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A significant attention has concentrated on systems with “hidden attractors” in recent years. The aim of this work 
is to study an oscillator displaying “hidden attractors”. The oscillator has all nonlinear terms but no equilibrium. 
The oscillator exhibits attractive dynamics such as chaos, bubble bifurcation, symmetrical attractors, and 
boosting attractors. Oscillator’s feasibility is verified by a microcontroller. Utilizing the oscillator for biomedical 
image encryption illustrates its application. In addition, the adaptive control is designed for the oscillator.
1. Introduction

The chaotic oscillator is one of the attractive areas of applied sci-
ences. According to most acceptable definition, it is a nonlinear dynam-
ical system having a characteristic that is sensitive to initial conditions. 
Chaotic oscillators are used in many scientific and engineering fields, 
including communications, due to their complicated and unexpected 
behavior [1], neural networks [2], image encryption [3], robotics [4], 
pattern recognition [5], and biomedical applications [6].

Due to the above brief introduction, in the past twenty years, scien-
tists, engineers, and mathematicians have been increasingly interested 
in the studies of chaotic oscillators and their applications. Hence, af-
ter the discovery of Lorenz’s three-dimensional system in 1963 [7], 
researchers have attempted to present chaotic oscillators with unique 
features. Chaotic oscillators without equilibrium were reported in [8,9]. 
Chaotic oscillators with stable equilibrium were presented in [10–12]
while chaotic oscillators with equilibrium point lies on a segmented 
straight line were studied in [13–16]. Moreover, chaotic oscillators with 
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curve of equilibria and circular equilibrium were presented in [17] and 
[18], respectively.

Around the basin of attraction, each dynamic system has differ-
ent kind of attractors such as: periodic attractors, a quasi-periodic and 
strange attractor. The basin is connected with an attractor contains all 
the initial conditions of the space. As time moves towards infinity, the 
orbits of these conditions change the attractor and move closer to it. 
Nowadays, by the discovery of “hidden attractors” in [19] whose basins 
do not touch (or contain) a small neighborhood of any equilibrium 
points, chaotic attractor can be classified as either hidden attractor or a 
self-exited.

Moreover, providing new chaotic oscillators with special properties 
is among the most significant obstacles facing many scholars. Chaotic 
oscillators can be divided into conservative, dissipative and peculiar 
categories. A dissipative chaotic system is one in which energy or other 
stored quantities are continually lost and, for instance, often converted 
to heat by processes such as friction [20]. The behavior of the system 
may be unpredictable and limited to the boundaries of these attrac-
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tors, vice versa, conservative chaotic oscillators do not loss energy 
over time. Their orbits appear on the surface exhibiting constant en-
ergy in phase space. Despite their chaotic nature, the orbits of these 
oscillators remain within conserved boundaries. Recently, there are 
peculiar chaotic oscillators that do not precisely fit within conserva-
tive or dissipative categories. This kind of high complicated oscillators 
can interact with both. It operates according to principles of conser-
vation and dissipation of energy, or defies traditional classification. 
Their behavior is particularly fascinating and provides insight into the 
diversity of chaos in different environments. Conservative and dissi-
pative chaotic oscillators are structurally stable. However, the initial 
conditions fall within the chaotic basin or not, the orbits of such os-
cillators whether chaotic or not are bounded. On the other hand, the 
behavior of a peculiar chaotic may change suddenly. Depending on its 
conditions, it can respond with either bounded or unbounded oscilla-
tion. Therefore, designing and studying such peculiar oscillators is a 
very hard task. For example, having a positive, zero and negative Lya-
punov exponents of three dimensional autonomous chaotic oscillator 
with unstable equilibrium points, the boundedness of its orbits under all 
possible initial conditions does not necessarily guarantee. Consequently, 
the basin of attraction is an essential tool that should be used to recog-
nize the chaotic and other dynamics, particularly, for peculiar chaotic 
dynamics.

In the present paper, we introduce a chaotic oscillator with only 
pure nonlinear terms. The oscillator exhibits hidden attractors. De-
spite of absence of equilibrium, the oscillator displays special dynamics 
such as chaos, bubble bifurcation, symmetrical and boosting attractors. 
Feasibility, application, and adaptive controller of the oscillator are in-
vestigated. The novelty and significance of our findings contribute to 
the field of nonlinear dynamics and its applications. The organization 
of this paper is as the following: in section 2, we present a chaotic 
oscillator with only pure nonlinear terms (cubic and signum) where 
the proposed oscillator has no equilibrium points. Bifurcation diagrams, 
and Lyapunov exponents have all been used to examine the proposed 
oscillator. In section 3, we present a microcontroller implementation of 
the proposed oscillator offers many advantages such as high calculation 
speed, high stability and precision, great flexibility and the possibility to 
modify the system parameters and initial conditions easily. In sections 4
and 5, we design an algorithm for encryption of biomedical images. The 
main steps of applying the proposed oscillator to biomedical image en-
cryption (and decryption) are described. The resilience of the proposed 
algorithm for biological image encryption gets evaluated. In section 6, 
we report the adaptive control of the oscillator.

2. Model and dynamics of the oscillator

Cubic and signum functions are common elements for designing 
chaotic oscillator. Based on such terms, we propose an oscillator with-
out linear terms as follows:⎧⎪⎨⎪⎩
�̇� = 𝑎

(
𝑧3 − sgn (𝑦)

)
,

�̇� = −𝑧3 − 𝑏,
�̇� = −𝑧3 − 𝑥3,

(1)

here 𝑎, and 𝑏 are parameters. We find the equilibrium of (1) by solving:

𝑎
(
𝑧3 − sgn (𝑦)

)
= 0, (2)

−𝑧3 − 𝑏 = 0, (3)

−𝑧3 − 𝑥3 = 0. (4)

From Eqs. (2), (3) we get

sgn (𝑦) = −𝑏. (5)

As a result, the oscillator has no equilibrium when 𝑏 ≠ 0, ±1. We focus 
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on the case in which there is no equilibrium in the oscillator.
Alexandria Engineering Journal 97 (2024) 376–384

Fig. 1. Bifurcation diagram when varying 𝑏.

Fig. 2. Lyapunov exponents of the system.

By keeping 𝑎 = 3 and changing 𝑏, dynamics of the oscillator is shown 
in Fig. 1 and Fig. 2. Here initial conditions are equal to zero. Bub-
ble bifurcation is observed in the range 𝑏 ∈ [0.3,0.4], see Fig. 1. The 
oscillator displays chaos and periodical signals. Chaos is illustrated in 
Fig. 3 for 𝑎 = 3 and 𝑏 = 0.5. The Lyapunov exponents are found to be 
𝐿1 = 0.2054, 𝐿2 = 0, 𝐿3 = −2.5459. Therefore, the Kaplan–Yorke di-
mension is 𝐷𝐾𝑌 = 2.0807, indicating that the Lyapunov dimension is 
fractional.

From Eq. (1), we see that the oscillator is not changed via the 
transformation (𝑥, 𝑦, 𝑧, 𝑏) ↔ (−𝑥, −𝑦, −𝑧, −𝑏). System displays symmet-
ric attractors when changing the polarity of 𝑏 as illustrated in Fig. 4.

Theorem 1. The oscillator (1) is dissipative for 𝑧(𝑡) > 0 or 𝑧(𝑡) < 0 as 
𝑡 →∞.

Proof. The divergence of vector field is given by:

𝑉 = 𝜕�̇�

𝜕𝑥
+ 𝜕�̇�

𝜕𝑦
+ 𝜕�̇�

𝜕𝑧
= −3𝑧2. (6)

From Eq. (6), one can see that the proposed oscillator (1) is dissipative 
for 𝑧(𝑡) > 0 or 𝑧(𝑡) < 0 as 𝑡 →∞.

The study of the dynamical behavior of a system is very interesting 
when we vary simultaneously at least two of its parameters. This allows 
to examine its global behavior. Fig. 5 shows the 2D bifurcation diagram 
of our oscillator by simultaneously varying the parameters 𝑎 and 𝑏. 
By setting zero initial conditions, one can observe that the oscillator’s 
dynamics changes when 𝑎 and 𝑏 are varied simultaneously. The choice 
of the values of 𝑎 and 𝑏 in the green zones leads to periodic behaviors. 
While, these values selected in the blue areas give chaotic behaviors.

We can introduce three control parameters into the oscillator in the 

form:
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Fig. 3. Phase portraits of system (1) in (a) 𝑥− 𝑦, (b) 𝑥− 𝑧, and (c) 𝑦− 𝑧 for 𝑎 = 3, 𝑏 = 0.5.
⎧⎪⎨⎪⎩
�̇� = 𝑎

((
𝑧+ 𝑘𝑧

)3 − sgn
(
𝑦+ 𝑘𝑦

))
,

�̇� = −
(
𝑧+ 𝑘𝑧

)3 − 𝑏,
�̇� = −

(
𝑧+ 𝑘𝑧

)3 − (
𝑥+ 𝑘𝑥

)3
,

(7)

for boosting the oscillator’s attractors.

3. Microcontroller implementation of no equilibrium oscillator

Today, microcontrollers are currently used to easily implement 
chaotic oscillators. Compared to electronic circuit implementation, this 
method offers many advantages such as high calculation speed, high 
stability and precision, great flexibility and the possibility to modify 
the system parameters and initial conditions easily. For these reasons, 
in this paper the no equilibrium oscillator is implemented by using Ar-
duino Due microcontroller. This card has the advantage of having an 
integrated digital to analog converter, which facilitates the implemen-
tation. The experimental results are observed and captured by using 
a dual-channel digital oscilloscope (Voltcraft D50-1062D). The fourth-
order Runge-Kutta algorithm is used to discretize the no equilibrium 
oscillator with the discretization step equal to 0.001. Using the same 
values of system parameters and initial conditions (𝑎 = 3, 𝑏 = 0.5 and 
𝑥(0) = 𝑦(0) = 𝑧(0) = 0) keeping in Fig. 3, we display the correspond-
ing experimental chaotic phase diagrams in Fig. 6. One can notice that 
the numerical and experimental results agree. This confirms that Ar-
duino Due microcontroller successfully implements the dynamics of the 
no equilibrium oscillator.

4. Design of an algorithm for encoding biomedical image

Here, we exploit the attractive behaviors of the oscillator with-
378

out equilibrium and linear term to design an algorithm for encoding 
biomedical image. The efficiency of the elaborated algorithm is verified 
by performing some performance tests.

4.1. Description of the biomedical image encryption

The biomedical image encryption process based on the proposed 
three-dimensional chaotic system is presented in Fig. 7.

Five main steps below describe the encoding algorithm:
Step 1: The oscillator without equilibrium and linear term is inte-

grated with Runge Kutta method. It is sufficiently pre-iterated to elim-
inate the transitional phase. This operation improves the algorithm’s 
performance. The system is now iterated 256 × 256 times and its state 
variables (𝑥, 𝑦 and 𝑧) are extracted after each iteration to construct the 
secret keys 𝐾1(𝑖) and 𝐾2(𝑖) below:

𝐾1 (𝑖) =
(
𝑥𝑖 + 𝑦𝑖 + 𝑧𝑖 + 10

)
∕2 (8)

𝐾2 (𝑖) = mod
(
𝑟𝑜𝑢𝑛𝑑

((
𝑥𝑖 + 𝑦𝑖 + 𝑧𝑖

)
× 1015

)
,256

)
(9)

Step 2: The initial image undergoes a diffusion based on the mirror 
effect given by the following equation

𝑀 (𝑘) =
{
𝐼 (𝑖, 𝑗) if mod (𝑖, 2) = 0 with 𝑆𝑐 ≥ 𝑗 ≥ 1 and 1 ≤ 𝑖 ≤ 𝑆𝑟
𝐼 (𝑖, 𝑗) if mod (𝑖, 2) ≠ 0 with 1 ≤ 𝑗 ≤ 𝑆𝑐 and 1 ≤ 𝑖 ≤ 𝑆𝑟

(10)

Thus, the resulting diffused image 𝑀(𝑖) is obtained.
Step 3: The diffused image 𝑀(𝑖) and secret key 𝐾1(𝑖) are applied to 

a permutation module to obtain the permutated image 𝑃 (𝑖).
Step 4: The permutated image 𝑃 (𝑖) is introduced in the confusion 

layer based on the S-Box and then the confused image 𝐵(𝑖) is produced.
Step 5: The confused image 𝐵(𝑖) and secret key 𝐾2(𝑖) are then mixed 

in the last block to create the encoded image. The decoding process is 

carried out by all the reverse encoding operations.
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Fig. 4. Phase portraits of oscillator (1) in (a) 𝑥− 𝑦, (b) 𝑥− 𝑧, and (c) 𝑦− 𝑧 for 𝑎 = 3, 𝑏 = 0.5 (black), and 𝑏 = −0.5 (red).
Fig. 5. 2D bifurcation diagram of system showing its global dynamical behavior 
for the parameters 𝑎 and 𝑏 varying simultaneously.

4.2. Simulations results of the elaborated scheme for encoding biomedical 
image

All the simulations are computed in MATLAB 2016b. In this work, 
we use three gray-scale biomedical images of size 256 × 256, namely 
glioma, meningioma and pituitary. These are images of brain diseases. 
According to the encoding and decoding procedures described below, 
the encoded and decoded biomedical images are shown in Fig. 8.

From Fig. 8, it is clear that the initial images are very different from 
those that have been encoded. This demonstrates the effectiveness of 
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the elaborated encoding scheme.
Table 1

Information entropies of initial and encoded biomedi-
cal images.

Images

Entropy Glioma Meningioma Pituitary

Initial image 5.3328 5.5266 5.7618
Encoded image 7.9970 7.9973 7.9975

5. Algorithm performance tests

5.1. Information entropy

The information entropy is expressed as [21]

𝐻 (𝑚) = −
𝑁∑
𝑖=1

𝑃
(
𝑚𝑖

)
log2

(
𝑚𝑖

)
, (11)

in which 𝑁 and 𝑃 (𝑚𝑖) represent respectively, the total number and the 
probability of appearance of symbol 𝑚𝑖. According to (11), we provided 
the information entropy in Table 1.

The results in Table 1 show that the encoded images have entropy
approaching 8, which is a standard value for a good encoding system. 
This confirms the robustness of the elaborated encoding system.

5.2. Correlation study

Let’s consider another tool used to evaluate the performance of an 
encoding system which is the correlation coefficient (in short, CC). It 
expresses the rate of similarity between two neighboring pixels in an 
image [22]. The 𝐶𝐶 of initial image is close to 1 for initial image and 

tends to 0 for encoded image which is given by:
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Fig. 6. The experimental chaotic phase diagrams observed and captured by using a dual-channel digital oscilloscope (Voltcraft D50-1062D): (a) 𝑉𝑥 −𝑉𝑦, (b) 𝑉𝑥 −𝑉𝑧, 
and (c) 𝑉𝑦 − 𝑉𝑧.

Fig. 7. Biomedical image encoding process based on the constructed oscillator without equilibrium and linear term.

Table 2

Correlation coefficients values computed in different directions.

Gray-scale images

Direction Original image Encrypted image

glioma meningioma pituitary glioma meningioma pituitary

Horizontal 0.9531 0.9409 0.9407 0.00094 -0.0014 0.0010
Vertical 0.9539 0.9593 0.9336 -0.0032 -0.0013 0.0008
Diagonal 0.9242 0.9112 0.8890 -0.0020 -0.0028 -0.0010
Average 0.9437 0.9371 0.9211 -0.0014 -0.0018 0.00026
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐸 (𝑥) = 1
𝑁

𝑁∑
𝑖=1
𝑥𝑖

𝐷 (𝑥) = 1
𝑁

𝑁∑
𝑖=1

(
𝑥𝑖 −𝐸 (𝑥)

)2
cov (𝑥, 𝑦) = 1

𝑁

𝑁∑
𝑖=1

(
𝑥𝑖 −𝐸 (𝑥)

)(
𝑦𝑖 −𝐸 (𝑦)

)
𝑟𝑥𝑦 =

cov(𝑥,𝑦)√
𝐷(𝑥)

√
𝐷(𝑦)

(12)

in which, 𝑥 and 𝑦 represent the pixel values. The results of correlation 
coefficients computed with the help of Eq. (12) are shown in Table 2.

The results in Table 2 show that the correlation coefficient values 
for initial images are close to 1. However, after encoding process, their 
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values are all close to 0.
5.3. Histogram study

The histogram is used to appreciate the graphic distribution of pixels 
of an image. The pixels of an initial image are arranged randomly and 
those of encoded image are disposed uniformly. The histogram of the 
initial and encoded biomedical images is shown in Fig. 9.

We can observe from Fig. 9 that, the histogram of the initial, en-
coded and decoded biomedical images has the properties as described 
above. This proves that the elaborated encoding system is efficient.

5.4. Key space and key sensitivity evaluation

To ensure a good level of security in an encoding system, the re-

quired key space must exceed 2100, see [23]. The investigated oscillator 
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Fig. 8. Simulations results of the elaborated scheme for encoding biomedical 
image (a) initial image of glioma, (b) initial image of meningioma, (c) initial 
image of pituitary, (d) encoded image of glioma, (e) encoded image of menin-
gioma, (f) encoded image of pituitary, (g) decoded image of glioma, (h) decoded 
image of meningioma, (i) decoded image of pituitary.

without equilibrium and linear term includes three initial states and two 
constant parameters. Considering a precision of 10−17, the key space 
size is 1017×5 = 1085, which exceeds 2100. An algorithm for encoding 
image that is highly sensitive to the key has good resistance to brute 
force attacks. To evaluate the key sensitivity of the elaborated biomed-
ical image-encoding algorithm, we use six slightly different test keys to 
decode the sending image, see Fig. 10.

From Fig. 10, we can realize that, a small change (10−17) in the key 
has a large influence on the decoded image. In fact, when the key is 
slightly modified, it is no longer possible to receive the initial image. In 
conclusion, the elaborated encoding system has good sensitivity to the 
key.

5.5. Effects of noise and occlusion attacks

The encoding systems are sensitive to noise and occlusion attacks. 
It is therefore important to evaluate their effects on the performances 
of the encoding system. To this end, two types of noise (Gaussian, Salt 
and Pepper noise) are added to the initial biomedical images before the 
encoding process. The decoded images are shown in Fig. 11(𝑎′1 − 𝑎

′
3) 

for Gaussian noise and Fig. 11(𝑏′1 − 𝑏
′
3) for Salt and Pepper noise. In 

addition, a portion of the initial biomedical images (see Fig. 11(𝑐1 − 𝑐3) 
is removed before the encoding process. Fig. 11(𝑐′1 − 𝑐

′
3) shows decoded 

images. From Fig. 11, one can see that, despite the addition of noise and 
the suppression of a portion of the initial images, the decoded images 
are still usable.

5.6. Effects of the differential attacks

The differential attacks influence the efficiency of an encoding sys-
tem. The effects of differential attacks on an encoding system are ex-
amined using different tests such as NPCR and UACI. The mathematical 
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expressions of NPCR and UACI are [24]:
Alexandria Engineering Journal 97 (2024) 376–384

Table 3

Results of the NPCR and UACI tests.

Plaintext sensitivity

Image NPCR (%) UACI (%)

glioma 99.5986 29.3736

Meningioma 99.6185 27.4038

Pituitary 99.5804 29.0642

NPCR =
∑𝑚

𝑖=1
∑𝑛

𝑗=1 𝑑(𝑖, 𝑗)
𝑚 × 𝑛

× 100 (13)

𝑑(𝑖, 𝑗) =

{
0, if 𝑝(𝑖, 𝑗) = 𝑝′(𝑖, 𝑗);
1, else,

and

UACI = 100
𝑚 × 𝑛

𝑚∑
𝑖=1

𝑛∑
𝑗=1

|𝑝(𝑖, 𝑗) − 𝑝′(𝑖, 𝑗)|
2𝑙 − 1

. (14)

According to Equations (13) and (14), the NPCR and UACI are evaluated 
and the results are listed in Table 3.

The results in Table 3 show that the elaborated encoding system is 
sensitive to small modifications to the image pixels.

5.7. Comparison of the results with those of some recent studies

Table 4 compares the results of this work with those developed in 
some recent studies [25–28].

The results in Table 4 clearly show that the encoding method devel-
oped in this work is efficient and resistant to different attacks than ones 
studied in some recent works.

6. Adaptive control of the oscillator

Control and synchronization are vital for chaotic systems [29–31]. 
Baleanu et al. studied state-feedback and optimal controllers for a 
quarter-car model [29]. State-feedback and adaptive controllers were 
proposed by Sajjadi et al. for a biological oscillator [30]. In [31], au-
thors developed active and adaptive schemes for a cardiac conduction 
system. This section presents an adaptive controller of the oscillator.

Let define the driver system by

⎧⎪⎨⎪⎩
�̇�1 = 𝑎

(
𝑥33 − sgn

(
𝑥2
))
,

�̇�2 = −𝑥33 − 𝑏,
�̇�3 = −𝑥33 − 𝑥

3
1.

(15)

In the next, we provide the adaptive synchronization of identical 
novel chaotic oscillator with parameters which are not valued. The re-
sponse system is presented as

⎧⎪⎪⎨⎪⎪⎩
�̇�1 = 𝑎𝑥33 − 𝑎sgn

(
𝑥2
)
+ 𝑢1,

�̇�2 = −𝑥33 − 𝑏+ 𝑢2,

�̇�3 = −𝑥33 − 𝑥
3
1 + 𝑢3,

(16)

where 𝑥1, 𝑥2, 𝑥3 are the states, 𝑎, 𝑏 are unknown system parameters and

𝑈 = [𝑢1, 𝑢2, 𝑢3]𝑇

is the adaptive controller to be determined. We consider the adaptive 
controller defined by

⎧⎪⎪⎨⎪
𝑢1 = −𝜀𝑎𝑥33 + 𝜀𝑎sgn

(
𝑥2
)
− 𝑥1𝑘1,

𝑢2 = 𝑥33 + 𝜀𝑏 − 𝑥2𝑘2,
3 3

(17)
⎪⎩ 𝑢3 = 𝑥3 + 𝑥1 − 𝑥3𝑘3,
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Fig. 9. Histogram of initial images (a), encoded images (b), and decoded images (c).

Table 4

Comparison between the results of this work and those developed in some recent studies.

Image encryption algorithm

entropy H V D NPCR(%) UACI(%)

Present algorithm 7.9972 -0.0019 -0.0008 -0.0045 99.6017 33.4922
Ref. [25] 7.9971 -0.0003 -0.0037 0.0020 99.59 33.27
Ref. [26] 7.9964 -0.0057 -0.0034 0.0073 99.6185 33.6245
Ref. [27] 7.9938 -0.0006 -0.0057 0.0009 99.60 34.63
Ref. [28] 7.9939 0.0015 -0.0090 -0.0120 99.54 34.25

Fig. 10. Key sensitivity evaluation. (a) correct keys, (b) 𝑎 +10−17 , (c) 𝑏 +10−17 , 

where 𝜀𝑎, 𝜀𝑏 denote the estimated parameters of the system coefficients 
𝑎, 𝑏 respectively and 𝑘1, 𝑘2, 𝑘3 > 0.

Substituting (17) into (16), we obtain the closed-loop system:

⎧⎪⎨⎪⎩
�̇�1 = [𝑎− 𝜀𝑎]𝑥33 − [𝑎− 𝜀𝑎]sgn

(
𝑥2
)
− 𝑘1𝑥1,

�̇�2 = −[𝑏− 𝜀𝑏] − 𝑘2𝑥2,

�̇�3 = −𝑘3𝑥3.

(18)

Accordingly, let us denote the error estimation of the parameters as 
follows:{
𝜀1(𝑡) = [𝑎− 𝜀𝑎(𝑡)];

𝜀2(𝑡) = [𝑏− 𝜀𝑏(𝑡)].
(19)

Based on Equation (19), the derivatives of the parameter estimation 
errors can be expressed as:{
𝜀1 = −𝜀𝑎,
(20)
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(d) 𝑥0 + 10−17, (e) 𝑦0 + 10−17 and (f) 𝑧0 + 10−17.

𝜀2 = −𝜀𝑏.
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Fig. 11. Effects of noise and occlusion attacks. (𝑎1) − (𝑎3) encoded with 
0.001, 0.005, and 0.01 Gaussian noise, respectively. (𝑎′1) − (𝑎′3) corresponding 
decoded images. (𝑏1) − (𝑏3) encoded images with 0.001, 0.005, and 0.01 salt and 
pepper noise, respectively. (𝑏′1) − (𝑏′3) corresponding decoded images. (𝑐1) − (𝑐3)
decoded image with 1∕32, 1∕16, and 1∕4 loss respectively. (𝑐′1) − (𝑐′3) corre-
sponding decoded images.

Next, we reduce (18) to

⎧⎪⎨ �̇�1 = 𝜀1𝑥
3
3 − 𝜀1sgn

(
𝑥2
)
− 𝑘1𝑥1,

�̇�2 = −𝜀2 − 𝑘2𝑥2, (21)
383

⎪⎩ �̇�3 = −𝑘3𝑥3,
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Fig. 12. Time series of anti-synchronization for error dynamical system (22)
with controller (17).

Theorem 2. If the controller is chosen as (17) and let the parameter’s up-

date laws are{
𝜀1(𝑡) = −𝑥1𝑥33 + 𝑥1sgn

(
𝑥2
)
− 𝜂(𝑎− 𝜀𝑎);

𝜀2(𝑡) = 𝑏𝑥2 − 𝜂(𝑏− 𝜀𝑏),
(22)

then the synchronization between the driver system (17) and the response 
system (16) is approached if 𝑘1, 𝑘2, 𝑘3 are positive constants.

Proof. We consider the Lyapunov function defined by

𝑉 (𝑥1, 𝑥2, 𝑥3, 𝜀1, 𝜀2) =
1
2
(
𝑥21 + 𝑥

2
2 + 𝑥

2
3 + 𝜀

2
1 + 𝜀

2
2
)

Differentiating the above function, we have

�̇� (𝑥1, 𝑥2, 𝑥3, 𝜀1, 𝜀2) =

=
(
𝑥1�̇�1 + 𝑥2�̇�2 + 𝑥3�̇�3 + 𝜀1𝜀1 + 𝜀2𝜀2

)
Taking time derivative of the above function along the trajectories 

of (22), we have

�̇� = −(𝑘1𝑥21 + 𝑘2𝑥
2
2 + 𝑘3𝑥

2
3 + 𝜂𝜀

2
1 + 𝜂𝜀

2
2) (23)

which is a negative function for 𝑘1, 𝑘2, 𝑘3 > 0. Thus, due to the Lya-
punov stability theory, we obtained that 𝜀1(𝑡) → 0, 𝜀2(𝑡) → 0 exponen-
tially when 𝑡 →∞.

The fourth order Runge-Kutta method is used to simulate numeri-
cally the introduced adaptive control system for system (16) with the 
adaptive control law (17) and the parameter update law (22). The pa-
rameters of system (1) are selected as 𝑎 = 3, 𝑏 = 0.5. In addition, we take 
the adaptive and update laws as 𝑘𝑖 = 𝜂𝑖 = 2, (𝑖 = 1, … , 3). Assume that 
the initial values of the estimated parameters are (1, 1, 1) and the initial 
values of system (1) are taken as (2, 3, 4). When the adaptive control 
law (22) and the parameter update law are used, the controlled sys-
tem converges to the equilibrium 𝐸 = (0, 0, 0) exponentially as shown 
in Fig. 12.

7. Conclusions

A new three-dimensional chaotic oscillator with only nonlinear 
terms (three cubic functions and one signum function) is presented 
in this paper. The proposed oscillator displayed “hidden attractors” 
where no equilibrium points appeared. The bifurcation diagrams and 

Lyapunov exponents were investigated to determine the oscillator’s dy-
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namical characteristics. The comparison between the proposed biomed-
ical image encryption algorithm with those of some recent algorithms 
shows a efficient and robust results. Moreover, the adaptive control of 
the new oscillator is given. We believe that the novelty and significance 
of our findings contribute to the field of nonlinear dynamics and its 
applications.
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