)

As a consequence, if we set

� = {u ∈ H1
0 (T̃ L

k (Ck
z )) u �≡ ũ

T̃ L
k

k,z , E ′
k,z,T̃ L

k
(u)[u − ũ

T̃ L
k

k,z ] = 0}, (3.131)

we have u
T̃ L
k

k,z ∈ � and

Eψ(u
T̃ L
k

k,z ) = Ek,z,T̃ L
k
(u

T̃ L
k

k,z ) = min
�

Ek,z,T̃ L
k
. (3.132)

Therefore, there exists a Lagrange multiplier μ ∈ R such that

E ′
k,z,T̃ L

k
(u

T̃ L
k

k,z )[v] = μ

{
E ′′
k,z,T̃ L

k
(u

T̃ L
k

k,z )[u
T̃ L
k

k,z − ũ
T̃ L
k

k,z , v] + E ′
k,z,T̃ L

k
(u

T̃ L
k

k,z )[v]
}

∀v ∈ H1
0 (Ck

z ).

(3.133)

In particular, if we choose v = u
T̃ L
k

k,z − ũ
T̃ L
k

k,z , we obtain μ = 0 because

E ′
k,z,T̃ L

k

(
u
T̃ L
k

k,z

)[
u
T̃ L
k

k,z − ũ
T̃ L
k

k,z

]
= 0 (3.134)

while

E ′′
k,z,T̃ L

k
(u

T̃ L
k

k,z )

[
u
T̃ L
k

k,z − ũ
T̃ L
k

k,z , u
T̃ L
k

k,z − ũ
T̃ L
k

k,z

]
�= 0. (3.135)

Thus, u
T̃ L
k

k,z is a weak solution of the Dirichlet problem

− �u
T̃ L
k

k,z = g

(
x, u

T̃ L
k

k,z

)
in T̃ L

k (Ck
z ), u = 0 on ∂ T̃ L

k (Ck
z ). (3.136)

On the other hand, since u
T̃ L
k

k,z ≥ ũ
T̃ L
k

k,z in T̃ L
k (Ck

z ), we have

g
(
x, u

T̃ L
k

k,z (x)
) = |uT̃ L

k
k,z (x)|p−1u

T̃ L
k

k,z (x) + ψ(x) ∀x ∈ T̃ L
k (Ck

z ). (3.137)

So u
T̃ L
k

k,z is a solution of problem (3.115) and the proof is complete. ��

Proposition 3.17 Under the assumptions of Proposition 2.2, there exists k̄ ∈ N such that the

function u
T̃ L
k

k = ∑
z∈Zk

u
T̃ L
k

k,z is a solution of problem (1.1) for all k ≥ k̄.

Proof From Lemma 3.16 we infer that, for a suitable k1(L) ∈ N, E ′
ψ

(
u
T̃ L
k

k

)
[v] = 0 for all

v ∈ H1
0 (T̃ L

k (Ck
z )), z ∈ Zk , k ≥ k1(L).
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Now, we have to prove that E ′
ψ(u

T̃ L
k

k )[v] = 0 ∀v ∈ H1
0 (�). Taking into account

Lemma 3.16, we obtain

E ′
ψ(u

T̃ L
k

k )[v] =
∫

�

[∇u
T̃ L
k

k · ∇v − |uT̃ L
k

k |p−1u
T̃ L
k

k v − ψv] dx

=
∑
k∈Zk

∫
T̃ L
k (Ck

z )

[∇u
T̃ L
k

k · ∇v − |uT̃ L
k

k |p−1u
T̃ L
k

k v − ψv] dx

=
∑
k∈Zk

∫
∂ T̃ L

k (Ck
z )

v (∇u
T̃ L
k

k · νk,z) dσ

(3.138)

where νk,z denotes the outward normal on ∂ T̃ L
k (Ck

z ). Thus, in order to obtain E ′
ψ(u

T̃ L
k

k )[v] =
0, we prove that

∇u
T̃ L
k

k,z1
(x) = ∇u

T̃ L
k

k,z2
(x) ∀x ∈ ∂ T̃ L

k (Ck
z1) ∩ ∂ T̃ L

k (Ck
z2) (3.139)

for all z1, z2 ∈ Zk such that |z1 − z2| = 1 (that is when T̃ L
k (Ck

z1) and T̃ L
k (Ck

z2) are adjacent
subdomains of �).

Notice that, since for all k ≥ k1(L) and z ∈ Zk the function u
T̃ L
k

k,z is a solution of problem

(3.115), for all vector field � ∈ C10(�,Rn) we obtain

E ′
ψ(u

T̃ L
k

k )[� · ∇u
T̃ L
k

k ] =
∫

�

[∇u
T̃ L
k

k · ∇(� · ∇u
T̃ L
k

k ) − |uT̃ L
k

k |p−1u
T̃ L
k

k (� · ∇u
T̃ L
k

k ) − ψ(� · ∇u
T̃ L
k

k )] dx

=
∑
z∈Zk

∫
T̃ L
k (Ck

z )

[∇u
T̃ L
k

k · ∇(� · ∇u
T̃ L
k

k ) − |uT̃ L
k

k |p−1u
T̃ L
k

k (� · ∇u
T̃ L
k

k ) − ψ(� · uT̃ L
k

k )] dx

=
∑
z∈Zk

∫
∂ T̃ L

k (Ck
z )

(∇u
T̃ L
k

k · νk,z)
2(� · νk,z) dσ.

(3.140)

Thus, it is easy to verify that in order to prove (3.139) it suffices to show that there exists k̄
such that

E ′
ψ(u

T̃ L
k

k )[� · ∇u
T̃ L
k

k ] = 0 ∀� ∈ C10(�,Rn), ∀k ≥ k̄. (3.141)

From Proposition 3.15 we infer that there exists k̄ ≥ k1(L) such that T̃ L
k ∈ DL/2 ∀k ≥ k̄.

Now, for all τ ∈ R and � ∈ C10(�,Rn), let us consider the function Tτ,� : � → � defined
by the Cauchy problem

∂Tτ,�(x)

∂τ
= � ◦ Tτ,�(x), T0,�(x) = x ∀τ ∈ R, ∀x ∈ �. (3.142)

One can verify by standard arguments that for all � ∈ C10(�,Rn) there exists τ̄� > 0 such
that Tτ,� ◦ T̃ L

k ∈ DL ∀τ ∈ [−τ̄�, τ̄�]. It follows that

Eψ

(
u
T̃ L
k

k

)
=
∑
z∈Zk

Eψ(u
T̃ L
k

k,z ) ≤
∑
z∈Zk

Eψ

(
u
Tτ,�◦T̃ L

k
k,z

)
= Eψ(u

Tτ,�◦T̃ L
k

k ) ∀τ ∈ [−τ̄�, τ̄�]

(3.143)
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because of the minimality of T̃ L
k . Moreover, notice that

d

dτ
Eψ(u

T̃ L
k

k ◦ T−1
τ,�)|τ=0 = −E ′

ψ

(
u
T̃ L
k

k

)
[� · ∇u

T̃ L
k

k ], (3.144)

so we have to prove that

d

dτ
Eψ

(
u
T̃ L
k

k ◦ T−1
τ,�

)
|τ=0

= 0. (3.145)

Arguing by contradiction, assume that (3.145) does not hold. We can assume, for example,
that

d

dτ
Eψ(u

T̃ L
k

k ◦ T−1
τ,�)|τ=0 < 0 (3.146)

(otherwise we replace � by −�). Therefore, there exists a sequence of positive numbers
(τi )i such that limi→∞ τi = 0 and

Eψ(u
T̃ L
k

k ◦ T−1
τi ,�

) < Eψ(ũ
T̃ L
k

k ) ∀i ∈ N. (3.147)

We say that, as a consequence of (3.146), for i large enough we have

max

⎧⎨
⎩
∑
z∈Zk

Eψ

(
ũ
T̃ L
k

k,z ◦ T−1
τi ,�

+ tz(u
T̃ L
k

k,z ◦ T−1
τi ,�

− ũ
T̃ L
k

k,z ◦ T−1
τi ,�

)
)
tz ≥ 0 ∀z ∈ Zk

⎫⎬
⎭ < Eψ(u

T̃ L
k

k ).

(3.148)

In fact, arguing by contradiction, assume that (up to a subsequence still denoted by (τi )i ) the
inequality (3.148) does not hold.

Then, for all i ∈ N and z ∈ Zk , there exists tz,i ≥ 0 such that
∑
z∈Zk

Eψ

(
ũ
T̃ L
k

k,z ◦ T−1
τi ,�

+ tz,i (u
T̃ L
k

k,z ◦ T−1
τi ,�

− ũ
T̃ L
k

k,z ◦ T−1
τi ,�

)
) ≥ Eψ(u

T̃ L
k

k ) ∀i ∈ N.

(3.149)

Since p > 1, the sequence (tz,i )i is bounded ∀z ∈ Zk . Moreover, taking into account that

Eψ(ũ
T̃ L
k

k,z + t(u
T̃ L
k

k,z − ũ
T̃ L
k

k,z )
)

< Eψ(u
T̃ L
k

k,z ) ∀t �= 1, ∀z ∈ Zk, (3.150)

we infer that limi→∞ tz,i = 1 ∀z ∈ Zk and
∑
z∈Zk

Eψ

(
ũ
T̃ L
k

k,z ◦ T−1
τi ,�

+ tz,i (u
T̃ L
k

k,z ◦ T−1
τi ,�

− ũ
T̃ L
k

k,z ◦ T−1
τi ,�

)
) ≥ Eψ(u

T̃ L
k

k )

≥
∑
z∈Zk

Eψ

(
ũ
T̃ L
k

k,z + tz,i (u
T̃ L
k

k,z − ũ
T̃ L
k

k,z )
) ∀i ∈ N.

(3.151)

As a consequence, for all i ∈ N there exists τ ′
i ∈]0, τi [ such that

d

dτ

∑
z∈Zk

Eψ

(
ũ
T̃ L
k

k,z ◦ T−1
τ,� + tz,i (u

T̃ L
k

k,z ◦ T−1
τ,� − ũ

T̃ L
k

k,z ◦ T−1
τ,�)

)
|τ=τ ′

i

≥ 0 ∀i ∈ N (3.152)

which, as i → ∞, implies

d

dτ
Eψ(u

T̃ L
k

k ◦ T−1
τ,�)|τ=0 ≥ 0, (3.153)
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in contradiction with (3.146). Thus, (3.148) holds. From Lemma 2.4 we infer that, if we
choose k̄ large enough, for all k ≥ k̄, z ∈ Zk and i ∈ N there exists a unique minimizing

function ũ
Tτi ,�◦T̃ L

k
k,z . Moreover, ũ

Tτi ,�◦T̃ L
k

k,z → ũ
T̃ L
k

k,z in H1
0 (�), as i → ∞, ∀k ≥ k̄, ∀z ∈ Zk .

Then, using the functions ũ
Tτi ,�◦T̃ L

k
k,z and arguing as in the proof of Lemma 3.16, for i large

enough we obtain the functions u
Tτi ,�◦T̃ L

k
k,z .

The construction of the functions ũ
Tτi ,�◦T̃ L

k
k,z and u

Tτi ,�◦T̃ L
k

k,z shows also that

Eψ(ũ
Tτi ,�◦T̃ L

k
k,z ) ≤ Eψ(ũ

T̃ L
k

k,z ◦ T−1
τi ,�

) (3.154)

and

Eψ(u
Tτi ,�◦T̃ L

k
k,z ) ≤ max

{
Eψ(ũ

T̃ L
k

k,z ◦ T−1
τi ,�

+ t
(
u
T̃ L
k

k,z ◦ T−1
τi ,�

− ũ
T̃ L
k

k,z ◦ T−1
τi ,�

)
)
t ≥ 0

}
∀z ∈ Zk .

(3.155)

Therefore, from (3.148) and (3.155) we obtain

Eψ(u
T̃ L
k

k ) > max

⎧⎨
⎩
∑
z∈Zk

Eψ

(
ũ
T̃ L
k

k,z ◦ T−1
τi ,�

+ tz(u
T̃ L
k

k,z ◦ T−1
τi ,�

− ũ
T̃ L
k

k,z ◦ T−1
τi ,�

)
)
tz ≥ 0 ∀z ∈ Zk

⎫⎬
⎭

≥
∑
z∈Zk

Eψ

(
u
Tτi ,�◦T̃ L

k
k,z

) = Eψ

(
u
Tτi ,�◦T̃ L

k
k

)
(3.156)

for i large enough, in contradiction with (3.143).

So we can conclude that d
dτ

Eψ

(
u
T̃ L
k

k ◦ T−1
τi ,�

)
= 0, that is E ′

ψ(u
T̃ L
k

k )[� · ∇u
T̃ L
k

k ] = 0 for

all vector field � ∈ C10(�,Rn).

Thus, u
T̃ L
k

k is a solution of problem (1.1) for all k ≥ k̄. ��
Proof of Proposition 2.2 (conclusion) If� is the cube (2.1), all the assertions of Proposition 2.2

hold for k large enough if we set uk = u
T̃ L
k

k and Tk,u = T L
k (or Tk,u = T̃ L

k ) where the function

u
T L
k

k and the admissible deformation T L
k are obtained by the minimizing method described in

Sect. 2 (the functions vk = v
Tk,v
k are obtained in a similar way: it suffices to replace σ(z) by

σ(z) + 1). Notice that we have u
T L
k

k = u
T̃ L
k

k (where T̃ L
k : � → � is the function introduced

in Definition 3.14) because T L
k (Ck

z ) = T̃ L
k (Ck

z ) ∀z ∈ Zk .

In fact, Proposition 3.17 guarantees that there exists k̄ ∈ N such that u
T̃ L
k

k is a solution of
problem (1.1) for all k ≥ k̄.

The asymptotic behaviour of uk as k → ∞ is described by Proposition 3.5, Lemma 3.7
and Proposition 3.15. In fact, Proposition 3.5 shows that for every choice of zk in Zk , up to a
subsequence, the function Uzk , as k → ∞ converges in H1(χ) to a positive solution Uχ of
the Dirichlet problem −�U = |U |p−1U in χ , U = 0 on ∂χ , satisfying
(∫

χ
|Uχ |p+1dx

)− 2
p+1

∫
χ

|∇Uχ |2dx = min

{∫
χ

|∇U |2dx U ∈ H1
0 (χ),

∫
χ

|U |p+1dx = 1

}

(3.157)

where χ is a bounded domain of Rn . Lemma 3.7 says that the minimality of the admissible
deformation T L

k implies thatχ must be a cube ofRn having a vertex in the origin and the sides
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of length 1 and finally Proposition 3.15 guarantees that T̃ L
k ∈ DLk for a suitable sequence

(Lk)k in ]0, 1[ such that limk→∞ Lk = 0 so, as a consequence, χ = C1
0 = � and T̃ L

k
converges as k → ∞ to the identity function uniformly in � (as pointed out in Remark 3.4).

Notice that T L
k ∈ DL ∀k ∈ N but, unlike T̃ L

k , we cannot say that T L
k ∈ DLk ∀k ∈ N.

However, we can say that also T L
k converges to the identity function uniformly in� because,

taking into account the definition of T̃ L
k , we have

T L
k (x) ∈ T̃ L

k (Ck
z ) ∀x ∈ Ck

z , ∀z ∈ Zk (3.158)

so, as a consequence,

sup{|T L
k (x) − T̃ L

k (x)| x ∈ �} ≤ (1 + L)

√
n

k
. (3.159)

Therefore, all the assertions in Proposition 2.2 hold for Tk,u = T̃ L
k and also for Tk,u = T L

k ,
so the proof is complete. ��

Theorem 2.1 is a direct consequence of Proposition 2.2.
Notice that our method to construct solutions having this checked nodal structure does

not require any technique of deformation from the symmetry and it works in case of more
general nonlinearities, even when they are not perturbations of symmetric nonlinearities by
lower order terms.

For example, it works when in problem (1.1) the term |u|p−1u + ψ is replaced by
c+(u+)p − c−(u−)p + ψ with c+ > 0, c− > 0 and c+ �= c−.

Moreover, notice that our method works also when the nonlinear term has critical growth.
For example, for n > 2 and λ ∈ R let us consider the Dirichlet problem

− �u = |u| 4
n−2 u + λu + ψ in �, u = 0 on ∂� (3.160)

whose solutions are critical points of the energy functional F : H1
0 (�) → R defined by

F(u) = 1

2

∫
�

|∇u|2dx − n − 2

2n

∫
�

|u| 2n
n−2 dx − λ

2

∫
�

u2dx −
∫

�

ψu dx . (3.161)

It is well known that, if λ = 0 and ψ ≡ 0 in �, problem (3.160) has only the trivial solution
u ≡ 0 for every bounded starshaped domain �, as a consequence of the Pohozaev identity
(see [36]).

When n ≥ 4, ψ ≡ 0 in � and λ is positive and strictly less than the first eigenvalue of the
Laplace operator −� in H1

0 (�), there exists a positive solution that concentrates as a Dirach
mass as λ → 0 (see [12, 13] etc.); the existence of nodal solutions is studied for example in
[16] etc..

Notice that also when ψ ≡ 0 in �, so that the functional F is even, the problem of find-
ing infinitely many solutions is difficult because the well known Palais-Smale compactness
condition is not satisfied, as a consequence of the presence of the critical Sobolev exponent
(see [12, 13, 44] etc.).

When � is a cube of Rn , our method, combined with some estimates as in [13], allows us
to construct infinitely many solutions with many nodal regions and arbitrarily large energy
level for all λ > 0 and ψ ∈ L2(�).

In fact, as we prove in a paper in preparation, the following theorem holds (see also [27]
for the particular case where � is a cube and ψ ≡ 0 in �).

Theorem 3.18 Assume that � is a cube of Rn with n ≥ 4 and λ > 0. Then, for every
ψ ∈ L2(�), problem (3.160) admits infinitely many solutions.
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More precisely, if� is for example the cube (2.1), for allψ ∈ L2(�) there exists k̄ ∈ N such
that, for every k ≥ k̄, problem (3.160) admits a solution uk having the following properties.

For all k ≥ k̄ there exists Tk ∈ DL such that, for every choice of zk in Zk, the function
uk,zk := uk |

Tk (Ck
zk

)
belongs to H1

0

(
Tk(Ck

zk
)
)
(here we consider uk,zk extended by the value

zero in R
n \ �).

Moreover, there exist εk > 0 and mk ∈ C1
0 = � such that εk → 0 as k → ∞ and the

function Uk defined by

Uk(x) = σ(zk)
(εk

k

) n−2
2

uk,zk

[
εk

k
x + Tk

(
zk + mk

k

)]
∀x ∈ R

n, ∀k ∈ N(3.162)

converges as k → ∞ to a function U ∈ D(Rn) such that

− �U = U
n+2
n−2 , U > 0 in R

n, U (0) = max
Rn

U . (3.163)

The sequence (Tk)k converges to the identitymap uniformly in�while the domains k
[
Tk(Ck

zk
)

−Tk
(
zk
k

) ]
tend to the cube � as k → ∞ for every choice of zk in Zk.

Furthermore, for all k ≥ k̄ there exists also another solution vk of problem (3.160) such
that the function −vk presents an asymptotic behaviour as uk when k → ∞.
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